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Abstract Accurate maneuvering estimation is essential to
establish autonomous berthing control. The system-based
mathematical model is widely used to estimate the ship’s
maneuver. Commonly, the system parameters of the mathe-
matical model are obtained by the captive model test (CMT),
which is time-consuming to construct an accurate model
suitable for complex berthing maneuvers. System identifi-
cation (SI) is an alternative to constructing the mathemati-
cal model. However, SI on the mathematical model of ship’s
maneuver has been only conducted on much simpler maneu-
ver: turning and zig-zag. Therefore, this study investigates
the SI on a mathematical model capable of berthing maneu-
ver. The main contributions of this study are as follows: (i)
construct the system-based mathematical model on berthing
by optimizing system parameters with a reduced amount of
model tests than the CMT-based scheme; (ii) Find the fa-
vorable choice of objective function and type of training
data for optimization. Global optimization scheme CMA-
ES explored the system parameters of the MMG model from
the free-running model’s trajectories. The berthing simula-
tion with the parameters obtained by the proposed method
showed better agreement with the free-running model test
than parameters obtained by the CMT. Furthermore, the pro-
posed method required fewer data amounts than a CMT-
based scheme.
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1 Introduction

In recent years, the autonomous operation of ships has been
actively studied, and autonomous berthing is one of the crit-
ical technologies. To develop the autonomous berthing con-
trol algorithm, accurate prediction of ship maneuvering by
the numerical method is essential because the ship is oper-
ated near the berth wall, and estimation error may cause a
devastating result. Several methods to predict the ship’s ma-
neuver had been used: system-based method, direct estima-
tion by computational fluid dynamics (CFD), and black-box
model.

System-based method The most commonly used method to
estimate the ship’s maneuver is the system-based method,
which represents the dynamics by several mathematical
models consisted of several sets of equations and system pa-
rameters (hereafter, maneuvering model and mathematical
model will be used interchangeably when referring to the
representation of the dynamical system of ship’s maneuver).
The Mathematical Maneuvering Group (MMG) model [1]
and the Abkowitz model [2] are major system-based meth-
ods. Both models need to obtain the inherent system param-
eters of each ship; the captive model test (CMT) [3] and
empirical formulae [4] are widely used to obtain system pa-
rameters. Computational fluid dynamics [5,6,7,8,9,10,11]
is an alternative method to obtain hydrodynamic forces to
obtain system parameters. Another method to establish the
system-based mathematical model is System Identification
(SI), which estimates system parameters from the time his-
tory of motion of ship obtained by free-running model tests,
full-scale ship trial results, or numerical simulation. Sev-
eral optimization methods for SI had been reported, both on
estimation on MMG model and Abkobitz model: Kalman
filter [12]; the least-square method [13,14]; support vec-

ar
X

iv
:2

11
1.

06
12

4v
1 

 [
ee

ss
.S

Y
] 

 1
1 

N
ov

 2
02

1



2 Yoshiki Miyauchi et al.

tor regression [15,16,17,18]; generic algorithm [19,20], and
Bayesian approach [21].

Direct CFD The second option is estimating all hydrody-
namic force and rigid motion simultaneously by viscous
CFD. Although this direct CFD method requires intense
computational resources, generally, it is independent of hy-
drodynamic modeling except for turbulence modeling on
Reynolds-averaged Navier-Stokes (RANS) equations. Nu-
merous studies are done on direct estimation by CFD, such
as turning and zig-zag motion [13,20,22,23,24,25,26,27],
crush astern maneuver [28]. The direct CFD estimation is
more capable of accuracy than the system-based method
compared with the free-running model test [13].

Black-box model The third option is the black-box model;
the model does not have an explicit form of equations and
only requires input and output for training. The black-box
model has a potentially higher capability to express complex
non-linear dynamics than the system-based method because
the predetermined structure of mathematical models bounds
the capability of the system-based method. Numerous stud-
ies had been done in the last decade: recursive neural net-
work (RNN) [29,30]; locally weighted learning[31]; model
reference and random forest [32].

When comparing three methods from the perspective of
online control, the system-based method with the SI tech-
nique is one of the most favorable choices. The direct CFD
method is not practical due to its intense computational cost,
although it is accurate. In contrast, once the model was es-
tablished, the system-based method and black-box model
are applicable to online control algorithms due to their short
computational time. In practice, the system-based method
with the CMT for parameter acquisition (hereafter, referred
to as “CMT-based scheme”) have been commonly used in
the field of berthing control [33,34,35,36,37], however, this
method has several drawbacks: a large amount of model test
is required; difficult to achieve quantitative agreement with
free-run model test[13]; scale effect caused by difference of
Reynolds number between full-scale ship and model. Be-
cause of these points, models are needed to be tuned manu-
ally by humans before practical use [19]. On the other hand,
system-based method with SI and black-box model are fa-
vorable because they only require few trajectories and are
able to avoid the scale effect when the full-scale ship’s tra-
jectory is used as input (e.g., [31,38]). Although the black-
box model can represent complex dynamics better than the
system-based method, the dynamics of the black-box model
are not understandable, and can not expect the model’s be-
havior when the given control and state are an extrapola-
tion of the training data. Hence, from the safety perspec-
tive, the authors consider the system-based method with SI

more suitable for developing a maneuvering model for au-
tonomous berthing control.

However, to the best of our knowledge, the research on
SI of maneuvering mathematical model have been done only
on turning and zig-zag maneuver. Those are maneuvers on
the open sea, which means the ship is advancing all time,
the propeller is operating at forwarding direction and con-
stant revolution. Berthing maneuver includes various state
and control input combinations: changing control input in
a wider range, such as switching the direction of propeller
revolution; and ship is forwarding and astern or crabbing.
The standard MMG model assumes only maneuvering on
the open sea. Hence, additional mathematical models are re-
quired to estimate berthing maneuvers. Several sub-model
for the MMG model have been proposed to model slow-
speed region: e.g., propeller reversal [39,34]; hull force for
large drift condition [40,41,42]; rudder force [42,43]. By in-
troducing these additional sub-models, the MMG model will
be able to compute berthing maneuver [34,36,44]. How-
ever, those “model-rich” MMG model requires additional
scale model test or numerical simulation to obtain system
parameters, which will be costly and time-consuming. From
the perspective of time and cost, SI is preferable to fa-
cilitate a mathematical model of berthing, which requires
only several trajectories of maneuver. Although these de-
mands, we cannot find the research on SI of maneuvering
model for berthing, other than research done by the authors’
group [45].

1.1 Objective and scope

Consequently, research on the SI of the mathematical model
for the berthing is necessary. This study investigates the fea-
sibility of system parameter exploration on the mathemati-
cal model for berthing maneuvers from physically obtained
trajectories. The main contributions of this study are as fol-
lows: (i) construct the system-based mathematical maneu-
vering model on berthing by the optimization of system pa-
rameters with a reduced amount of model test than CMT-
based scheme; (ii) Find the favorable choice of objective
function and type of trajectory as input data for optimiza-
tion of system parameters on berthing maneuver.

The rest of the paper is organized as follows: section two
describes the mathematical model of maneuvering; section
three describes the optimization scheme used in this study
for exploration of system parameters; section four shows the
method of data set generation and data set itself; section five
shows the results, which are comparison on optimal param-
eter and Conservative EFD obtained parameter; finally, sec-
tion six gives the discussion on obtained results and section
seven concludes the study.
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Fig. 1: Coordinate System

2 Mathematical model of ship maneuver

In this study, the maneuver of the ship was modeled as
a 3 degrees-of-freedom problem on the surge, sway, and
yaw motion. The coordinate systems are space-fixed system
o0− x0y0 and ship-fixed system o− xy, which has its ori-
gin on midship. Fig. 1 shows the coordinate systems in this
study. State vector is xxx = (x0,u,y0,vm,ψ,r)T ∈ R6, where
u,vm are the velocity of o− xy system. The vector of con-
trol input is uuu = (δ , np)

T, represent the rudder angle, the
revolution of propeller respectively. Wind disturbance was
considered as environmental parameter ωωω , which consist by
the true wind direction and true wind speed ωωω = (γT, UT)

T.
However, due to the ship’s maneuver, an apparent wind af-
fects the actual force acting on the hull. Hence we computed
the apparent wind inside the mathematical model of maneu-
vering. The zero direction of true wind direction γT was set
to the direction in which the wind blows from the positive
direction to the negative direction of x0.

The 3-DoF equation of MMG model is express as fol-
lows:

(m+mx)u̇− (m+my)vmr− xGmr2 = X

(m+my)v̇m +(m+mx)ur+ xGmṙ = Y

(Izz + Jzz + x2
Gm)ṙ+ xGm(v̇m +ur) = N

(1)

with

X = XH +XP +XR +XA

Y = YH +YP +YR +YA

N = NH +NP +NR +NA .

(2)

Here, the dot (e.g. ẋ) is the time derivative. The right-hand
side of Eq. (1) represents the force or moment acting on the
ship, and the MMG model decomposes the hydrodynamic
force acting on the ship to sub-model for major components
consisting of the ship as Eq. (2). The subscripts H, P, R, and

A denote the hull, the propeller, the rudder, and the external
forces by wind, respectively. MMG model has several sys-
tem parameters θθθ , and estimate the time derivative ẋxx(t) by
solving fff expressed in Eq. (1):

ẋxx(t) = fff
{

xxx(t),uuu(t),ωωω(t); θθθ
}

. (3)

In this study, we show the method to find optimal θθθ . Here-
after, parameters with underline (e.g., mx) means those pa-
rameters were explored in the optimization process. In the
next section, the details of each sub-models are explained.

2.1 Force on Hull

The force acting on the hull was computed by the unified
model for navigation on the open sea and harbor maneu-
vers [41]:

XH =
(

ρ

2

)
Lppd

[ {
X ′0(F)+

(
X ′O(A)−X ′0(F)

)
(β/π)

}
uU

+X ′vrLpp · vmr

]
YH =

(
ρ

2

)
Lppd Y ′vvm|u|+Y ′r Lpp · ru

−
(

CD

Lpp

)∫ Lpp/2

−Lpp/2

∣∣vm +CrY rx
∣∣(vm +CrY rx

)
dx


NH =

(
ρ

2

)
L2

ppd N′vvmu+N′rLpp · r|u|

−

(
CD

L2
pp

)∫ Lpp/2

−Lpp/2

∣∣vm +CrNrx
∣∣(vm +CrNrx

)
xdx

 ,

(4)

where ρ, density of water; Lpp, Length between perpendicu-
lars of ship; d, draft of ship; X ′O(F)and X ′O(A), resistance coef-
ficients of ahead and astern; CD, cross flow drag coefficient;
CrY and CrN , correction factor for lateral force and yaw mo-
ment; X ′0(F), Y ′v , Y ′r , N′v, and N′r are non-demensional hy-
drodynamic derivatives, respectively. Hereafter, superscript
prime (e.g. X ′0(F)) means the non-dimensionalized value.
Note that added mass term in original expression of Eq. (4)
was move to left hand side of Eq. (1).

2.2 Force by propeller

Since standard MMG model [3] assumed only the forward-
ing maneuver (u > 0, np > 0), computation on propeller
force applied additional sub-models based on operation con-
dition of propeller, which are divided by quadrant: first (u≥
0, np > 0); second (u < 0, np > 0); third (u ≥ 0, np < 0);
and fourth (u< 0, np < 0). On the first and second quadrant,
propeller thrust was computed by standard MMG model:

XP = ρn2
pD4

p

(
1− tp

)
KT , (5)
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where thrust coefficient KT was express by a pronominal
expression of advance coefficient Jp = (1−wp)u/(npDp).
The effective propeller wake fraction wp was computed as
follows [46]:

1−wp = 1−wp0 + τ

∣∣∣v′m + x′pr′
∣∣∣+C′P

(
v′m + x′pr′

)2
, (6)

where: wp0 is the wake fraction on vm = r = 0; τ, C′Pand x′p
are empirical coefficients. The trust deduction factor tp and
wake fraction wp varies by propeller operation condition,
however in this study simply modeled as:

tp = 0 for np < 0 (7)

wp = 0 for u < 0 , (8)

as model in [42,47]. lateral force and yaw moment induced
by propeller on first and second quadrant (np ≥ 0) are usu-
ally neglected in MMG model, however in this study , those
were computed by the polynomial based on the captive test
of training vessel [48], as follows:

YP =

{
0 for u≥ 0
1
2 ρL2

ppd (npP)2 (A6J2
s +A7JS +A8

)
for u < 0

(9)

NP =

{
0 for u≥ 0
1
2 ρL2

ppd (npP)2 (B6J2
s +B7JS +B8

)
for u < 0

(10)

where: P, pitch of propeller; Js = u/(nPDP); A6 through A8
and B6 through B8 are polynomial coefficients.

On the propeller reversal condition, same as second
quadrant, polynomial expression [34] based on CMT was
used:

XP =ρn2
pD4

p

{
C6 +C7Js for

(
Js ≥C10

)
C3 for

(
Js <C10

) (11)

Yp =
1
2

ρLd (npDp)
2


A1 +A2Js (−0.35≤ Js ≤−0.06)
A3 +A4Js (Js <−0.35)
A5 (−0.06 < Js)

(12)

Np =
1
2

ρL2d (npDp)
2


B1 +B2Js (−0.35≤ Js ≤−0.06)
B3 +B4Js (Js <−0.35)
B5 (−0.06 < Js) ,

(13)

where, A1 through A5, B1 through B5, C3, C6, C7, and C10
are polynomial coefficients.

2.3 Force by Rudder

Induced force and moment by rudder were expressed as fol-
lows on standard MMG model [3]:

XR =−
(
1− tR

)
FN sinδ (14)

YR =−
(
1−aH

)
FN cosδ (15)

NR =−
(
xR +aH xH

)
FN cosδ , (16)

where FN is the rudder normal force:

FN = (1/2)ρARU2
R fα sinαR . (17)

Here, tR, thrust deduction factor by steering; xR, longitu-
dinal position of the rudder from midship; aH , correction
factor lateral force; xH position of additional lateral force
on hull due to steering; AR, area of the rudder. The gradi-
ent of rudder normal force fα is expressed as constant in
most MMG model-related studies, however, regarding the
berthing maneuver, a rudder operates even in the deep-stall
region; hence fα is not constant anymore. Even so, fα was
assumed as constant and computed by the most commonly
used empirical expression, Fujii’s formula [49], which is the
function of rudder aspect ratio λ :

fα = 6.13λ/(2.25+λ ) . (18)

The resultant rudder inflow speed UR and effective inflow
angle αR were expressed by longitudinal and lateral inflow
speed uR and vR:

UR =
√

u2
R + v2

R (19)

αR = δ −atan2

(
vR

uR

)
. (20)

We extended the standard MMG model to Eq. (20) to ap-
ply to the berthing maneuver by introducing the function
atan2(y/x) reruns the tan−1(y/x) in range of (−π,π]. The
lateral inflow speed vR is expressed as follows by using flow
straightening coefficient γ and experimental constant lR:

vR =

{
−γP

(
vm + lRr

)
for vm + xRr ≥ 0

−γN
(
vm + lRr

)
for vm + xRr < 0 .

(21)

The longitudinal inflow uR will be heavily affected by direc-
tion of ship motion and propeller induced flow. For np ≥ 0,
uR was expressed by modified form [39] for low speed re-
gion as:

uR =

ε

√√√√√η

uP +
kx

ε

√u2
P +

8KT (nPDP)
2

π
−uP


2

+(1−η)u2
P .

(22)
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Here, uP = (1−wP)u; η = DP/HR; HR, height of rudder; ε ,
ratio of wake fraction; kx, empirical coefficient. On the third
quadrant, Kitagawa’s model [50] was applied:

uR = sgn(uRsq) ·
√∣∣uRsq

∣∣ , (23)

where:

uRsq =η · sgn(uRPR1) ·u2
RPR1

+(1−η)sgn(uRPR2) ·u2
RPR2 +CPR ·u

(24)

uRPR1 = uε (1−wp)+npDpkxPR
√

8 |KT |/π (25)

uRPR2 = uε (1−wp) . (26)

Here, kxPR and CPR are the velocity increase factor and the
correction factor for propeller reversal condition, respec-
tively. On the fourth quadrant, we assumed that the inflow
is equal to the ship’s motion: uR = u [42].

2.4 Force by Wind

Regarding the external force induced by wind disturbance,
Fujiwara’s regression formulae [51] was used to estimate the
wind pressure coefficients:

XA = (1/2)ρAU2
AAT ·CX

YA = (1/2)ρAU2
AAL ·CY

NA = (1/2)ρAU2
AALLOA ·CN ,

(27)

where

CX =X0 +X1 cos(2π− γA)+X3 cos3(2π− γA)

+X5 cos5(2π− γA)

CY =Y1 sin(2π− γA)+Y3 sin3(2π− γA)

+Y5 sin5(2π− γA)

CN =N1 sin(2π− γA)+N2 sin2(2π− γA)

+N3 sin3(2π− γA) .

(28)

Here, ρA is the density of air, AT , AL,LOA are the trans-
verse projected area, the lateral projected area, and the over-
all length of the ship, respectively. Xi, Yi,Ni are coefficients
to express wind pressure coefficients derived by the regres-
sion formulae [51] which use geometric parameters of the
ship as explanatory variables and based on wind tunnel test
data of numerous scaled ship models.

2.5 EFD model

The common method to obtain system parameters of the
MMG model is a test using the scaled model, such as a CMT
at the towing tank facility. To evaluate the optimal param-
eters obtained by the proposed method, the MMG model

Table 1: List of parameters optimized on this study and
source of EFD model.

parameters Source
mx, my, Izz + Jzz Empirical formulae
X ′O(A),X

′
vr , Captive test [52]

Y ′v , Y ′r , N′v, N′r
CD, CrY ,CrN Empirical formulae [41]
tP, wP0, τ , x′P, C′P Captive test [46]
A1,A2,A3,A4,A5 Captive test [34]
B1,B2,B3,B4,B5
C3, C6, C7, C10
A6, A7, A8, Captive test of train vessel [48]
B6, B7, B8
tR, aH , xH , Captive test [52]
γP, γN , lR, kx, ε

kxPR, CPR Captive test of KVLCC1 and Bulk Carrier [50]
X0, X1, X3, X5 Regression formulae [51]
Y1, Y3, Y5,
N1, N2, N5

with parameters obtained by model test and empirical for-
mulae (hereafter, referred to as “Experimental fluid dynam-
ics (EFD) model”) was used as a reference. Table 1 shows
the list of parameters which was optimized in this study and
the source of parameters of the EFD model. Most of the
parameters were obtained by the CMT of the subject ship;
however, several parameters were substituted by empirical
formulae or other ship’s values due to the absence of data on
the subject ship.

3 Optimization scheme

3.1 Objective Function

The optimization of MMG model was defined as minimiza-
tion problem on the difference of maneuver between in-
put data set D and simulation using the obtained numeri-
cal model. In this study, D consists with several trajectories
measured on free-run model test (i.e. turning, zig-zag, and
random maneuver), which includes time history of model
test: xxxinput(t), uuuinput(t) and ωωω input(t). Trajectories contained
in D were divided to contiguous subsequence to mitigate
the effect of error accumulation of maneuvering simulation
on the optimization process. The simulation using the MMG
model estimates the maneuver as an initial value problem for
each contiguous subsequence of D :

xxxinput(0) = xxxsim(0) (29)

uuuinput(t) = uuusim(t) (30)

ωωω input(t) = ωωωsim(t) . (31)

Contiguous subsequence is the portion of D with constant
duration. Duration of contiguous subsequence is tf = 100 s,
except for final contiguous subsequence of each trajectory.
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The period of 100 s is a typical period of berthing maneu-
ver, which is roughly equivalent to 17 minutes on the full
scale. On the numerical simulation, the 4th order Runge-
Kutta method was used for the time development of Eq. (3).

The optimization of MMG model was formulated as ex-
ploration of the optimal parameter vector θθθ opt from domain
Θ which minimize the objective function J on whole data
set D :

θθθ opt = argmin
θθθ∈Θ

J(θ ; D)

where J ≡
N

∑
i=1

∫ tf

0
‖ẑzzi

input(t)− ẑzzi
sim(t)‖2dt .

(32)

Here, ẑzzi(t)= (ẑi
1(t), ẑi

2(t), · · · ẑi
j(t)) is standardized state vec-

tor:

ẑi
input, j(t) =

(
zi

input, j(t)−µ
i
input, j

)
/σ

i
input, j (33)

ẑi
sim, j(t) =

(
zi

sim, j(t)−µ
i
sim, j

)
/σ

i
sim, j , (34)

where superscript i means the i-th contiguous subsequence
in D ; tf is the time duration of contiguous subsequence ; N
is total number of contiguous subsequence in D ; subscript
input and sim mean the input data and numerical simulation
of MMG model; zzz(t) is the state used in optimization pro-
cess; µµµ i and σσσ i are the mean and standard deviation of zzzi(t).
Detail of Θ are described on Section 3.3.

On the choice of component of the state as input, sev-
eral choices of zzz(t) can be taken. The authors previously
used velocity component zzz(t) = (u, vm, r)T [45]. Other op-
tions are: to contain both trajectory and velocity as [19]; or
use the representative value of trajectory such as tactical di-
ameter on turning and overshoot angle on the zig-zag test
as [20]. Regarding the estimation of berthing maneuver, es-
timation of location and velocity are both important because
berthing maneuver needs to stop at the designated berthing
point precisely without collision to berth wall, at zero speed.
Hence, the following three options of zzz(t) on optimization
were compared:

zzzi
1(t)≡

(
ui(t), vi

m(t), ri(t)
)T
∈ R3 (35)

zzzi
2(t)≡

(
xi

0(t), ui(t),

yi
0(t), vi

m(t), sinψ
i(t), cosψ

i(t), ri(t)
)T
∈ R7

(36)

zzzi
3(t)≡

(
xi

0(t), yi
0(t), sinψ

i(t), cosψ
i(t)
)T
∈ R4 . (37)

Hereafter, Objective function which use zzzi
1(t), zzzi

2(t), zzzi
3(t)

called as J1,J2,J3, respectively.

3.2 CMA-ES

In the previous study [45,53,54], covariance matrix adap-
tion evolution strategy (CMA-ES) [55] with modified box

(1) (2) (3)

(4) (5) (6)

Fig. 2: Schematic presentation of the CMA-ES procedure
including (1) generating multiple candidate solutions, (2)
evaluating and ranking the solutions based on the objective
function, (3) updating the covariance matrix, (4) shifting the
center of the distribution to a weighted mean vector, (5) up-
dating the step size and (6) generating multiple candidates
in the next step. This figure duplicates Fig. 2 in the litera-
ture [37]

constraints [56] and restart strategy [57] was applied as the
optimization method. Fig.2 shows the schematic view of the
optimization procedure using CMA-ES. In this study, the
initial population size of CMA-ES was set to 20, and the
max size was 720, while the population size was doubled
when the restart occurred.

3.3 Range of Parameter Exploration

Here we show the detail of parameter exploration on this
study. Total 57 parameters were explored as shown on
Section 2. On the optimization by CMA-ES with box-
constraint, maximum and minimum value of parameters are
required. The j-th parameter θ j was explored within the do-
main Θ defined by parameter’s value of EFD model θEFD, j:

θ j ∈Θ j =
[
−10|θEFD, j|, 10|θEFD, j|

]
, (38)

with exception of :

θ j ∈


[
0.7θEFD, j, 1.3θEFD, j

]
for: mx, my, Izz + Jzz[

10θEFD, j, 0.1θEFD, j
]

for: Y ′v , N′r[
0.1θEFD, j, 10θEFD, j

]
for: tp, wp0 .

(39)

Those exceptions were made because: (1) added masses af-
fect all the component of force as shown on Eq. (1), hence
broad range of exploration may lead to numerical instabil-
ity; (2) sign of resistance, tp, wp0 are obvious. Note that
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Algorithm 1 Limitation of ẋxx(t)
1: for t = 0 : t f do
2: get ẋxx(t) by solving MMG model
3: for k=1:6 do
4: if |ẋk(t)|> ẋlim,k then
5: if k=1,3,5 then
6: ẋk(t) = sgn{ẋk(t)}{2− t/tf}ẋlim,k
7: else
8: ẋk(t) = sgn{ẋk(t)}ẋlim,k
9: end if

10: end if
11: end for
12: xxx(t +1) = xxx(t)+∆ tẋxx(t)
13: end for

Y ′v and N′r are negative. In this study we used the given pa-
rameter θθθ EFD, however even if those EFD obtained param-
eter are not available, for instance, when focusing on newly
designed ship, Eq. (38) is broad enough to cover the param-
eter space with given parameter used in this study.

On the other hand, broad range of exploration may
cause the divergence of numerical simulation of maneuver-
ing due to the unrealistically large or small value of the
parameters. To maintain numerical stability on optimiza-
tion process, treatment shown on Algorithm 1 was imple-
mented when ẋxx(t) exceeded the limit ẋxxlim. Here, ẋxxlim =

(a,a,a,a,a/(0.5LPP),a/(0.5LPP)) where a = 1×1010.

4 Free-run model test for data set generation

4.1 Scale model Ship and instruments

Training and test data sets were generated by free-run model
tests in the experimental pond facility (the Inukai pond) at
Osaka University using the model ship of VLCC M.V. Esso
Osaka. Table 2 shows the principal particulars of the model
ship. The loading condition is equivalent to the trail condi-
tion [58]. The model ship is equipped with measurement in-
struments: a fiber optical gyro (FOG); three GNSS receivers
(MJ-3021-GM4-QZS-EVK by Magellan Systems Japan);
and two ultrasonic anemometers (Gill PGWS-100-3). From
the measured data from these instruments, the time series of
state xxx(t) and true wind speed and direction

(
UT (t), γT (t)

)T
were Estimated. The appearance of the model ship is shown
in Fig. 3.

The details of the measurement and data processing
methods are described below. All measurements were per-
formed at 10 Hz. The model ship’s trajectory x0(t), y0(t)
was converted from the GNSS receivers’ trajectories to
the midship position. The GNSS receivers are compatible
with the centimeter-class positioning augmentation service

Table 2: Principal particulars of subject ship Esso Osaka.

Item Value
Length between perpendicular: Lpp(m) 3.0
Ship breadth: B(m) 0.489
Ship draft: d(m) 0.201
Diameter of propeller: Dp(m) 0.084
Area of Rudder: AR

(
m2
)

0.0106
Diameter of bow thruster: DBT : (m) 0.050
Diameter of stern thruster: DST : (m) 0.050
Mass: m (kg) 244.6
Longitudinal center of gravity: xG(m) 0.094
Transverse projected area: AT

(
m2
)

0.135
Lateral projected area: AL

(
m2
)

0.520
Block coefficient: Cb 0.830

Fig. 3: Scale Model Ship of Esso Osaka

(CLAS). Using CLAS, centimeter-class measurements are
possible for moving objects, but the experimental pond facil-
ity is an adverse condition for GNSS because surrounded by
buildings and other obstructions. Therefore, we monitored
the distance between the two GNSS receivers during mea-
surement. The accuracy of GNSS positioning was ensured
by using only the measurement results that are less than 5 cm
difference from the actual value of the distance between the
receivers. The velocity was estimated by numerically dif-
ferentiating the converted midship trajectory and smoothing
it out using a linear Kalman filter. The second-order cen-
tral difference method was used for numerical differentia-
tion and the differential time ∆ t = 1.0 s. This model ship is
equipped with three GNSS receivers to ensure redundancy.
However, after confirming the positioning accuracy with the
method described above, we used the GNSS receivers mea-
surements only at the front of the model ship.

The heading angle ψ was calculated from the two GNSS
receivers’ relative positions at the front and rear of the
model ship. This is because the drift of the FOG was non-
negligible; approximately 5◦ per 10 minutes during the mea-
surement. The angular velocity r is measured by the FOG
and filtered by a low-pass filter with a cutoff frequency of
0.2 Hz.

On the wind measurement, environment parameter ωωω ,
which is the wind disturbance on this study, is obviously
function of 3 dimensional space and time: ωωω(x0, y0, z0, t).
However, measurement of high resolution space distribution
at the experimental pond facility with was not practical from
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Table 3: List of training and test data. Percentage inside ()
means the fraction of duration of each subset.

Data set Subsets Amount of data
Train-R Train-R1 (75%), Train-R2 (25%) 2695 (s)
Train-TR Train-R1 (78%), 2580 (s)

Train-T1 (10%), Train-T2 (11%)
Train-TZR Train-R1(76%), 2660 (s)

Train-Z (14%), Train-T1 (10%)
Test Test-R (44%), 1624 (s)

Test-Z (9%),
Test-T (32%),
Test-B-S (8%),
Test-B-P (7%)

cost perspective. Hence, ωωω was modeled as the function
of time: ωωω(t) = (UT(t), γT(t))T, and derived from the ap-
parent wind velocity measured by two anemometers on the
ship as follows. Measured apparent wind on each anemome-
ters (UA,k(t) γA,k(t)) were once converted to local true wind
ωωωk(t) = (UT,k(t), γT,k(t))T. Then, the environment param-
eter ωωω(t) was derived by the average of local true wind to
reduce the dependency to the space distribution:

ωωω(t) =
1
N ∑

k
ωωωk(t) , (40)

where N is the number of anemometers.

4.2 Training and test data

This section describes the detail of data sets used in this
study as training data and test data. Training data is the in-
put for the optimization process, and test data is another set
of data to test the generalization performance of the opti-
mal mathematical model. Table 3 shows the data set used
in this study. In the table, the annotation R, T, Z, B-S, and
B-P means the type of maneuver: R for random; T for turn-
ing; Z for zigzag; B-S and B-P for berthing to the starboard
side and port side. Three sets of training data were used,
which have different combinations of maneuver; Train-R,
Train-TR, and Train-TZR, which contains random maneu-
ver, random and turning, random, turning, and zigzag ma-
neuver, respectively. These three data sets have an approxi-
mately equivalent duration of time. To set equivalent length,
measured data were divided into several subsets. The an-
notation of the subsets "Train-R1" means the first subset of
random maneuver.

The random maneuver is a maneuver with random con-
trol inputs. The random maneuver aims to contain all pos-
sible values of control inputs uuu and states xxx to reduce nec-
essary data for training and test. Additionally, by utilizing
the random maneuver for training data, the obtained param-
eters will be more robust to a wide range of control input

Table 4: Control Input of Turning and Zigzag test data

subsets Name δ (deg.) np (rps)
Train-T1 −20 10
Train-T2 20 10
Train-Z 15/15, 30/30 10
Test-T 35 8
Test-Z 20/20 12

and state. Nonaka first introduced random input [59] on ran-
dom rudder motion of free-running model test to estimate
Abkowitz maneuvering model. The Pseudo random binary
signal (PBRS) [60] and multi-level pseudo-random signal
(m-level PRS) [61] are other kinds of random maneuvers
for system identification that contain multiple: duration of
certain rudder angles (PBRS); or amplitude of rudder an-
gle (m-level PRS). We expand the idea of random input to
both uuu and state xxx for efficient optimization of maneuvering
model. Ideally, random control input must be truly random
by predetermined inputs; however, the measurements in the
pond have the risk of collision with the shore and grounding.
Therefore, the control input was given by the shore-based
operator’s radio controller to make the distribution of the
control inputs and state random as much as possible. The
maximum and minimum of control inputs were δ ≤ ±35◦,
np ≤ ±10 rps. Cruising speed of 10 rps is equivalent to 7.7
knots at full scale when the ship reaches constant speed nav-
igating straight forward at that np with scale.

In addition to the random maneuver, turning and zigzag
maneuvers were used as training and test data. This is be-
cause: to add a portion of quasi-steady motion to the data
set while the random maneuver is transient motion, the turn-
ing and zigzag maneuvers are very likely to be measured at
sea trial. Hence those data are available for many ships. Ta-
ble 4 shows the control input of turning and zigzag maneu-
ver. Those inputs were chosen not to overlap each other. This
is because not use the same control input between training
and test data. Note that the turning and zigzag maneuver data
contains the course-keeping acceleration maneuver before
the ship starts to turn or zigzag. The acceleration maneuver
was included in the data set to train and test the ship’s im-
portant feature, navigating straight forward under the wind
disturbance. PD controller was used to maintaining heading
during course-keeping maneuvers.

Since this research aims to establish an accurate maneu-
vering mathematical model applicable to berthing, we in-
cluded berthing maneuver in the test data. The berthing ma-
neuver was conducted in the center of the pond without the
berth wall and controlled manually by the operator. . The
maximum and minimum of control inputs are δ ≤ ±35◦,
np ≤ ±20 rps, which is higher rps than random maneuvers.
This is because the model ship Esso Osaka could not con-
trol the berthing maneuver by the shore-based operator suf-
ficiently.
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Fig. 4: Histogram of state, control input and wind distribu-
tion of Train-R, Test-R, Test-B-S and Test-B-P data set.

The distribution of state and control input of random
maneuver pretty much covers the berthing maneuver. Fig. 4
shows the probability distribution function of Train-R, Test-
R, and Test-B-S+Test-B-P data sets. Distribution of control
inputs of random maneuver were biased around zero and
the limit, np = 0, ±10 rps and δ = 0, ±35

◦
, although the

operator of model ship tried to make the control input as
random as possible. Meanwhile, on the berthing maneuver
data, larger revolutions numbers were used than the limit of
np of random maneuver, and coasting np = 0 was more fre-
quently used. On the distribution of u, vm, and r, both ran-
dom maneuver data set are generally well distributed among
the range of slow-speed region, which is used on berthing
maneuver data sets: Test-B-S and Test-B-P. The upper limit
of u was around 0.3 < u < 0.34m/s, which is approximately
6 to 6.8 knot at full scale; a typical approaching speed of
berthing. Apparent wind direction γA lucks the data on back-
ward wind 90◦ < γA < 270◦. This was caused by the limita-
tion of true wind direction γT due to the surrounding build-
ing of the pond. Additionally, Test-B-S and Test-B-P had
more biased γA distribution because the initial heading of
the berthing maneuver was fixed.

5 Results

In this section, to find the appropriate way to optimize the
mathematical model, three objective functions J1, J2, J3 de-
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Fig. 5: Optimization process by CMA-ES. The difference of
objective function J at each iteration and min(J).

fined in section 3.1, and three training data were compared.
Once the best objective function and type of training data
were selected, xxx(t) computed by the optimal mathematical
model were compared with free-run model tests to evaluate
the accuracy improvement by the proposed method. Addi-
tionally, simulations with the EFD model were compared to
those with optimal parameters.

Convergence of Computation The iterative process in the
optimization by CMA-ES is shown in Fig. 5. The computa-
tion conditions of Fig. 5 were Train-R data set for input data
and J1 for objective function on the optimization process.
The figure shows the difference of J at each iteration and
the minimum value of J through the optimization process.
On Fig. 5, the iterative process shows impulse-like increases
caused by the restart of CMA-ES. By using the restart strat-
egy, CMA-ES lets the J converge to several different lo-
cal minima and choose the best solution from those. From
Fig. 5, we can see that the optimum solution θθθ opt is obtained
at the 77970th iteration. In this study, the iteration in the op-
timization process continued until either it reached 100,000
iterations or a computation time of 5 days. Within the com-
putation time of 5 days, the population size of CMA-ES
reached to maximum population size in all cases. All com-
putation was conducted on the workstation equipped with
Intel Xeon Gold 6248R for CPU.

5.1 Comparison of Computation Results by Test Data Set

This section shows the optimization by three training data
sets and three objective functions to find the appropriate op-
timization method. Since the CMA-ES uses a stochastic ap-
proach, the result could depend on the random-seed. Hence
three independent trials of optimization were conducted for
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each case. Note that with certain random-seed, the mean
value of the population of CMA-ES does not converge to
the domain of box constrain Θ j. Those results were removed
from the random-seed trail if one of the obtained optimiza-
tion target parameter θ j is ten times larger than the boundary
of Θ j. If the θ j is smaller than the boundary of Θ j times 10,
obtained θ j was used without correction to fit Θ j. Table 6
shows the comparison of J2 on test data sets.

Objective functions J1, J2, and J3 on test data set were
used to evaluate the performance of optimization. J2 served
as the primary performance index because it contains both
location and velocity component, those necessary to be es-
timated accurately on berthing. In addition to those phys-
ical meaning, J2-Represents overall performance because
J2 = J1 + J3, as shown on Eqs. (35) to (37). Tables 5 to 7
shows the J1, J2, and J3 on test data set.

From the sum of J1, J2, and J3 on the overall test data
shown on the Tables 5 to 7, we can analyze which com-
bination of training data and the objective function is suit-
able in general for optimization. All optimal mathematical
model gives lower value on J1, J2, and J3 for overall test
data than EFD model. This means the present study’s op-
timization method can generally improve estimation accu-
racy compared to the EFD model. Regarding the choice of
the objective function and training data, the top three cases
are J2-R, J1-R, J1-TR for the evaluation by J1; J2-R, J2-TR,
J1-R for evaluations by J2 and J3. J2-R is the best condi-
tion on all three evaluation methods; however, the difference
with second best, J1-TR and J1-R, were small compare to its
standard deviation. Optimization using J3 is worse than the
other two, even on the evaluation by J3 (Table 7), but no
clear trend is shown between J1 and J2.

Since the main objective of the present study is to de-
velop a mathematical model that could accurately estimate
the berthing maneuver, we find that this can be achieved by
optimization using random ship maneuvers. Again from Ta-
bles 5 to 7, we can see the performance of proposed method
on berthing maneuver, by referring the sum of J1, J2, or J3
on Test-B-S and Test-B-P. Optimal models which used J1
or J2 on the optimization show better performance than the
EFD model on all cases; however, optimization which used
J3 shows degraded performance. The top three cases are J2-
TR, J2-R, J1-R on all three evaluation methods. Same as on
the overall test data, J2-R and J2-TR can estimate berthing
maneuver but like overall test data, but those differences are
small compare to its standard deviation.

Hence we can summarize the result on comparison to
find the appropriate way of optimization: (i) optimization
using J2 with the data set of random maneuvering only
(Train-R) and random maneuvering and turning (Train-TR)
are the best choices for the estimation of berthing motion,
random motion and overall test data; (ii) the difference be-
tween optimization with J2-R and J2-TR is small. Thus, we

can not define whether Train-R or Train-TR is the best. This
is because of the dominance of random maneuver on Train-
TR data set, only 21% of data is turning test (see Table 3);
(iii) optimization using J3 has degraded performance com-
pare to J1 and J2.

Finally, we show the comparison of xxxsim(t) between the
EFD model and the best case of the optimal mathematical
model; one of the results of the random-seed trial of J2-R.
Fig. 6 shows the xxxsim(t) and xxxinput(t) on Test-R data set.
Because the measured trajectories were divided into several
contiguous subsequences, the path of ship “jumps” and time
series of u, vm, r show the discontinuity at the end of con-
tiguous subsequence. The red arrow in Fig. 6 shows the ap-
parent wind velocity at midship of the free-run model test re-
sult. From the figure, we can see the path and state computed
by the optimal model agree well with the free-run model test
result than the EFD model, even on the complex random ma-
neuver at the outdoor environment with wind disturbance.
Moreover, the Test-R data set contains well-distributed state
and control input. This means the optimal model is numeri-
cally stable to the practical range of input state and control
input of berthing maneuver.

Comparison on berthing maneuver test data, Test-B-S
and Test-B-P are shown on Figs. 7 and 8. Note that in-
put data was not divided into the contiguous subsequence
on those comparisons because the duration of the free-run
model test was nearly equal to the length of the contiguous
subsequence. Although the xxxsim(t) obtained by the optimal
model not shows significant agreement with free-run model
test result as on Test-R, however, the optimal model shows
better J2 on both berthing data set to compare to EFD model
as shown on Table 6, and it should be emphasized that even
berthing maneuver was not included to training data. Addi-
tionally, as shown on Fig. 4, even the range of propeller rev.
of test data np ≤±20 was exceeded the limit of training data
np ≤±10, the optimal model proposed in this study did not
be numerically unsteady.

6 Discussion

The results shown in the previous section shows that the
proposed method is feasible and practical to construct the
berthing maneuver capable mathematical model by system
parameter exploration from physically (not numerically)
obtained, noisy trajectories. The features of the proposed
method are: use model-rich MMG model to express the
complex characteristics of berthing maneuver; use random
maneuvers as training and test data. Optimal parameters
estimated the ship’s maneuver better than the CMT-based
scheme, the berthing maneuver, the complex random ma-
neuvers, and typical maneuvers: turning and zig-zag. Hence,
the mathematical model with optimal parameters is applica-
ble for both maneuverings inside and outside the harbor.
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Table 5: Average of J1 of three random-seed trails of each case on test data. The Values in Bold font are the best case for
each test data; underlined are the second-best; () are the standard deviation of random-seed trail. Case “EFD” means the
simulation with EFD model. Other names of cases in the table represent the objective function and training data used in the
optimization process; case J1-R used the J1 objective function and Train-R data set.

Case Test-B-S Test-B-P Test-B-S + Test-B-P Test-R Test-T Test-Z Total
EFD 251.9 44.2 296.1 147.6 843.8 153.6 1441.1
J1-R 144.4(24.9) 55.2(1.6) 199.6(23.5) 66.5(6.7) 167.4(35.1) 64.1(7.6) 497.7(69.4)

J1-TR 126.7(6.2) 78.1(1.3) 204.8(7.5) 88.2(16.4) 156.6(12.7) 71.4(8.7) 521.0(45.3)
J1-TZR 146.2(22.6) 76.8(10.8) 222.9(23.9) 80.6(9.1) 217.9(15.0) 57.3(6.6) 578.7(15.0)

J2-R 108.5(9.1) 58.8(4.0) 167.3(12.3) 74.3(6.7) 183.7(41.8) 67.9(7.3) 493.2(64.0)
J2-TR 99.4(11.9) 64.6(3.5) 164.0(8.8) 80.3(7.1) 229.2(30.2) 65.0(1.7) 538.5(29.3)

J1-TZR 174.3(5.2) 65.7(4.4) 240.0(3.2) 74.8(0.6) 208.6(5.2) 68.8(1.0) 592.2(8.5)
J3-R 154.2(41.3) 85.4(1.0) 239.5(42.3) 144.9(54.0) 256.6(141.8) 74.2(21.2) 715.2(112.2)

J3-TR 281.0(24.6) 57.7(10.3) 338.7(24.9) 220.6(58.4) 586.5(205.6) 69.9(5.3) 1215.7(245.6)
J3-TZR 270.2(42.5) 312.5(206.2) 582.7(204.8) 236.1(127.5) 233.3(34.6) 92.1(20.8) 1144.3(376.5)

Table 6: Average of J2 of three random-seed trails of each case on test data. Notations of this table are the same as Table 5.

Case Test-B-S Test-B-P Test-B-S + Test-B-P Test-R Test-T Test-Z Total
EFD 737.2 453.1 1190.3 478.8 1259.5 709.3 3637.9
J1-R 485.0(70.6) 183.3(13.8) 668.4(59.4) 159.5(27.3) 253.0(84.1) 597.5( 7.7 ) 1678.3(166.9)

J1-TR 431.9(22.1) 387.4(40.6) 819.4(18.9) 206.9(12.1) 207.4(1.0) 608.7(82.5) 1842.3(76.8)
J1-TZR 428.4(112.0) 331.1(82.1) 795.5(64.0) 176.9(22.2) 339.0(51.5) 583.7(33.0) 1859.0(114.4)

J2-R 359.9(68.3) 224.9(35.6) 584.8(84.7) 154.6(12.4) 259.8(84.8) 605.5(16.0) 1604.7(191.8)
J2-TR 310.0(37.9) 258.7(50.0) 568.8(12.7) 178.3(17.6) 308.5(23.7) 604.2(4.5) 1659.7(36.4)

J2-TZR 523.8(13.5) 266.8(72.9) 790.0(61.4) 206.9(3.1) 274.0(9.8) 555.7(3.3) 1827.2(70.2)
J3-R 415.5(182.4) 392.2(43.8) 807.7(209.2) 300.9(44.8) 335.3(129.6) 561.3(61.6) 2005.2(141.0)

J3-TR 647.7(68.2) 332.6(119.5) 980.3(98.4) 432.8(102.7) 1049.1(562.2) 500.3(101.2) 2962.5(457.5)
J3-TZR 677.9(123.1) 791.4(319.8) 1469.3(329.4) 534.0(290.1) 301.0(53.5) 650.6(76.5) 2955.0(733.8)

Table 7: Average of J3 of three random-seed trails of each case on test data. Notations of this table are the same as Table 5.

Case Test-B-S Test-B-P Test-B-S + Test-B-P Test-R Test-T Test-Z Total
EFD 485.3 408.9 894.2 331.2 415.7 555.7 2196.9
J1-R 340.6(45.6) 128.2(13.0) 468.8(36.5) 92.9(21.7) 85.5(49.2) 533.4(11.5) 1180.6(97.6)

J1-TR 305.3(15.9) 309.3(41.9) 614.6(26.3) 118.7(4.4) 50.8(11.8) 537.3(73.7) 1321.4(31.5)
J1-TZR 282.2(93.4) 254.3(72.0) 536.5(40.9) 96.3(17.6) 121.1(66.5) 526.4(36.8) 1280.3(111.2)

J2-R 251.4(59.4) 166.1(31.8) 417.5(72.4) 80.3(8.2) 76.1(43.8) 537.6(8.9) 1111.5(131.5)
J2-TR 210.6(28.4) 194.1(46.6) 404.7(18.6) 98.0(11.0) 79.3(6.5) 539.2(4.6) 1121.2(22.6)

J2-TZR 349.5(8.4) 201.1(68.4) 550.6(60.6) 132.1(2.7) 65.4(5.8) 487.0(2.8) 1235.0(66.3)
J3-R 261.3(149.7) 306.8(44.2) 568.1(181.4) 156.1(10.8) 78.8(15.7) 487.1(45.8) 1290.0(235.4)

J3-TR 366.6(46.1) 274.9(124.1) 641.6(117.3) 212.2(45.4) 462.6(359.2) 430.4(99.2) 1746.7(227.9)
J3-TZR 407.7(81.5) 479.0(118.9) 886.7(125.0) 297.8(162.8) 67.7(24.6) 558.5(56.1) 1810.7(359.4)

The advantages of the proposed method are as follows:
(1) It requires a smaller amount of data to construct a
mathematical model compared to the CMT-based scheme.
The CMT requires a great number of model tests to ob-
tain the whole list of system parameters, while the proposed
method only needs approximately one hour of the trajec-
tory of the free-run model test for training and test data.
This point becomes obvious for berthing maneuver appli-
cation because to achieve sufficient accuracy of the MMG
model for berthing maneuver, the number of system param-
eters increases rapidly, which requires more test conditions
for the CMT. (2) Able to overcome the scale effect by us-
ing the trajectory of the full-scale ship. Because the CMT-

based scheme has no established way to correct the scale
effect, the mathematical model needs to be tuned manually
when it is applied to the full-scale ship, as stated in Sec-
tion 1. Although the free-run model test trajectories were
used, the proposed method provides flexibility to obtain the
optimal system parameter from the trajectories measured on
a full-scale ship. This implies that the scale effect is irrele-
vant when constructing the mathematical model. (3) The do-
main of the exploration is wide enough to be independent of
the EFD result, which defines the domain boundary. Because
the typical measurement error and variation of the parame-
ter between different ships are much smaller than the explo-
ration range (i.e., x10 of reference EFD obtained parameter),
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Fig. 6: Estimated state of random maneuver test data using coefficients obtained by EFD and CMA-ES. Comparison with
Input data: measured by free-run model test. The ship locations on upper figure only shown on t(0), t i

f , and every 20 seconds.

the proposed method can obtain an adequate mathematical
model even if the EFD result was obtained for another ship
(e.g., kxOR, CPR). This is preferable when the EFD result is
not available for the newly designed ship.

The major drawbacks of the proposed method are as fol-
lows. First, the modular structure, which is the advantage of
the MMG model, is compromised. Once the ship’s design
is modified, the CMT-based scheme only needs to reacquire
the parameter related to the modification, while the proposed
method needs to reacquire the whole data set. Additionally,
because the parameter will drift when several parameters are
estimated simultaneously (this effect is known as the “can-
cellation effect” [62]), the obtained parameter by the pro-
posed method can not be used independently of other pa-
rameters. Second, random-seed trials are necessary because
the variation of the stochastic search was relatively large.

The remaining issues of the proposed method are con-
sideration on: limitation of mathematical model’s degree of
freedom; and dependency on the amount of training data.
First, although the mathematical model used in this study
includes the most sophisticated and complicated MMG sub-
models, still unable to capture the complex hydrodynamic
phenomena in a berthing maneuver completely. The MMG
model of this study assumes several parameters as constant
even if they vary on a large drift angle; for instance, rudder
force increase factor aH varies and changes its sign when

drift angle |β | ≥ 45◦ [43]. The performance of SI relies on
the mathematical model’s degree of freedom. Hence, the
mathematical model needs to be improved to enhance the
capability of the present method. Second, the dependency
on the amount of training must be investigated. In this study,
we obtained the mathematical model with satisfactory accu-
racy, though the amount of training data was approximately
constant. The amount of data was limited to approximately
seven hours on the full scale for practical use. However,
for future work, the possibility of accuracy improvement by
adding the data must be investigated.

Although the remaining issues are stated above, the pro-
posed method will be one of the practical schemes to obtain
an accurate mathematical model to estimate berthing ma-
neuver with relatively low computational cost. Additionally,
as stated in [13], combining SI with the direct CFD estima-
tion could construct a reliable mathematical model without
any model test or sea trial. This will make it easier to adjust
the berthing control algorithm during the ship design phase.

7 conclusion

Accurate maneuvering estimation is essential to establish
autonomous berthing control, critical technologies for au-
tonomous shipping. The system-based mathematical model
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Fig. 7: Estimated state of Starboard side berthing maneuver test data using coefficients obtained by EFD and CMA-ES.
Comparison with Input data: measured by free-run model test.

is widely used to estimate the maneuver. Commonly, the
system parameters of the model are obtained by the CMT,
which is time-consuming to construct an accurate model
suitable for complex berthing maneuvers. System identifica-
tion (SI) is one option to construct the maneuvering model,
which requires only a few trajectories for training data; how-
ever, SI on a mathematical model of ship’s maneuver was
only conducted on much simpler maneuver, turning and zig-
zag, in the past.

This study investigated the feasibility of SI of a system-
based method to establish an accurate estimation method of
berthing maneuver for autonomous berthing control. The SI
of the MMG model with a global optimization scheme can
obtain a reasonable mathematical model to represent the dy-
namics of complex berthing maneuvers with relatively few
number of trajectories data for training. The simulation us-
ing optimal parameters showed better agreement with the
free-running model test than the CMT-based scheme. We
found that using both position and velocity components on
the objective function with the data set of random maneu-
vering only (Train-R) or random maneuvering and turn-
ing (Train-TR) are the best choices for optimization. The
proposed method can obtain the mathematical model for
berthing maneuver and can be one of the promising alter-
natives to the CMT-based scheme due to its reduced number
of required model tests.
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