
System R: Relational Approach to Database

Management

M. M. ASTRAHAN, ht. W. BLASGEN, D. D. CHAMBERLIN,
K. P. ESWARAN, J. N. GRAY, P. P. GRIFFITHS,

W. F. KING, R. A. LORIE, P. R. A&JONES, J. W. MEHL,

G. R. PUTZOLU, I. L. TRAIGER, B. W. WADE, AND V. WATSON

IBM Research Laboratory

System R is a database management system which provides a high level relational data interface.
The system provides a high level of data independence by isolating the end user as much as
possible from underlying storage structures. The system permits definition of a variety of relational
views on common underlying data. Data control features are provided, including authorization,
integrity assertions, triggered transactions, a logging and recovery subsystem, and facilities for
maintaining data consistency in a shared-update environment.

This paper contains a description of the overall architecture and design of the system. At the
present time the system is being implemented and the design evaluated. We emphasize that
System R is a vehicle for research in database architecture, and is not planned as a product.

Key Words and Phrases: database, relational model, nonprocedural language, authorization,
locking, recovery, data structures, index structures
CR categories: 3.74, 4.22, 4.33, 4.35

1. INTRODUCTION

The relational model of data was introduced by Codd [7] in 1970 as an approach

toward providing solutions to various problems in database management. In par-

ticular, Codd addressed the problems of providing a data model or view which is
divorced from various implementation considerations (the data independence
problem) and also the problem of providing the database user with a very high
level, nonprocedural data sublanguage for accessing data.

To a large extent, the acceptance and value of the relational approach hinges on
the demonstration that a system can be built which can be used in a real environ-
ment to solve real problems and has performance at least comparable to today’s

existing systems. The purpose of this paper is to describe the overall architecture
and design aspects of an experimental prototype database management system
called System R, which is currently being implemented and evaluated at the IBM
San Jose Research Laboratory. At the time of this writing, the design has been

-

Copyright @ 1976, Association for Computing Machinery, Inc. General permission to republish,
but not for profit, all or part of this material is granted provided that ACM’s copyright notice is
given and that reference is made to the publication, to its date of issue, and to the fact that
reprinting privileges were granted by permission of the Association for Computing Machinery.
Authors’ address: IBM Research Laboratory, San Jose, CA 95193.

ACM Transactions on Database Systems, Vol. 1, No. 2. June 1976, Pages 97-137.

98 l M. M. Astrahan et al,

CONTENTS
1. INTRODUCTION

Architecture and System Structure
2. THE RELATIONAL DATA SYSTEM

Host Language Interface
Query Facilities
Data Manipulation Facilities
Data Definition Facilities
Data Control Facilities
The Optimizer
Modifying Cursors
Simulation of Nonrelational Data Models

3. THE RELATIONAL STORAGE SYSTEM
Segments
Relations
Images
Links
Transaction Management
Concurrency Control
System Checkpoint and Restart

4. SUMMARY AND CONCLUSION
APPENDIX I. RDI Operators
APPENDIX II. SEQUEL Syntax
APPENDIX III. RSI Operators
ACKNOWLEDGMENTS
REFERENCES

completed and major portions of the system are implemented and running. How-
ever, the overall system is not completed. We plan a complete performance evalua-
tion of the system which will be available in later papers.

The System R project is not the first implementation of the relational approach
[12, 301. On the other hand, we know of no other relational system which provides
a complete database management capability-including application programming
as well as query capability, concurrent access support, system recovery, etc. Other
relational systems have focused on, and demonstrated, feasibility of techniques
for solving various specific problems. For example, the IS/l system [22] demon-
strated the feasibility of supporting the relational algebra [S] and also developed
optimization techniques for evaluating algebraic expressions [29]. Techniques for
optimization of the relational algebra have also been developed by Smith and
Chang at the University of Utah [27]. The extended relational memory (XRM)
system [19] developed at the IBM Cambridge Scientific Center has been used as
a single user access method by other relational systems [2]. The SEQUEL prototype
[l] was originally developed as a single-user system to demonstrate the feasibility
of supporting the SEQUEL [5] language. However, this system has been extended
by the IBM Cambridge Scientific Center and the MIT Sloan School Energy Labor-
atory to allow a simple type of concurrency and is being used as a component of
the Generalized Management Information System (GMIS) [9] being developed
at MIT for energy related applications. The INGRES project [lS] being developed
at the University of California, Berkeley, has demonstrated techniques for the de-
composition of relational expressions in the QUEL language into “one-variable

ACM Transactions on Database Systems, Vol. 1, No. 2, June 1976.

System R l 99

queries.” Also, this system has investigated the use of query modification [28] for
enforcing integrity constraints and authorization constraints on users. The problem
of translating a high level user language into lower level access primitives has also
been studied at the University of Toronto [21,26].

Architecture and System Structure

We will describe the overall architecture of System R from two viewpoints. First,
we will describe the system as seen by a single transaction, i.e. a monolithic de-
scription. Second, we will investigate its multiuser dimensions. Figure 1 gives a
functional view of the system including its major interfaces and components.

The Relational Storage Interface (RSI) is an internal interface which handles
access to single tuples of base relations. This interface and its supporting system,
the Relational Storage System (RSS) , is actually a complete storage subsystem in
that it manages devices, space allocation, storage buffers, transaction consistency
and locking, deadlock detection, backout, transaction recovery, and system re-
covery. Furthermore, it maintains indexes on selected fields of base relations, and
pointer chains across relations.

The Relational Data Interface (RDI) is the external interface which can be
called directly from a programming language, or used to support various emulators
and other interfaces. The Relational Data System (RDS), which supports the
RDI, provides authorization, integrity enforcement, and support for alternative
views of data. The high level SEQUEL language is embedded within the RDI, and
is used as the basis for all data definition and manipulation. In addition, the RDS
maintains the catalogs of external names, since the RSS uses only system generated
internal names. The RDS contains an optimizer which chooses an appropriate
access path for any given request from among the paths supported by the RSS.

P-m
Programs to support

+ various Interfaces:

Stand alone SEQUEL,

Query By Example, etc.

- Relational

Data

RelatIonal Interface

DC3 (RDII

System

IRDSI

RDS RSS

Ml

I :

I ’ I

I Monitor
I

storage

Interface

(RSll

FIQ. 1. Architecture of System R FIG. 2. Use of virtual machines
in System R

ACM Transactions on Database Systems. Vol. 1, No. 2, June 1878.

100 l M. M. Astrahan et al.

The current operating system environment for this experimental system is
VM/370 [lS]. Several extensions to this virtual machine facility have been made
[14] in order to support the multiuser environment of System R. In particular,
we have implemented a technique for the selective sharing of read/write virtual
memory across any number of virtual machines and for efficient communication
among virtual machines through processor interrupts. Figure 2 illustrates the use
of many virtual machines to support concurrent transactions on shared data. For
each logged-on user there is a dedicated database machine. Each of these database
machines contains all code and tables needed to execute all data management
functions; that is, services are not reserved to a centralized machine.

The provision for many database machines, each executing shared, reentrant
code and sharing control information, means that the database system need not
provide its own multitasking to handle concurrent transactions. Rather, one can
use the host operating system to multithread at the level of virtual machines.
Furthermore, the operating system can take advantage of multiprocessors allo-
cated to several virtual machines, since each machine is capable of providing all
data management services. A single-server approach would eliminate this advan-
tage, since most processing activity would then be focused on only one machine.

In addition to the database machines, Figure 2 also illustrates the Monitor
Machine, which contains many system administrator facilities. For example, the
Monitor Machine controls logon authorization and initializes the database machine
for each user. The Monitor also schedules periodic checkpoints and maintains
usage and performance statistics for reorganization and accounting purposes.

In Sections 2 and 3 we describe the main components of System R: the Relational
Data System and the Relational Storage System.

2. THE RELATIONAL DATA SYSTEM

The Relational Data Interface (RDI) is the principal external interface of System
R. It provides high level, data independent facilities for data retrieval, manipula-
tion, definition, and control. The data definition facilities of the RDI allow a variety
of alternative relational views to be defined on common underlying data. The
Relational Data System (RDS) is the subsystem which implements the RDI. The
RDS contains an optimizer which plans the execution of each RDI command,
choosing a low cost access path to data from among those provided by the Rela-
tional Storage System (RSS) .

The RDI consists of a set of operators which may be called from PL/I or other
host programming languages. (See Appendix I for a list of these operators.) All
the facilities of the SEQUEL data sublanguage [S] are available at the RDI by
means of the RDI operator called SEQUEL. (A Backus-Naur Form (BNF) syntax
for SEQUEL is given in Appendix II.) The SEQUEL language can be supported as a
stand-alone interface by a simple program, written on top of the RDI, which
handles terminal communications. (Such a stand-alone SEQUEL interface, called
the User-Friendly Interface, or UFI, is provided as a part of System R.) In addi-
tion, programs may be written on top of the RDI to support other relational inter-
faces, such as Query by Example [31], or to simulate nonrelational interfaces.

ACM TransactionsonDstabase Syystans,Vol. l.No. 2, June 1976.

System R l 101

Host Language Interface

The facilities of the RDI are basically those of the SEQUEL data sublanguage, which
is described in [5] and in Appendix II. Several changes have been made to SEQUEL
since the earlier publication of the language; they are described below.

The illustrative examples used in this section are based on the following database
of employees and their departments:

EMP(EMPN0, NAME, DNO, JOB, SAL, MGR)
DEPT(DN0, DNAME, LOC, NEMPS)

The RDI interfaces SEQUEL to a host programming language by means of a
concept called a cursor, A cursor is a name which is used at the RDI to identify a
set of tuples called its active set (e.g. the result of a query) and furthermore to main-
tain a position on one tuple of the set. The cursor is associated with a set of tuples
by means of the RDI operator SEQUEL; the tuples may then be retrieved, one at a
time, by the RDI operator FETCH.

Some host programs may know in advance exactly the degree and data types
of the tuples they wish to retrieve. Such a program may specify, in its SEQUEL call,
the program variables into which the resulting tuples are to be delivered. The pro-
gram must first give the system the addresses of the program variables to be used
by means of the RDI operator BIND, In the following example, the host program
identifies variables X and Y to the system and then issues a query whose results
are to be placed in these variables:

CALL BIND (‘Xl, ADDR(X)) ;
CALL BIND(‘Y’, ADDR(Y));

CALL SEQUEL(C1, ‘SELECT NAME:X, SAL:Y

FROM EMP

WHERE JOB = ’ ‘PROGRAMMER’ ’ ‘);

The SEQUEL call has the effect of associating the cursor Cl with the set of tuples
which satisfy the query and positioning it just before the first such tuple. The
optimizer is invoked to choose an access path whereby the tuples may be material-
ized. However, no tuples are actually materialized in response to the SEQUEL call.
The materialization of tuples is done as they are called for, one at a time, by the
FETCH operator. Each call to FETCH delivers the next tuple of the active set
into program variables X and Y, i.e. NAME to X and SAL to Y:

CALL FETCH(C1) ;

A program may wish to write a SEQUEL predicate based on the contents of a
program variable-for example, to find the programmers whose department num-
ber matches the contents of program variable 2. This facility is also provided by
the RDI BIND operator, as follows:

CALL BIND(‘X’, ADDR(X)) ;

CALL BIND(‘Y’, ADDR(Y));
CALL BIND(‘Z’, ADDR(2));

CALL SEQUEL(C1, ‘SELECT NAME:X, SAL:Y
FROM EMP

WHERE JOB = ’ ‘PROGRAMMER’ ’

AND DNO = 2’);
CALL FETCH(C1) ;

ACM Tramactions on Database System, Vol. 1, No. 2, June 1976.

102 l M. M. Astrahan et al.

Some programs may not know in advance the degree and data types of the tuples
to be returned by a query. An example of such a program is one which supports an
interactive user by allowing him to type in queries and display the results. This
type of program need not specify in its SEQUEL call the variables into which the
result, is to be delivered. The program may issue a SEQUEL query, followed by the
DESCRIBE operator which returns the degree and data types. The program then
specifies the destination of the tuples in its FETCH commands. The following ex-
ample illustrates these techniques:

CALL SEQUEL(C1, ‘SELECT *

FROM EMP

WHERE DNO = 50’);

This statement invokes the optimizer to choose an access path for the given query
and associates cursor Cl with its active set.

CALL DESCRIBE(C1, DEGREE, P);

P is a pointer to an array in which the description of the active set of Cl is to be
returned. The RDI returns the degree of the active set in DEGREE, .and the data
types and lengths of the tuple components in the elements of the array. If the
array (which contains an entry describing its own length) is too short to hold the
description of a tuple, the calling program must allocate a larger array and make
another call to DESCRIBE.

Having obtained a description of the tuples to be returned, the calling program
may proceed to allocate a structure to hold the tuples and may specify the location
of this structure in its FETCH command:

CALL FETCH(C1, &);

Q is a pointer to an array of pointers which specify where the individual components
of the tuple are to be delivered. If this “destination” parameter is present in a
FETCH command, it overrides any destination which may have been specified in
the SEQUEL command which defined the active set of Cl.

A special RDI operator OPEN is provided as a shorthand method to associate
a cursor with an entire relation. For example, the command

CALL OPEN(C1, ‘EMP’);

is exactly equivalent to

CALL SEQUEL(C1, ‘SELECT * FROM EMP’);

The use of OPEN is slightly preferable to the use of SEQUEL to open a cursor on a
relation, since OPEN avoids the use of the SEQUEL parser.

A program may have many cursors active at the same time. Each cursor remains
active until an RDI operator CLOSE or KEEP is issued on it. CLOSE simply
deactivates a cursor. KEEP causes the tuples identified by a cursor to be copied
to form a new permanent relation in the database, having some specified relation
name and field names.

The RDI operator FETCH-HOLD is included for the support of interfaces
which provide for explicit locking. FETCH-HOLD operates in exactly the same

ACM Transactions on Database Systems, Vol. 1, No. 2, June 1976.

System R l 103

way as FETCH except that it also acquires a “hold” on the tuple returned, which
prevents other users from updating or deleting it until it is explicitly released or
until the holding transaction has ended. A tuple may be released by the RELEASE
operator, which takes as a parameter a cursor positioned on the tuple to be released.
If no cursor is furnished, t.he RELEASE operator releases all tuples currently held
by the user.

Query Facilities

In this section we describe only the most significant changes made to the SEQUEL

query facilities since their original publication [5]. The changes correct certain
deficiencies in the original syntax and facilitate the interfacing of SEQUEL with a
host programming language. One important change deals with the handling of
block labels. The following example, illustrating the original version of SEQUEL, is

taken from [5]. (For simplicity, “CALL SEQUEL (. . .) ” has been deleted from
the next several examples.)

ExumpZe 1 (a). List names of employees who earn more than their managers.

Bl: SELECT NAME
FROM EMP
WHERE SAL)

SELECT SAL
FROM EMP
WHERE EMPNO = Bl.MGR

Experience has shown that this block label notation has three disadvantages:
(1) It is not possible to select quantities from the inner block, such as: “For all

employees who earn more than their manager, list the employee’s name and his
manager’s name.”

(2) Since the query is asymmetrically expressed, the optimizer is biased toward
making an outer loop for the first block and an inner loop for the second block.
Since this may not be the optimum method for interpreting the query, the optimi-
zation process is made difficult.

(3) Human factors studies have shown that the block label notation is hard for
nonprogrammers to learn [24,25].

Because of these disadvantages, the block label notation has been replaced by
the following more symmetrical notation, which allows several tables to be listed
in the FROM clause and optionally referred to by variable names.

Example 1 (b). For all employees who earn more than their managers, list the
employee’s name and his manager’s name.

SELECT X.NAME, Y.NAME
FROM EMP X, EMP Y
WHERE X.MGR = Y.EMPNO
AND X.SAL > Y.SAL

Example 1 (b) illustrates the SEQUEL notation for the JOIN operator of the rela-
tional algebra. The tables to be joined are listed in the FROM clause. A variable

name may optionally be associated with each table listed in the FROM clause
(e.g. X and Y above). The criterion for joining rows is given in the WHERE

ACM Transactiona on Database Systems, Vol. 1, No. 2. June 1976.

104 l M. M. Astrahan et al.

clause (in this case, X.MGR = Y.EMPNO) . Field names appearing in the query
may stand alone (if unambiguous) or may be qualified by a table name (e.g.
EMP.SAL) or by a variable (e.g. X.SAL) .

In the earlier report [5], the WHERE clause is used for two purposes: it serves
both to qualify individual tuples (e.g. “List the employees who are clerks”) and to
qualify groups of tuples (e.g. “List the departments having more than ten em-
ployees”). This ambiguity is now eliminated by moving group qualifying predi-
cates to a separate HAVING clause. Queries are processed in the following order:

(1) Tuples are selected by the WHERE clause;
(2) Groups are formed by the GROUP BY clause;
(3) Groups are selected which satisfy the HAVING clause, as shown in the

example below.
Example 2. List the DNOs of departments having more than ten clerks.

SELECT DNO
FROM EMP
WHERE JOB = ‘CLERK’
GROUP BY DNO
HAVING COUNT(*) > 10

Two more query features have been added to the ones described in [5]. The
first allows the user to specify a value ordering for his query result.

Example 3 (Ordering). List all the employees in Dept. 50, ordered by their
salaries.

SELECT *
FROM EMP
WHERE DNO = 50
ORDER BY SAL

The other new feature, which is useful primarily to host language users of the
RDI, allows a query to qualify tuples by comparing them with the current tuple
of some active cursor:

Example 4 (Cursor reference). Find all the employees in the department indi-
cated by cursor C5.

SELECT *
FROM EMP
WHERE DNO = DNO OF CURSOR C5 ON DEPT

The evaluation of this reference to the content of cursor C5 occurs when the
query is executed (by a SEQUEL call). Thereafter, moving the cursor C5 does not
affect the set of tuples defined by the query. The optional phrase “ON DEPT”
indicates to the optimizer that it can expect the cursor C5 to be positioned on a
tuple of the DEPT table. This information may be useful in selecting an access
path for the query.

Since elimination of duplicates from a query result is an expensive process and is
not always necessary, the RDS does not eliminate duplicates unless explicitly re-
quested to do so. For example, “SELECT DNO, JOB FROM EMP” may return
duplicate DNO, JOB pairs, but ‘SELECT UNIQUE DNO, JOB FROM EMP”
will return only unique pairs. Similarly, “SELECT AVG (SAL) FROM EMP” al-

ACM Transactions on Database Systems. Vol. 1, No. 2, June 1976.

System R 9 105

lows duplicate salary values to participate in the average, while “SELECT COUNT
(UNIQUE JOB) FROM EMP” returns the count only of different job types in
the EMP relation.

Data Manipulation Facilities

The RDI facilities for insertion, deletion, and update of tuples are also provided
via the SEQUEL data sublanguage. SEQUEL can be used to manipulate either one
tuple at a time or a set of tuples with a single command. The current tuple of a
particular cursor may be selected for some operation by means of the special predi-
cate CURRENT TUPLE OF CURSOR. The values of a tuple may be set equal
to constants, or to new values computed from their old values, or to the contents
of a program variable suitably identified by a BIND command. These facilities
will be illustrated by a series of examples. Since no result is returned to the calling
program in these examples, no cursor name is included in the calls to SEQUEL.

Example 5 (Set oriented update). Give a 10 percent raise to all employees in
Dept. 50.

CALL SEQUEL(‘UPDATE EMP
SET SAL = SAL x 1.1
WHERE DNO = 50’);

Example 6 (Individual update).

CALL BIND(‘PVSAL’, ADDR(PVSAL));
CALL SEQUEL(‘UPDATE EMP

SET SAL = PVSAL
WHERE CURRENT TUPLE OF CURSOR C3’);

Example 7 (Individual insertion). This example inserts a new employee tuple
into EMP. The new tuple is constructed partly from constants and partly from
the contents of program variables.

CALL BIND(‘PVEMPNO’, ADDR(PVEMPN0));
CALL BIND(~PVNAMEI, ADDR(PVNAME));
CALL BIND(‘PVMGR’ ADDR(PVMGR));
CALL SEQUEL(‘INSERT INTO EMP:

(PVEMPNO, PVNAME, 50, ’ ‘TRAINEE’ ‘, 8500, PVMGR)‘);

An insertion statement in SEQUEL may provide only some of the values for the
new tuple, specifying the names of the fields which are provided. Fields which are
not provided are set to the null value. The physical position of the new tuple in
storage is influenced by the “clustering” specification made on associated RSS
access paths (see below),

Example 8 (Set oriented deletion). Delete all employees who work for depart-
ments in Evanston.

CALL SEQUEL(‘DELETE EMP
WHERE DNO =

SELECT DNO
FROM DEPT
WHERE LOC = ’ ‘EVANSTON’ ’ ‘) ;

ACM Transactions on Database Systems, Vol. 1, No. 2, June 1976.

106 * M. M. Astrahan et al.

The SEQUEL assignment statement allows the result of a query to be copied into
a new permanent or temporary relation in the database. This has the same effect
as a query followed by the RDI operator KEEP.

Example 9 (Assignment). Create a new table UNDERPAID consisting of
names and salaries of programmers who earn less than $10,000.

CALL SEQUEL(‘UNDERPAID(NAME, SAL) t
SELECT NAME, SAL
FROM EMP
WHERE JOB = ’ ‘PROGRAMMER’ ’
AND SAL < 10,000’);

The new table UNDERPAID represents a snapshot taken from EMP at the mo-
ment the assignment, was executed. UNDERPAID then becomes an independent
relation and does not reflect any later changes to EMP.

Data Definition Facilities

Syst.em R takes a unified approach to data manipulation, definition, and control.
Like queries and set oriented updates, the data definition facilities are invoked by
means of the RDI operator SEQUEL. Many of these facilities have been described
in [4] and [15].

The SEQUEL statement CREATE TABLE is used to create a new base (i.e.
physically stored) relation. For each field of the new relation, the field name and
data type are specified.1 If desired, it may be specified at creation time that null
values are not permitted in one or more fields of the new relation. A query executed
on the relation will deliver its results in system determined order (which depends
upon the access path which the optimizer has chosen), unless the query has an
ORDER BY clause. When a base relation is no longer useful, it may be deleted by
issuing a DROP TABLE statement.

System R currently relies on the user to specify not only the base tables to be
stored but also the RSS access paths to be maintained on them. (Database design
facilities to automate and adapt some of these decisions are also being investi-
gated.) Access paths include images and binary links,2 described in Section 3. They
may be specified by means of the SEQUEL verbs CREATE and DROP. Briefly,
images are value orderings maintained on base relations by the RSS, using multi-
level index structures. The index structures associate a value with one or more
Tuple Identifiers (TIDs) . A TID is an internal address which allows rapid access
to a tuple, as discussed in Section 3. Images provide associative and sequential
access on one or more fields which are called the sort jields of the image. An image
may be declared to be UNIQUE, which forces each combination of sort field values
to be unique in the relation. At most one image per relation may have the cluster&g
property, which causes tuples whose sort field values are close to be physically
stored near each other.

Binary links are access paths in the RSS which link tuples of one relation to

* The data types of INTEGER, SMALL INTEGER, DECIMAL, FLOAT, and CHARACTER
(both fixed and varying length) are supported.
z Unary links, described in Section 3, are used for internal system purposes only, and are not
exposed at the RDI.

ACM Transactions on Database Systems, Vol. 1, No. 2, June 1976.

System R l 107

related tuples of another relation through pointer chains. In System R, binary
links are always employed in a value dependent manner: the user specifies that
each tuple of Relation 1 is to be linked to the tuples in Relation 2 which have
matching values in some field(s) , and that the tuples on the link are to be ordered
in some value dependent way. For example, a user may specify a link from DEPT
to EMP by matching DNO, and that EMP t.uples on the link are to be ordered by
JOB and SAL. This link is maintained automatically by the system. By declaring
a link frem DEPT to EMP on matching DNO, the user implicitly declares this to
be a one-to-many relationship (i.e. DNO is a key of DEPT) . Any attempts to define
links or to insert or update tuples in violation of this rule will be refused. Like an
image, a link may be declared to have the clustering property, which causes each
tuple to be physically stored near its neighbor in t.he link.

It should be clearly noted that none of the access paths (images and binary
links) contain any logical information other than that derivable from the data
values themselves. This is in accord with the relational data model, which repre-
sents all information as data values. The RDI user has no explicit control over the
placement of tuples in images and links (unlike the ‘lmanual sets” of the DBTG
proposal [S]) . Furthermore, the RDI user may not explicitly use an image or link
for access to data; all choices of access path are made automatically by the
optimizer.

The query power of SEQUEL may be used to define a view as a relation derived
from one or more other relations. This view may then be used in the same ways as
a base table: queries may be written against it, other views may be defined on it,
and in certain circumstances described below, it may be updated. Any SEQUEL
query may be used as a view definition by means of a DEFINE VIEW statement.
Views are dynamic windows on the database, in that updates made to base tables
immediately become visible via the views defined on these base tables. Where up-
dates to views are supported, they are implemented in terms of updates to the
underlying ba.se tables. The SEQUEL statement which defines a view is recorded in
a system maintained catalog where it may be examined by authorized users. When
an authorized user issues a DROP VIEW statement, the indicated view and all
other views defined in terms of it disappear from the system for this user and all
other users.

If a modification is issued against a view, it can be supported only if the tuples
of the view are associated one-to-one with tuples of an underlying base relation.
In general, this means that the view must involve a single base relation and contain
a key of that relation; otherwise, the modification statement is rejected. If the view
satisfies the one-to-one rule, the WHERE clause of the SEQUEL modification state-
ment is merged into the view definition; the result is optimized and the indicated
update is made on t,he relevant tuples of the base relation.

Two final SEQUEL commands complete the discussion of the data definition
facility. The first is KEEP TABLE, which causes a temporary table (created, for
example, by assignment) to become permanent. (Temporary tables are destroyed
when the user who created them logs off.) The second command is EXPAND
TABLE, which adds a new field to an existing table. All views, images, and links
defined on the original table are retained. All existing tuples are interpreted as
having null values in the expanded fields until they are explicitly updated.

ACM Transactions on Database Systems, Vol. 1, No. 2, June 1976.

108 l M. M. Astrahan et al.

Data Control Facilities

Data control facilities at the RDI have four aspects: transactions, authorization,
integrity assertions, and triggers.

A transaction is a series of RDI calls which the user wishes to be processed as an
atomic act, The meaning of “atomic” depends on the level of consistency specified
by the user, and is explained in Section 3. The highest level of consistency, Level 3,
requires that a user’s transactions appear to be serialized with the transactions of
other concurrent users. The user controls transactions by the RDI operators
BEGIN TRANS and END-TRANS. The user may specify save points within
a transaction by the RDI operator SAVE. As long as a transaction is active, the
user may back up to the beginning of the transaction or to any internal save point
by the operator RESTORE. This operator restores all changes made to the data-
base by the current transaction, as well as the state of all cursors used by this
transaction. No cursors may remain active (open) beyond the end of a transaction.
The RDI transactions are implemented directly by RSI transactions, so the RDI
commands BEGIN-TRANS, END-TRANS, SAVE, and RESTORE are passed
through to the RSI, with some RDS bookkeeping to permit the restoration of its
internal state.

The System R approach to authorization is described in [15]. System R does
not require a particular individual to be the database administrator, but allows
each user to create his own data objects by executing the SEQUEL statements
CREATE TABLE and DEFINE VIEW. The creator of a new object receives full
authorization to perform all operations on the object (subject, of course, to his
authorization for the underlying tables, if it is a view). The user may then grant
selected capabilities for his object to other users by the SEQUEL statement GRANT.
The following capabilities may be independently granted for each table or view:
READ, INSERT, DELETE, UPDATE (by fields), DROP, EXPAND, IMAGE
specification, LINK specification, and CONTROL (the ability to specify assertions
and triggers on the table or view). For each capability which a user possesses for a
given table, he may optionally have GRANT authority (the authority to further
grant or revoke the capability to/from other users).

System R relies primarily on its view mechanism for read authorization, If it is
desired to allow a user to read only tuples of employees in Dept. 50, and not to see
their salaries, then this portion of the EMP table can be defined as a view and
granted to the user. No special statistical access is distinguished, since the same
effect (e.g. ability to read only the average salary of each department) can be
achieved by defining a view. To make the view mechanism more useful for authori-
zation purposes, the reserved word USER is always interpreted as the user-id of the
current user. Thus the following SEQUEL statement defines a view of all those em-
ployees in the same department as the current user:

D ZFINE VIEW VEMP AS:

SELECT *

FROM EMP

WHERE DNO =

SELECT DNO

FROM EMP

WHERE NAME = USER

ACM Transactions on Database System, Vol. 1, No. 2, June 1976.

System R l 109

The third important aspect of data control is that of integrhy assertions. The
System R approach to data integrity is described in [lo]. Any SEQUEL predicate
may be stated as an assertion about the integrity of data in a base table or view.
At the time the assertion is made (by an ASSERT st.atement in SEQUEL), its truth
is checked; if true, the assertion is automatically enforced until it is explicitly
dropped by a DROP ASSERTION statement. Any data modification, by any
user, which violates an active integrity assertion is rejected. Assertions may apply
to individual tuples (e.g. “NO employee’s salary exceeds $50,000”) or to sets of
tuples (e.g. ‘(The average salary of each department is less than $20,000”). Asser-
tions may describe permissible states of the database (as in the examples above) or
permissible transitions in the database. For this latter purpose the keywords OLD
and NEW are used in SEQUEL to denote data values before and after modification,
as in the example below.

Example 10 (Transition assertion), Each employee’s salary must be non-
decreasing.

ASSERT ON UPDATE TO EMP: NEW SAL 2 OLD SAL

Unless otherwise specified, integrity assertions are checked and enforced at the
end of each transaction. Transition assertions compare the state before the trans-
action began with the state after the transaction concluded. If some assertion is
not satisfied, the transaction is backed out to its beginning point. This permits
complex updates to be done in several steps (several calls to SEQUEL, bracketed
by BEGIN TRANS and END TRANS), which may cause the database to
pass throughintermediate states which temporarily violate one or more assertions.
However, if an assertion is specified as IMMEDIATE, it cannot be suspended
within a transaction, but is enforced after each data modification (each RDI call).
In addition, “integrity points” within a transaction may be established by the
SEQUEL command ENFORCE INTEGRITY. This command allows a user to
guard against having a long transaction completely backed out. In the event of
an integrity failure, the transaction is backed out to its most recent integrity
point.

The fourth aspect of data control, triggers, is a generalization of the concept of
assertions. A trigger causes a prespecified sequence of SEQUEL statements to be
executed whenever some triggering event occurs. The triggering event may be
retrieval, insertion, deletion, or update of a particular base table or view. For ex-
ample, suppose that in our example database, the NEMPS field of the DEPT table
denotes the number of employees in each department. This value might be kept up
to date automatically by the following three triggers (as in assertions, the keywords
OLD and NEW denote data values before and after the change which invoked the
trigger) :

DEFINE TRIGGER EMPINS

ON INSERTION OF EMP:

(UPDATE DEPT

SET NEMPS = NEMPS + 1

WHERE DNO = NEW EMP.DNO)

ACM Transaction8 on Database Systems, Vol. 1, No. 2, June 1976.

110 ’ M. M. Astrahan et al.

DEFINE TRIGGER EMPDEL

ON DELETION OF EMP:

(UPDATE DEPT

SET NEMPS = NEMPS - 1

WHERE DNO = OLD EMP.DNO)

DEFINE TRIGGER EMPUPD

ON UPDATE OF EMP:

(UPDATE DEPT

SET NEMPS = NEMPS - 1

WHERE DNO = OLD EMP.DNO;

UPDATE DEPT

SET NEMPS = NEMPS + 1

WHERE DNO = NEW EMP.DNO)

The RDS automatically maintains a set of catalog relations which describe the
other relations, views, images, links, assertions, and triggers known to the system.
Each user may access a set of views of the system catalogs which contain informa-
tion pertinent to him. Access to catalog relations is made in exactly the same way
as other relations are accessed (i.e. by SEQUEL queries). Of course, no user is author-
ized to modify the contents of a catalog directly, but any authorized user may
modify a catalog indirectly by actions such as creating a table. In addition, a user
may enter comments into his various catalog entries by means of the COMMENT
statement (see syntax in Appendix II).

The Optimizer

The objective of the optimizer is to find a low cost means of executing a SEQUEL

statement, given the data structures and access paths available. The optimizer
attempts to minimize the expected number of pages to be fetched from secondary
storage into the RSS buffers during execution of the statement. Only page fetches
made under the explicit control of the RSS are considered. If necessary, the RSS
buffers will be pinned in real memory to avoid additional paging activity caused
by the VM/370 operating system. The cost of CPU instructions is also taken into
account by means of an adjustable coefficient, H, which is multiplied by the num-
ber of tuple comparison operations to convert to equivalent page accesses. H can
be adjusted according to whether the system is compute-bound or disk access-
bound.

Since our cost measure for the optimizer is based on disk page accesses, the
physical clustering of tuples in the database is of great importance. As mentioned
earlier, each relation may have at most one clustering image, which has the prop-
erty that tuples near each other in the image ordering are stored physically near
each other in the database. To see the importance of the clustering property, imag-
ine that we wish to scan over the tuples of a relation in the order of some image, and
that the number of RSS buffer pages is much less than the number of pages used to
store the relation. If the image is not the clustering image, the locations of the tuples
will be independent of each other and in general a page will have to be fetched
from disk for each tuple. On the other hand, if the image is the clustering image,
each disk page will contain several (usually at least 20) adjacent tuples, and the
number of page fetches will be reduced by a corresponding factor.

ACM Tramactions on Database Systems, Vol. 1, No. 2, June 1976.

System R l 111

The optimizer begins by classifying the given SEQUEL statement into one of
several statement types, according to the presence of various language features such
as join and GROUP BY. Next the optimizer examines the system catalogs to find
the set of images and links which are pertinent to the given statement. A rough
decision procedure is then executed to find the set of “reasonable” methods of
executing the statement. If there is more than one “reasonable” method, an ex-
pected cost formula is evaluated for each method and the minimum-cost method is
chosen. The parameters of the cost formulas, such as relation cardinality and num-
ber of tuples per page, are obtained from the system catalogs.

We illustrate this optimization process by means of two example queries. The
first example involves selection of tuples from a single relation, and the second in-
volves joining two relations together according to a matching field. For simplicity
we consider only methods based on images and relation scans. (A relation scan in
the RSS accesses each of the pages in a data segment in turn (see Section 3)) and
selects those tuples belonging to the given relation.) Consideration of links involves
a straightforward extension of the techniques we will describe.

Example 11 will be used to describe the decision process for a query involving a
single relation:

Example 11. List the names and salaries of programmers who earn more than
$10,000.

SELECT NAME, SAL
FROM EMP

WHERE JOB = ‘PROGRAMMER’

AND SAL > 10,000

In planning the execution of this example, the optimizer must choose whether
to access the EMP relation via an image (on JOB, SAL or some other field) or via
a relation scan. The following parameters, available in the system catalogs, are
taken into account:

R relation cardinality (number of tuples in the relation)
D number of data pages occupied by the relation
T average number of tuples per data page (equal to R/D)
I image cardinality (number of distinct sort field values in a given image)
H coefficient of CPU cost (l/H is the number of tuple comparisons which are

considered equivalent in cost to one disk page access).

An image is said to “match” a predicate if the sort field of the image is the field
which is tested by the predicate. For example, an image on the EMP relation
ordered by JOB (which we will refer to as an “image on EMP.JOB”) would match
the predicate JOB = ‘PROGRAMMER’ in Example 11. In order for an image
to match a predicate, the predicate must be a simple comparison of a field with a
value. More complicated predicates, such as EMP.DNO = DEPT.DNO, cannot
be matched by an image.

In the case of a simple query on a single relation, such as Example 11, the opti-
mizer compares the available images with the predicates of the query, in order to
determine which of the following eight methods are available:

Method 1: Use a clustering image which matches a predicate whose comparison-

ACM Traneactione on Database Systems, Vol. 1, No. 2, June 1976.

112 l M. M. Astrahan et al.

operator is ’ = ’ . The expected cost to retrieve all result tuples is R/ (T X I) page
accesses (R/I tuples divided by T tuples per page).

Method 2: Use a clustering image which matches a predicate whose comparison
operator is not ’ = ’ . Assuming half the tuples in the relation satisfy the predicate,
the expected cost is R/ (2 X T) .

Method 3: Use a nonclustering image which matches a predicate whose com-
parison operator is ’ = ’ . Since each tuple requires a page access, the expect.ed cost
is R/I.

Method 4: Use a nonclustering image which matches a predicate whose com-
parison-operator is not ’ = ’ . Expected cost to retrieve all result tuples is R/2.

Method 5: Use a clustering image which does not match any predicate. Scan
the image and test each tuple against all predicates. Expected cost is (R/T) +

H X R X N, where N is the number of predicates in the query.
Method 6: Use a nonclustering image which does not match any predicate. Ex-

pected cost is R + H X R X N.

Method 7: Use a relation scan where this relation is the only one in its segment.
Test each tuple against all predicates. Expected cost is (R/T) + H X R X N.

Method 8: Use a relation scan where there are other relations sharing the seg-
ment. Cost is unknown, but greater than (R/T) + H X R X N, because some
pages may be fetched which contain no tuples from the pertinent relation.

The optimizer chooses a method from this set according to the following rules:
1. If Method 1 is available, it is chosen.
2. If exactly one among Methods 2, 3, 5, and 7 is available, it is chosen. If more

than one method is available in this class, the expected cost formulas for these
methods are evaluated and the method of minimum cost is chosen.

3. If none of the above methods are available, the optimizer chooses Method 4,
if available; else Method 6, if available; else Method 8. (Note: Either Method 7
or Method 8 is always available for any relation.)

As a second example of optimization, we consider the following query, which
involves a join of two relations:

Example 12. List the names, salaries, and department names of programmers
located in Evanston.

SELECT NAME, SAL, DNAME

FROM EMP, DEPT

WHERE EMP.JOB = ‘PROGRAMMER’

AND DEPT.LOC = ‘EVANSTON’
AND EMP.DNO = DEPT.DNO

Example 12 is an instance of a join query type, the most general form of which
involves restriction, projection, and join, The general query has the form:

Apply a given restriction to a relation R, yielding Rl, and apply a pos-
sibly different restriction to a relation S, yielding Sl. Join Rl and Sl to
form a relation T, and project some fields from T.

To illustrate the optimization of join-type queries, we will consider four possible
methods for evaluating Example 12 :

Method 1 (use images on join fields) : Perform a simultaneous scan of the image

ACM Transactions on Database Systems, Vol. 1, No. 2, June 1976.

System R . 113

on DEPT.DNO and the image on EMP.DNO. Advance the DEPT scan to obtain
the next DEPT where LOC is ‘EVANSTON’ . Advance the EMP scan and fetch
all the EMP tuples whose DNO matches the current DEPT and whose JOB is
‘PROGRAMMER’ . For each such matching pair of DEPT, EMP tuples, place
the NAME, SAL, and DNAME fields into the output. Repeat until the image
scans are completed.

Method 2 (sort both relations) : Scan EMP and DEPT using their respective
clustering images and create two files Wl and W2. Wl contains the NAME, SAL,
and DNO fields of tuples from EMP which have JOB = ‘PROGRAMMER’ . W2

contains the DNO and DNAME fields of tuples from DEPT whose location is
‘EVANSTON’ . Sort Wl and W2 on DNO. (This process may involve repeated
passes over Wl and W2 if they are too large to fit the available main memory
buffers.) The resulting sorted files are scanned simultaneously and the join is

performed.
Method 3 (multiple passes) : DEPT is scanned via its clustering image, and the

DNO and DNAME fields (a subtuple) of those DEPT tuples which have LOC =

‘EVANSTON’ are inserted into a main memory data structure called W. If space
in main memory is available to insert a subtuple (say S) , it is inserted. If there is

no space and if S.DNO is less than the current highest DNO value in W, the sub-

tuple with the highest DNO in W is deleted and S inserted. If there is no room for
S and the DNO in S is greater than the highest DNO in W, S is discarded. After
completing the scan of DEPT, EMP is scanned via its clustering image and a
tuple E of EMP is obtained. If E.JOB = ‘PROGRAMMER’ , then W is checked
for the presence of the E.DNO. If present, E is joined to the appropriate subtuple
in W. This process is continued until all tuples of EMP have been examined. If
any DEPT subtuples were discarded, another scan of DEPT is made to form a new
W consisting of subtuples with DNO value greater than the current highest. EMP
is scanned again and the process repeated.

Method 4 (TID algorithm) : Using the image on EMP.JOB, obtain the TIDs of
tuples from EMP which satisfy the restriction JOB = ‘PROGRAMMER’ . Sort
them and store the TIDs in a file Wl. Do the same with DEPT, using the image on
DEPT.LOC and testing for LOC = ‘EVANSTON’ , yielding a TID file W2. Per-

form a simultaneous scan over the images on DEPT.DNO and EMP.DNO, finding
the TID pairs of tuples whose DNO values match. Check each pair (TIDl, TID2)
to see if TIDl is present in Wl and TID2 is in W2. If they are, the tuples are

fetched and joined and the NAME, SAL, and DNAME fields placed into the
output.

These methods should be considered as illustrative of the techniques considered
by the optimizer. The optimizer will draw from a larger set of methods, including
methods which use links to carry out the join.

A method cannot be applied unless the appropriate access paths are available.

For example, Method 4 is applicable only if there are images on EMP.DNO and
EMP.JOB, as well as on DEPT.DNO and DEPT.LOC. In addition, the perfor-
mance of a method depends strongly on the clustering of the relations with respect
to the access paths. We will consider how the optimizer would choose among these
four methods in four hypothetical situations. These choices are made on the basis
of cost formulas which will be detailed in a later paper.

ACM Transactions on Database Systems, Vol. 1, No. 2, June 1976.

114 - M. M. Astrahan et al.

Situation 1: There are clustering images on both EMP.DNO and DEPT.DNO,
but no images on EMP.JOB or DEPT.LOC. In this situation, Method 1 is always
chosen.

Situation 2: There are unclustered images on EMP.DNO and DEPT.DNO, but
no images on EMP.JOB or DEPT.LOC. In this case, Method 3 is chosen if the
entire working file W fits into the main memory buffer at once; otherwise Method 2
is chosen. It is interesting to note that the unclustered images on DNO are never
used in this situation.

Situation 3 :There are clustering images on EMP.DNO and DEPT.DNO, and
unclustered images on EMP.JOB and DEPT.LOC. In this situation, Method 4 is
always chosen.

Situation 4: There are unclustered images on EMP.DNO, EMP.JOB,
DEPT.DNO, and DEPT.LOC. In this situation, Method 3 is chosen if the entire
working file W fits into the main memory buffer. Otherwise, Method 2 is chosen
if more than one tuple per disk page is expected to satisfy the restriction predicates.
In the remaining cases, where the restriction predicates are very selective, Method 4
should be used.

After analyzing any SEQUEL statement, the optimizer produces an Optimized
Package (OP) containing the parse tree and a plan for executing the statement.
If the statement is a query, the OP is used to materialize tuples as they are called
for by the FETCH command (query results are materialized incrementally when-
ever possible). If the statement is a view definition, the OP is stored in the form
of a Pre-Optimized Package (POP) which can be fetched and utilized whenever an
access is made via the specified view. If any change is made to the structure of a
base table or to the access paths (images and links) maintained on it, the POPS of
all views defined on that base table are invalidated, and each view must be reopti-
mized from its defining SEQUEL code to form a new POP.

When a view is accessed via the RDI operators OPEN and FETCH, the POP
for the view can be used directly to materialize the tuples of the view. Often, how-
ever, a query or another view definition will be written in terms of an existing view.
If the query or view definition is simple (e.g. a projection or restriction), it can
sometimes be composed with the existing view (i.e. their parse trees can be merged
and optimized together to form a new OP for the new query or view). In more
complex cases the new statement cannot be composed with the existing view defini-
tion. In these cases the POP for the existing view is treated as a formula for ma-
terializing tuples. A new OP is formed for the new statement which treats the
existing view as a table from which tuples can be fetched in only one way: by inter-
preting the existing POP. Of course, if views are cascaded on other views in several
levels, there may be several levels of POPS in existence, each level making reference
to the next.

Modifying Cursors

A number of issues are raised by the use of the insertion, deletion, and update
facilities of System R. When a modification is made to one of the tuples in the
active set of a cursor, the modification may change the ordinal position of the tuple
or even disqualify it entirely from the active set. It should be noted here that a

ACM Transactions on Database Systems, Vol. 1, No. 2, June 1976.

System R - 115

user operating at Level 3 consistency is automatically protected against, having his
cursors affected by the modifications of other users. However, even in Level 3 con-
sistency, a user may make a modification which affects one of his own active cursors.

If the cursor in question is open on a base relation, the case is simple: t,he modifi-
cation is done and immediately becomes visible via the cursor. Let, us consider a
case in which the cursor is not, on a base relation, but, rather on the result, of a
SEQUEL query. Suppose the following query has been executed:

SELECT *
FROM EMP
WHERE DNO =50
ORDERBYSAL

If the system has no image ordered on SAL, it may execute this query by finding
the employees where DNO = 50 and sorting them by SAL to create an ordered
list, of answer tuples. Along with this list, the system will keep a list of the base
relations from which the list, was derived (in this case, only EMP). The effect re-
sembles that of performing a DBTG KEEP verb [6] on the underlying base rela-
tions: if any tuple in an underlying relation is modified, the answer list is marked
“potentially invalid.” Now any fetch from this list will return a warning code since
the tuple returned may not, be up to date. If the calling program wishes to guarantee
accuracy of its results, it must close its cursor and reevaluate the query when this
warning code is received.

Simulation of Nonrelational Data Models

The RDI is designed in such a way that, programs can be written on top of it to
simulate “navigation oriented” database interfaces. These interfaces are often
characterized by collections of records connected in a hierarchic [17] or network
[6] structure, and by the concept of establishing one or more “current positions”
within the structure (e.g. the currency indicators of DBTG) . In general our strat-
egy will be to represent each record type as a relation and to represent information
about ordering and connections between records in the form of explicit fields in the
corresponding relations. In this way all information inserted into the database via
the “navigational” interface (including information about orderings and connec-
tions) is available to other users who may be using the underlying relations directly.
One or more “current positions” within the database may then be simulated by
means of one or more RDI cursors.

We will illustrate this simulation process by means of an example. Suppose we
wish to simulate the database structure 8hown in Figure 3, and wish to maintain
a “current position” in the structure. The hierarchical connections from DEPT to

FIG. 3. Example of a hierarchic data structure

ACM Transactions on Database System, Vol. 1, No. 2, June 1976.

116 l M. M. Astrahan et al.

EMP and from DEPT to EQUIP may be unnamed in a hierarchic system such as
IMS [17], or they may represent named set types in a network oriented system
such as DBTG [S].

At database definition time, a relation is created to simulate each record type.
The DEPT relation must have a sequence-number field to represent the ordering
of the DEPT records. The EMP and EQUIP relations must have, in addition to a
sequence-number field, one or more fields which uniquely identify their “parent” or
“owner” records (let us assume the key of DEPT is DNO) . If a record had several
“owners” in different set types, several “owner’s key” fields would have to appear
in the corresponding relation.

Also at database definition time, a view definition is entered into the system
which will represent the “currently visible” tuples of each relation at any point in
time. The view definitions for our example are given below:

DEFINE VIEW VDEPT AS

SELECT *

FROM DEPT

ORDER BY (sequence field)

DEFINE VIEW VEMP AS

SELECT *

FROM EMP

WHERE DNO = DNO OF CURSOR Cl ON DEPT

ORDER BY (sequence field)

DEFINE VIEW VEQUIP AS

SELECT *

FROM EQUIP

WHERE DNO = DNO OF CURSOR Cl ON DEPT

ORDER BY (sequence field)

The definitions of VEMP and VEQUIP call for tuples of EMP and EQUIP
which have the same DNO as cursor Cl; furthermore they promise that, when these
views are used, cursor Cl will be active on the DEPT relation. These view defini-
tions are parsed and optimized, and stored in the form of POPS. During this optimi-
zation process, any direct physical support for the hierarchy (such as a link from
DEPT to EMP by matching DNO) will be discovered.

At run time, when a position is to be established on a DEPT record, the cursor
Cl is opened on the view VDEPT. If the “current position” then moves downward
to an EMP record, the view VEMP is opened. The exact subset of EMP tuples
made available by this view opening depends on the location of the cursor Cl in
the “parent” relation. If the “current position” moves upward again to DEPT, the
view VEMP is closed, to be reopened later as needed. Any insertion, deletion, or
update operations issued against the hierarchy are simulated by SEQUEL INSERT,
DELETE, and UPDATE operations on the corresponding relations, with appro-
priate sequence-number and parent-key values generated, if necessary, by the
simulator program. At the end of the transaction, all cursors are closed.

Following this general plan, it is expected that hierarchic oriented or network
oriented interfaces can be simulated on top of the RDI. It should be particularly
noted that no parsing or optimization is done in response to a command to move the
“current position”; the system merely employs the POP for the view which was

ACM Transactions on Database Systems, Vol. 1. No. 2. June 1976,

System R l 117

optimized at database definition time. For any connections which are given direct

physical support in the form of a binary link, the optimizer will take advantage of
the link to provide good performance. The system is also capable of simulating
connections which have no direct physical support, since the optimizer will auto-

matically find an appropriate access path.

3. THE RELATIONAL STORAGE SYSTEM

This sect,ion is concerned with the Relational Storage System or RSS, the database

management, subsystem which provides underlying support for System R. The
RSS supports the RSI which provides simple, tuple-at-a-time operators on base

relations. Operators are also supported for data recovery, transaction management,
and data definition. (A list of all RSI operators can be found in Appendix III.)
Calls to the RSI require explicit use of data areas called segments and access paths
called images and links, along with the use of RSS-generated, numeric identifiers

for data segments, relations, access paths, and tuples. The RDS handles the selec-
tion of efficient access paths to optimize its operations, and maps symbolic relation
names to their internal RSS identifiers.

In order to facilitate gradual database integration and retuning of access paths,
the RX1 has been designed so that new stored relations or new indexes can be
created at any time, or existing ones destroyed, without quiescing the system and
without dumping and reloading the data. One can also add new fields to existing

relations, or add or delete pointer chain paths across existing relations. This facility,
coupled with the ability to retrieve any subset. of fields in a tuple, provides a degree
of data independence at a low level of the system, since existing programs which

execute RSI operations on tuples will be unaffected by the addition of new fields.
As a point of comparison, the RSS has many functions whidh can be found in

other systems, both relational and nonrelational, such as the use of index and
pointer chain structures. The areas which have been emphasized and extended in

the RSS include dynamic definition of new data types and access paths, as described
above, dynamic binding and unbinding of disk space to data segments, multipoint
recovery for in-process transactions, a novel and efficient technique for system

checkpoint and restart, multiple levels of isolation from the actions of other con-
current users, and automatic locking at the level of segments, relations, and single
tuples. The next several subsections describe all of these RSS functions and include
a sketch of the implementation.

Segments

In the RSS, all data is stored in a collection of logical address spaces called seg-
ments, which are employed to control physical clustering. Segments are used for
storing user data, access path structures, internal catalog information, and inter-
mediate results generated by the RDS. All the tuples of any relation must reside
within a single segment chosen by the RDS. However, a given segment may con-
tain several relations. A special segment is dedicated to the storage of transaction
logs for backing out the changes made by individual transactions.

Several types of segments are supported, each with its own combination of func-
tions and overhead. For example, one type is intended for storage of shared data,

ACM Transactions on Database Systems, Vol. 1, No. 2, June 1976.

118 . M. M. Astrahan et al.

and has provisions for concurrent access, transaction backout, and recovery of the
segment’s contents to a previous state. Another segment type is intended for low
overhead storage of temporary relations, and has no provision for either concurrent
access or segment recovery. A maximum length is associated with each segment;
it is chosen by a user during initialization of the system.

The RSS has the responsibility for mapping logical segment spaces to physical
extents on disk storage, and for supporting segment recovery. Within the RSS, each
segment consists of a sequence of equal-sized pages, which are referenced and for-
matted by various components of the RSS. Physical page slots in the disk extents
are allocated to segments dynamically upon first reference, by checking and modify-
ing bit maps associated with the disk extents. Physical page slots are freed when
access path structures are destroyed or when the contents of a segment are de
stroyed. This dynamic allocation scheme allows for the definition of many large
sized segments, to accommodate large intermediate results and growing databases.
Facilities are provided to cluster pages on physical media so that sequential or
localized access to segments can be handled efficiently.

The RSS maintains a page map for each segment, which is used to map each
segment page to its location on disk. Such a map is maintained as a collection of
equal-sized blocks, which are allocated statically. A page request is handled by allo-
cating space within a main memory buffer shared among all concurrent users. In
fact two separate buffers are managed, one for the page map blocks and one for
the segment pages themselves. Both pages and blocks are fixed in their buffer slots
until they are explicitly freed by RSS components. Freeing a page makes it avail-
able for replacement, and when space is needed the buffer manager replaces which-
ever freed page was least recently requested.

The RSS provides a novel technique to handle segment recovery, by associating
with each recoverable segment two page maps, called current and backup. When
the OPEN-SEGMENT operator is issued, to make the segment available for
processing, these page maps have identical entries. When a component of the RSS
later requests access to a page, with intent to update (after suitable locks have been
acquired), the RSS checks whether this is the first update to the page since the
OPEN or since the last SA.VE-SEGMENT operation. If so, a new page slot is
allocated nearby on disk, the page is accessed from its original disk location, and
the current page map is then modified to point to the new page slot. When the
page is later replaced from the buffer, it will be directed to the new location, while
the backup page and backup page map are left intact.

When the SAVE-SEGMENT operator is issued, the disk pages bound to seg-
ments are brought up to date by storing through all buffer pages which have been
updated. Both page maps are then scanned, and any page which has been modified
since the last save point has its old page slot released. Finally the backup page map
entries are set equal to the current page map entries, and the cycle is complete.

With this technique, the RESTORE SEGMENT operation is relatively sim-
ple, since the backup page map points G a complete, consistent copy of the seg-
ment. The current page map is simply set equal to the backup one, and newly
allocated page slots are released. The SAVE SEGMENT and RESTORE-
SEGMENT functions are useful for recovering aprevious version of private data,
and also for support of system checkpoint and restart, as explained below. How-

ACM Transactions on Database Systems, Vol. 1. No. 2, June 1976.

System R - 119

ever, the effect of restoring a segment of public data segment may be to undo
changes made by several transactions, since each of them may have modified data
since the segment was last saved. An entirely different mechanism is therefore
used to back out only those changes made by a single transaction, and is explained
below.

Note that our recovery scheme depends on the highly stylized management of
two page maps per segment, and on our ability to control when pages are stored
through from main memory to disk. These particular requirements led to the de-
cision to handle our own storage management and I/O for RSS segments, rather
than relying on the automatic paging of virtual memory in the operating system.

Relations

The main data object of the RSS is the n-ary relation, which consists of a time-
varying number of tuples, each containing n fields. A new relation can be defined
at any time within any segment chosen by the RDS. An existing relation and its
associated access path structures can be dropped at any time, with all storage
space made reusable. Even after a relation is defined and loaded, new fields may
be added on the right, without a database reload and without immediate modifica-
tion to existing tuples.

Two field types are supported: fixed length and variable length. For both field
types, a special protocol is used at the RSI to generate an undefined value. This
feature has a number of uses, but a particularly important one is that when the
user adds new fields to an existing relation, values for those fields in each existing
tuple are treated as undefined until they are explicitly updated.

Operators are available to INSERT and DELETE single tuples, and to FETCH
and UPDATE any combination of fields in a tuple. One can also fetch a sequence
of tuples along an access path through the use of an RSS cursor or SCQ~Z. Each scan
is created by the RSS for fetching tuples on a particular access path through exe-
cution of the OPEN-SCAN operator. The tuples along the path may then be
accessed by a sequence of NEXT operations on that scan. The access paths which
are supported include a value determined ordering of tuples through use of an
image, an RDS determined ordering of tuples through use of a link (see below for
discussions of images and links), and an RSS determined ordering of tuples in a
relation. For all of these access paths the RDS may attach a search argument to
each NEXT operation. The search argument may be any disjunctive normal form
expression where each atomic expression has the form (field number, operator,
value). The value is an explicit byte string provided by the RDS, and the operator
is ‘~1 , I#‘, ‘<I, ! >’ , ‘I’, or ‘2’.

Associated with every tuple of a relation is a tuple identifier or TID. Each tuple
identifier is generated by the RSS, and is available to the RDS as a concise and
efficient means of addressing tuples. TIDs are also used within the RSS to refer to
tuples from index structures, and to maintain pointer chains. However, they are
not intended for end users above the RDS, since they may be reused by the RSS
after tuple deletions and are reassigned during database reorganization.

The RSS stores and accesses tuples within relations, and maintains pointer
chains to implement the links described below. Each tuple is stored as a contiguous
sequence of field values within a single page. Field lengths are also included for

ACM Transactions on Database Systems, Vol. 1, No. 2, June 1976.

120 l M. M. Astrahan et al.

variable length fields. A prefix is stored with the tuple for use within the RSS. The
prefix contains such information as the relation identifier, the pointer fields (!!‘I&)
for link structures, the number of stored data fields, and the number of pointer
fields. These numbers are employed to support dynamic creation of new fields and
links to existing relations, without requiring immediate access or modification to
the existing tuples. Tuples are found only on pages which have been reserved as
data pages. Other pages within the segment are reserved for the storage of index or
internal catalog entries. A given data page may contain tuples from more than one
relation, so that extra page accesses can be avoided when tuples from different
relations are accessed together. When a scan is executed on a relation (rather than
an image or link), an internal scan is generated on all nonempty data pages within
the segment containing that relation. Each such data page is touched once, and the
prefix of each tuple within the page is checked to see if it belongs to the relation.

The implementation of tuple identifier access is a hybrid scheme, similar to one
used in such systems as IDS [ll] and RM [20], which combines the speed of a
byte address pointer with the flexibility of indirection. Each tuple identifier is a
concatenation of a page number within the segment, along with a byte offset from
the bottom of the page. The offset denotes a special entry or “slot” which contains
the byte location of the tuple in that page. This technique allows efficient utiliaa-
tion of space within data pages, since space can be compacted and tuples moved
with only local changes to the pointers in the slots. The slots themselves are never
moved from their positions at the bottom of each data page, so that existing TIDs
can still be employed to access the tuples. In the rare case when a tuple is updated
to a longer total value and insufficient space is available on its page, an overflow
scheme is provided to move the tuple to another page. In this case the TID points
t,o a tagged overflow record -which is used to reference the other page. If the tuple
overflows again, the original overflow record is modified to point to the newest
location. Thus, a tuple access via a TID almost always involves a single page access,
and never involves more than two page accesses (plus possible accesses to the page
map blocks).

In order to tune the database to particular environments, the RSS accepts hints
for physical allocation during INSERT operations, in the form of a tentative TID.
The new tuple will be inserted in the page associated with that TID, if sufficient
space is available. Otherwise, a nearby page is chosen by the RSS. Use of this
facility enables the RDS to cluster tuples of a given relation with respect to some
criterion such as a value ordering on one or more fields. Another use would be to
cluster tuples of one relation near particular tuples of another relation, because of
matching values in some of the fields. This clustering rule would result in high per-
formance for relational join operations, as well as for the support of hierarchical
and network applications.

Images

An image in the RSS is a logical reordering of an n-ary relat.ion with respect to
values in one or more sort fields. Images combined with scans provide the ability
to scan relations along a value ordering, for low level support of simple views. More
importantly, an image provides associative access capability. The RDS can rapidly
fetch a tuple from an image by keying on the sort field values. The RDS can also

ACM Transactions on Database Systems, Vol. 1, No. 2, June 1976.

System R l , 121

open a scan at a particular point in the image, and retrieve a sequence of tuples or
subtuples with a given range of sort values. Since the image contains all the tuples
and all the fields in a relation, the RDS can employ a disjunctive normal form
search argument during scanning to further restrict the set of tuples which is re-
turned. This facility is especially useful for situations where SEQUEL search predi-
cates involve several fields of a relation, and at least one of them has image support.

A new image can be defined at any time on any combination of fields in a rela-
tion. Furthermore, each of the fields may be specified as ascending or descending.
Once defined, an image is maintained automatically by the RSS during al1 INSERT,
DELETE, and UPDATE operations. An image can also be dropped at any time.

The RSS maintains each image through the use of a multipage index structure.
An internal interface is used for associative or sequential access along an image,
and also to delete or insert index ent,ries when tuples are deleted, inserted, or up-
dated. The parameters passed across this interface include the sort field values
along with the TID of the given tuple. In order to handle variable length, multi-
field indexes efficiently, a special encoding scheme is employed on the field values
so that the resulting concatenation can be compared against others for ordering and
search. This encoding eliminates the need for costly padding of each field and slow
field-by-field comparison.

Each index is composed of one or more pages within the segment containing the
relation. A new page can be added to an index when needed as long as one of the
pages within the segment is marked as available. The pages for a given index are
organiaed into a balanced hierarchic structure, in the style of B-trees [3] and of
Key Sequenced Data Sets in IBM’s VSAM access method [23]. Each page is a
node within the hierarchy and contains an ordered sequence of index entries. For
nonleaf nodes, an entry consists of a (sort value, pointer) pair. The pointer ad-
dresses another page in the same structure, which may be either a leaf page or
another nonleaf page. In either case the target page contains entries for sort values
less than or equal to the given one. For the leaf nodes, an entry is a combination of
sort values along with an ascending list of TIDs for tuples having exactly those
sort values. The leaf pages are chained in a doubly linked list, so that sequential
access can be supported from leaf to leaf.

links

A link in the RSS is an access path which is used to connect tuples in one or two
relations. The RDS determines which tuples will be on a link and determines their
relative position, through explicit CONNECT and DISCONNECT operations.
The RSS maintains internal pointers so that newly connected tuples are linked to
previous and next twins, and so that previous and next twins are linked to each
other when a tuple is disconnected. A link can be scanned using a sequence of
OPEN SCAN and NEXT operations, with the optional search arguments described
above.

A unary link involves a single relation and provides a partially defined ordering
of tuples. Unary links can be used to maintain tuple ordering specifications which
are not supported by the RSS (i.e. not value ordered). Another use is to provide
an efficient access path through all tuples of a relation without the time overhead
of an internal page scan,

ACM Transactions on Database Systems, Vol. 1. No. 2, June 1976.

122 * M. M. Astrohan et al.

The more important access path is a binary link, which provides a path from
single tuples (parents) in one relation to sequences of tuples (children) in another
relation. The RDS determines which tuples will be children under a given parent,
and the relative order of children under a given parent, through the CONNECT
and DISCONNECT operators. Operators are then available to scan the children
of a parent or go directly from a child to its parent along a given link. In general,
a tuple in the parent relation may have no children, and a tuple in the child rela-
tion may have no parent. Also, tuples in a relation may be parents and/or children
in an arbitrary number of different links. The only restriction is that a given tuple
can appear only once within a given link. Binary links are similar to the notion of
an owner coupled set with manual membership found in the DBTG specifications
for a network model of data [S].

The main use of binary links in System R is to connect child tuples to a parent
based on value matches in one or more fields. With such a structure the RDS can
access tuples in one relation, say the Employee relation, based on matching the
Department Number field in a tuple of the Department relation. This function is
especially important for supporting relational join operations, and also for support-
ing navigational processing through hierarchical and network models of data. The
link provides direct access to the correct Employee tuples from the Department
tuple (and vice versa), while use of an image may involve access to several pages
in the index. A striking advantage is gained over images when the child tuples have
been clustered on the same page as the parent, so that no extra pages are touched
using the link, while three or more pages may be touched in a large index.

Another important feature of links is to provide reasonably fast associative access
to a relation without the use of an extra index. In the above example, if the Depart-
ment relation has an image on Department Number, then the RDS can gain associ-
ative access to Employee tuples for a given value of Department Number by using
the Department relation image and the binary link-even if the Department tuple
is not being referenced by the end user.

Links are maintained in the RSS by storing TIDs in the prefix of tuples. New
links can be defined at any time. When a new link is defined for a relation, a portion
of the prefix is assigned to hold the required entries. This operation does not require
access to any of the existing tuples, since new prefix space for an existing tuple is
formatted only when the tuple is connected to the link. When necessary, the prefix
length is enlarged through the normal mechanisms used for updates and new data
fields. An existing link can be dropped at any time. When this occurs, each tuple in
the corresponding relation(s) is accessed by the RSS, in order to invalidate the
existing prefix entries and make the space available for subsequent link definitions.

Transaction Mandgement

A transaction at the RSS is a sequence of RSI calls issued in behalf of one user. It
also serves as a unit of consistency and recovery, as will be discussed below. In
general, an RSS transaction consists of those calls generated by the RDS to execute

all RDI operators in a single System R transaction, including the calls required
to perform such RDS internal functions as authorization, catalog access, and in-
tegrity checking. An RSS transaction is marked by the STARTTRANS and

ACM Transactions on Database Systems, Vol. 1, No. 2, June 1976.

System R l 123

END-TRANS operators. Various resources are assigned to transactions by the
RSS, using the locking techniques described below. Also, a transaction recovery
scheme is provided which allows a transaction to be incrementally backed out to
any intermediate save point. This multipoint recovery function is important in ap-
plications involving relatively long transactions when backup is required because
of errors detected by the user or RDS, because of deadlock detected by the RSS, or
because of long periods of inactivity or system congestion detected by the Monitor.

A transaction save point is marked using the SAVE-TRANS operator, which
returns a save point number for subsequent reference. In general, a save point may
be generated by any one of the layers above the RSS. An RDI user may mark a
save point at a convenient place in his transaction in order to handle backout and
retry. The RDS may mark a save point for each new set oriented SEQUEL expres-
sion, so that the sequence of RSI calls needed to support the expression can be
backed out for automatic retry if any of the RSI calls faiIs to complete.

Transaction recovery occurs when the RDS or Monitor issues the RESTORE-
TRANS operator, which has a save point number as its input parameter, or when
the RSS initiates the procedure to handle deadlock. The effect is to undo all the
changes made by that transaction to recoverable data since the given save point.
Those changes include all the tuple and image modifications caused by INSERT,
DELETE, and UPDATE operations, all the link modifications caused by CON-
NECT and DISCONNECT operations, and even all the declarations for defining
new relations, images, and links. In order to aid the RDS in continuing the trans-
action, all scan positions on recoverable data are automatically reset to the tuples
they were pointing to at the time of the save. Finally, all locks on recoverable data
which have been obtained since the given save point are released.

The transaction recovery function is supported through the maintenance of time
ordered lists of log entries, which record information about each change to recover-
able data. The entries for each transaction are chained together, and include the
old and new values of all modified recoverable objects along with the operation
code and object identification. Modifications to index structures are not logged,
since their values can be determined from data values and index catalog information.

At each transaction save point, special entries are stored containing the state of
all scans in use by the transaction, and the identity of the most recently acquired
lock. During transaction recovery, the log entries for the transaction are read in
last-in-first-out order. Special routines are employed to undo all the listed modifica-
tions back to the recorded save point, and also to restore the scans and release
locks acquired after the save point.

The log entries themselves are stored in a dedicated segment which is used as a
ring buffer. This segment is treated as a simple linear byte space wit.h entries span-
ning page boundaries. Entries are also archived to tape to support audits and data-
base reconstruction after system failure.

Concurrency Control

Since System R is a concurrent user system, locking techniques must be employed
to solve various synchronization problems, both at the logical level of objects like
relations and tuples and at the physical level of pages.

ACM Transactions on Database Systems, Vol. 1, No. 2, June 1976.

124 . M. M. Astrahan et al.

At the logical level, such classic situations as the “lost update” problem must be
handled to insure that two concurrent transactions do not read the same value

and then try to write back an incremented value. If these transactions are not
synchronized, the second update will overwrite the first, and the effect of one in-
crement will be lost. Similarly, if a user wishes to read only “clean” or committed

data, not “dirty” data which has been updated by a transaction still in progress

and which may be backed out, then some mechanism must be invoked to check
whether the data is dirty. For another example, if transaction recovery is to affect
only the modifications of a single user, then mechanisms are needed to insure that
data updated by some ongoing transaction, say Tl, is not updated by another, say

T2. Otherwise, the backout of transaction Tl will undo T2’s update and thus violate
our principle of isolated backout.

At the physical level of pages, locking techniques are required to insure that in-
ternal components of the RSS give correct results. For example, a data page may

contain several tuples with each tuple accessed through its tuple identifier, which
requires following a pointer within the data page. Even if no logical conflict occurs
between two transactions, because each is accessing a different relation or a differ-
ent tuple in the same relation, a problem could occur at the physical level if one

transaction follows a pointer to a tuple on some page while the other transaction
updates a second tuple on the same page and causes a data compaction routine to
reassign tuple locations.

One basic decision in establishing System R was to handle both logical and physi-
cal locking requirements within the RSS, rather than splitting the functions across

the RDS and RSS subsystems. Physical locking is handled by setting and holding
locks on one or more pages during the execution of a single RSI operation. Logical
locking is handled by setting locks on such objects as segments, relations, !!‘I&,
and key value intervals and holding them until they are explicitly released or to the
end of the transaction. The main motivation for this decision is to facilitate the
exploration of alternative locking techniques. (One particular alternative has al-
ready been included in the RSS as a tuning option, whereby the finest level of

locking in a segment can be expanded to an entire page of data, rather than single
tuples. This option allows pages to be locked for both logical and physical purposes,
by varying the duration of the lock.) Other motivations are to simplify the work
of the RDS and to develop a complete, concurrent user RSS which can be tailored
to future research applications.

Another basic decision in formulating System R was to automate all of the lock-
ing functions, both logical and physical, so that users can access shared data and

delegate some or all lock protocols to the system, For situations detected by the
end user or RDS where locking large aggregates is desirable, the RSS also supports
operators for placing explicit share or exclusive locks on entire segments or relations.

In order to provide reasonable performance for a wide spectrum of user require-
ments, the RSS supports multiple levels of consistency which control the isolation
of a user from the actions of other concurrent users (see also [13]). When a trans-
action is started at the RSI, one of three consistency levels must be specified.
(These same consistency levels are also reflected at the RDI.) Different consist-

ency levels may be chosen by different concurrent transactions. For all of these
levels, the RSS guarantees that any data modified by the transaction is not modified

ACM Transactions on Database Systems, Vol. 1, No. 2, June 1976.

System R l 125

by any other until the given transaction ends. This rule is essential to our trans-
action recovery scheme, where the backout of modifications by one transaction does
not affect modifications made by other transactions.

The differences in consistency levels occur during read operations. Level 1 con-
sistency offers the least isolation from other users, but causes the lowest overhead
and lock contention. With this level, dirty data may be accessed, and one may
read different values for the same data item during the same transaction. It is
clear that execution with Level 1 consistency incurs the risk of reading data values
that violate integrity constraints, and that in some sense never appeared if the
transaction which set the data values is later backed out. On the other hand, this
level may be entirely satisfactory for gathering statistical information from a large
database when exact results are not required. The HOLD option can be used
during read operations to insure against lost updates or dirty data values.

In a transaction with Level 2 consistency, the user is assured that every item
read is clean. However, no guarantee is made that subsequent access to the same
item will yield the same values or that associative access will yield the same item.
At this consistency level it is possible for another transaction to modify a data item
any time after the given Level 2 transaction has read it. A second read by the given
transaction will then yield the new value, since the item will become clean again
when the other transaction terminates. Transactions running at Level 2 consistency
still require use of the HOLD option during read operations preceding updates, to
insure against lost updates.

For the highest consistency level, called Level 3, the user sees the logical equiva-
lent of a single user system. Every item read is clean, and subsequent reads yield
the same values, subject of course to updates by the given user. This repeatability
feature applies not only to a specific item accessed directly by tuple identifier, but
even to sequences of items and to items accessed associatively. For example, if the
RDS employs an image on the Employee relation, ordered by Employee Name, to
find all employees whose names start with ‘B’ , then the same answer will occur
every time within the same transaction. Thus, the RDS can effectively lock a set
of items defined by a SEQUEL predicate and obtained by any search strategy, against
insertions into or deletions from the set. Similarly, if the RDS employs an image to
access the unique tuple where Name = ‘Smith’ , and no such tuple exists, then the
same nonexistence result is assured for subsequent accesses.

Level 3 consistency eliminates the problem of lost updates, and also guarantees
that one can read a logically consistent version of any collection of tuples, since
other transactions are logically serialized with the given one. As an example of this
last point, consider a situation where two or more related data items are periodically
updated, such as the mean and variance of a sequence of temperature measure-
ments. With Level 3 consistency, a reader is assured of reading a consistent pair-
rather than, say, a new variance and an old mean. Although one could use the
HOLD option to handle this particular problem, many such associations may not
be understood in a more complex database environment, even by relatively ex-
perienced programmers.

The RSS components set locks automatically in order to guarantee the logical
functions of these various consistency levels. For example, in certain cases the RSS
must set locks on tuples, such as when they have been inserted or updated. Simi-

ACM Transactions on Database Systems, Vol. 1. NO. 2, June 1976.

126 . M. M. Astrahan et al.

larly, in certain cases the RSS must set locks on index values or ranges of index
values, even when the values are not currently present in the index-such as in
handling the case of ‘Smith’ described above. In both of these cases the RSS must
also acquire physical locks on one or more pages, which are held at least during
the execution of each RSI operation, in order to insure that data and index pages
are accessed and maintained correctly.

The RSS employs a single lock mechanism to synchronize access to all objects.
This synchronization is handled by a set of procedures in every activation of the
RSS, which maintains a collection of queue structures called gales in shared, read/
write memory. Some of these gates are numbered and are associated by convention
with such resources as the table of buffer contents, or the availability of the data-
base for processing. However, in order to handle locks on a potentially huge set of
objects like the tuples themselves, the RSS also includes a named gate facility.
Internal components can request a lock by giving an eight-character name for the
object, using such names as a tuple identifier, index value, or page number. If the
named resource is already locked it will have a gate. If not, then a named gate will
be allocated from a special pool of numbered gates. The named gate will be deallo-
cated when its queue becomes empty.

An internal request to lock an object has several parameters: the name of the
object, the mode of the lock (such as shared, exclusive, or various other modes
mentioned below), and an indication of lock duration, so that the RSS can quickly
release all locks held for a single RSI call, or all locks held for the entire transaction.
The duration of a lock is also used for scheduling purposes, such as to select a
transaction for backout when deadlock is detected.

The choice of lock duration is influenced by several factors, such as the type of
action requested by the user and the consistency level of the transaction. If a tuple
is inserted or updated by a transaction at any consistency level, then an exclusive
lock must be held on the tuple (or some superset) until the transaction has ended.
If a tuple is deleted, then an exclusive lock must be held on the TID of that tuple
for the duration of the transaction, in order to guarantee that the deletion can be
undone correctly during transaction backout. For any of these cases, as well as for
the ones described below, an additional lock is typically set on the page itself to
prevent conflict of transactions at the physical level. However, these page locks
are released at the end of the RSI call.

In the case of a transaction with Level 3 consistency, share locks must be main-
tained on all tuples and index values which are read, for the duration of the trans-
action, to insure repeatability. For transactions with Level 2 consistency, read
accesses require a share lock with immediate duration. Such a lock request is en-
queued behind earlier exclusive lock requests so that the user is assured of reading
clean data. The lock is then released as soon as the request, has been granted, since
reads do not have to be repeatable. Finally, for transactions with Level 1 consis-
tency, no locks are required for read purposes, other than short locks on pages to
insure that the read operation is correct.

Data items can be locked at various granularities, to insure that various applica-
tions run efficiently. For example, locks on single tuples are effective for transactions
which access small amounts of data, while locks on entire relations or even entire
segments are more reasonable for transactions which cause the RDS to access large

ACM Transactions on Database Systems, Vol. 1, NO. 2, June 1976.

System R - 127

amounts of data. In order to accommodate these differences, a dynamic lock hier-
archy protocol has been developed so that a small number of locks can be used to
lock both few and many objects [13]. The basic idea of the scheme is that separate
locks are associated with each granularity of object, such as segment, relation, and
tuple. If the RDS requests a lock on an entire segment in share or exclusive mode,
then every tuple of every relation in the segment is implicitly locked in the same
mode. If the RDS requests a lock on a single relation, say in exclusive mode, but
does not wish exclusive access to the entire segment, then the RSS first generates
an automatic request for a lock in intent-exclusive mode on the segment, before re-
questing an exclusive lock on the relation. This intent-exclusive lock is compatible
with other intent locks but incompatible with share and exclusive locks. The same
protocol is extended to include locks on individual tuples, through automatic acqui-
sition of intent locks on the segment and relation, before a lock is acquired on the
tuple in share or exclusive mode.

Since locks are requested dynamically, it is possible for two or more concurrent
activations of the RSS to deadlock. The RSS has been designed to check for dead-
lock situations when requests are blocked, and to select one or more victims for
backout if deadlock is detected. The detection is done by the Monitor, on a periodic
basis, by looking for cycles in a user-user matrix. The selection of a victim is based
on the relative ages of transactions in each deadlock cycle, as well as on the dura-
tions of the locks. In general the RSS selects the youngest transaction whose lock
is of short duration, i.e. being held for the duration of a single RSI call, since the
partially completed call can easily be undone. If none of the locks in the cycle are
of short duration, then the youngest transaction is chosen. This transaction is then
backed out to the save point preceding the offending lock request, using the trans-
action recovery scheme described above. (To simplify the code, special provisions
are made for transactions which need locks and are already backing up.)

System Checkpoint and Restart

The RSS provides functions to recover the database to a consistent state in the
event of a system crash. By a consistent state we mean a set of data values which
would result if a set of transact.ions had been completed, and no other transactions
were in progress. At such a state all image and link pointers are correct at the RSS
level, and more importantly all user defined integrity assertions on data values are
valid at the RDS level, since the RDS guarantees all integrity constraints at trans-
action boundaries.

In the RSS, special attention has been given to reduce the need for complete
database dumps from disk to tape to accomplish a system checkpoint. The data-
base dump technique has several difficulties. Since the time to copy the database
to tape may be long for large databases, checkpoints may be taken infrequently,
such as overnight or weekly. System restart is then a time consuming process, since
many database changes must be reconstructed from the system log to restore a
recent database state. In addition, before the checkpoint is performed, all ongoing
transactions must first be completed. If any of these are long, then no new trans-
actions are allowed to initiate until the long one is completed and the database
dump is taken.

ACM Tranaaetiona on Database Systems, Vol. 1, No. 2, June 1976.

128 . M. M. Astrahan et al.

In the RSS, two system recovery mechanisms have been developed to alleviate
these difficulties. The first mechanism uses disk storage to recover in the event of
a “soft” failure which causes the contents of main memory to be lost; it is oriented
toward frequent checkpoints and rapid recovery. The second mechanism uses tape
storage to recover in the relatively infrequent case that disk storage is destroyed;
it is oriented toward less frequent checkpoints. In both mechanisms, checkpoints
can be made while transactions are still in progress.

The disk oriented recovery mechanism is heavily dependent on the segment re-
covery functions described above, and also on the availability of transaction logs.
The Monitor Machine has the responsibility for scheduling checkpoints, based on
parameters set during system startup. When a checkpoint is required, the Monitor
quiesces all activity within the RSS at a point of physical consistency: transactions
may still be in progress, but may not, be executing an RSI operation. The tech-
nique for halting RSS activity is to acquire a special RSS lock in exclusive mode,
which every activation of the RSS code acquires in share mode before executing
an RSI operation, and releases at the end of the operation. The Monitor then issues
the SAVE-SEGMENT operator to bring disk copies of all relevant segments up
to date. Finally, the RSS lock is released and transactions are allowed to resume.

When a soft failure occurs, the RESTORE-SEGMENT operator is used to re-
store the contents of all saved segments. Recall that the restore function is a rela-
tively simple one involving the setting of current page map values equal to the
backup page map values and the releasing of pages allocated since the save point.
The log segment, which is saved more frequently than normal data segments, is
effectively saved at the end of each transaction, and contains “after” values as
well as “before” values of modified data. Therefore transactions completing after
the last database save, but before the last log save, can be redone automatically.
In addition, the transaction logs are used to back out transactions which were in-
complete at the checkpoint and cannot be redone, in order that a consistent data-
base state is reached.

Our tape oriented recovery scheme is an extension of the above one. In order to
recover in the event of lost disk data, some technique is required to get a sufficient
copy of data and log information to tape. The technique we have chosen is to have
the Monitor schedule certain checkpoints as “long” rather than standard short
ones. A long checkpoint performs the usual segment save operations described
above, but also initiates a process which copies the saved pages from disk to tape.
Thus the checkpoint to tape is incremental.

4. SUMMARY AND CONCLUSION

We have described the overall architecture of System R and also the two main
components: the Relational Data System (RDS) and the Relational Storage Sys-
tem (RSS). The RSS is a concurrent user, data management subsystem which
provides underlying support for System R. The Relational Storage Interface
(RSI) has operations at the single tuple level, with automatic maintenance of an
arbitrary number of value orderings, called images, based on values in one or more
fields. Images are implemented through the use of multilevel index structures. The

ACM Transactiona on Database Systems, Vol. 1, No. 2, June 1976.

System R l 129

RSS also supports efficient navigation from tuples in one relation to tuples in
another, through the maintenance of pointer chain structures called linh. Images
and links, along with physical scans through RSS pages, constitute the access path
primitives which the RDS employs for efficient support of operators on the rela-
tional, hierarchical, and network models of data. Furthermore, to facilitate gradual
integration of data and changing performance requirements, the RSS supports dy-
namic addition and deletion of relations, indexes, and links, with full space reclama-
tion, and the addition of new fields to existing relations-all without special utilities
or database reorganization.

Another important aspect of the RSS is full support of concurrent access in a
multiprocessor environment, through the use of gate structures in shared, read/
write memory. Several levels of consistency are provided to control the interaction
of each user with others. Also locks are set automatically within the RSS, so that
even unsophisticated users can write transactions without explicit lock protocols or
file open protocols. These locks are set on various granularities of data objects, so
that various types of,application environments can be accommodated.

In the area of recovery, transaction backout is provided to any one of an arbi-
trary number of user specified save points, to aid in the recovery of long application
programs. Backout may also be initiated by the RSS during automatic detection
of deadlock. A new recovery scheme is provided at the system level, so that both
checkpoint and restart operations can be performed efficiently.

The RDS supports the Relational Data Interface (RDI) , the external interface
of System R, and provides the user with a consistent set of facilities for data re-
trieval, manipulation, definition, and control. The RDI is designed as a set of opera-
tors which may be called directly from a host program. It is expected that programs
will be written on top of the RDI to implement various stand-alone relational
interfaces and other, possibly nonrelational, interfaces.

The most important component of the RDS is the optimizer, which makes plans
for efficient execution of high level operations using the RSS access path primitives.
Of great importance in optimizing queries is the method by which tuples are ar-
ranged in physical storage. The RDS provides the RSS with clustering hints during
insert operations, so that the tuples of a relation are physically clustered according
to some value ordering, or placed near associated tuples along a binary link. Given
the cluster properties of stored relations, the optimizer uses an access path strategy
with the main emphasis on reducing the number of I/O operations between main
memory and on-line, direct access storage.

In addition to the optimizer, the RDS contains components for various other
functions. The authorization component allows the creator of a relation or view to
grant or revoke various capabilities. The integrity system automatically enforces
assertions about database values, which are entered through SEQUEL commands.
A similar mechanism is employed to trigger one or more database actions when a
given action is detected. The SEQUEL language may also be used to define any
query as a named view. The access plan to materialize this view is selected by the
optimizer, and can be stored away as a Pre-Optimized Package (POP) for subse-
quent execution. POPS are especially important for the support of transactions
which are run repetitively, since they avoid much of the overhead usually associated
with a high level of data independence.

ACM Transactions on Database Systems, Vol. 1, No. 2. June 1976.

130 l M. M. Astrahan et al.

APPENDIX I. RDI OPERATORS

Square brackets [] are used below to indicate optional parameters.

Operators for data definition and manipulation:

SEQUEL ([<cursor name>,] <any SEQUEL statemen)

FETCH (<cursor name> [, <pointers to I/O locations>])

FETCHJOLD (<cursor name> [, <pointers to I/O locations>])

OPEN (<cursor name>, <name of relation or view>)

CLOSE (<cursor name>)

KEEP (<cursor name>, <new relation name>,

Uist of new field names>)

DESCRIBE (<cursor name>, <degree>. <pointers to I/O

locations>)

BIND (<program variable name>, <program variable address>)

Operators on transactions and locks:

BEGIN-TRANS (<transaction id>, <consistency level>)

END-T&INS

SAVE (<save point name>)

RESTORE (<save point name>)

RELEASE (<cursor name>)

APPENDIX II. SEQUEL SYNTAX

The following is a shortened version of the BNF synt,ax for SEQUEL. It contains
several minor ambiguities and generates a number of constructs with no semantic
support, all of which are (hopefully) missing from our complete, production syntax.

Square brackets [] are used to indicate optional constructs.

statement ::= query
1 dml-statement
I ddl-statement
/ control-statement

dml-statement ::= assignment
I insertion
I deletion
I update

W-Y ::= query-expr [ORDER BY ord-spec-list]

assignment ::= receiver <- query-expr

receiver ::= table-name [(field-name-list)]

insertion ::= INSERT INTO receiver : insert-spec

insert-spec ::= query-expr
I literal

constant

field-name-list ::= field-name
field-name-list , field-name

ACM Transactions on Database Systems, Vol. 1, No. 2, June 1976.

System R 9 131

deletion ::= DELETE table-name [var-name] [where-clause I

update ::= UPDATE table-name ["ar-name] set-clause-list .
[where-clause I

where-clause ::= WHERE boolean
1 WHERE CURRENT [TUPLE] OF

[CURSOR] cursor-name

set-clause-list ::= set-clause
set-clause-list , set-clause

set-clause ::= SET field-name = expr
1 SET field-name = (query-expr)

qlC%ry-eXpr ::= query-block
1 query-expr set-op query-block
I (query-expr)

set-op ::= INTERSECT j UNION 1 MINUS

query-block ::= select-clause FROM from~list
[WHERE boolean]
[GROUP BY field-spec-list

[HAVING boolean]]

select-clause ::= SELECT [UNIQUE] sel-expr-list
1 SELECT [UNIQUE] *

eel-expr-list ::= sel-expr
sel-expr-list , sel-expr

Sel-eXpr ::= expr [: host-location]
var-name . * I table-name *

from-list ::= table-name [var-name]
I from-list , table-name [var-name]

field-spec-list ::= field-spec
1 field-spec-list , field-spec

ord-spec-list ::= field-spec [direction]
ord-spec-list , field-spec [direction]

direction ::= ASC I DESC

boolean ::= boolean-term
1 boolean OR boolean-term

boolean-term ::= boolean-factor
1 boolean-term AND boolean-factor

boolean-factor ::= [NOT I boolean-primary

boolean-primary ::= predicate
1 (boolean)

predicate ::= expr comparison exp?C
/ expr BETWEEN expr AND expr
1 expr comparison table-spec
1 < field-spec-list > = full-table-spec
/ < field-spec-list > [IS] IN full-table-spec
I IF predicate THEN predicate
1 SET (field-spec-list) comparison

full-table-spec
1 SET (field-spec-list) comparison

SET (field-wee-list)
table-spec comparison full-table-spec

full-table-spec ::= table-spec
I (entry)
1 constant

table-spec ::= query-block
I (query-expr)
1 literal

expr ::= arith-term
expr add-op arith-term

ACM Transactions on Database Systems, Vol. 1, No. 2, June 1976.

132 l M. M. Astrahan et al.

srith-term ::= srith-factor
with-term mult-op arith-factor

srith-factor ::= [add-op] primary

primary ::= [OLD 1 NEW I field-spec
([UNIQUE 1 exer)

/ L%~ (*)
cOnStsnt

/ (expr 1

field-spec ::= field-name
; y-;me. . fi;;;;t;;m

comparison ::= camp-op
1 CONTAINS
1 DOES NOT CONTAIN

i i t: i i!T IN

camp-op ::= = 11 = 1 > / >= 1 < / <=

add-op ::= + 1 -

mult-op ::= * I /

set-fn ::= AVG 1 MAX / MIN / SUM 1 COUNT 1 identifier

literal ::; ; lit-tup1e-list)
entry-list)

1 lit-tup1e

lit-ruple-list ::= lit-tup1e
j lit-nlple-list , lit-tup1e

lit-tuple : := < entry >
/ < entry-list >

entry-list ::= entry , entry
entry-list , entry

entry : := [constant]

constant ::= quoted-string
number

1 host-location

/ zt
I DATE
1 field-name OF CURSOR cursor-osms

[ON table-name]

table-name ::= name

image-name ::= name

link-name ::= name

ssrt-name ::= name

trig-name ::= name

name ::= [creator . I identifier

creator ::= identifier

user-name ::- identifier

field-name ::= identifier

vsr-name ::= identifier

cursor-name ::- identifier

host-location ::= identifier

integer ::= number

ACM Transactions on Databarre Systems, Vol. 1, No. 2, June 1976.

System R l 133

ddl-statement ::= create-table
expand-table

I keep-table
1 create-image
1 create-link
\ define-view
I drop
1 ccmment

create-table ::= CREATE [per"-spec] [share-spec] TABLE
table-name : field-defn-list

per"-spec ::= PERMANENT 1 TEMPORARY

share-spec ::= SHARED 1 PRIVATE

field-defn-list ::= field-defn
1 field-defn-list , field-defn

field-defn ::= field-name (type [, NONULL])

type ::= CHAR (integer)
/ CHAR(*)
i INTEGER
, SMALLINT
[DECIMAL (integer , integer)
, FLOAT

expand-table ::= EXPAND TABLE table-name ADD
FIELD field-defn

keep-table ::= KEEP TABLE table-name

create-image ::- CREATE [image-mod-list] IMAGE image-name
ON table-name (ard-spec-list 1

image-mod-list ::= image-mod
1 image-mod-list image-mod

image-mod ::= UNIQUE
1 CLUSTERING

create-link ::s CREATE [CLUSTERING] LINK link-name
FROM table-name (field-name-list)
TO table-name (field-name-list)
[ORDER BY ord-spec-list]

define-view ::- DEFINE [per"-spec] VIEW table-name
[(field-name-list)] AS query

drop ::= DROP system-entity name

cOment ::= COMMENT ON system-entity name : quoted-string
1 COMMENT ON FIELD table-name . field-name

: quoted-string

system-entity ::- TABLE 1 VIEW 1 ASSERTION
/ TRIGGER 1 IMAGE) LINK

control-statement ::= asrt-statement

asrt-statement ::=

art-condition ::-

I

I enforcement
1 define-trigger
I grant
1 revoke

ASSERT asrt-name [INMEDIATE]
[ON asrt-condition] : boolean

action-list
table-name I var-name]

action-list ::= action
action-list) action

action ::= INSERTION OF table-name [var-name I
1 DELETION OF table-name [var-name]
I UPDATE OF table-name [var-name I

[(field-name-list)]

ACM Transactions on Database Systems, Vol. 1, No. 2, June 1976.

134 ’ M. M. Astrahan et al.

enforcement ::= ENFORCE INTEGRITY
ENFORCE ASSERTION ssrt-name

define-trigger ::= DEFINE TRIGGER trig-name
ON trig-condition : (statement-list)

trig-condition ::= action
j READ OF table-name [vsr-name]

statement-list ::= statement
statement-list ; statement

grant ::= GRANT [auth] table-name TO user-list
[WITH GRANT OPTION]

auth ::= ALL RIGHTS ON
/ operation-list ON
j ALL BUT operation-list ON

user-list ::= user-name
I user-list , user-name
1 PUBLIC

operation-list ::= operation
operation-list , operation

operation ::= READ
1 INSERT
1 DELETE
/ UPDATE [(field-name-list)]
I DROP
1 EXPAND
1 IMAGE
1 LINK
1 CONTROL

revoke ::= REVOKE [operation-list ON 1 table-name
FROM user-list

APPENDIX III. RSI OPERATORS

The RSI operators are oriented toward the use of formatted control blocks. Rather
than explain the detailed conventions of these control blocks, we list below an ap-
proximate but hopefully readable form for the operators. Square brackets [] are
used to indicate optional parameters.

operators on segments:

OPEN-SEGMENT (<s&d>)

CLOSE-SEGMENT (<segid>)

SAVE-SEGMENT (<segid>)

RESTORE-SEGMENT (<segid>)

Operators on transactions and locks:

STARTJRANS (<consistency level>)

END TRANS -

SAVEJRANS, RETURNS (<saveid>)

RESTOREJRANS (<saveid>)

LOCK-SEGMENT (<segid>, &ode: SHARE or EXCLUSIVE or SIX>)

LOCK-RELATION (<segid>, <relid>, <mode, ss above>)

RELEASEJUPLE (<segid>, <tld>)

ACM Transactions on Database Systems, Vol. 1. No. 2, June 1976.

System R l 135

Operators on tuples and scans:

FETCH (<segid>, <relid>, <identifier: tid or scanid or imageid,

key values>, <field list>, <pointers to I/O locations>

[, HOLD])

INSERT (<segid>, <relid>, <pointers to I/O locations>

I, <nearby tid> I), RETURNS (Ctid>)

DELETE (Csegid>, <relid>, <identifier, as above>)

UPDATE (<s&d>, <relid>, <identifier, a8 above>,

<field list>, <pointers to I/O locations>)

OPEN-SCAN (<s&d>, <path: relid or imageid or linkid>,

<start-point: key values for image, or tid for link,

or scanid for link>),

RETURNS (<scanid>)

NEXT (<se&d,, <scanid>, <field list>, <pointers to I/O locations>

[, <search argument>] [, HOLD])

CLOSE (<segid>, <scanid>)

PARENT (<child s&d>, <linkid>, <identifier for new tuple, as

above>, <field list>, <pointers to I/O locations>

[, HOLD1)

CONNECT (<child s&d>, <linkid>, <identifier for new tuple, as

above>, <neighbor relid>, <neighbor tid>,

<location: BEFORE or AFTER>)

DISCONNECT (<child s&d>, <linkid>, <identifier for child, as

above>)

Operators for data definition:

CREATE (<segid>, <object type: REL or IMAGE or LINK >, <specs>),

RETURNS (<object identifier: relid or imageid or link10)

DESTROY (<se&d>, <object identifier, 88 above>)

CHANGE (<segid>, <object identifier, a8 above>,

G-lew specs>)

RRADSPEC (<segid>, <object identifier, 88 abov&,

<pointer to I/O locatiol0)

ACKNOWLEDGMENTS

The authors wish to acknowledge many helpful discussions with E.F. Codd, origi-
nator of the relational model of data, and with L.Y. Liu, manager of the Computer
Science Department of the IBM San Jose Research Laboratory. We also wish to
acknowledge the extensive contributions to System R of Phyllis Reisner, whose
human factors experiments (reported in [24, 251) have resulted in significant im-
provements in the SEQUEL language.

ACM Transactions on Database Systems, Vol. 1, No. 2, June 1976.

136 l M. M. Astrahan et al.

REFERENCES

1. ASTRAHAN, M.M., AND CHAMBERLIN, D.D. Implementation of a structured English query
language. Comm. ACM 18, 10 (Oct. 1975), 580-588.

2. ASTRAHAN, M.M., AND LORIE, R.A. SEQUEL-XRM: A relational system. Proc. ACM
Pacific Conf., San Francisco, Calif., April 1975, pp. 34-38.

3. BAYER, R., AND MCCREIGHT, E.M. Organization and maintenance of large ordered indexes.
Acta Informatica 1 (1972), 173-189.

4. BOYCE, R.F., AND CHAMBERLIN, D.D. Using a structured English query language as a data
definition facility. Res. Rep. RJ 1318, IBM Res. Lab., San Jose, Calif., Dec. 1973.

5. CHAMBERLIN, D.D., AND BOYCE, R.F. SEQUEL: A structured English query language.
Proc. ACM SIGFIDET Workshop, Ann Arbor, Mich., May 1974, pp. 249-264.

6. CODASYL DATA BASE TASK GROUP. April 1971 Rep. (Available from ACM, New York.)
7. CODD, E.F. A relational model of data for large shared data banks. Comm. ACM IS, 6

(June 1970), 377-387.
8. CODD, E.F. Relational completeness of data base sublanguages. In Courant Computer Science

Symposia, Vol. 6: Data Base Systems, G. Forsythe, Ed., Prentice-Hall, Engelwood Cliffs,
N.J., 1971, pp. 65-98.

9. DONOVAN, J.J., FESSEL, R., GREENBERG, S.S., AND GUTENTAG, L.M. An experimental
VM/370 based information system. Proc. Internat. Conf. on Very Large Data Bases,
Framingham, Mass., Sept. 1975, pp. 549-553. (Available from ACM, New York.)

10. ESWARAN, K.P., AND CHAMBERLIN, D.D. Functional specifications of a subsystem for data
base integrity. Proc. Internat. Conf. on Very Large Data Bases, Framingham, Mass., Sept.
1975, pp. 48-68. (Available from ACM, New York.)

11. Feature analysis of generalized data base management systems. CODASYL Systems Com-
mittee Tech. Rep., May 1971. (Available from ACM, New York.)

12. GOLDSTEIN, R.C., AND STRNAD, A.L. The MACAIMS data management system. Proc. ACM
SIGFIDET Workshop on Data Description and Access, Houston, Tex., Nov. 1970, pp.
201-229.

13. GRAY, J.N., LORIE, R.A., PUTZOLU, G.R., AND TRAIGER, I.L. Granularity of locks and
degrees of consistency in a shared data base. Proc. IFIP Working Conf. on Modelling of Data
Base Management Systems, Freudenstadt, Germany, Jan. 1976, pp. 695-723.

14. GRAY, J.N., AND WATSON, V. A shared segment and inter-process communication facility for
VM/370. Res. Rep. RJ 1579, IBM Res. Lab., San Jose, Calif., Feb. 1975.

15. GRIFFITHS, P.P., AND WADE, B.W. An authorization mechanism for a relational data base
system. Proc. ACM SIGMOD Conf., Washington, D.C., June 1976 (to appear).

16. HELD, G.D., STONEBRAKER, M.R., AND WONG, E. INGRES: A relational data base system.
Proc. AFIPS 1975 NCC, Vol. 44, AFIPS Press, Montvale, N.J., pp. 409-416.

17. Information Management Sy,stem, General Information Manual. IBM Pub. No. GH20-1260,
IBM Corp., White Plains, N.Y., 1975.

18. Introduction to VM/370. Pub. No. GC20-1800, IBM Corp., White Plains, N.Y., Jan. 1975.
19. LORIE, R.A. XRM-An extended (n-ary) relational memory. IBM Scientific Center Rep.

G320-2096, Cambridge, Mass., Jan. 1974.
20. LORIE, R.A., AND SYMONDS, A.J. A relational access method for interactive applications.

In Courant Computer Science Symposia, Vol. 6: Data Base Systems, G. Forsythe, Ed., Prentice-
Hall, Engelwood Cliffs, N.J., 1971, pp. 99-124.

21. MYLOPOULOS, J., SCHUSTER, S.A., AND TSICHRITZIS, D. A multi-level relational system.
Proc. AFIPS 1975 NCC, Vol. 44, AFIPS Press, Montvale, N.J., pp. 403408.

22. NOTLEY, M.G. The Peterlee IS/l System. IBM UK Scientific Center Rep. UKSC-0018,
March 1972.

23. Planning for Enhanced VSAM under OS/VS. Pub. No. GC26-3842, IBM Corp., White Plains,
N.Y., 1975.

24. REISNER, P. Use of psychological experimentation as an aid to development of a query
language. Res. Rep. RJ 1707, IBM Res. Lab., San Jose, Calif., Jan. 1976.

25. REISNER, P., BOYCE, R.F., AND CHAMBERLIN, D.D. Human factors evaluation of two data
base query languages: SQUARE and SEQUEL. Proc. AFIPS 1975 NCC, Vol. 44, AFIPS
Press, Montvale, N.J., pp. 447-452.

ACM Transactions on Database Systems, Vol. 1, No. 2, June 1976.

System R l 137

26. SCHMID, H.A., AND BERNSTEIN, P.A. A multi-level architecture for relational data base
systems. Proc. Internat. Conf. on Very Large Data Bases, Framingham, Mass., Sept. 1975,
pp. 202-226. (Available from ACM, New York.)

27. SMITH, J.M., AND CHANG, P.Y. Optimizing the performance of a relational algebra database
interface. Comm. ACM 18, 10 (Oct. 1975), 568-579.

28. STONEBRAKER, M. Implementation of integrity constraints and views by query modification.
Proc. ACM SIGMOD Conf., San Jose, Calif., May 1975, pp. 65-78.

29. TODD, S. PRTV: An efficient implementation for large relational data bases. Proc. Internat.
Conf. on Very Large DataBases, Framingham, Mass., Sept. 1975, pp. 554-556. (Available from
ACM, New York.)

30. WHITNEY, V.K.M. RDMS: A relational data management system. Proc. Fourth Internat.
Symp. on Computer and Information Sciences, Miami Beach, Fla., Dec. 1972, pp. 55-66.

31. ZLOOF, M.M. Query by Example. Proc. AFIPS 1975 NCC, Vol. 44, AFIPS Press, Montvale,
N.J., pp. 431-437.

Received November 1975; revised February 1976

ACM Transactions on Database Systems, Vol. 1, No. 2, June 1976.

