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Abstract: The computational assessment of system reliability of structures has remained a challenge in the field of reliability e
ing. Calculation of the failure probability for a system is generally difficult even if the potential failure modes are known or
identified, because available analytical methods require determination of the sensitivity of performance functions, information o
correlations among potential failure modes, and determination of design points. In the present paper, a method based o
approximations is proposed for structural system reliability assessment that is applicable to both series and nonseries systems
estimate method is applied to evaluate the first few moments of the system performance function of a structure from which the
based reliability index and failure probability can be evaluated without Monte Carlo simulations. The procedure does not re
computation of derivatives, nor determination of the design point and computation of mutual correlations among failure modes
should be computationally effective for structural assessment of system reliability.
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Introduction

The evaluation of system reliability for structures has been
active area of research for over three decades. The calculatio
the failure probability for a system is generally difficult even
the potential failure modes are known or can be identified,
cause of the large number of potential failure modes for m
practical structures, the difficulty in obtaining the sensitivity
the performance function, and the mutual correlations among f
ure modes. The search for efficient computational procedures
estimating system reliability has resulted in several approac
such as bounding techniques, the probabilistic network evalua
technique~PNET!, and direct or smart Monte Carlo simulation
In the present paper, a computationally more effective meth
using moment approximations for system reliability is propos
and examined for both series and nonseries systems.

Assessment of System Reliability

A structural system will invariably have multiple modes of pote
tial failure, e.g.,E1 , E2 ,..., Em . The occurrence of one or mor
of these failure modes will constitute failure of the system, i.
system failure is the union of all the modes orE1UE2U,...,UEm .

For a structural system, each of the failure modes,Ei , can be
defined by a performance functiongi5gi(X) such thatEi5(gi

,0) and the failure probability of the system is then
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PF5Prob@g1<0øg2<0ø,...,øgm<0# (1)

Conversely, the safety of a system is the event in which none
them potential failure modes occurs; again in the case of a ser
system, this means

PS5Prob@g1.0ùg2.0ù,...,ùgm.0#

5Prob@min~g1 ,g2 ,...,gm!.0# (2)

Thus the performance function of a series system,G, can be ex-
pressed as the minimum of the performance functions that cor
sponds to all the potential failure modes, that is,

G~X!5min@g1 ,g2 ,...,gm# (3)

where gi5gi(X) is the performance function of thei th failure
mode.

In the case of a series system, the performance functions of
individual failure modes will be smooth; for a nonseries system
however, each of the failure modes will generally involve comb
nations of the maximum and minimum of the component perfo
mance functions, as illustrated later in example 4. Consequen
the resulting system performance function,G(X), will not be
smooth and will be more complex than that of a comparab
series system.

Since it is difficult to obtain the sensitivity of the performanc
function even for a series system like Eq.~3!, derivative-based
FORM would not be applicable. The failure probability of a sys
tem can be determined using bounding techniques~see, e.g., Cor-
nell 1966! as a function of the failure probability of individual
modes; however, for a complex system the bounds would be w
even though these bounds can be improved by second-or
bounds~Ditlevsen 1979!. The failure probability of a system may
also be estimated approximately with the probabilistic netwo
evaluation technique developed by Ang and Ma~1981!, in which
mutual correlations among the failure modes have to be co
puted. Other methods have been reviewed or discussed, e.g.
Moses~1982!, Thoft-Christensen and Murotsu~1986!, and Ben-
nett and Ang~1986!.

In the present paper, moment approximations~Zhao and Ono
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2001! for evaluation of system reliability are investigated. If th
central moments of the system performance function, describe
Eq. ~3! for a series system, can be obtained, the failure probab
of a system, which is defined as Prob@G(X),0# can be expressed
as a function of the central moments. The proposed meth
therefore, is based on the premise that by finding the relations
between the failure probability and the central moments ofG(X),
the probability of system failure can be assessed. Because the
two moments are generally inadequate, high-order moments
invariably be necessary.

Approximating the distribution of a random variable using
moments of finite order is a well known problem in statistics, a
various approximations such as the Pearson, Johnson, and
systems and the Edgeworth and Cornish–Fisher expansions
developed~Stuart and Ord 1987!. Their application in structural
reliability has been examined by Winterstein~1988! and by Par-
kinson ~1978!. A first-order third-moment reliability method
~Tichy 1994! was developed, the results of which, however, d
pend on a successful search for the design point. A method
moments that is independent of the design point was develo
by Grigoriu and Lind~1980! that requires optimal estimation o
convolution integrals using higher-order moments of the perf
mance function and a linear combination of distributions fro
prescribed reference sets. Grigoriu~1983! also developed a pro-
cedure to estimate the failure probability using a method of m
ments, in which moments were obtained from Monte Carlo sim
lations. Hong~1996! proposed a point-estimate moment-bas
reliability analysis method, in which the concentrations in t
point estimates require the solution of nonlinear equations.

In the present paper, the moments of the system performa
function, G(X), are obtained using point estimates in standa
normal space in which the concentrations can be readily obta
without solving nonlinear equations. After the moments of t
performance functionG(X) are obtained, the moment-based re
ability index can then be evaluated using an available stand
ization function or appropriate distribution systems.

Determining Moments of Performance Function

In the present paper, the point-estimate method~Zhao and Ono
2000a! is used to determine the moments of the system per
mance function like in Eq.~3! for a series system. For a functio
of only one random variabley5y(x), the moments ofy can be
point estimated as

my5(
k51

m

Pky@T21~uk!# (4a)

sy
25(

k51

m

Pk$y@T21~uk!#2my%
2 (4b)

a rysy
r 5(

k51

m

Pk$y@T21~uk!#2my%
r (4c)

wheremy , sy , anda ry5mean value, standard deviation, andr th
dimensionless central moment ofy(x), T215 inverse Rosenblatt
transformation. u1 , u2 ,...,um5estimating points andP1 ,
P2 ,...,Pm5corresponding weights.

The estimating pointsui and their corresponding weightsPi

can be readily obtained as~Zhao and Ono 2000a!

ui5&xi Pi5
wi

Ap
(5)
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wherexi andwi are the abscissas and weights for Hermite in
gration with weight function exp(2x2) that can be found in work
by Abramowitz and Stegum~1972!.

For a five point estimate in standard normal space~Zhao and
Ono 2000a!,

u050 P058/15 (6a)

u1152u1251.355 6262 P150.222 0759 (6b)

u2152u2252.856 9700 P251.125 7431022 (6c)

whereas for a seven point estimate in standard normal space

u050 P0516/35 (7a)

u1152u1251.154 4054 P150.240 1233 (7b)

u2152u2252.366 7594 P253.075 7131022 (7c)

u3152u3253.750 4397 P355.482 6931024 (7d)

For a function of many variablesZ5G(X), where X
5x1 ,x2 ,...,xn , the joint probability density is assumed to b
concentrated at points in themn hyperquadrants of the space d
fined by then random variables, in whichm is the number of
estimating points used in the point estimates for functions of
spective single random variables. Then the moments oZ
5G(X) can be point estimated as

mG5( )
i 51

n

PciG@T21~uc1 ,uc2 ,...,ucn!# (8a)

sG
2 5( )

i 51

n

Pci@G~T21~uc1 ,uc2 ,...,ucn!!2mG#2 (8b)

a rGsG
r 5( )

i 51

n

Pci@G~T21~uc1 ,uc2 ,...,ucn!!2mG# r (8c)

wherec5distinct combination ofn terms from a group@1,2,...,m#
andci5 i th term ofc. uci5cith estimating point andPci5weight
corresponding touci . n5number of random variables an
m5number of estimating points, wheremG , sG , anda rG are the
mean value, standard deviation, and ther th dimensionless centra
moment ofG(X), andT21 is the inverse Rosenblatt transform
tion.

Since all distinct combinations have to be considered,mn

times of function calls for computingG(X) are required. The
computations involved in Eqs.~8!, therefore, can be massiv
whenn is large. In order to avoid this problem, the functionG(X)
may be approximated byG* (X) as follows ~Zhao and Ono
2000a!:

G* ~X!5(
i 51

n

~Gi2Gm!1Gm (9a)

where

Gm5G~m! (9b)

Gi5G@T21~Ui !# (9c)

where m represents the vector in which all the rando
variables take their mean values, and Ui

5@um1 ,um2 ,...,um i 21 ,ui ,um i 11 ,...,umn#T, whereumk , k51,...,n
excepti, is thekth value ofum , which is the vector inu space that
corresponds tom. Gm is a constant andGi is a function of onlyui
2003
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for specificG* (X). T21 is the inverse Rosenblatt transformatio
For independent random variablesX, Gi can simply be expressed
as

Gi5G~m1 ,m2 ,...,m i 21 ,xi ,m i 11 ,...,mn! (9d)

The approximation of Eq.~9a! can be viewed as a generalizatio
of the following observation: IfG(X) is of the form

G~X!5(
i 51

n

aixi or G~X!5(
i 51

n

yi~xi ! (9e)

where ai5constant; andyi5arbitrary function ofxi , Eq. ~9a!
will become exact, i.e.,G* (X)5G(X).

Observe thatui and i 51,...,n are independent andGi is a
function only ofui ; therefore,Gi , i 51,...,n are also independent
Hence, the first four moments ofG* (X) in Eq. ~9a! can be ex-
pressed as

mG5(
i 51

n

~m i2Gm!1Gm (10a)

sG
2 5(

i 51

n

s i
2 (10b)

a3GsG
3 5(

i 51

n

a3is i
3 (10c)

a4GsG
4 5(

i 51

n

a4is i
416(

i 51

n21

(
j . i

n

s i
2s j

2 (10d)

wherem i ands i5mean value and standard deviation ofGi , re-
spectively.a3i and a4i are the third and fourth dimensionles
central moments, i.e., the skewness and kurtosis ofGi .

Since Gi is a function of only one standard normal rando
variableui , the first four moments,m i , s i , a3i , anda4i , can be
point estimated from Eqs.~4!. For a performance functionG(X)
with n variables, if the probability moments ofGi are estimated
using anm-point estimate, onlymn function calls ofG(X) are
required to estimate the first three or four moments ofG(X).
After the first three or four moments ofG(X) are obtained, the
reliability analysis becomes a problem of approximating the d
tribution of a specific random variable with its known first thre
or four moments.

Moment-Method Formulas

Third-Moment Reliability Index

The third-moment reliability index can be obtained from som
three-parameter distributions, such as the three-parameter
normal distribution~Tichy 1994! and the third-moment transfor
mation ~Zhao and Ono 2000b!. These distributions give similar
results when the absolute skewness of the performance functio
small~e.g.,a3,1). In the present paper, the three-parameter lo
normal distribution is used. For the performance functionz
5G(X) described in Eq.~3!, if the first three moments are ob
tained, and assuming that the standardized variable

zu5
z2mG

sG
(11)

obeys the three-parameter lognormal distribution~Tichy 1994!,
the standard normal random variableu is expressed as the follow
ing function:
JOURNA
–

is

u5
sign~a3G!

Aln~A!
lnFAAS 12

zu

ub
D G (12)

wheremG and sG5mean and standard deviations ofz, respec-
tively; andub5standardized bound of the distribution.

A511
1

ub
2 (13)

The relationship between the boundub and the skewnessa3G is
given by

a3G52S 31
1

ub
2D 1

ub
(14)

The solution of Eq.~14! yields

ub5~a1b!1/31~a2b!1/32
1

a3G
(15a)

in which

a52
1

a3G
S 1

a3G
2 1

1

2D b52
1

2a3G
2 Aa3G

2 14 (15b)

Since

Prob@z<0#5Prob@zu<2b2M# (16)

the third-moment reliability index (3M reliability index! is ~Zhao
and Ono 2001!

b3M5
2sign~a3G!

Aln~A!
lnFAAS 11

b2M

ub
D G (17)

where b2M5second-moment reliability index (2M reliability
index!.

Simplification of the 3M Reliability Index

According to Eq.~12!, the absolute value of the random variab
(zu2ub) obeys the log–normal distribution with parametersl
andz, and the coefficient of skewnessa3G is given by

a3G5@exp~z2!12#Aexp~z2!21 (18)

Comparing Eq.~18! with Eq. ~14!, one can easily see that

ub52sign~a3G!@exp~z2!21#21/2 (19)

When the absolute value ofa3G is less than 1, the absolu
value of z is less than 0.314, and the following approximati
applies within error of less than 2.5%:

Aexp~z2!215z (20)

Substituting Eq.~20! into Eq. ~18!, one obtains

a3G53z1z3 (21)

For small z ~e.g., z,0.314), Eq.~21! yields the following
approximations forz andub :

ub52
3

a3G
z51/3a3G (22)

Then, the standard normal random variableu can be expresse
as follows:

u5
a3G

6
1

3

a3G
lnF11

1

3
a3GzuG (23)

and the 3M reliability index becomes
L OF STRUCTURAL ENGINEERING © ASCE / OCTOBER 2003 / 1343
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1
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a3Gb2M G (24a)

Observe that asx approaches 0, ln(11x)5x, and Eq.~24a! be-
comes

b3M5b2M21/6a3G (24b)

This implies thatb3M approachesb2M for extremely smalla3G .
For negativea3G , Eq. ~24a! is valid for any values ofb2M .

However, for positivea3G , Eq. ~24a! is valid only if b2M

,3/a3G .
To examine the accuracy of the approximation expressed

Eq. ~22!, the values of the standardized boundub are depicted in
Fig. 1, where the thin solid lines indicate the exact values ofub

obtained from Eq.~15! and the thick dash lines indicate thos
obtained with Eq.~22!. From Fig. 1, one can see that although E
~22! is much simpler than Eq.~15!, the ub results obtained with
Eq. ~22! agree well with those obtained from Eq.~15!.

The accuracy of the approximate 3M reliability index in Eqs.
~24! is also demonstrated in Fig. 2, where the thin solid line
indicate the exact reliability indices obtained with Eq.~17! and
the dashed lines indicate those obtained with Eqs.~24!. From Fig.
2, one can see that the reliability indices obtained with Eqs.~24!
also agree well with those obtained from Eq.~17!. One can also
see that the 2M reliability index ~shown as dash-dotted lines in
Fig. 2! contains significant error.

Fourth-Moment Reliability Index

The fourth-moment reliability index can be obtained utilizing ex
isting systems of frequency curves, such as the Pearson, John

Fig. 2. Variations of 3M reliability index
1344 / JOURNAL OF STRUCTURAL ENGINEERING © ASCE / OCTOBER 2
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and Burr systems~Stuart and Ord 1987; Hong 1996!, and Ram-
berg’s lamda distribution~Grigoriu 1983!. Since the quality of
approximating the tail area of a distribution is relatively insens
tive to the distribution family selected~Pearson et al. 1979! and
the solution of nonlinear equations is necessary to determine
parameters of the Johnson and Burr systems or the lamda dis
bution, the Pearson system is selected for use in the present st
For the standardized variablezu of Eq. ~11!, the probability den-
sity function~PDF! of zu andf, satisfies the following differential
equation in the Pearson system~Stuart and Ord 1987!:

1

f

d f

dzu
52

azu1b

c1bzu1dzu
2 (25)

where

a510a4G212a3G
2 218

b5a3G~a4G13!

c54a4G23a3G
2

d52a4G23a3G
2 26

Using the relationship described in Eq.~16!, the fourth-
moment reliability index (4M reliability index! is given by

b4M52F21F E
2`

2b2M

f ~zu!dzuG (26)

The PDF ofzu , depending on the values of parametersa, b, c,
andd ~Zhao and Ono 2001! is as follows:

f ~zu!5K~zu2r 2!21/AD~ar21b!~r 12zu!1/AD~ar11b!

for D.0, d,0 (27a)

f ~zu!5K~c1bzu!~ac2b2!/b2
expF2

azu

b G for D.0, d50

(27b)

f ~zu!5Kuzu2r 1u1/AD~ar11b!uzu2r 2u21/AD~ar21b!

for D.0, d.0 (27c)

f ~zu!5Kuzu2r 0u2a/d expF ar01b

d~zu2r 0!G for D50 (27d)

f ~zu!5K~c1bzu1dzu
2!2a/2d expFab22bd

dA2D
tan21S b12dzu

A2D
D G

for D,0 (27e)

whereK is determined fromF(1`)51, and

D5b224cd r15
2b2AD

2d
r 25

2b1AD

2d
r 05

2b

2d
(27f)

One can note that whena3G50 anda4G53, zu becomes a
standard normal variable; in this case,b4M5b2M .

Numerical Examples

A number of examples are illustrated below to demonstrate t
accuracy and computational effectiveness of the moment-bas
method. These include problems that involve normal as well
non-normal probability distributions. If one or more of the ran
dom variables are non-normal, appropriate Rosenblatt transform
003
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tions are necessary~Ang and Tang 1984! to evaluate the moments
as indicated in Eqs.~4! and ~8!. Most of the examples are serie
systems with elastoplastic components, however, two nonse
systems are illustrated in example 4 and they involve brittle co
ponents. One of the case in example 2 also illustrates the lim
tion of the first four moments for problems that involve extreme
small failure probability.

Example 1

In the first example we consider a one-story one-bay elastopla
frame, shown in Fig. 3~a!. This series system is used to illustrat
numerical details of the procedure for the proposed mom
method. The four potential failure modes of the system can
readily identified and defined by four linear performance fun
tions. The FORM reliability indices for the respective failur
modes are given in parentheses below to indicate the rela
dominance of the four different modes.

g1~X!52M112M324.5S ~bF53.334! (28a)

g2~X!52M11M21M324.5S ~bF53.364! (28b)

g3~X!5M11M212M324.5S ~bF53.364! (28c)

g4~X!5M112M21M324.5S ~bF53.364! (28d)

Since this is a series system, the performance function of
system can be defined as the minimum of the above, i.e.,

G~X!5min$g1~X!,g2~X!,g3~X!,g4~X!% (28e)

whereMi andS5 independent log–normal random variables wi
mean and standard deviations ofmM5200tm, mS550t, sM

530tm, andsS520t. Using the mean values of all the variable
in Eq. ~28e!, Gm as defined in Eqs.~9! is

Gm5min$2* 20012* 20024.5* 50,2* 20012001200

24.5* 50,200120012* 20024.5* 40,20012* 2001200

24.5* 40%5min$575,575,575,575%5575

Substituting the mean values of all the variables exceptM 1

into Eq. ~28e!, G1 as defined in Eqs.~9! becomes

G15min$2M112* 20024.5* 50,2M11200120024.5* 50,M1

120012* 20024.5* 40,M112* 200120024.5* 40%

5min$2M11175,2M11175, M11375,M11375%

5min$2M11175, M11375%

Similarly, Gi , i 52, 3, 4, are, respectively,
JOURNA
s
-
-

ic

t
e

e

e

G25min$575,2M21175,M21375%

G35min$2M31175, M31375%

G4580024.5S

SinceG1 is a function of single random variableM 1 , its mo-
ments can be point estimated using Eqs.~4!. For a five-point
estimate, using the inverse Rosenblatt transformation expres
as

T21~ui !5F21@F~ui !# (29)

where F5cumulative distribution function of M 1; and
F5standard normal probability, the five estimating points of Eq
~6! can be easily transformed into original space asT21(u22)
5129.157, T21(u12)5161.576, T21(u0)5197.787, T21(u11)
5242.113, andT21(u21)5302.886. Substituting these into Eqs
~4! using the corresponding weights listed in Eqs.~6!, the first
four moments ofG1 are approximately

m15564.489tm, s1544.164tm, a31520.479, a4152.943,

Similarly the first four moments ofG2 , G3 , G4 are

m25553.979tm, s2533.259tm, a32521.463, a4253.785,

m35564.489tm, s3544.164tm,a33520.479, a4352.943,

m45575.000tm, s4590.000tm,a34521.264, a4455.968

Then using Eqs.~10!, the first four moments ofG* are approxi-
mately mG5532.958, sG5114.485, a3G520.704, and a4G

54.098.
Finally, with the first two moments of the performance fun

tion G* , the 2M reliability index is b2M54.655. With the first
three moments of the performance function, Eqs.~24! give the
3M reliability index asb3M53.264 with corresponding failure
probability of PF55.49831024. With the first four moments of
the performance function, parametersa, b, c, andd defined in Eq.
~25! are readily obtained to bea517.030, b524.996, c
514.904, andd50.709. SinceD5b224cd5217.288,0, the
PDF of the standardized performance functionzu is in the form of
Eq. ~27e!. Using F(1`)51, K in Eq. ~27e! is K54263.42 and
the PDF ofzu becomes

f ~zu!54263.42~14.90414.996zu10.709zu
2!212.015

3exp@226.472 tan21~0.341zu21.204!# (30)

By substituting Eq.~30! and b2M54.655 into Eq.~26!, the 4M
reliability index isb4M53.243 with corresponding probability of
failure of PF55.9131024.

Using Monte Carlo simulations~MCS! with 1 million samples,
the probability of failure for this system is estimated to be 5.
31024 with a corresponding reliability index ofb53.272. The
coefficient of variation~COV! of this MCS estimate is 4.32%. In
this case, only 20 function calls are used~with a total of 20
estimating points for all the variables!. For this example, one can
see that both the results of the third- and fourth-moment appro
mations are in close agreement with the MCS results, whereas
second-moment approximation has gross error~42% overestima-
tion of the reliability index!.

Example 2

The second example is also a one-story and one-bay elastopl
frame as shown in Fig. 3~b! ~after work by Ono et al. 1990!. The
statistics of the member strengths and loads are as follows: m
values are mM15mM25500 ft kip, mM35667 ft kip, mS1
L OF STRUCTURAL ENGINEERING © ASCE / OCTOBER 2003 / 1345
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550 kip, andmS25100 kip; standard deviations aresM15sM2

575 ft kip, sM35100 ft kip, sS1515 kip, andsS2510 kip. The
performance functions that correspond to the five most likely fa
ure modes obtained from stochastic limit analysis are listed
follows with the FORM reliability index for each mode listed i
parentheses to show the relative dominance of the differ
modes:

g15M113M212M3215S1210S2 ~bF53.551! (31a)

g252M112M2215S1 ~bF53.247! (31b)

g35M11M214M3215S1210S2 ~bF53.848! (31c)

g452M11M21M3215S1 ~bF53.562! (31d)

g55M11M212M3215S1 ~bF53.784! (31e)

g65M112M21M3215S1 ~bF53.562! (31f)

For this example, the correspondingGi of Eqs. ~9! is as fol-
lows:

Gm51250 ft kip

G15min$9171M1,25012M1%

G25min$9171M2,25012M2,8413M2%

G35min$1250,7501M3,25012M3 ,275014M3%

G452000215S1

G55min$1250,2584210S2%

Using the point estimate method with five estimating poin
the first four moments ofG1 , G2 , G3 , G4 , andG5 are approxi-
mately

m151,248.98 ft kip, s15146.79 ft kip,

a31520.293, a4152.767,

m251,248.98 ft kip, s25146.79 ft kip,

a3250.291, a4252.767,

m351,246.88 ft kip, s3529.229 ft kip,

a33529.265, a43588.842,

m451,250.00 ft kip, s45225.00 ft kip,

a34520.927, a4454.547,

m551,250.00 ft kip, s550.00 ft kip, a355--,a455--,

In this case,s550, whereasa35 anda45 cannot be obtained ac
cording to Eqs.~4!. This is becauseG5 is almost a constant and i
has almost no influence on the results ofsG , a3G , anda4G . Any
values ofa35 anda45 can be used; e.g.,a3550 anda4553, and
then use Eqs.~10! as usual, or substituteG5 as a constant in Eqs
~9!. The results would remain the same.

Then using Eqs.~10!, the first four moments ofG* are ap-
proximately mG51,244.85, sG5307.523, a3G520.307, and
a4G53.426.

With these first four moments of the performance functi
G* , the 2M reliability index is b2M54.048, whereas the 3M
reliability index of Eqs.~24! is b3M53.437 with corresponding
failure probability ofPF52.93731024. The 4M reliability index
of Eq. ~26! gives b4M53.276 with corresponding failure prob
ability of PF55.26831024. MCS with 1 million samples gives a
probability of failure for this system of 6.4531024 with corre-
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sponding reliability index ofb53.218. The COV of this MCS
estimate is 3.94%. For this example, the 3M reliability index errs
about 6%, whereas the results of the fourth-moment approx
tion is in close agreement with the MCS results. Again the 2M
reliability index has a significant error of about 25%.

The reliability analyses for this example~example 2! were
extended and different types of distribution of the random v
ables were assumed. Assuming all the member strengths
loads are Weibull random variables, the results of the mom
method and of the MCS with 1 million samples are summari
in column 2 of Table 1. Results for gamma, Gumbel, and nor
distributed random variables are also summarized in colu
3–5, respectively, in Table 1. From Table 1, one can observe
irrespective of the types of distribution, both the 3M and 4M
reliability indices are in close agreement with the MCS resu
The 2M reliability indices, however, consistently contain signi
cant error.

Finally, this example is extended further to examine the ap
cability ~and limitation! to problems with extremely small prob
ability of failure; to do this, the mean loads are assumed to
mS1535 kip and mS2575 kip. Using the seven-point estimat
the first four moments ofG* are approximatelymG51,470.13,
sG5260.32, a3G520.096, anda4G53.186. With these firs
four moments of the system performance function, the 2M reli-
ability index is b2M55.647, and the 3M reliability index is
b3M55.207 with corresponding failure probability ofPF59.58
31028. The 4M reliability index is found to beb4M54.652 with
corresponding failure probability ofPF51.6431026. Using
MCS with 30 million samples, the probability of failure for th
system is 5.33331026 with corresponding reliability index ofb
54.403. The COV of this MCS estimate is 7.91%. For this
ample, the 3M and 4M reliability indices contain errors of abou
18 and 5.6%, respectively, whereas the 2M reliability index over-
estimates the correct value by about 28%. It is interesting to
serve that in this case of very small failure probability, the ac
racy of the 4M reliability index has deteriorated.

Example 3: Two-Story One-Bay Truss Structure

The third example is an elastoplastic truss structure with
stories and one bay, shown in Fig. 4, which is also a series
tem. The statistics of the member strengths and loads are a

Table 1. Computational Results for Example 2 with Different Typ
of PDFs

Variable Weibull type Gamma type Gumbel type Normal ty

mG 1,242.12 1,244.58 1,244.41 1,243.58
sG 317.852 308.823 302.810 311.894
a3G 20.216 20.207 20.310 20.054
a4G 3.199 3.138 3.765 3.038

b2M 3.908~16%! 4.030~15%! 4.110~30%! 3.987~5%!

b3M 3.480~3%! 3.590~2%! 3.476~10%! 3.861~2%!

PF 2.50831024 1.65231024 2.54331024 5.65131025

b4M 3.381~0%! 3.528~0%! 3.178~1%! 3.863~2%!

PF 3.61431024 2.09431024 7.14531024 5.59131025

bMCS 3.379 3.515 3.151 3.794

PF 3.6331024 2.231024 8.1431024 7.431025

COV of PF 5.2% 6.7% 3.5% 11.6%

Note: Percentage of error in the reliability index relative to that of M
is in parenthesis.
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lows: mean values aremT15mT2590 kip, mT359 kip, mT4

5mT5548 kip, mT65mT7521 kip, mT8515 kip, mT95mT10

530 kip, mF1511 kip, and mF253.6 kip; the coefficients of
variation areVT15...5VT1050.15,VF150.3, andVF250.2. The
performance functions that correspond to the eight most likel
failure modes are given below~after work by Ono et al. 1990!,
with the respective FORM reliability indices listed in parenthese
showing that none of the modes are significantly dominant.

g150.7071T410.7071T522.2F1 ~bF53.409! (32a)

g25T610.7071T1021.2F12F2 ~bF53.497! (32b)

g35T310.7071T510.7071T1022.2F1 ~bF53.264!
(32c)

g45T810.7071T1021.2F1 ~bF53.333! (32d)

g55T61T721.2F1 ~bF53.814! (32e)

g65T310.7071T521.2F12F2 ~bF53.484! (32f)

g750.7071T910.7071T1021.2F1 ~bF53.846! (32g)

g85T110.7071T523.4F12F2 ~bF53.793! (32h)

Using the five-point estimate, the first four moments ofG* are
approximatelymG522.316,sG55.379,a3G520.408, anda4G

53.566. With these first four moments of the system performanc
function, the moment-based reliability indices areb2M54.148
and b3M53.356 with PF53.94231024 and b4M53.229 with
PF56.21331024. Using MCS with 1 million samples, the prob-
ability of failure for this system is 7.8631024 with a correspond-
ing reliability index ofb53.161. The COV of this MCS estimate
is 3.57%. For this example, the 3M reliability index errs about
6%, whereas the 4M reliability index errs about 2%. The 2M
reliability index has a significant error of about 30%.

Example 4: Two Brittle Systems

Illustrated next are two brittle systems that are nonseries system
a simple parallel-chain system and a truss system, shown in Fig
5~a and b!, respectively. Assume that the individual components
of each system will fail by tensile fracture or compressive buck

Fig. 4. Two-story one-bay truss
JOURNA
s,
s.

ling, and thus may be assumed to be brittle, i.e., once failure
occurs the strength of a component is reduced to zero. In thes
two cases, each of the systems is a nonseries system.

For the parallel-chain system shown in Fig. 5~a! there are two
failure modes with respective performance functions of

g15R12S (33a)

g25max$min~R2 ,R3 ,R4!21/2S,max@min~R2 ,R3!,R4#2S%
(33b)

in which fracture strengthRi and loadS are independent log–
normal random variables with means deviations ofmR1

52,200 kg,mR252,100 kg,mR352,300 kg,mR452,000 kg, and
mS51,200 kg, and standard deviations ofsR15220 kg, sR2

5210 kg, sR35230 kg, sR4520 kg, andsS5240 kg.
Similar to, in Fig. 5~a! for the truss in Fig. 5~b!, the corre-

sponding performance functions for each of the failure modes can
be shown to be those listed below:

g15max@T121.127F110.826F2 ,min~T224/3F1 ,T32F1

13/4F2 ,T425/4F2 ,T525/3F115/4F2!# (34a)

g25max@T220.206F120.826F2 ,min~T124/3F1 ,T3

23/4F2 ,T425/3F125/4F2 ,T525/4F2!# (34b)

g35max@T320.155F110.13F2 ,min~T124/3F11F1 ,T2

2F2 ,T425/3F1!# (34c)

g45max@T421.409F120.217F2 ,min~T12F2 ,T224/3F1

2F2 ,T32F1 ,T525/3F2!# (34d)

g55max@T520.258F110.217F2 ,min~T124/3F11F2 ,T2

2F2 ,T425/3F1!# (34e)

where fracture strengthTi and loadFi are independent log–
normal random variables with means and standard deviations o
mT15mT2540t, mT3510t, mT45mT5520t, mF157t, and mF2

52t, and standard deviations ofsT15sT256t, sT251.5t, sT4

5sT553t, sF152.1t, andsF250.6t.
Observe that the performance functions of the individual fail-

ure modes of both of these nonseries systems involve the maxi
mum and minimum functions of the component’s properties, and
therefore are not smooth functions.

Fig. 5. ~a! Brittle chain system and~b! brittle truss
L OF STRUCTURAL ENGINEERING © ASCE / OCTOBER 2003 / 1347
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For Eqs.~33! of the parallel-chain system, the first four mo
ments of G* are approximatelymG5993.3599,sG5316.836,
a3G520.275, anda4G53.109. With these the first four mo
ments of the performance function, the moment-based reliab
indices are as follows:

b2M53.135,

b3M52.802 with PF52.54331023

b4M52.818 with PF52.41331023

MCS with 500,000 samples yield the probability of failure fo
this system as 2.50631023 with a corresponding reliability index
of b52.806. The COV of this MCS estimate is 2.82%. One c
see that both the results of the third and fourth moment appr
mations are in close agreement with the MCS results, whereas
second-moment approximation overestimated the reliability ind
by 12%.

For Eqs.~34! of the truss system, the first four moments ofG*
are mG58.972,sG53.732,a3G520.165, anda4G53.752. Fi-
nally, with these first four moments of the performance functio
the moment-based results are as follows:

b2M52.404

b3M52.285 with PF50.0111

b4M52.226 with PF50.0130

MCS @performed independent of Eq.~34!, i.e., by considering all
the possible sequences of component failures that can lea
system failure# with 500,000 samples, gives the probability o
failure for this system as 0.0139 with a corresponding reliabil
index of b52.199. The COV of this MCS estimate is 1.19%.

Example 5: Beam-Cable System

Consider the simple elastoplastic beam-cable system show
Fig. 6 ~after work by Ang and Tang 1984!. The performance
functions of the potential failure modes are listed below with t
respective FORM reliability indices indicated in parentheses:

g156M2L2/2 ~bF53.322! (35a)

g25F1L12F2L22wL2 ~bF53.647! (35b)

g35M1F2L2wL2/2 ~bF54.515! (35c)

g452M1F1L2wL2 ~bF54.515! (35d)

where M, F1 , F2 , and w are normally distributed with mean
deviations ofmw52 kip/ft, mF1560 kip, mF2530 kip, andmM

5100 ft/kip, and COVs ofVw50.2 andVF5VM50.1.
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Using the five-point estimate, the first four moments ofG* are
mG5293.432,sG576.352,a3G520.574, anda4G53.265. Fi-
nally, with the first four moments of the performance function, th
moment-based results are as follows:

b2M53.843

b3M52.976 with PF51.46031023

b4M53.170 with PF57.63431024

MCS with 500,000 samples gives the probability of failure fo
this system as 5.2631024 with corresponding reliability index of
b53.276. The COV of this MCS estimate is 6.16%. One can se
that the 2M reliability index contains a significant number of
errors~17%! and the 3M reliability index underestimates the re-
liability index by 9.2%, whereas the 4M reliability index has
about 3.2% error which is still large. Correctly, using Eqs.~6! and
~8!, the five-point estimates for the first four moments aremG

5297.270,sG578.780,a3G520.2089, anda4G53.2546. With
these more accurate first four moments of the performance fun
tion, the 2M reliability index isb2M53.733 and the 3M and 4M
reliability indices areb3M53.315 andb4M53.255. Clearly, with
these latter results, the third- and fourth-moment approximatio
are now in closer agreement with the MCS results. This mea
that if the first four moments are correctly obtained, the reliabilit
of a system can be computed without only significant error. A
illustrated in this example, the approximation of the system pe
formance function using Eqs.~9! and the moments generated with
Eqs.~10! may, in rare cases, contain significant error. In this cas
Eqs.~7! and~8! may be required in order to obtain more accurat
results for the moments.

Principal Conclusions

1. A moment-based method for assessing the system reliabi
of series and nonseries structures was proposed, with emp
sis on series systems. The method directly calculates the
liability indices ~and associated failure probability! based on
the first few moments of the system performance function o
a structure. It does not require a reliability analysis of indi
vidual failure modes; also, it does not need iterative comp
tation of derivatives, nor computation of mutual correlation
among failure modes, and does not require any desi
points. Thus, the moment method proposed should be mo
effective for evaluation of the system reliability of complex
structures than currently available computational~non-MCS!
methods.

2. The method also includes the approximate system perfo
mance function,G* (X) of Eqs. ~9! and the first four mo-
ments of Eqs.~10!, both of which lead to significant simpli-
fication of the calculation of system reliability indices.

3. The accuracy of the results obtained with the propose
method was thoroughly examined by comparisons with larg
sample Monte Carlo simulations. The fourth-moment rel
ability index for a structural system is invariably close to the
corresponding reliability index obtained from large sampl
Monte Carlo simulations. The error associated with the third
moment reliability index may be acceptable for practical pu
poses, whereas the second-moment reliability index inva
ably leads to very significant unacceptable errors.

4. The accuracy of the 4M reliability index inferred above is
generally limited to problems with not very small failure
probabilities. However, for problems that involve extremely
small failure probabilities, such as the final case examined
2003
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example 2, the first four moments may not be sufficient;
such cases, higher-order moments would be required for
curate results which would necessarily entail more comp
cated calculations.

5. There may be occasions, such as that in the case examin
example 5, when the exact system performance function
associated moments of Eqs.~7! and~8! may be required for
more accurate results. Nevertheless, for realistic and pra
cal structures, the 3M and 4M reliability indices obtained by
simplifying Eqs.~9! and~10! should be sufficiently accurate
for overall assessment of system reliability.
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