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Abstract 
This paper describes the overall architecture and design aspects of 
a hybrid relational and XML database system called System RX.  
We believe that such a system is fundamental in the evolution of 
enterprise data management solutions: XML and relational data 
will co-exist and complement each other in enterprise solutions. 
Furthermore, a successful XML repository requires much of the 
same infrastructure that already exists in a relational database 
management system.  Finally, XML query languages have con-
siderable conceptual and functional overlap with relational data-
flow engines.  System RX is the first truly hybrid system that co-
mingles XML and relational data, giving them equal footing.  The 
new support for XML includes native support for storage and 
indexing as well as query compilation and evaluation support for 
the latest industry-standard query languages, SQL/XML and 
XQuery.  By building a hybrid system, we leverage more than 20 
years of data management research to advance XML technology 
to the same standards expected from mature relational systems. 

1. Introduction 
XML first became a W3C recommendation in February 1998, as a 
standard way to delimit text data [42].   It has emerged in the 
industry as the predominant mechanism for representing and ex-
changing structured and semi-structured information across the 
Internet, between applications, and within an intranet.  Virtually 
every industry is working to standardize XML representations for 
their common business objects. As one industry analyst put it, 
"Hundreds of vertical schemas, in fields as diverse as government, 
biology, finance, and travel, are publicly available and being ac-
tively used. Undoubtedly, there are thousands more in private 
hands" [5].   
With the advent of Web services and services-oriented architec-
tures, it is quite common for intra-company and inter-company 
interactions to be processed via XML messages. In such cases, the 
message is more than the transaction request; it is also a business 
artifact: a purchase order, an order inquiry, an invoice, etc. Such 
messages need to be retained for many reasons including auditing, 
regulatory compliance, and non-repudiation. For example, a large 
securities clearing house interacting with member brokers using 
Web services is legally obliged to store the XML messages for 
non-repudiation. Many of these uses also require extensive search 

capabilities, and the XML storage must have very high fidelity to 
preserve digital signatures as required for non-repudiation. So, 
although XML’s original intent was data interchange, an increas-
ing amount of XML is designed to be persistently stored, and 
enterprises are even persisting XML messages primarily used for 
data interchange for later analysis. 
A large percentage of industries rely heavily on existing relational 
databases and applications to run their businesses, from which 
much of the information within the XML document is generated, 
or into which much of the information from the XML documents 
will be stored. We believe that the integration of this well-
structured relational information with the self-describing XML 
data is an important evolutionary advance in the data industry. 
This paper describes the overall architecture and design aspects of 
a hybrid relational and XML database system called System RX.  
The system understands both relational and XML data deeply, 
with new support for XML throughout the system, including na-
tive support for storage and indexing, as well as query compila-
tion and evaluation support for the latest industry-standard query 
languages, SQL/XML and XQuery. 
System RX is an experimental prototype that is currently being 
implemented as an extension to DB2 UDB.  This paper describes 
the overall architecture and the design of the system. Later papers 
will describe major subsystems in more detail. 
There are three driving factors that led us to build a hybrid rela-
tional and XML database system: 

(1) XML and relational data will co-exist and complement 
each other in enterprise solutions.  Some types of data are best 
modeled and stored in a relational format, but other types are best 
suited for XML. Although the data could be normalized into rela-
tional tables, it may not be appropriate to do so. There are many 
examples of this.  (a) The data comes from a multiplicity of sche-
mas and the aggregate size of the relational schema to model all 
the data is unacceptable given the usage.  For example, an organi-
zation with 1,500 e-forms required over 30,000 relational tables to 
represent their data, despite the fact that most forms are seldom 
used. (b) The data has a highly variable schema with respect to 
time. We refer to such schemas as dynamic schemas. The impact 
of changing the corresponding relational schema frequently 
makes it impractical to model the data in relations. This is particu-
larly pronounced when the corresponding schema change would 
require normalization, such as making a single-valued attribute 
into multi-valued. (c) The data contains many sparse attributes 
that are only accessed in the context of the parent object. Thus, 
the cost of normalization is prohibitive and de-normalization is 
impractical because of limits on the maximum width of a row or 
maximum number of columns in a table.  Hence, there is a need to 
persist and search XML natively along-side relational. 
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(2) A successful XML repository requires much of the same 
infrastructure that already exists in a relational database 
management system.  The repository must support all the tradi-
tional database properties, such as transactional (ACID) proper-
ties, availability, scalability, reliability, usability, manageability 
and installability.  The data must be quickly and efficiently up-
datable with existing, well-understood isolation levels and seman-
tics. It must have performance characteristics close to a relational 
system.   For high-performance bulk processing of XML data, it is 
important to have an underlying model that is based on a set-at-a-
time processing, as also argued by [23]. Relational database en-
gines are highly scalable as a result of many years of research and 
tuning. The XML data must be  indexable for both parametric and 
full-text search predicates, and it must be stored in a way that 
avoids unnecessary joins.  This is especially true for common 
operations like full document retrieval, which plagues the ‘shred 
into relational’ approach to XML storage.   Furthermore, well-
known query rewrite and optimization techniques can be applied 
to XQuery. The database community has years of innovation in 
this space and the database industry has a large investment in 
systems that solidly support these characteristics.  Hence, much of 
the plumbing that supports these characteristics can be reused.   
(3) XML query languages have considerable conceptual and-
functional overlap with SQL. XQuery [3] and SQL/XML [21] 
are the two industry-standard languages that have emerged to 
query business artifacts encoded in XML.  XQuery provides a 
rich query language that supports the hierarchical structure of 
XML.  SQL/XML extends the relational model with an XML data 
type, constructs to query that type in conjunction with relational 
data, and functions for converting between relational and XML 
data.  Despite the slightly different focus of each language, they 
both include many similar concepts including set-based and se-
quence-based processing, joins, selections, projections, and quan-
tification. Regrettably, they are not directly convertible [31], but a 
significant portion of a relational data-flow engine is directly 
applicable to the processing of XML query operations.  The prin-
ciple difference is the introduction of intra-document structure-
dependent operations due to the hierarchical nature of the XML 
data.  The potential for such extensibility has already been proven 
through the integration of object capabilities in SQL. We are fur-
ther demonstrating the extensibility of such systems with naviga-
tional support for XML. 
In addition to these key reasons for building a hybrid system, the 
other consideration that shaped the overall design and architec-
ture of the system was, as mentioned in 1(b) above, the need to 
support dynamic schemas. A repository must support schema 
evolution to minimize the impact to applications and existing 
XML data.   Schemas for data represented as XML must be very 
flexible and can be highly volatile when viewed across a very 
large time horizon.  XML is increasingly being used to represent 
actual business artifacts such as derivatives contracts, mortgages, 
and legislative and legal documents.  Most of these artifacts have 
very long retention requirements: decades (derivatives contracts), 
centuries (mortgages, insurance forms), or indefinitely (legal and 
legislative documentation).  Therefore, it is critical that an XML 
repository respond seamlessly to changes that occur to the 
schema. This evolution is either impractical or impossible in more 
rigidly structured relational systems because the XML documents 
must retain their original structure, schema, and content to pre-
serve their digital signatures.  So, while an individual document 

typically has an associated schema when it is inserted, a large 
collection of documents is unlikely to conform to a single schema. 

2. System RX Architecture  
System RX is a hybrid relational and XML system, as shown in 
Figure 1. System RX unifies new native XML storage, indexing 
and query processing technologies with our existing relational 
storage, indexing, and query processing.  The system provides 
natural means for SQL applications to migrate to manipulating 
XML, as well as scalable and transactional support for XQuery 
applications. 
Before the system architecture can be described, some back-
ground on the standards activities for XML data models and 
query languages is required, and is covered in the next subsection.  
In the remainder of this section, we provide a high-level descrip-
tion of the entire system, with detailed descriptions appearing in 
subsequent sections. We describe related work in Section 9, and 
conclusions and future directions in Section 10. 

SQL/XML 
Parser

Hybrid SQL/XQuery 
Compiler 

XQuery Parser 

 
XML Navigation 

Query Evaluation Run-time 

Table Storage       XML Indexes    XML Storage

 
Figure 1.  System Architecture 

2.1 XML Data Model and Query Languages 
System RX supports the two industry-standard languages to query 
XML data: XQuery [3] and SQL/XML [21].  Defined by the 
W3C, XQuery is a powerful functional language designed to 
query both structured and unstructured data.  XQuery provides 
path-expressions [2] to navigate through XML trees and extract 
XML fragments, as well as expressions to create, sort, aggregate, 
combine and iterate over sequences, and construct new XML 
data.  XQuery is a reference-based language, and hence subse-
quent expressions on the result of a path expression may traverse 
the document in both forward and reverse directions. 
SQL/XML [21], which is standardized by ANSI and ISO, defines 
a new XML data type. SQL/XML defines second-order query 
functions such as XMLQuery, XMLTable, and XMLExists that 
take an XQuery statement as input and execute it over the XML 
values passed from SQL.  SQL/XML also includes functions to 
construct new XML data and to convert between XML and rela-
tional data types. 
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The XQuery data model (QDM) [11] is based on the notion of 
sequences, which are ordered collections of zero or more items. 
SQL/XML [21] aligns the XML data type with the XQuery data 
model, which closes the algebra and allows XML values to be 
passed back and forth between SQL/XML and XQuery. By build-
ing a hybrid system, System RX enables seamless flow of XML 
data from SQL applications into an XQuery processor. 
Relational tables can now define columns that use this new XML 
data type.  This enables existing SQL applications to augment 
their current relational database designs with additional XML 
data, and provides an evolutionary path for XML support.  Con-
ceptually, in each row of the table, the column contains an XML 
document or, more generally, an instance of the QDM.  This is 
depicted in the lower portion of Figure 1 by the arc from the table 
storage to the XML storage. 
The XML type has an implementation-dependent internal format 
that is different from BLOB and CLOB types, and hence usual 
string operations (such as comparisons, substring, etc.) are not 
defined for the XML data type. Rather, SQL/XML defines a set of 
functions which consume or produce the XML data type. Fre-
quently, implementations use BLOBs or user-defined types 
(UDTs) as the underlying storage for this type, to avoid the pro-
hibitively expensive join processing and more complex insert/-
update/delete processing necessary to manipulate the normalized 
relational format.  However, in System RX, we provide native 
storage for XML that we believe can be altered at considerably 
lower cost over time than a BLOB or UDT.  Inserting XML 
In System RX, a group of XML documents are defined as a col-
umn in a relational table.  For example, a bibliography entry, such 
as a book or magazine, can be described by an XML document 
and an associated unique identifier that relates it to other tables in 
the database.  It would be defined with the following create table 
statement: 

create table bibliographies(id integer, bib xml) 
where the xml descriptor identifies that the bib column has XML 
type.  To insert an XML document into a table, it must be parsed, 
converted into the native XML storage, and indexed, as described 
in Sections 3 and 4 respectively. We use a new SQL/XML func-
tion, XMLParse, for this purpose:  

insert into bibiliographies 
   values(1492, 
               XMLParse(‘<?xml encoding=”UTF-8”?> 
                                     <book  price=”23.98”> 
                                        <lang>English</lang> …</book>’)) 

If the XML document has an associated schema, it can be vali-
dated by specifying the schema during the insertion.  System RX 
provides a function, XMLValidate, which validates an input 
document with a given XML schema: 

insert into bibiliographies 
   values(1492, 
               XMLValidate(  
                    XMLParse(‘<?xml encoding=”UTF-8”?> 
                                         <book  price=”23.98”> 
                                           <lang>English</lang> 
                                           … 
                                         </book>’) 
                   according to XMLSchema id bib.xsd)) 

The XML storage system remembers the type annotation derived 
during schema validation and the runtime engine uses this infor-
mation during query processing. XML schemas are registered 
with the server, parsed and stored natively for stable access. 
Since users can specify different schemas with each insert state-
ment, an XML column may contain data that is validated accord-
ing to many schemas, as well as those that have not been vali-
dated (i.e. untyped), which provides support for  dynamic sche-
mas. 

2.2 Querying XML Data 
System RX supports interfaces for both SQL/XML and XQuery 
in a unified query model, as shown in the top portion of Figure 1. 
XML-centric users can query XML data and XML views of rela-
tional data via XQuery.  To provide access to XML data stored in 
relational tables, System RX provides an input function called 
xmlcolumn, which takes the name of an XML column in a rela-
tional table or view as an argument and creates a sequence of 
XML nodes stored in that column. For example, the bibliogra-
phies can be queried in XQuery as follows: 

Example 1: Using XQuery to query the bibliographies  
for $bib in xmlcolumn(‘BIBLIOGRAPHIES.BIB’)/ 
                             bib[lang/text()=’English’], 
      $book in $bib//book 
where $book/@price < 80 
return <bookInfo> 
                    {$book/@price, $book/author/name} 
           </bookInfo> 

Given the nature of the hybrid system, relational-centric users 
using SQL will typically be aware of the XML data, but will only 
extend their relational queries as necessary to include navigation 
against the XML data using the extensions added in SQL/XML.  
However, the system can also provide a pure relational view of 
the database using SQL/XML views that convert the XML data to 
relational.  To query the XML data using SQL, the query simply 
refers to the XML column and uses the new SQL/XML functions.  
A query similar to Example 1 can be written in SQL as follows:   

Example 2: A similar query written in SQL  
select T.price ,T. names 
from bibliographies as B,  
   XMLTable( 
      ’for $bib in $doc/ bib[lang/text()=’English’], 
             $book in $bib//book 
      where $book/@price < 80 
      return $book’ 
   passing B.bib as “doc” 
   columns “price” double path ‘./@price’, 
                 “names” xml  path ‘./author/name’) as T 
 

The XMLTable function receives one bib document at a time from 
the bibliographies table, and evaluates the FLWOR expression.  
For each matching book, a pair is returned: the price as a double, 
and the list of author names in an XML sequence. 
Queries enter the system through either language and are then 
compiled into an execution plan, as described in Section 5.  After 
parsing, the distinction between SQL/XML and XQuery is dis-
carded in favor of a unified internal representation. The query is 
modeled as a query graph using an extended query-graph model 

 349



[34] to capture a superset of what is possible through both SQL 
and XQuery (Section 5.1).  For example, the internal representa-
tion of the queries in Example 1 and Example 2 will be very simi-
lar.  We can exploit the rich data-flow modeling to perform pow-
erful cross-language optimizations.  We extend traditional rewrite 
optimizations to work with the extended query model and intro-
duce some rewrites specific to the XML query languages (Section 
5.2).  After the rewrite phase, the portions of the query that can be 
answered by an XML index are detected. This is significantly 
more challenging than for relational indexes (Section 5.3).  The 
query then enters our enhanced cost-based optimizer to plan the 
new XML index and navigation operators (Section 5.4).  
Once the evaluation plan is generated, the query can be evaluated 
by the combined relational-XML runtime engine, which is a rela-
tional run-time extended with XML navigation and indexing ca-
pabilities, as described in Section 8. 

3. XML Storage  
The amount and nature of the XML data can be quite variable, 
depending on the application.  Small XML documents often do 
not exceed 3K bytes, while the largest XML documents can be 
multiple gigabytes in length. Small collections of documents have 
a few thousand of documents, while large collections have bil-
lions.  Some applications retrieve the entire document, but others 
select only a small portion. Some of these documents, once cre-
ated, are strictly read-only, while others are frequently updated.  
Designing a storage system for such widely varying workloads is 
challenging.  Documents must be able to span disk pages, and 
even a single text node could be larger than a page.  We cannot 
afford to traverse every node of a gigabyte document to retrieve a 
small subtree, nor rewrite it whenever a single byte changes. 
Therefore, the system must support direct node access and sub-
document updates.   The store must support XQuery’s node refer-
ence semantics in a concurrent system under all of SQL’s isola-
tion levels, and it must support rollback and recovery. 
To meet these requirements, System RX introduces a new native 
XML storage format to store XML documents as instances of the 
XQuery Data Model (QDM) in a structured, type-annotated tree. 
By storing the binary representation of type-annotated XML trees, 
we avoid repeated parsing and validation of the document.  How-
ever, the binary representation maintains the salient features of 
the document, so that any digital signatures on it are preserved. 
Furthermore, every node contains pointers to its parent and chil-
dren to support efficient navigational queries.  Path expressions 
are evaluated directly over the native format on buffered pages 
without copying or transforming the data. To achieve uniform 
performance for small and large XML documents, the store also 
supports direct access to a node, which avoids the top-down tra-
versal through every node from the root to the target node. 
During insertion into the store, the XML parser produces SAX 
(Simple API for XML) events representing nodes and content, 
which are collected into regions of related nodes and written to 
standard fixed size buffered pages with page slots and data area 
similar to [14].  Parent / child relationships between nodes that are 
within a page are stored as page slot entries for fast access.  Par-
ent / child relationships that span pages use a logical lookup to get 
to the parent, child or sibling node.  Each node is given a unique 
identifier that gives nodes both a logical and physical addressabil-

ity that can be used by indexing and query evaluation.  Nodes 
with large content are ‘chunked’ across multiple pages, while 
nodes with a large fan-out of children are ‘continued’ across mul-
tiple pages.  A persistent dictionary that maps strings to identifiers 
is used for compression of redundant namespace URIs and node 
names.  This compression from strings to identifiers also im-
proves the evaluation of path expressions by replacing string 
comparisons with integer comparisons.  The same dictionary is 
used for all XML columns, achieving even greater compression, 
but more importantly, allows the system to easily perform naviga-
tion on a mixed set of nodes from several XML columns. 
Each element node has a set of child slots for its associated attrib-
ute and ordered children. These child slots have hints within them 
to give an indication of what the child represents making it possi-
ble for fast navigation across a context node’s set of children to 
find potentially qualifying children without actually visiting each 
child node. This is important because the node may be on another 
page and require additional I/Os.  For example, when looking for 
a book with a specific ‘language’ child, all attributes of the book 
element can be skipped, as well as all children not having a ‘hint’ 
with the name ‘language’. Small text and attribute nodes, and 
their respective content, are in-lined within their parent node 
when possible for compression purposes, and also for locality of 
reference when evaluating path expressions.  This is similar to 
[25] but with a more logical addressability, since each child can 
be pointed to directly via a RID (row identifier) plus an index into 
the element node’s child slot array. 
 

Regions 
Index

Bufferpool Pages

10

11 dept10

dept10 LXID

LXID11

Table Depts

Page N Page N’

 
Figure 2. Native XML type Column Storage 

Regions of nodes for a given XML document are grouped to-
gether on pages and linked together by a logical regions index.  
Inter-region access to a node outside the current region (i.e., the 
parent, the next sibling, or to a child node) requires a logical 
lookup through the regions index.  This level of indirection en-
ables several important features.  Nodes can be accessed without 
traversing from the root by looking up the region that contains the 
node in the regions index using the node’s identifier.  Nodes can 
be inserted, updated, or deleted without affecting most of the 
other nodes in the document, and portions of the document can be 
reorganized. 
The XQuery language uses node reference semantics in its results 
to allow additional navigation.  This is achieved by versioning. As 
a document is updated, only those regions updated are versioned, 
leaving multiple versions of the node in the regions index.  Only 
the current version is available in the XML value indexes; new 
readers will always find the latest version.   Readers that have 
already qualified a node will continue to see a consistent version 
of the document for any traversals from that node.  Old region 
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versions are removed when there are no references to it, which is 
detected based on the oldest reader of the table.   
Regions are initially clustered, but can become fragmented during 
updates.  A data reorganization utility can re-cluster the regions of 
a document when needed.  The grouping of all regions for a given 
document in the regions index allows the prefetching of pages 
when appropriate, e.g., during serialization of the complete 
document.   
The XML store uses much of the existing relational infrastructure.  
For example, the existing table spaces, buffer pools, lock man-
ager, and log manager are used without modification.  Reuse of 
existing relational engine services for transactions, concurrency, 
scalability, and recoverability simplified the implementation and 
is essential for coexistence with the relational data.  Buffer pool 
services are used to keep active pages in memory.  Record man-
agement services handle the placement of the nodes within a 
given page, while logging of nodes or sets of nodes enables fail-
ure recovery.    

4. XML Indexing 
In relational systems, indexing is the most important feature for 
query performance, and this remains true for XML data.  How-
ever, the rich structure of XML introduces new challenges.  The 
obvious interpretation of an index on a relational column is that 
the values of the column are organized so that the system can 
quickly locate the rows that satisfy range predicates on the col-
umn.  But what does it mean to create an index on an XML col-
umn? We considered three classes of XML indexes: 

• Structural indexes map distinct node names, paths, or 
tag-based path expressions to all matching node instances 
(e.g.,[26]), or they map node identifiers to nodes instances 
(e.g., the regions index).  

• Value indexes allow quick retrieval of nodes based upon 
the node’s data value. 

• Full-text indexes map tokens (e.g., words) to the nodes 
that contain the token. 

Each of these index classes is useful for some query, but we be-
lieve that value indexes are significantly more useful than struc-
tural indexes for our expected query workloads. Consider a query 
workload on employee records. Which is the more likely query: 
find employees with any recorded interests, or find employees 
interested in nanotechnology?  The relational analogy is to find 
records with a particular value in some column versus looking for 
null values.  That said, our value indexes do support some struc-
tural predicates. 
Because our XML data is commingling with existing relational 
data and will be used by future versions of existing applications, 
we require our value indexes to support all the features of the 
existing relational system.  This includes: transactions, concur-
rency, recovery, scalability, fast insertion, efficient update, reor-
ganization, backup/restore, load, etc. 
As a semi-structured data model, XML is a bridge between the 
rigid structural world of relational systems and the free-form 
world of text documents. Full-text indexing of XML data is re-
quired to complete that bridge.  Therefore, we are extending our 
relational text indexing support [30] to include XML data.   

As with relational systems, applications typically cannot afford to 
index every item. XML compounds the issue because of the sheer 
quantity of items that can be indexed.  For example, not only can 
a range predicate be on any simple node in the document (the 
“leaf” elements and attributes), but also the processing instruc-
tions, the comments, the text nodes (which differ from their con-
taining element), and the interior nodes (as the concatenation of 
all text nodes below it).  If we only support indexing every item in 
the XML document, then the index storage would be several-fold 
larger than the original document.  Moreover, the number of I/Os 
required to transactionally maintain the indexes would be stagger-
ing.  Therefore, we support the indexing of nodes that are returned 
from a simple XQuery, as shown in the (simplified) CREATE 
INDEX DDL in Figure 3.  However, we need to introduce a phase 
during query compilation to determine which indexes can be 
used, and this is described in Section 5.3.  

 
The DDL also describes how the selected nodes are indexed.  
Because the XML column supports dynamic schemas, we cannot 
infer the data type associated with the indexed nodes.  Therefore, 
the user must specify the data type used to index the nodes.  The 
reuse of our existing relational index manager introduces a few 
minor restrictions on the supported XML data; for example, we 
cannot index arbitrarily large XML strings unless the strings are 
hashed.  The way XQuery treats xdt:untypedAtomic data is chal-
lenging for indexing.  The general comparisons (=, >, etc.) dy-
namically cast an untyped operand based upon the type of the 
other operand, which implies that untyped data must be indexed 
in every data type that it can be cast to.  For example, is the un-
typed value ‘1234’ a character string, a number, or a hexBinary 
string?  The answer is any of these, depending upon how any 
particular query treats the value.  To avoid casting untyped data to 
every possible data type, the index requires a target data type. 
Ultimately, we are creating an index on the cast of the node to the 
indexed type, taking into consideration the node’s type annotation 
derived during validation.  This implies that some string-valued 
nodes appear in a numeric index, and that all nodes appear in a 
string index.  These semantics are critical when we determine 
index eligibility.  We carefully considered the proper action to 
take for nodes that match the pattern but cannot be cast to the 
index type. We decided to ignore the cast error and simply not 
create any index entry for it.  The reason is that the node might 
never be cast to that type during an actual query and we did not 
want applications to deal with esoteric errors caused by the crea-
tion of an index.  This implies that if a query does attempt to cast 
the node to the index type in a comparison and the index is used 
to answer the query, the error might not be detected.   

ddl ::=  CREATE INDEX index-name ON table ‘(’ xml-
column ‘)’ USING ‘pattern’ AS type 

pattern ::= namespace-decls? 
 (( / | // ) axis? ( name-test | kind-test ))+ 

axis ::= ‘@’ | child:: | attribute:: | self:: 
 | descendant:: | descendant-or-self:: 

name-test ::= qname | * | nsprefix:* | *:ncname 

kind-test ::= node() | text() | comment() 
 | processing-instruction( ncname? ) 

Figure 3. Create Index DDL 
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Under the covers, an XML index is implemented with two 
B+Trees.  The path index maps each distinct reverse path 
(revPath) to a generated path identifier (pathId). A reverse path 
(revPath) is a list of node labels from leaf to root – compressed 
into a vector of label identifiers.  To make an analogy with rela-
tional systems, the path index is like a dynamic version of the 
COLUMNS catalog that slowly changes as documents are in-
serted.  The paths are stored from leaf to root for efficient proc-
essing of descendant queries such as //name which only bind the 
tail of the path.  Such queries bind a prefix of revPath, which can 
be found with a range scan on the path index. 
The value index consists of the following key: 

pathId, value,  nodeId,  rid 
The value is the index’s representation of the node’s data value 
when cast to the index’s data type.  The rid identifies the row in 
the table and is used for locking. The nodeId identifies a node 
within the document using a Dewey node identifier [38] and can 
provide quick access to a node in the XML store through the re-
gions index without accessing the table.  The order of the keys in 
the value index is again a tradeoff.  Placing the pathId first allows 
for quick retrieval of specific path queries.  For example, if we 
create an index on //name, which might match many paths, then a 
query on /book/author/name still has consecutive index entries.  
The path index plus placing the pathId first in the value index 
gives us some structural index support as well.  But the tradeoff is 
that a query like //name=’Maggie’ will need to examine every 
location in the index per matching path.  

5. XQuery Compilation 
Figure 4 gives an overview of the hybrid query compiler. We 
have implemented a new component, the XQuery parser, and 
extended all other components in the compiler to process the 
XQuery data model and the XML query languages. First, an SQL 
statement or an XQuery expression is compiled into an internal 
data flow graph. Next, rewrite transformations are applied to 
normalize, simplify, and optimize the data flow.  The optimizer 
uses this graph to generate a physical plan, which is translated 
into executable code by code generation. In this section, we de-
scribe each component and discuss tradeoffs that led to the cur-
rent design. 
Two major decisions impacted the whole compiler design. First, 
System RX does not implement static typing. XQuery [3] has 
both static and dynamic semantics, depending on when type-
checking is enforced. Static typing is too restrictive for dynamic 
schemas, as each document insertion or change in schema may 
result in recompilation, even rewriting of applications. Recall that 
System RX does not require that all XML documents in an XML 
column conform to a single schema, or to a collection of conform-
ing schemas. We expect non-conforming changes between 
schema versions. For example optional fields may become man-
datory. Although System RX does not implement static typing, it 
still exploits any type information wherever possible.  
Second, System RX does not normalize [9] the XPath expression 
into explicit FLWOR blocks, where iteration between steps and 
within predicates is expressed explicitly. Instead, path expressions 
that consist of solely navigational steps are expressed as a single 
expression. This impacts query modeling, rewrites and optimiza-
tion, and will be discussed in the following sections. 
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Figure 4. Hybrid SQL/XQuery Compiler 

5.1 XML Query Modeling 
In System RX, we represent XQuery via an internal query graph 
model (QGM) [34], which is a semantic network used to represent 
the data flow in a query.  Although it is fine-tuned for efficient 
relational query processing, the data flow graph is more generic 
than relational algebra. As QGM is designed to be extensible [18], 
it is fairly easy to add new entities and capture multiple data mod-
els. Moreover, the data flow model proved to be very fruitful for 
other extensions in relational systems [19] [30]. It is important to 
emphasize that we are not translating XQuery into relational alge-
bra or into SQL. On the contrary, we are augmenting our internal 
data flow model with native constructs that are specific to XML 
and that represent complex navigation of XPath and XQuery. 

In its simplest form, a QGM graph consists of operations and arcs 
which represent the data flow between operations. XQuery pro-
vides similar constructs to iterate over XML data and apply predi-
cates to join and sort data. We represent these operations of 
XQuery with the existing QGM entities, and introduce new enti-
ties to represent path expressions and sequences. 

To coalesce the relational and XML data models, we first needed 
to decide how to represent XQuery sequences within the context 
of a relational engine. Recall that SQL/XML [21] introduces 
XML as a column in a relational table and is based on the XQuery 
data model.  To accommodate this new SQL data type,  we repre-
sent an XQuery sequence as a column value in QGM. Some 
XQuery expressions consume a sequence as a whole, while others 
iterate through the items in a sequence. We provide an operation 
that unnests the items in a sequence for set processing, and  an-
other operation that aggregates a stream of items into a sequence.  

The focus of earlier research has been on efficient representation 
and execution of path expressions. On one side of the spectrum 
are fine-grained approaches. For example, XPeranto [37] repre-
sents each axis and name test on a single path step as a selection. 
As a result, a complex path expression requires a series of selec-
tions and a complex multi-way join operation. Although this ap-
proach was designed for a system in which the XML data is actu-
ally shredded into relational tables where the final goal is to com-
pose navigation steps with XML construction, it turned out to be 
incapable of handling large queries and representing the full 
XQuery language. In particular, it implies an order of execution 
for navigation. On the other side of the spectrum is the coarse-
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grained approach, where many binding path expressions are rep-
resented in a pattern tree, such as generalized tree patterns [7]. 
But such systems only deal with single FLWOR blocks. In Sys-
tem RX, we take a medium-grained approach, where we initially 
represent each path expression as a pattern tree in which there is 
only one bound variable. The main reason behind this decision is 
to represent each data flow (e.g. each variable) explicitly, so that 
semantics and rewrite analysis, which is built on explicit data 
flow representation, can reason about the query more efficiently. 
In addition, this approach allows us to represent not only path 
expressions as binding patterns, but also other FLWOR expres-
sions, and support full compositionality of XQuery.  However, as 
we explain in Section 5.2, after in query rewrite, we try to con-
solidate all navigation within a query block into a single pattern 
tree representation.  

 
Figure 5. Graph Representation of a FLWOR Expression 
The query graph model representation for the query in Example 1 
is shown in Figure 5. Each rectangular box represents some 
computation. In this example, the topmost box is the FLWOR 
box, which computes the result of the FLWOR block. The middle 
box computes the tuple of bindings and applies the where clause 
predicates. Each lower box computes one binding, and represents 
each variable binding as a separate data flow. We omit the corre-
lations between boxes for readability. The annotations on each arc 
represent whether or not the resulting XQuery sequence is to be 
iterated over (FOR), or aggregated into a sequence (LET).  

5.2 Query Rewrite Transformations 
The QGM graph output by the XQuery parser needs to capture the 
full compositionality of the XQuery expressions. As a result, it 
may not be the most compact or efficient representation of the 
query. The goal of the rewrite transformations is twofold: First, 
we try to optimize the data flow by consolidating some opera-
tions, eliminating redundant computation, and applying several 
logical transformations. Second, rewrites try to normalize the 
QGM representation, so that the query optimizer gets the same 
graph as input for semantically equivalent queries and has maxi-
mal flexibility. 
To support the dynamic schema requirement, we decided not to 
apply any schema-based transformations [12][17].  With dynamic 

schemas, such transformations may require frequent re-
compilation and rewriting of queries and applications. For exam-
ple, a schema change that converts a single-valued attrib-
ute/element into a multi-valued one will invalidate the query plan 
if such schema-based transformations are applied.  
By building XML processing on top of a robust relational engine, 
we are able to exploit many sophisticated rewrite transformations. 
These transformations are designed to optimize the data flow, and 
hence some are also applicable to XQuery. For example, rewrites 
that merge nested query blocks, or eliminate unused variables are 
directly applicable. A hybrid system also enables query rewrite 
transformations across language boundaries by seamless compila-
tion of XML querying functions of SQL/XML (i.e., XMLQuery, 
XMLExists and XMLTable) [21] into a single query graph.  

$p $n 
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$n} </bookInfo> 

/bib[lang/text()=’English’]//book[@p
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Figure 6. Graph Representation After Rewrite Transforma-
tions 
In addition, we have developed several transformations specific to 
XQuery and XML navigation. Specifically, we try to push navi-
gation down closer to the base data access to avoid navigating 
intermediate or constructed XML fragments and to exploit XML 
indexes. We also try to consolidate all path expressions in a single 
FLWOR block into one pattern tree that is annotated with several 
flags to represent FOR vs LET paths, whether an empty sequence 
needs to be created when there is no qualifying node, whether 
duplicates should be eliminated, etc. This pattern tree computes 
multiple bindings. Another important rewrite tries to push down 
predicates in the where clause into binding path expressions, ena-
bling XML index matching for value and general comparisons. 
For example, the query graph shown in Figure 5 is transformed 
into the graph shown in Figure 6. Note that the lower box com-
putes tuples of bindings, $p and $n in this case. 
Fnially, we conclude this section by identifying two of several 
open problems. First, XQuery general comparisons are not transi-
tive [3]. Hence, many rewrites that rely on transitivity are not 
applicable. Second, some of the XQuery expressions are sensitive 
to order, blocking other transformations.   

5.3 Index Eligibility 
An index is eligible for use during query evaluation when we can 
prove that the index contains a superset of the results required for 
the query. We adapted the XPath containment algorithm de-
scribed in [1] to identify the indexes that are able to answer a part 
of a query.  At a high level, this includes showing the following: 
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1. The query implies a predicate of the form: $col/<path-expr> 
<cmp> <expr>.  In Example 1, $doc/bib//lang/text() = 
‘English’ and $ doc/bib//book/@price < 80 match this form. 

2. The indexed column is used in a FOR binding.  LET quanti-
fication is not particularly useful because the entire result is 
required when the predicate is satisfied; i.e., either all the re-
sults or none of the results are returned. 

3. The path expression must produce the same or a subset of the 
indexed nodes.   

4. The data type of the comparison must match the data type of 
the index.  The data types are not required to be identical; for 
example, all numeric comparisons match the double index.  
However, the comparison performed by the index must im-
ply the required comparison.  We perform type-inferencing 
on the query graph to determine the type of the comparison 
based on the types of its arguments. Even with dynamic 
schemas, type inferences can be made.  For example, literals, 
casts, arithmetic, and type-tests all establish data types of 
parts of the query. 

If we create the following indexes: 
create index I1 … ‘/bib/lang/text()’ as string hashed 
create index I2 … ‘//@price’ as double 
create index I3 … ‘/bib/book/@price’ as double 
create index I4 … ‘/bib//book/@price’ as string(100) 

The indexes I1 and I2 are eligible for the query in Example 1.  
Index I3 cannot be used because the data might include /bib/-
collection/book/@price, which is not indexed, and I4 cannot be 
used because a numeric comparison is not compatible with a 
string index. 

5.4 Physical Plan Generation 
Physical plan generation is the phase in which the optimizer scans 
a QGM graph containing relational and XML entities and pro-
duces alternative execution plans. The optimizer utilizes data 
statistics to build a cardinality model, which is then used to esti-
mate costs for the execution plans.  Intermediate plans can be 
pruned based on costs and plan properties such as the order of 
input data. The final plan with the cheapest cost is chosen for 
execution.  
A physical plan is a model of query evaluation at runtime; each 
physical operator models a runtime operation.  Physical operators 
can be chosen at different granularities. They can be modeled at a 
primitive level, so that a complex run-time operation is composed 
using a tree of these primitive operators. Alternatively, a complex 
run-time operation can be modeled using one physical operator. 
The choice of physical operators affects cardinality and cost mod-
eling. In System RX, new navigation and index runtime opera-
tions were introduced to support native XML processing (see 
Section 7); correspondingly, new physical operators were needed 
to model them. Our decision was to use one operator to model 
each. Part of the reason for this coarse-grained approach is that 
the complex new runtime operations cannot be broken down to 
trees of primitive operations.  And part of the reason is that it is 
not necessary to model the runtime operations in fine detail, be-
cause there is no alternative in re-ordering the primitives at run-
time. It is important to point out that modeling runtime operators 
in a coarse-grained manner also opens the opportunity for the 

runtime operations to be flexible and adaptive, based on informa-
tion available during execution. 
We modeled the XML navigation run-time operation using the 
physical operator XML Scan (XSCAN, analogous to the rela-
tional table scan), and modeled the index runtime operation using 
the physical operator XML Index Scan (XISCAN, analogous to 
relational index scan). A third new physical operator that we in-
troduced is XANDOR, which models XML index ANDing and 
ORing.  Figure 7 is an example that illustrates the execution plan 
generated for the query of Example 1, given in Section 2.2. 

 /bib/lang/text()=’English’

/bib[lang/text()=’English”]/ 

book[@price < 80]/@price!, 
author/name! 

/bib/book/@price < 80 

XISCAN 

XANDOR 
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FETCH 

NLJN 

XSCAN

XISCAN

Figure 7. A physical plan for index ANDing 
Much of the relational optimizer infrastructure is reused, includ-
ing rule-based plan generation, join enumeration, join order and 
join method selection, computation and propagation of properties, 
and the cardinality and costing framework that we use to cost and 
prune plans. In particular, by utilizing the extensible rule-based 
plan generation mechanism [29], as well as extensible operator 
and plan data structures, plans with the above new XML operators 
are created by simply incorporating new rules.  Since System RX 
allows seamless compilation of XQuery and SQL into a single 
query graph, the optimizer is able to generate plans with mixed 
relational and XML operators, and interchange them to produce 
alternative plans with different execution orders. 
When extending the relational optimizer for hybrid relational and 
XML processing, new challenges arose. Some of the challenges 
were due to the fact that we were no longer dealing with a simpler 
relational model, but the more complex XQuery model and XML 
data.  Other challenges came from adapting the existing architec-
ture and engineering new functionality into the existing relational 
legacy system. Currently in System RX, we have made some 
simplifying design decisions, with the intention of developing 
more sophisticated solutions in the future and refining them over 
time once we have gained more experience with the system and 
its applications. 
A case in point is our choice of plans. Because our statistics, car-
dinality, and cost models are still quite simple -- much in the spirit 
of early System R [35] – we currently we choose plans using a 
combination of costs and some heuristics. For example, we al-
ways choose indexing plans over non-indexing plans; this follows 
the mostly true assumption that we can use the index to efficiently 
narrow down data for further processing. Another example is that 
we order the legs in index ANDing and ORing by the resulting 
cardinality, without considering correlations.  Furthermore, the 
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new XML runtime operations are able to adapt to the system envi-
ronment, as well as the data and query at hand.  This can be re-
garded as runtime heuristics that complement the compile-time 
decisions made by the optimizer. 
System RX is in its early age, and there are still unsolved issues, 
which constitute interesting research problems. In the hybrid sys-
tem, because we allow XML-typed columns, XML sequences can 
flow in place of the usual relational atomic values.  Therefore in a 
single query, we can have the traditional tuple stream combined 
with sequences nested in the tuples. This extension takes the cur-
rent system beyond the flat relational model. Aspects such as 
interesting order derivation, cardinality, and cost analyses must 
therefore be extended accordingly.  Another interesting problem 
comes from the coarse modeling of physical operators.  The XML 
navigation and the index runtime operations that we model with 
XSCAN and XISCAN operators can be very powerful and com-
plex (see [24] for a description of the XML navigation operator, 
and [6] for the description of an operator similar to our index 
runtime).  In addition, as we have mentioned, the operators can 
adapt to runtime information.  Furthermore, the XML data that 
they operate on can be highly irregular. Storage characteristics 
such as clustering differ dramatically from those in the relational 
system or are simply absent. For these reasons, cardinality and 
cost modeling of these XML operations can be difficult, particu-
larly with traditional analytical methods.  We have on-going re-
search efforts to address the above issues. 

6. Query Run-Time Evaluation 
To evaluate queries over XML data, System RX had to extend the 
relational query runtime to support the XQuery and SQL/XML 
operators. There were 3 major components added for processing 
queries over XML: (1) XML Navigation, (2) XML Index Run-
time, and (3) the XQuery Function Library.  In addition, sev-
eral adaptations of existing relational runtime operators were 
required to support the new XML data type.  
One issue that influences all aspects of the XML runtime is the 
dynamic nature of the XML data type. In the relational setting, all 
the types are known at compile time. The types of the columns 
are specified at DDL time and are unambiguous.  XML data 
might have no schema associated with it. It might have a schema 
that has ambiguous type definitions (e.g.  XML Schema [43] un-
ion construct), or in the extreme case, each XML element can be 
annotated with a basic type using the xsi:type attribute.  To ac-
commodate such uncertainty, the runtime support for XQuery 
relies on dynamic type dispatch.   

6.1 Index Run-time 
The XISCAN operator finds XML nodes that satisfy a predicate 
using an XML index.  The general form of the predicate is start-
val ≤ path-expr ≤ stop-val, which represents a range scan on the 
values of nodes with a path that matches the non-branching path 
expression path-expr.  Internally, this results in two or three im-
plicit nested-loop join operations. 
First, the path index is used to find the set of paths that match 
path-expr by scanning the range of revPath values for the 
“known” tail of the path-expr.  Subsequently, the revPath is 
matched against the full pattern. For the path expression //bib/-

/name, all revPath values between name and namf are scanned 
and then checked for a bib element. 
For each matching path, the value index is then probed with 
value.pathId = path.pathId,  and the bounds specified in the start-
val and stop-val.  However, in our data model, the bounds them-
selves can be sequences, because cells in an SQL/XML table and 
LETs in XQuery represent sequences.  For equality predicates, 
this results in one scan of the value index per matching pathId and 
per item in the start-val sequence.  For range predicates, only the 
minimum/maximum value of the start/stop value is required. 
The XANDOR operator combines the nodes that are output from 
multiple XISCAN operations, and implements branching path 
expressions using AND and OR using only the XML indexes.  
Because we use Dewey node identifiers, we only access the nodes 
with predicates (“leaf” steps) and avoid accessing the large num-
ber of branching nodes (which do not have a predicate).  The 
details of XANDOR are beyond the scope of this paper, but it is 
similar in spirit to holistic twig joins [6]. 

6.2   XML navigation 
The XML Navigation (XNAV) runtime module evaluates paths 
and predicate constraints over the native XML store, by traversing 
the XML store following the parent-child relationship between 
the nodes. It returns node references (logical node identifiers) and 
atomic values to be further manipulated by other runtime opera-
tors. XNAV is represented in the optimizer plan by  XSCAN op-
erators, as shown in the example in Figure 7 .  Similar to the rela-
tional SCAN operator, XSCAN can also apply query predicates to 
reduce the size of the data returned by the operator. However, an 
XML document can correspond to one or several pre-joined rela-
tional records, or even a whole database. This makes the XSCAN 
operator more complex in terms of query features as well as ro-
bustness. 

Design principles. XNAV has been designed to provide efficient 
processing of the pattern trees generated by the compiler. In 
XQuery language terms, it roughly corresponds to a FLWOR 
block, binding several variables. Unlike other approaches in 
which every XPath step is modeled as a separate operator 
[16][37], a single XNAV operator can evaluate multiple steps 
from multiple XPath expressions in the query. This reduces the 
number of operators in the query plan and eliminates the overlap 
in the evaluation of the individual steps.  Internally, XNAV 
breaks the input query steps into path groups, each of which is 
evaluated using a one-pass algorithm similar to the one described 
in [24]. As with the relational SCAN operator, XNAV interfaces 
with the rest of the runtime using a tuple based interface and re-
turns tuples of bindings. Each binding has the XML data type and 
can be a singleton or a sequence of items, each item being a refer-
ence or an atomic value. Finally, XNAV is designed to perform 
using limited memory and uses paged data structures for the in-
termediate results. 

XNAV trees. The evaluation in XNAV is driven by a runtime 
query tree representation, the XNAV tree. XNAV trees are pro-
duced during the threaded code generation phase from the QGM 
representation of the query. As opposed to QGM, which is tar-
geted for semantic analysis and query rewrite, the XNAV trees 
are aimed to make the runtime processing as streamlined and as 
efficient as possible. Figure 8 shows the XNAV tree for the run-
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ning example.  This tree represents all the 5 path expressions in 
the original example query.  
XNAV trees have structural and predicate parts. The structural 
part contains the XPath steps of the connected paths and has a 
query root node. Each node can have attached predicates. Predi-
cate operator nodes can point back into the structural part of the 
XNAV tree when a structural node is an argument of an operator. 
In the running example, XNAV re-evaluates the predicates evalu-
ated by the index to guarantee correctness of the result. In Figure 
8, predicate operators are shown using oval nodes.  

 
Figure 8. XNAV tree for Example 1 

The query in the example above returns tuples of price and name 
bindings of the qualifying books. These two nodes are the extrac-
tion points indicated by gray fill color. XNAV trees fully capture 
the semantics of the query fragment using the data in the nodes. 
For example, in the example, the for nodes are marked with an 
‘F’.  

Processing flow: We illustrate the processing of a single path 
group using the example in Figure 9. We assume that the docu-
ment is inserted in the native XML store and the query is parsed 
and translated into the XNAV tree shown in the figure. The exis-
tential check for c nodes is translated into an invocation of the 
effective Boolean value (EBV) XQuery function [3]. 
To evaluate the query, XNAV traverses the document in depth-
first order and alternates between two modes: matching and tuple 
construction.  The document nodes are matched to the query 
using a data structure named work array (WA). Figure 9 shows 
the status of the WA during the document traversal. The WA 
keeps track of the query steps that have been matched, and the 
relevant tags to look for next in the document. Initially, the work 
array contains only an entry corresponding to the root that 
matches the input context node. The WA grows/shrinks when 
entering/exiting a document node that matches a query node. In 
the example, after matching the context node, an entry corre-
sponding to a is added to the WA to indicate that next we are 
looking for a elements in the document. When an a element is 
found in the document, entries for b and c are added to signify 
that within the a element we are looking for b and c nodes. Each 
WA entry has several fields to aid the matching. Figure 9 shows 
two of these: an integer level is used to support child axis 
matches; a status flag is used to record if a document node has 
been found that satisfies all the predicates of the query. As the 
entry for a can stay on the WA across multiple a elements, the 
status flag is turned on if any a element satisfies the conditions, 
reflecting the existential semantics of the XPath language. More 
details of the matching algorithm can be found in [24]. 

During the traversal of the document, XNAV skips the nodes that 
will not affect the result of the query. XNAV relies on the WA to 
determine which nodes to skip. For example, if all entries in the 
WA correspond to child axis steps, all document nodes that do not 
match any WA entry can be skipped.  

Tuple construction and buffer management. During the match-
ing phase, nodes that could be part of the result or are needed for 
predicate evaluation are collected into node buffers. These buffers 
might contain a reference to the node or its atomic value, depend-
ing on the use of the node and the size of its atomic value. In the 
example above, c nodes and b nodes are saved for predicate 
evaluation and to be returned as results. XNAV applies several 
techniques to reduce the number of buffer entries required.  

root 
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80text(
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When the result of XNAV is a tuple with multiple bindings (as in 
the example in Figure 8), buffers for each of the extraction points 
are put together into tuples using an algorithm that performs a 
variant of a merge-join over the node identifiers of the ancestors. 
This tuple construction process is described in more detail in 
[24] 
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Figure 9. Example XNAV Evaluation 
Multi-pass processing. The single-pass algorithm as outlined so 
far has several advantages: it is order preserving, has predictive 
traversal, and often minimizes the number of visited nodes. How-
ever, there are several cases where the one-pass algorithm as de-
scribed above is not suitable. Although in general several branches 
can be evaluated in one pass, in some cases, the query might have 
branches that force navigation in different directions. For example, 
considering the query //a[.//b > ../c], from an a element node we 
need to navigate both through the descendants of a and upwards 
toward its parent. In other examples, the single-pass algorithm 
might generate too large intermediate results or traverse more 
nodes than necessary. For example, in the query //a[@b >5]//d, 
evaluating the predicate before examining the whole a sub-tree can 
eliminate a nodes that do not satisfy the predicate. In such cases, 
the XSCAN operator builds a set of correlated XML navigations, 
each evaluating a group of XPath steps using a one-pass algorithm. 
Packaging more than one XNAV into one operator avoids the 
expense of the operator invocation and allows for sharing latched 
storage pages across all the groups within a single operator. 
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7. Related Work 
In recent years, many different approaches have been proposed 
for XML data management, both in academia and in industry. 
They can be classified mainly into two groups: native XML man-
agement systems and systems that reuse an underlying relational 
DBMS.  
Relational-based approaches either shred the XML documents 
into relational tables using some sort of encoding 
[4][8][13][15][28][36] or use a BLOB column to store the XML 
document [10][32][33]. The main advantage of the relational-
based approach is that it requires no modification to existing en-
gines, while exploiting their maturity, extensive tuning, proven 
scalability, and sophisticated optimizers. 
Shredding-based approaches, on the other hand, need to translate 
an XQuery into SQL for evaluation. As [31] argues, due to the 
semantic mismatch between XQuery and SQL, not all XQuery 
expressions are translatable into SQL, or they translate into ineffi-
cient SQL statements. DeHaan et.al [8] articulate that a relational 
engine needs to be enhanced with XML-specific primitives for 
efficient execution. A more comprehensive review of methods for 
XML-to-SQL query translation and their limitations is beyond the 
scope of this paper, and can be found in [27]. In System RX, we 
reuse the data flow graphs of the relational system, and augment it 
with several XML-specific enhancements to effectively capture 
the semantics of XQuery,  efficiently execute XML-specific op-
erations, and to support almost the entire XQuery language.  
Another important disadvantage of shredding-based methods is 
their inefficiency for retrieval of the whole or a subpart of the 
XML document. To reconstruct the document, they need to access 
relational tables and execute costly multi-way joins. Document 
insertion and deletion is also costly as it needs to touch many 
database records. Another important aspect of shredding is 
whether or not a DTD or an XML schema is required for storage 
of XML documents. [39] argues that schema-based approaches, 
such as the inlining methods of [36], perform better than schema-
less approaches such as the edge-table [15]. However, schema-
based approaches cannot deal with the dynamic schema require-
ment, as each change in the schema requires database reorganiza-
tion, which is very costly and disruptive.  Since native XML stor-
age of System RX does not require a specific schema, it is able to 
support dynamic schemas, and hence provides great schema 
flexibility. Schema-less approaches rely on encodings of XML 
trees to detect parent-child or ascendant-descendant relationships, 
resulting in a complex query with a large number of so-called 
structural joins.  Existing relational methods have been shown to 
be inadequate for efficient execution of these joins [40] without 
native support in the engine [6]. 
BLOB-based approaches use stored procedures to invoke an ex-
ternal XPath/XQuery processor. The main advantage of this ap-
proach is fast retrieval of an entire XML document and full 
schema flexibility, as any XML document, irrespective of its 
schema, can be stored. Due to the loose coupling of the two query 
processors, usually the entire XML document must be brought 
into memory before processing, severely limiting the size of the 
data and optimization possibilities. As a result, search and re-
trieval of XML fragments from the document is relatively slower. 
Moreover, these approaches cannot support sub-document level 
updates; they need to replace the whole document. Compared to 
BLOB-based approaches, System RX enjoys a similar fast re-

trieval of full documents, as it stores the entire document together, 
but does not suffer from inefficient search, because it uses a di-
rectly traversable parsed structured tree format. 
The second alternative to XML data management is to build a 
native XML database. Examples of native systems include TIM-
BER [22], Niagara [20] and Natix [14]. Systems such as Niagara 
[20] and TIMBER [22] break the XML document into nodes and 
store the node information in a B+-tree, with all document nodes 
stored in order at the leaf level.  This allows for efficient docu-
ment or sub-tree reconstruction by a simple scan of the leaf pages 
of the tree. In Niagara, additional inverted list indexes are created 
to enable efficient structural join algorithms for ances-
tor/descendant paths.  
More recently, other schemes for native storage of XML docu-
ments has been proposed in [25] and [41] that are similar to ours. 
The XML data is stored in a native tree format in which document 
nodes are in most cases clustered together on a page. Bulk proc-
essing is performed using indexes, while the storage is optimized 
for fast navigation to evaluate the non-indexed portions of the 
query. Parent-child and ancestor-descendant traversal does not 
require a join between different tables. Since most XPath expres-
sions require these types of traversals, this scheme allows for 
efficient access to the data. However, all the native XML systems 
only deal with XML data and do not support SQL or relational 
storage.  
Finally, there are many XQuery implementations both in acade-
mia and industry. A comprehensive list of public XQuery imple-
mentations and links can be found on the home page of the W3C 
XQuery working group (http://www.w3.org/XML/Query), but a 
detailed discussion of each is beyond the scope of this paper. 

8. Conclusions & Future Directions 
We have described the architecture and overall design of System 
RX, a hybrid relational and XML data management system. To 
the best of our knowledge, this is the first truly hybrid system to 
support both relational and XML data. We believe such a system 
is essential to the evolution of enterprise data management solu-
tions, as XML and relational data will co-exist and complement 
each other. System RX is designed to support efficient processing 
of high volumes of XML data. By compiling both SQL/XML and 
XQuery statements into a uniform internal representation, System 
RX enables cross-language optimizations.  
Going forward, a hybrid system enables relatively easier incorpo-
ration of more traditional data management tools, such as triggers 
and materialized views, into XML data management. A hybrid 
system allows us to leverage more than 20 years of data manage-
ment research to advance XML technology to the same standards 
expected from mature relational systems. To attain this goal, we 
identify several potential areas for future research. First, mixing 
traditional tuple streams with XQuery sequences introduces inter-
esting challenges for rewrite transformations and query optimiza-
tion. Dynamic schemas require more robust and adaptive run-time 
operators. Finally, certain properties of the XQuery language, 
such as node identities and the reference-based semantics of 
XPath, pose interesting challenges to parallelization.  These areas 
are all key elements of enterprise data management systems that 
are ripe for further exploration.  
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