
System Scenario based Design of Dynamic
Embedded Systems

S. V. GHEORGHITA1, M. PALKOVIC2, J. HAMERS3, A. VANDECAPPELLE2,
S. MAMAGKAKIS2, T. BASTEN1, L. EECKHOUT3, H. CORPORAAL1,
F. CATTHOOR2,4, F. VANDEPUTTE3 and K. De BOSSCHERE3

1 Eindhoven University of Technology, The Netherlands
{s.v.gheorghita,a.a.basten,h.corporaal}@tue.nl

2 IMEC vzw, Leuven, Belgium
{palkovic,vdcappel,mamagka,catthoor}@imec.be

3 Ghent University, Belgium
{juan.hamers,lieven.eeckhout,frederik.vandeputte,koen.debosschere}@elis.ugent.be

4 Katholieke Universiteit Leuven, Belgium

http://www.es.ele.tue.nl/scenarios

In the past decade, real-time embedded systems have become much more complex due to the intro-
duction of a lot of new functionality in one application, and due to running multiple applications
concurrently. This increases the dynamic nature of today’s applications and systems, and tightens
the requirements for their constraints in terms of deadlines and energy consumption. State-of-the-
art design methodologies try to cope with these novel issues by identifying several most used cases
and dealing with them separately, reducing the newly introduced complexity. This paper presents
a generic and systematic design-time/run-time methodology for handling the dynamic nature of
modern embedded systems, which can be utilized by existing design methodologies to increase
their efficiency. It is based on the concept of system scenarios, which group system behaviors
that are similar from a multi-dimensional cost perspective, such as resource requirements, delay,
and energy consumption, in such a way that the system can be configured to exploit this cost
similarity. At design-time, these scenarios are individually optimized. Mechanisms for predicting
the current scenario at run-time and for switching between scenarios are also derived. This design
trajectory is augmented with a run-time calibration mechanism, which allows the system to learn
on-the-fly during its execution, and to adapt itself to the current input stimuli, by extending the
scenario set, changing the scenario definitions, and both the prediction and switching mechanisms.
To show the generality of our methodology, we show how it has been applied on four very different
real-life design problems. In all presented case studies substantial energy reductions were obtained
by exploiting scenarios.

Categories and Subject Descriptors: C.3.d [Computer Systems Organization]: Special-Purpose
and Application-Based Systems—Real-time and embedded systems; D.2.10 [Software Engineer-
ing]: Design—Methodologies

General Terms: Algorithms, Design, Performance

Additional Key Words and Phrases: Design methodology, dynamic nature, embedded systems,
energy reduction, real-time systems, system scenarios

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2008 ACM 1084-4309/2008/0400-0001 $5.00

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, June 2008, Pages 1–44.



2 · A System Scenario based Approach to Dynamic Embedded Systems

1. INTRODUCTION

Embedded systems usually consist of processors that execute domain-specific appli-
cations. These systems are software intensive1, having much of their functionality
implemented in software, which is running on one or multiple processors, leaving
only the high performance functions implemented in hardware. Typical examples
include TV sets, cellular phones, wireless access points, MP3 players and printers.
Most of these systems are running multimedia and/or telecom applications and
support multiple standards. Thus, these applications are full of dynamism, i.e.,
their execution costs (e.g., number of processor cycles, memory usage, energy) are
environment dependent (e.g., input data, processor temperature).

Scenario-based design [Carroll 1995] has been used for some time in both hard-
ware [Ionita 2005; Paul et al. 2006] and software design [Douglass 2004] of embedded
systems. In both these cases, scenarios concretely describe, in an early phase of
the development process, the use of a future system. They appear like narrative
descriptions of envisioned usage episodes, or unified modeling language (UML) use-
case diagrams [Fowler 2003] which enumerate, from a functional and timing point
of view, all possible user actions and the system reactions that are required to meet
a proposed system function. These scenarios are called use-case scenarios. They
focus on the application functional and timing behaviors and on its interaction with
the users and environment, and not on the resources required by a system to meet
its constraints. These scenarios are used as an input for design approaches centered
around the application context.

In this paper, we concentrate on a different and complementary type of scenar-
ios, which we call system scenarios. These are derived from the combination of the
behavior of the application and the application mapping on the system platform.
These scenarios are used to reduce the system cost by exploiting information about
what can happen at run-time to make better design decisions at design-time, and to
exploit the time-varying behavior at run-time. While use-case scenarios classify the
application’s behavior based on the different ways the system can be used in its over-
all context, system scenarios classify the behavior based on the multi-dimensional
cost tradeoff during the implementation trajectory. By optimizing the system per
scenario and by making sure that the actual system scenario can be predicted at
run-time, a system setting can be derived per scenario to optimally exploit the
system scenario knowledge.

To motivate the system scenario usage in embedded system design, we start from
the different Run-Time Situations (RTSs) in which a system may run on a given
system platform. An RTS is a piece of system execution that is treated as an
unit. Each RTS has an associated cost, which usually consists of one or several
primary costs, like quality and resource usage (e.g., number of processor cycles,
memory size). The system execution is a sequence of RTSs, and the current RTS is
known only at the moment it occurs. However, at run-time, using various system
parameters, so-called RTS parameters, it can be predicted in advance in which RTS
the system will run next for a non-zero future time window. If the information

1If the system’s software contributes with essential elements to the design, construction, deploy-
ment, and evolution of the system as a whole, we talk about a software intensive system [IEEE
2000].

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, June 2008.



S. V. Gheorghita et al. · 3

1 2 3

Application Code

A B

Manual Definition

Automatic Extraction

Use-case 

scenarios

Design & Realization

Design & Coding

System 

scenarios

Final

 System

Product

Idea

User-usage 

perspective

Cost 

perspective

Fig. 1. A scenario based design flow for embedded systems.

about all possible RTSs in which a system may run is known at design-time, and
the RTSs are considered in different steps of the embedded system design, a better
optimized (e.g., faster or more energy efficient) system can be built because specific
and aggressive design decisions can be made for each RTS. These intermediate per-
RTS optimizations lead to a smaller, cheaper and more energy efficient system that
can deliver the required quality. In general, any combination of N cost dimensions
may be targeted. However, the number of cost dimensions and all possible values
of the considered RTS parameters may lead to an exponential number of RTSs.
This will degenerate to a long, and really complicated design process, that does not
deliver the optimal system. Moreover, the run-time overhead of detecting all these
different RTSs will be too high compared to the expected gain over their (quite)
short time windows. To avoid this situation, in our work, the RTSs are classified
and clustered from an N -dimensional cost perspective into system scenarios, such
that the cost tradeoff combinations within a scenario are always fairly similar, the
RTS parameter values allow an accurate prediction, and a system setting can be
defined that allows to exploit the scenario knowledge and optimizations. This paper
presents a systematic way of detecting and exploiting both at design-time and run-
time the system scenarios of a given system. Generic solutions to the various steps
in the methodology are provided whenever available. The method combines design-
time analyses and optimizations with information collected at run-time about the
environment in which the system is operating and the inputs being received.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, June 2008.



4 · A System Scenario based Approach to Dynamic Embedded Systems

Black Box

Decoder
Encoded video frames

Tuning knobs

Content provider

Fig. 2. Motivating example, no scenarios.

Figure 1 depicts a design trajectory using use-case and system scenarios. It starts
from a product idea, for which the stakeholders2 manually define the product’s
functionality as use-case scenarios. These scenarios characterize the system from
a user perspective and are used as an input to the design of an embedded system
that includes both software and hardware components. In order to optimize the
design of the system, the detection and usage of system scenarios augments this
trajectory (the bottom gray box from the figure). The run-time behavior of the
system is classified using the methodology presented in this paper into several
system scenarios, with similar cost tradeoffs within a scenario. For each individual
scenario, more specific and aggressive design decisions can be made. The sets of use-
case scenarios and system scenarios are not necessarily disjoint, and it is possible
that one or more use-case scenarios correspond to one system scenario. But still,
usually they are not overlapping and it is likely that a use-case scenario is split into
several system scenarios, or even that several system scenarios intersect several
use-case scenarios.

The paper is organized as follows. Section 2 gives a motivating example for our
work, by showing how system scenario exploitation makes an H.264 video decoder
more energy efficient. The system scenario methodology for embedded system
design is detailed in section 3. It is accompanied in section 4 by case studies, that
describe a diversity of applications that fit within this methodology, illustrating
its broad application potential. Related work is presented in section 5, and the
conclusions and our future plans are detailed in section 6.

2. MOTIVATING EXAMPLE

Figure 2 shows a typical system to which the system scenario design methodology
is applicable. In this system, a content provider sends H.264 encoded sequences of
video frames to a mobile device that decodes the content. The video decoder is
often implemented as a main loop which is executed over and over again, reading
encoded frames, decoding them and writing them to an output device (e.g., a
screen). The application has to deliver a certain throughput (e.g., 30 frames per
second), which imposes a time constraint on each loop iteration. Otherwise, the
movie will stutter and the user’s experience will degrade. When this kind of video
decoder is implemented in a mobile device that is battery-operated and thus energy-
constrained, the goal of using system scenarios when designing this system is to
reduce the energy consumption, while retaining an acceptable frame rate.

2The stakeholders are persons, entities, or organizations who have a direct stake in the final
system; they can be owners, regulators, developers, users or maintainers of the system.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, June 2008.



S. V. Gheorghita et al. · 5

DecoderEncoded video frames

Frame-loop
Macroblock-loop

Tuning knobs

Content provider

Fig. 3. Motivating example, system scenarios.

While every frame must be decoded within a fixed period of time, the actual
time and energy needed to decode a frame on a processor with a given speed varies
due to the dynamism exhibited by the video stream. Some frames require all the
available decoding time while others demand only a fraction and leave the processor
idle for the remaining time. On a small set of video sequences, we already noticed
differences up to 450% in the required energy for decoding a single frame.

One well known technique for reducing energy consumption in this situation
(fixed deadline, varying decode time) is Dynamic Voltage and Frequency Scaling
(DVFS) [Jha 2001]. When scaling the voltage, the processor’s frequency and there-
fore the execution time scales linearly (fCLK ∝ VDD), while the energy consumption
scales approximately quadratically (E ∝ V 2

DD). As such, DVFS gives the system
a knob, namely a choice to work at a certain frequency/voltage, that needs to be
tuned at run-time. An important problem when applying DVFS in this situation
is the need of knowing how many cycles (the cycle budget) are needed for decoding
a frame, before actually decoding it. This is necessary to choose the appropriate
scaling factor, i.e., to choose in which position to turn the DVFS system knob.

Existing DVFS systems work either fully dynamically based on run-time infor-
mation, or fully statically based on design-time analysis. In the fully dynamic
approach, no information about the decoder is considered except the notion of con-
secutive frames with different decode times that need to be decoded within a given
deadline (figure 2). Without any information on how the internals of the decoder
cause this variation in decode time, it is only possible to predict at run-time the
required cycle budget of the current frame based upon the cycle budget needed for
previously decoded frames [Hughes et al. 2001; Choi et al. 2002]. Another, fully
static, approach considers complete information about the platform usage collected
at design-time and uses static analysis to determine the remaining worst case cycle
budget needed to complete execution at several points in the execution and fixes
the DVFS system to the corresponding voltage and frequency [Shin and Kim 2005].

When using our proposed system scenarios (figure 3), we consider both informa-
tion about the system at design-time, as well as the occurrence of certain types of
input at run-time, which result in particular (groupings of) RTSs. Looking at the
general structure of the H.264 decoder (figure 4), we see that each frame is subdi-
vided into blocks of 16 by 16 pixels, called macroblocks. The main loop, which is
the frame decoding loop, contains a second loop that iterates over the consecutive
macroblocks. The read part of this loop takes an encoded macroblock object from
the input stream and separates it into a header and the object’s data. The write
part places the decoded macroblock in the frame. The decoding part consists of
several kernels. Each macroblock can be encoded using a different encoding scheme

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, June 2008.



6 · A System Scenario based Approach to Dynamic Embedded Systems

CABAC 

Decoder

CAVLC 

Decoder

Image transformation 
& quantization & 

image reconstruction

Frame header 

parsing

Write 

frame

internal state (previous frame)

data

Input bitstream:

header dataheader data…

frame

Part of RTS (one 

macroblock processing)

Periodic 

Consumer

Macroblock 

header parsing

Intra 16x16 

prediction

Intra 4x4 

prediction

Inter 

prediction

frame header

macroblock 

header

Fig. 4. Grey-box model of the H.264/AVC decoder processing a stream object.

that determines which kernels are used. Depending on the exact breakup of how
many macroblocks of each frame belong to each scheme for a given iteration of
the main frame loop, each of these kernels are executed for a certain number of
times. This forms the Run-Time Situation (RTS) which can be characterized by
the current RTS parameters, i.e., the macroblock breakup in this example. These
parameters can be used to predict in advance the costs associated with the current
RTS.

Considering each possible breakup of a frame for tuning the system at run-time
would cause a too large overhead. When decoding CIF images (352 by 288 pixels),
consisting of 396 macroblocks that may belong to 21 different encoding schemes,
up to 6.22 · 1033 possible RTSs would need to be considered, and for each RTS
the client has to store the optimal frequency/voltage. This is clearly impossible.
Therefore, it is necessary to cluster frames with a similar breakup of macroblock
types over the encoding schemes and mapping on the target platform. So frames
that need similar cycle budgets are merged into the same system scenario. For
each system scenario, we then determine the optimal knob setting of the mapping
scheme and the platform. For example, we can determine the frequency/voltage
setting of the DVFS scheme by using the cycle budget needed for a single (worst
case) representative frame as the budget needed for all possible frames belonging
to this scenario.

At run-time, whenever a client receives a movie from a content provider, it pre-
dicts for each frame the scenario it belongs to. Then, it scales the voltage and
frequency according to the values determined at design-time, thereby reducing the
energy consumption while still meeting the deadlines. Clearly, the more scenarios
are considered, the higher the energy reduction that can be obtained, but also the
more complex the prediction becomes. The prediction causes run-time overhead
and it will add to the energy usage. The cost and gain of extra scenarios have to be
traded off carefully to arrive at an optimal system. In the extreme, one can select a
pure run-time controller approach. But then either the run-time decision overhead
becomes too high, or the quality of the decision becomes very poor due to the too
local view. The scenario approach avoids this bad tradeoff point.

Another interesting issue is to what extent scenario prediction can be made or
needs to be made conservative. For complexity reasons, it may not be possible to
consider all possible RTSs in the scenario definition. For the H.264 decoder, for
ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, June 2008.



S. V. Gheorghita et al. · 7

example, there are too many RTSs to take them all into account explicitly. When
at run-time a frame arrives with a previously unseen macroblock breakup, it needs
to be decided what to do. Hard guarantees on system performance can be given by
predicting for these new breakups the backup scenario, which is the scenario that
needs the overall worst case number of cycles to execute. However, this will often
lead to less energy reduction than potentially possible. Since for video decoding
a small percentage of missed frame deadlines is usually acceptable, one could aim
for a more aggressive prediction, introducing the risk that a frame may get miss-
predicted as belonging to a scenario which has a lower cycle budget than the frame
really needs, causing a missed deadline. This leads to a tradeoff between system
quality in terms of missed deadlines and energy savings. In [Hamers et al. 2007],
we managed to reduce energy consumption of the H.264 decoder by 46% with less
than 0.1% of the deadlines missed, by using only 32 scenarios.

To exemplify the difference between use-case and system scenarios, let us con-
sider a mobile device running an H.264 decoder that supports two different frame
resolutions. From the user perspective, each resolution may be considered as a
use-case scenario, because the resolution affects the perceived quality. Due to the
different resolution, the two use-case scenarios contain a different number of mac-
roblocks. Each of the two use-case scenarios can be divided automatically in more
system scenarios based on the frame’s macroblock mapping breakup, as presented
above. This breakup is of no interest to the application designer or final product
user, because it is a system-internal artefact of the video encoding, but it can be
exploited to reduce energy consumption in the mapping. It may even be possible to
integrate certain macroblock breakups of the two different resolutions into a single
system scenario.

The following section details the systematic aspects of our methodology of iden-
tifying and exploiting system scenarios to create more efficient embedded systems,
describing generic solution strategies for the various methodology steps whenever
possible.

3. SYSTEM SCENARIO METHODOLOGY

Although the concept of system scenarios has been applied before on top of concrete
design techniques both in an ad-hoc [Chung et al. 2002; Hansson et al. 2007; Murali
et al. 2006b; Sasanka et al. 2002] as well as in a systematic way [Gheorghita et al.
2005; 2008b; Hamers et al. 2007; Mamagkakis et al. 2007; Palkovic et al. 2006;
Yang et al. 2002], it is possible to generalize all those scenario approaches into a
common systematic methodology. This section describes such a general and still
near-optimal methodology, providing generic solutions whenever available. This
generic methodology is the most important contribution of this paper. Parts of the
solutions provided for the various steps, in particular those presented in sections
3.4 and 3.7, have not been published earlier. The methodology is applied to some
specific contexts in section 4. The section is structured as follows. In section 3.1,
the basic concepts behind the system scenario methodology are described. The
methodology overview is given in section 3.2. The remaining subsections refine
each of the steps of the general methodology. In the subsequent subsections, we
always refer to system scenarios also when we use the abbreviated term scenario.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, June 2008.



8 · A System Scenario based Approach to Dynamic Embedded Systems

3.1 Basic Concepts

The goal of a scenario method is, given a system, to exploit at design-time its
possible RTSs, without getting into an explosion of detail. If the environment,
the inputs and the hardware architecture status would always be the same, then
it would be possible to optimally tune the system to that particular situation.
However, since a lot of parameters are changing all the time, the system must be
designed for the worst case situation. Still, it is possible to tune the system at run-
time (e.g., change the processor frequency/supply voltage), based on the actual
RTS. If this has to happen entirely during run-time, the overhead is most likely too
large. So, an optimal configuration of the system is selected up front, at design-
time. However, if a different configuration would be stored for every possible RTS,
a huge database is required. Therefore, the RTSs similar from the resource usage
perspective are clustered together into a single scenario, for which we store a tuned
configuration for the worst case of all RTSs included in it.

The system scenario methodology deals with two main problems. First, scenarios
introduce various overheads due to switching between scenarios, storing code for
a set of scenarios instead of a single application instance, predicting the RTS,
etc. The decision of what constitutes a scenario has to take into account all these
overheads, which leads to a complicated problem. Therefore, we divide the scenario
approach into steps. Second, using a scenario method, the system requires extra
functionality: deciding which scenario to switch to (or not to switch), using the
scenario to change the system configuration, and updating the scenario set with
new information gathered at run-time.

Many system parameters exist that can be tuned at run-time while the system
operates, in order to optimize the application behavior on the platform which it
is mapped on. We call these parameters system knobs. A huge variety of system
knobs is available. Section 2 gives the example of DVFS; entirely different exam-
ples of other possible system knobs include the version of the code to run in case
of an application that contains multiple versions of its source code, different com-
piler optimizations being applied to each of them [Palkovic et al. 2006], and the
configuration of processing elements (e.g., number and type of function units) in a
multi-processor system [Sasanka et al. 2002]. Anything that can be changed about
the system during operation and that affects system cost (directly or indirectly)
can be considered a system knob. Note that these changes do not have to occur
at the hardware level; they can occur at the software level as well. A particular
position or tuning of a system knob is called a knob position. If the knob positions
are fully fixed at design-time, then the system will always have the same fixed,
worst case cost. By configuring knobs while the system is operating, the system
cost can be affected. In the DVFS example, the knob position is the choice of a
particular operating voltage, and its change directly affects the processor speed and
power, and indirectly the energy consumed to execute the application. However,
tuning knob positions at run-time introduces overhead, which should be taken into
account when the system cost is computed.

Instead of choosing a single knob position at design-time, it is possible, and highly
desirable, to design for several knob positions. At different occurrences during run-
time, one of these knob positions is chosen, depending on the actual RTS. When
ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, June 2008.



S. V. Gheorghita et al. · 9

the RTS starts, the appropriate knob position should be set. Moreover, the knob
position is not changed during the RTS execution. Therefore, it is necessary to
determine which RTS is about to start. This prediction is based on RTS param-
eters, which have to be observable and which are assumed to remain sufficiently
constant during the RTS execution. These parameters together with their values in
a given RTS form the RTS snapshot. In the H.264 example, the RTS corresponds
to the decoding of a frame, and the RTS parameter is the frame breakup into the
macroblock types.

The number of distinguishable RTSs from a system is exponential in the number
of observable parameters. Therefore, to avoid the complexity of handling all of
them at run-time, several RTSs are clustered into a single system scenario. A
tradeoff is present here between optimisation quality and run-time overhead of the
scenario exploitation. At run-time, the RTS parameters are used to detect the
current scenario rather than the current RTS. In principle, the same knob position
is used for all the RTSs in a scenario, so they all have the same cost value: the
worst case of all the RTSs in the scenario. Therefore, it is best to cluster RTSs
which have nearby cost values. Since at run-time any RTS may be encountered,
it is necessary to design not one scenario but rather a scenario set. A scenario set
is a partitioning of all possible RTSs, i.e., each RTS must belong to exactly one
scenario.

The approach presented above is clear when the cost is one-dimensional, i.e.,
when one cost aspect dominates or when all the different cost aspects have been
combined in a normalized weighted sum. The latter is not always easy in practice
because “comparing apples and oranges” in a single dimension usually leads to
inconsistencies and suboptimal results. Hence, N -dimensional Pareto sets can be
used to specify the costs of a system scenario consisting of different RTSs instead
of a weighted one-dimensional cost. Such Pareto sets [Pareto 1906; Geilen et al.
2007] allow to work with a Pareto boundary between all feasible and all non-feasible
points in the N -dimensional cost space. The Pareto boundary (the Pareto points)
for all the possible RTSs that have been clustered into a scenario (and that can
potentially be encountered at run-time) characterizes the scenario. Unfortunately,
it becomes less obvious to deal with statements like “nearby cost values of RTSs”
or “taking the worst case of all the RTSs in the scenario”. So, similarity between
costs of different RTSs or in general sets of RTSs (scenarios) has to be substituted
by a new element, e.g., by defining the normalized, potentially weighted distance
between two N -dimensional Pareto sets as the size of an N -dimensional volume
that is present in between these two sets. Based on this distance value, closeness
of potential scenario options can be characterized, e.g., to decide whether or not to
distinguish scenarios. An example of such an N -dimensional cost space and how
to deal with it is provided in section 4.2. For more details, the reader is referred
to [Okabe et al. 2003; Ykman-Couvreur et al. 2005; Ykman-Couvreur et al. 2006].

3.2 Methodology Overview

Even though the system scenario concept is applicable to many contexts, we have
devised a general methodology that can be instantiated in all of these contexts.
This system scenario methodology and the presented generic solutions for some of
its steps deal with issues that are common: choosing a good scenario set, deciding

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, June 2008.



10 · A System Scenario based Approach to Dynamic Embedded Systems

Context

1. Identification 2. Prediction 3.Exploitation 4.Switching

D
e
s
ig
n
-t
im
e

R
u
n
-t
im
e Prediction Exploitation Information Gathering

Calibration
RTS parameter values and cost measurements

Switching

Optimized system 

scenarios + Predictor

System 

scenarios + Predictor

* + 

switching mechanism

System 

scenarios

System 

Selected

scenario
Knob 

Positions

5.Calibration

Final

system

(calibration time)

Fig. 5. The system scenario methodology overview.

which scenario to switch to (or not to switch), using the scenario to change the
system knobs, and updating the scenario set based on new information gathered at
run-time. This leads to a five step methodology (figure 5), each of the steps having
a design-time and a run-time phase. The first step, identification, is somewhat
special in this respect, in the sense that its run-time phase is merged into the
run-time phase of the final step, calibration.

(1) Identification of the scenario set: In this step, the relevant RTS parameters are
selected and the RTSs are clustered into scenarios. This clustering is based on
the cost tradeoffs of the RTSs, or an estimate thereof. The identification step
should take as much as possible into account the overhead costs introduced in
the system by the following steps of the methodology. As this is not easy to
achieve, an alternative solution is to refine the scenario identification (i.e., to
further cluster RTSs) during these steps. Section 3.3 discusses the identification
step in more detail.

(2) Prediction of the scenario: At run-time, a scenario has to be selected from the
scenario set based on the actual parameter values. This selection process is
referred to as scenario prediction. In the general case, the parameter values
may not be known before the RTS starts, so they may have to be estimated.
Prediction is not a trivial task: both the number of parameters and the number
of scenarios may be considerable, so a simple lookup in a list of scenarios
may not be feasible. The prediction incurs a certain run-time overhead, which
depends on the chosen scenario set. Therefore, the scenario set may be refined
based on the prediction overhead. Section 3.4 details the two decisions made
by this step at design-time: selection of the run-time prediction algorithm and
refinement of the scenario set.

(3) Exploitation of the scenario set: At design-time, the exploitation step is essen-
tially based on some optimization that is applied when no scenario approach is
applied. A scenario approach can simply be put on top of this optimization by
applying the optimization to each scenario of the scenario set separately. Using
the additional scenario information enables better optimization. At run-time,
the exploitation is in fact the execution of the scenario. Section 3.5 details the
common problems that should be handled during the exploitation step.

(4) Switching from one scenario to another: Switching is the act of changing the
system from one set of knob positions to another. This implies some overhead

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, June 2008.



S. V. Gheorghita et al. · 11

(e.g., time and energy), which may be large (e.g., when migrating a task from
one processor to another). Therefore, even when a certain scenario (different
from the current one) is predicted, it is not always a good idea to switch to it,
because the overhead may be larger than the gain. The switching step, detailed
in section 3.6, selects at design-time an algorithm that is used at run-time to
decide whether to switch or not. It also introduces into the application the
way how to change the knob positions, i.e., how to implement the switch, and
refines the scenario set by taking into account switching overhead.

(5) Calibration: The previous steps of our methodology make different choices
(e.g., scenario set, prediction algorithm) at design-time that depend very much
on the values that the RTS parameters typically have at run-time: it makes
no sense to support a certain scenario if in practice it (almost) never occurs.
To determine the typical values for the parameters, profiling augmented with
static analysis can be used. However, our ability to predict the actual run-time
environment, including the input data, is obviously limited. Therefore, we also
foresee support for infrequent calibration at run-time, which complements all
the methodology steps previously described. At design-time, information gath-
ering mechanisms are designed and added to the application. At run-time they
collect information about actual values of the parameters and the quality of the
resulting system (e.g., number of deadline misses). Besides this, a calibration
mechanism is introduced in the application. This is used to calibrate the cost
estimates, the set of scenarios, the values of the parameters used for scenario
prediction, and the knob positions. Calibration of the scenario set does not
take place continuously during run-time, but only sporadically, at calibration
time. Otherwise the overhead would obviously become too large. Also note
that calibration is not meaningful when quality constraints are hard. It can
only be applied if constraints are soft, or to optimize average-case behavior
in the absence of constraints (e.g., when optimizing memory usage for energy
reduction). Section 3.7 presents techniques for calibration.

In the following two paragraphs, we indicate intuitively why, in the design-time
part of the methodology, the steps have been ordered as proposed. In particular,
the reasoning behind this is based on a gradual pruning of the possible final scenario
decisions. First, during identification, RTS parameters are limited to the ones that
have a sufficient and observable cost impact on the final system. Then during
clustering, we select the parameters that are easiest to be controlled as the actual
system knobs and we cluster the corresponding RTSs based on similarity of cost
(and knob settings, if applicable). In this way, we ensure that the cost distance
between any two scenarios is maximized. This is needed because we have a clear
tradeoff between the gains by introducing more scenarios and the cost it involves.
This tradeoff leads to a further pruning of the search space for the most effective
final scenario decisions. In the prediction step, we have to limit the potentially most
usable scenarios to the ones that are also predictable at run-time with an affordable
overhead. Also here a global tradeoff between gain and cost (run-time prediction
overhead) is present. We cannot perform this second step of our method prior to
the identification step because we cannot estimate the prediction cost before we at
least have a good idea about the clustering of RTSs in scenarios. Note that the

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, June 2008.



12 · A System Scenario based Approach to Dynamic Embedded Systems

opposite is not true: the information of the prediction step is not essential to decide
on the clustering. This creates an asymmetrical relation which is the basis for the
split between the two steps (see also the constrained orthogonalization approach
in [Catthoor 2000]).

Only when we have decided how to perform the prediction, we can start the
exploitation of the resulting scenarios in the particular application domain (step
3). Indeed, we could already start the exploitation after having the first clustering
step, but that is not always efficient: the knowledge of the prediction cost will
give us more potential for making good exploitation decisions. In contrast, the
knowledge of the exploitation itself is not yet needed to make a good pruning choice
on the prediction related selection. Finally, in the proposed design trajectory, we
only decide on the scenario switching based on the actual overhead that is involved
in the switching. The latter is only known after we have decided how to exploit
the scenarios. The calibration step can be applied only when the rest of the steps
are already done, as information about the scenario set, and the prediction and
switching algorithms are needed to design the information gathering and calibration
mechanism. So every step of our design-time methodology is positioned at a location
where it has maximal impact but also where the required information to effectively
decide on it is available as much as possible. The proposed split up in steps and
order avoids phase coupling to a large extent. This avoids iteration on any of the
individual steps after completion of a subsequent step in the methodology, which
is a deliberate and important property of our generic design methodology.

The ordering of the steps at run-time follows the natural ordering of the various
activities as they are needed at run-time. The ordering is in line with the design-
time ordering with two exceptions. The first one was already mentioned. The
identification and calibration steps are integrated, because part of the run-time
calibration step may be to identify new scenarios, and no other means to identify
new scenarios at run-time are available. Furthermore, the order of switching and
exploitation is reversed when compared to the design-time order, as the run-time
switching prepares the system for the given exploitation.

The next subsections detail the various steps of the methodology, outlining
generic solutions whenever such solutions are available. The implementation of
predictors presented in section 3.4 and the calibration mechanisms of section 3.7
have not been published earlier. All the presented solutions have been fully auto-
mated, and are applied in the various case studies presented in section 4.

3.3 Identification

Before gaining the advantages that a scenario approach gives, it is necessary to
identify the different scenarios that group all possible RTSs. This identification
process happens in two phases, RTS parameter discovery and RTS clustering.

First, the interesting snapshot parameters are discovered. As mentioned before,
a snapshot contains all parameters as well as their values that characterize a certain
RTS. However, we are only interested in those parameters which have an impact on
the system’s behavior and execution cost. For example, interesting RTS parameters
for an audio-video system are the size of the video frame, and whether the audio
stream is mono or stereo.
ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, June 2008.



S. V. Gheorghita et al. · 13

The values of the selected parameters will be used to distinguish between the dif-
ferent RTSs, so two RTSs with the same snapshot are considered identical. However,
they may still have different actual cost values, due to a choice of the parameters
that does not precisely capture all the unique system behaviors. For example, two
RTSs with a different data-dependent loop bound have a different execution time,
but we consider them the same RTS if we are not observing that loop bound. When
we are also observing that loop bound, each number of iterations corresponds to
a different RTS. In the general case, a parameter selection that does not precisely
capture all the individual behaviors of a system may lead to RTSs with a set of
Pareto points in the multi-dimensional cost space as their actual (worst case) cost
values. Such a parameter selection may be due to an imperfect analysis or for
complexity reasons. However, it may also be deliberate, e.g., with the intention
to handle certain minor dynamic variations or configuration options (i.e., a choice
among different knob positions) entirely at run-time, or to create a hierarchy of
scenarios, where the variation within one scenario at a certain hierarchical level is
handled by another set of (sub-)scenarios.

Second, following the parameter discovery, all possible RTSs are clustered into
system scenarios based upon a multi-objective cost function. The multi-objective
cost function is dependent on the specific optimization and the system knobs we
have in mind for the exploitation step. For the H.264 decoder presented in section 2,
which targets a single-processor platform, we aim at reducing energy by applying
DVFS and so we need accurate cycle-budget estimations for decoding the frames.
The objective function in this case is one-dimensional and it is represented by the
cycle budget needed for decoding each frame. (Note that the decoding of a frame
was considered the RTS in this example.) For multi-media applications running
on a multi-processor platform, the cost is typically multi-dimensional, including
for example cycle budgets per processor, the derived frame decoding times and,
when aiming at power optimization, derived power budgets. Whereas the knob for
configuring a single-processor system for power optimization via DFVS is simply a
single frequency setting, the knobs in a multi-processor system may potentially in-
clude configuration options of the various processors, the interconnect, the memory
hierarchy, and other platform components. The RTS clustering into scenarios needs
to take both cost and knob settings into account, to guarantee that only RTSs with
compatible knob settings and similar costs are clustered into a single scenario.

The remaining part of this section details the two phases of the identification
process.

3.3.1 RTS Parameter Discovery. In related work done so far, usually, param-
eter discovery is done in an ad-hoc manual manner by the system designer, by
analyzing the application and profiting from domain knowledge. This is fine when
all the important parameters are immediately obvious, such as the frame size in a
video decoder. However, this process might prove tedious and incomplete for com-
plex systems, as parameters that may have a large impact on the system behavior
might go unnoticed. Developing a fully general tool that discovers the interest-
ing parameters for all the design approaches where scenarios may be applied is
hard, maybe even impossible, to realize due to the diversity of cost functions and
optimization objectives. Therefore, we have developed a quite broadly applicable

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, June 2008.



14 · A System Scenario based Approach to Dynamic Embedded Systems

Original 

application 

source code

Trace 

information

Remove profile 

instructions & 

extend bitstream

NO
Is trace clean 

& complete?

YES  

Instrumented 

application

Compile 

&

Execute

Instrument 

with profile 

instructions

Training 

bitstream

Trace analyzer

RTS 

snapshots

RTS 

parameters
Statically identified 

RTS paramters

Fig. 6. RTS parameter identification approach.

domain-specific approach that is presented in the remaining part of this subsection.
Our tool searches for control variables in the application source code that have

a certain impact on the application resource requirements (e.g., number of cycles,
memory utilization). These parameters fulfill the two requirements for selection:
they are observable and they influence the application’s behavior and cost (i.e.,
the resource needs). A first version of this tool [Gheorghita et al. 2005] statically
analyzes the application source code to identify these variables. It is applicable
for hard (real-time) constraints, due to the conservative analysis. In [Gheorghita
et al. 2008b], a version applicable for soft real-time systems is presented. It profiles
the application, and it uses the collected information for eliminating those control
variables whose values do not have a real impact on system cost.

Our profiling based approach, detailed in figure 6, starts from the application
source code which is then instrumented with profile instructions for all read and
write operations on the statically identified variables. The instrumented code is
then compiled and executed on (the initial part of) a training bitstream and the
resulting program trace is collected and analyzed. The trace analyzer identifies
the variables which do not have a large influence on the application behavior using
different heuristics (e.g., it identifies the instructions that read and write to a large
number of variables, which resembles an array-like access pattern; the accessed
variables are considered to be data variables which have a small influence on the
system behavior). In the next iteration, the instrumentation for these variables is
removed and the application is executed on a larger part of the training sequence.
This procedure is repeated until the entire sequence is processed and the trace
analyzer does not dismiss any more variables. In each step of the design, and
at each iteration, manual intervention is possible, but not necessary, to steer the
decision process. The final result of this automated discovery is thus a list of
relevant RTS parameters. During the profiling step it is of course possible to collect
additional information such as the met RTSs identified by their snapshot, together
with their cost. This information is then used in the RTS clustering step. However,
finding a representative training bitstream that covers most of the behaviors that
may appear during the system life-time, particularly including the most frequent
ones, is in general a difficult problem. Hence, in contrast with analysis based
identification that covers all possible RTSs, the profiling based identification is not
conservative. It can happen that, at run-time, when the system runs, an RTS
ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, June 2008.



S. V. Gheorghita et al. · 15

that was not considered during identification is met. Therefore, a way of handling
this situation should be added in the final implementation of the system. The
calibration step in our method (see section 3.7) has been included for this reason,
among others. Experiments show that the combination of profiling based parameter
discovery and calibration is quite robust (see section 4.1), alleviating the problem
of finding representative training sets and reducing the time needed for training.

3.3.2 RTS Clustering. Using the discovered RTS parameters, all identified RTSs
are clustered into a set of system scenarios. For each RTS, in the most general case,
we have a Pareto surface of potential exploitation points in the multi-dimensional
exploration space. The clustering is done based upon a multi-objective cost func-
tion which is related to the specific optimization we want to apply to the system.
Hence, the clustering searches for RTSs with similar Pareto surfaces. It starts
from RTS snapshots and generates a set of scenarios, each of the scenarios being
identified by a set of snapshots. The clustering takes into account the following
information: (i) how often and for how long each RTS occurs at run-time, (ii) the
cost deviation that occurs when clustering multiple RTSs into a single scenario, (iii)
how many switches occur between each pair of scenarios, and (iv) the run-time sce-
nario prediction, storage and switching overhead. It furthermore has to make sure
that knob settings for the RTSs clustered in a single scenario are compatible. Hav-
ing a multi-dimensional cost function means that both the inherent scenario costs
and the switching cost becomes multi-dimensional also. Creating a good scenario
set under these constraints can be formulated as an N -dimensional optimization
problem. However, this optimization problem does not have a general practically
executable solution, so heuristics need to be developed.

When clustering different RTSs into a scenario, we determine the cost of the
scenario as the maximal cost of the RTSs that compose the scenario (which in a
multi-dimensional cost space results in a Pareto surface). The clustering process is
driven by two opposing forces. One force drives towards a large number of scenarios
that contain a few RTSs, the extreme being each scenario to contain only one RTS,
by only grouping RTSs with similar cost together, so that the estimated deviation
between the cost value of an RTS and the cost of the scenario remains small. It
uses the information from items (i) and (ii) of the list above. The other force takes
into account the overheads (items (iii) and (iv) of the above list) introduced by
the existence of a large number of scenarios, and it aims to decrease the number of
scenarios by increasing their size in the number of contained RTSs.

Since the application does not remain in the same scenario forever, the switching
overhead has to be taken into account. This overhead usually has effects on the
cost function (e.g., scaling frequency and voltage of the processor costs both time
and energy). So, depending on how large the switching overhead is, the aim is to
reduce the number of scenario switches that appear at run-time. Taking this into
account, the two forces identified above have to generate a tradeoff by clustering
together into a scenario, not only RTSs with similar cost, but also the ones between
which many switches appear at run-time.

The storage overhead of scenarios is strongly dependent on the kind of optimiza-
tions that are applied in the exploitation step. For example, in the H.264 decoder
presented in section 2, a table has to be kept which maps the different scenarios

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, June 2008.



16 · A System Scenario based Approach to Dynamic Embedded Systems

Scenario 1

Scenario 2

Scenario 1

Scenario 2

Boundary 1 (rare)

Boundary 2 (frequent)

Boundary 3 (rare)

Boundary 4 (frequent)

Cost 1

Cost 2

Cost 1

Cost 2

Boundary 1
Boundary 2

Boundary 3

(a) (b)

Fig. 7. Examples of RTS clustering.

to the optimal frequency-voltage pair. When the number of scenarios increases so
does the size of this table, but the overhead per scenario will be small. On the other
hand, in the case study presented in section 4.2, when optimized code is generated
for each separate scenario, the overhead for storing this scenario-specific code is
rather large.

Finally, since the scenarios need to be predicted at run-time, there is also the
scenario predictor to consider. If the amount of scenarios increases, it will result in
a larger and perhaps slower predictor. Also, the probability of a faulty prediction
may increase with the number of possible scenarios.

Figure 7(a) depicts a clustering example with a two-dimensional cost function.
Each RTS is represented by a (two-dimensional) Pareto boundary which represents
different RTS knob configurations. Usually, the RTSs with similar Pareto bound-
aries are clustered to one scenario at design-time. Thus, the distance between two
Pareto boundaries determines which ones to cluster. The cluster is then repre-
sented by its worst-case Pareto boundary. Based on this criterion, boundaries 1
and 2 are clustered in figure 7(a), forming the first scenario. Boundary 3 forms
alone the second scenario. As already mentioned, apart from the distance also the
frequency of occurrence is important. If a very frequent RTS is clustered with a
very rare one, which has a worse Pareto boundary, this scenario and all RTSs in
this scenario inherit the worse, rare Pareto boundary. In such a case, it is better to
cluster the frequent Pareto boundaries with better rare Pareto boundaries so that
the frequent Pareto boundary represents the created scenario. This is depicted in
figure 7(b). This analysis and clustering is done at design-time. At run-time, the
appropriate scenario with its Pareto boundary is identified and a concrete Pareto
point is selected related to a specific knob configuration.

3.4 Prediction

This step aims at deriving a predictor, which can determine at run-time the ap-
propriate scenario in which the system executes. It starts from the information
collected in the identification step. Just as this parameter identification step, sce-
nario prediction can be solved in a rather generic way that is widely applicable.
The resulting predictor mainly bases its decision on the values of the RTS param-
eters. Moreover, it has to be flexible (e.g., to have a structure that can be easily
modified during the calibration phase) and to add a small decision overhead in the
final system. We can define it as a prediction function:

f : Ω1 × Ω2 × ...× Ωn → {1, .., m}, (1)
ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, June 2008.



S. V. Gheorghita et al. · 17

where n is the number of RTS parameters, Ωk is the set of all possible values of
the parameter ξk (including ∼ that represents undefined) and m is the number
of scenarios in which the system was divided. The function f maps each RTS i,
based on the parameter values ξk(i) associated with it, to the scenario to which
the RTS belongs. If at run-time an RTS occurs that was not considered during the
identification phase (e.g., because it was not met during profiling), it is mapped to
the scenario that can deal even with the worst-case situation, the so-called backup
scenario. If any optimization takes place, it is based on a worst-case analysis at
design-time.

A predictor based only on the prediction function approach can be applied only
after all the parameter values are known. If the identification was done in a conser-
vative mode, which covers all possible RTSs that may appear at run-time, the pre-
diction accuracy will be 100%, and we can speak about scenario detection. Waiting
until all the parameter values are known at run-time may postpone the prediction
moment unnecessarily long, and the scenario may be predicted too late to still
profit maximally from the applied optimization. To handle this problem, multiple
approaches may be considered (not necessarily in isolation), like (i) reducing or
changing the set of considered parameters, and (ii) combining the prediction func-
tion with pure probabilistic prediction. In the first approach, we search for the set
of parameters that can be used to identify the set of predictable scenarios that gives
the highest gain, taking into the account the moment when they can be predicted
at run-time. In the second case, the scenario prediction point may be moved to an
earlier point in time by augmenting the prediction function with a mechanism that
selects from the possible set of scenarios predicted by the function, the one with
highest probability. For example, the mechanism may use advanced phase predic-
tors [Vandeputte et al. 2005]. Using the probabilistic approach, the miss-prediction
may increase. It is of two types: (i) over-prediction, when a scenario with a larger
(multi-dimensional) cost is selected, and (ii) under-prediction, when a scenario with
smaller (multi-dimensional) cost is selected. The first type does not produce critical
effects, just leading to a less cost effective system; the second type often reduces
the system quality, e.g., by increasing the number of deadline misses for the H.264
decoder.

The place where the prediction function is introduced into the application, is
called a scenario prediction point. From a structural point of view, considering the
number of times and the places where the prediction function is introduced into
the application, the predictors can be classified as follows:

—Centralized : There is only one central point in the application where the current
scenario is predicted. It is inserted in the application code in a common place
that appears in all scenarios. For example, in the case of the application model
presented in figure 8(a), it is introduced in the main loop, after the read part,
when all the information necessary to predict the current scenario is known.

—Distributed : There are multiple scenario prediction points, which may be:
—Exclusive points: An identical (or tuned) prediction function is introduced

multiple times into the application, in all the places where the RTS parameter
values are known. At run-time, only one point from the set is executed in
each RTS. This kind of predictor solves the problem that there may be no

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, June 2008.



18 · A System Scenario based Approach to Dynamic Embedded Systems

Ker1

Read 

object

Write 

object

Ker2

Ker4

Ker3
Ker5

a) centralized predictor

Ker1

Read 

object

Write 

object

Ker2

Ker4

Ker3
Ker5

b) distributed predictor 

with exclusive points

Ker1

Read 

object

Write 

object

Ker2

Ker4

Ker3
Ker5

c) distributed predictor 

with refinement points

Kerx Application kernelScenario prediction point

1

2

1

2

Predicted scenario(s)[x]

[x]

[x]

[x]

[x,y]

RTS

Fig. 8. Types of scenario prediction.

common place in all scenarios, where a centralized predictor may be inserted.
Figure 8(b) depicts a case where one of two prediction points is being executed
for different RTSs.

—Refinement points: Multiple points, which work as a hierarchy, are used to
predict the current scenario in a loop iteration; the first that is met at run-
time predicts a set of possible scenarios, and the following refine the set until
only one scenario remains. This extension can improve the efficiency of opti-
mizations as earlier switching between scenarios may be done, but it increases
the number of switches. Hence, a tradeoff should be considered when using
it, which depends on the problem at hand. This is actually a very similar
problem tradeoff as the one for the RTS clustering substep. Hence, we believe
that also here a similar set of heuristic algorithms can be reused. Usually,
when switching between scenarios after a refinement predictor, the new sce-
nario may be the scenario with the worst case cost from the remaining set of
scenarios. However, the probabilistic approach presented above could also be
used to select the scenario to which to switch. For the example depicted in
figure 8(c), considering the scenario that executes kernels two, three and five,
in the first scenario prediction point the set containing scenarios x and y is
selected. Then, in the second scenario prediction point, the set is refined to
only one scenario, x.

A generic implementation of a prediction function f , which incorporates require-
ments like flexibility and small overhead, is a multi-valued decision diagram [We-
gener 2000], which consists of a directed acyclic graph G = (V,E) and a labeling
of the nodes and edges. The sink nodes get labels from 1, ..,m and the inner (non-
sink) nodes get labels from ξ1, ..., ξn. Each inner node labeled with ξk has a number
of outgoing edges equal to the number of the different values ξk(i) that appear for
ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, June 2008.



S. V. Gheorghita et al. · 19

sink nodesource node inner node

other edge to the backup scenario

2

1

2

3
5
2

7
0
4

12

4

o
th
e
r
o
th
e
r

oth
er

1
2

2

o
th
e
r

1: JEQ 1, 1, 4

2: JEQ 1, 2, 7

3: SBK 1

4: SEQ 3, 2, 2

5: SEQ 3, 12, 1

6: SBK 1

7: ...

Fig. 9. An example of a decision diagram and its implementation.

op variable-id value data Description

JEQ <var> <val> <address> Jump to <address> if <var> is equal to <val>
JL <var> <val> <address> Jump to <address> if <var> is less than <val>
JMP - - <address> Unconditional jump to <address>
SEQ <var> <val> <scenario> Predict <scenario> if <var> is equal to <val>
SLE <var> <val> <scenario> Predict <scenario> if <var> is less or equal to <val>
SBK - - <scenario> Predict <scenario> as a backup scenario

Table I. Instruction set used in predictor implementation.

RTS parameter ξk during the identification phase plus an edge labeled with other
that leads directly to the backup scenario. Only one inner node without incoming
edges exists in V , which is the source node of the diagram, and from which the di-
agram evaluation always starts. On each path from the source node to a sink node
each RTS parameter ξk occurs at most once. A simplified example of a decision
diagram for the motion compensation kernel from the H.264 video decoder is shown
in figure 9. When a prediction function is used, it introduces two overheads: (i)
code size and (ii) average run-time evaluation cost. Also this is similar to the RTS
clustering substep. In the proposed solution, both depend on the decision diagram
size (number of nodes and edges). Hence, reducing its size, the overheads decrease.
However, the applied reduction rules may affect the prediction quality, especially
for the RTSs that were not considered during the identification step (because for
these RTSs, a different scenario may be predicted instead of the backup scenario).
A few reduction rules are analyzed in [Gheorghita et al. 2008b]. Note that these
reductions may render certain RTS parameters redundant, which happens if they
do no longer occur in the final predictor. Also note that, conceptually, decision
diagram transformations are scenario refinements, because a transformation affects
the parameter value ranges characterizing a scenario.

We propose to implement decision diagrams as a program in a restricted pro-
gramming language. The language is specified in table I and an example of its use
is given in figure 9. The program implementing a decision diagram is represented by

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, June 2008.



20 · A System Scenario based Approach to Dynamic Embedded Systems

predictScenario(HashTable values,Vector dd)

1 pc ← 1
2 while true
3 do value ← values[dd[pc].variable-id]
4 if (dd[pc].op = jeq and value = dd[pc].value) or

(dd[pc].op = jl and value < dd[pc].value) or (dd[pc].op = jmp)
5 then pc ← dd[pc].data
6 elseif (dd[pc].op = seq and value = dd[pc].value) or

(dd[pc].op = sle and value ≤ dd[pc].value) or (dd[pc].op = sbk)
7 then return dd[pc].data
8 else pc ++

Fig. 10. Decision diagram execution engine.

a data array in the application source code and it is executed by a simple execution
engine, given in figure 10 and explained below. The proposed implementation has
very little overhead and it allows an easy calibration of the decision diagram, by
changing the values of appropriate array elements.

The language defined in table I allows to implement each edge of a decision
diagram by one instruction, by using (i) a JEQ instruction if its destination node is
labeled with a variable name, or (ii) a SEQ instruction if it is not labeled other and
its destination node is labeled with a scenario name, or (iii) a SBK instruction if it is
an other labeled edge. To reduce implementation costs, a group of adjacent edges
that have a common destination can be implemented using only two instructions,
using the JL and SLE instructions. The JMP instruction is used for calibration, as
explained below.

The program that represents the decision diagram is executed by the execution
engine presented in figure 10. This engine receives as input parameters a hash table
(values) containing the pairs variable/value for the current RTS, and a vector (dd)
containing the program that has to be executed. Each vector element represents
an instruction. The position of the instruction to be executed is kept in the pro-
gram counter pc, which is initialized to start with the first program instruction
(line 1). The program execution ends only when an instruction that sets a scenario
is executed and its condition, if present, evaluates to true (lines 6-7). If a jump
instruction is met and its condition evaluates to true, the next instruction to be
executed is determined by the data field of the current jump instruction (lines 4-5).
Otherwise, if no condition evaluates to true, the program counter is set such that
the next sequential instruction will be executed (line 8).

In conclusion, the above has detailed a generic form and implementation of sce-
nario predictors, that is flexible and well suited for calibration, as explained in more
detail in section 3.7. We end this section by mentioning several other aspects that
may be addressed during the prediction step at design-time. The prediction step
may cover the following actions: (i) a further clustering of scenarios considering
the prediction overhead and the moment when the scenario may be predicted, (ii)
possibly, a further pruning of the RTS parameters, (iii) clustering of previously
unassigned RTSs (i.e., the ones that were not met during the identification pro-
cess) into scenarios, and (iv) defining and placing the prediction mechanism into
the application, by trading off prediction accuracy versus overhead, which influence
the final system cost and quality.
ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, June 2008.



S. V. Gheorghita et al. · 21

Kernel 1 optimized Kernel 3 optimized

Kernel 1

Kernel 2

Kernel 3
Read 

frame
Write 

frame

internal state

Input bitstream: Periodic 

Consumer

Scenario 1

Scenario 2

Kernel 3Kernel 1 optimized

Kernel 2 optimized

Source code size

Kernel 1 optimized

Kernel 1 optimized

Scen. 1 suboptimal

Scen. 1 optimal

Scen. 2 optimal

Scen. 1 suboptimal + Scen. 2 optimal

Scen. 1 optimal + Scen. 2 optimal

Kernel 3

Kernel 3

Kernel 3 optimized Kernel 2 optimized

Kernel 2 optimized

Kernel 3

Energy 

Fig. 11. Scenario source code merging.

3.5 Exploitation

The exploitation step in the scenario methodology is very dependent on the con-
text in which scenarios are applied. Nevertheless, some general aspects to be kept
in mind can be mentioned. Exploitation in the context of the scenario method-
ology should be refined in two ways, to a large extent independently of the type
of exploitation. First, optimizing each scenario in isolation might be inefficient.
There is a strong correlation between the analysis and the optimization choices of
the different scenarios, so the optimization of a scenario can be performed more
efficiently by reusing information from other scenarios. Second, separate optimiza-
tion for each scenario leads to separate systems. Simply putting all these next to
each other could imply a huge overhead. Therefore, whatever is common between
different scenarios should be merged together, e.g., by using code compaction tech-
niques [Debray et al. 2002; De Sutter et al. 2006]. The remaining differences cause
exploitation overhead, which should be taken into account to further refine the
scenario set. Some optimizations that are suboptimal for an individual scenario,
might be optimal from the system cost perspective when considering exploitation
overhead. How difficult it is to simultaneously optimize scenarios depends on the
context. As an example, figure 11 depicts an application with two scenarios: sce-
nario 1 for the case where kernels 1 and 3 are executed, and scenario 2 for the case
where kernels 2 and 3 are executed. To optimize the application for energy, a com-
piler may optimize each scenario separately to reduce the number of computation
cycles. Assume that the energy-optimal exploitation of each scenario is, for scenario
1, to optimize both kernels 1 and 3, and, for scenario 2, to optimize only kernel 2,
kernel 3 already being energy optimal for this scenario. Combining these two op-
timal scenario exploitations, the application source code contains code for kernel 3
twice (once optimized for scenario 1, and once untouched, as used in scenario 2). If
the energy overhead introduced by storing the two versions of kernel 3 is large, the
energy-optimal system might be obtained by using a suboptimal version of scenario
1, as presented in figure 11. This version uses the original implementation of kernel

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, June 2008.



22 · A System Scenario based Approach to Dynamic Embedded Systems

3, so no code duplication for this kernel is needed in the final implementation of
the application.

Both mentioned exploitation refinements for scenarios are specific to the type of
optimization that is performed, so exploitation cannot really be fully generalized,
illustrative examples being given in the literature overview of section 5 and the case
studies of section 4.

3.6 Switching

A system execution is a sequence of RTSs, and therefore a sequence of scenarios. At
the border between two scenarios during execution, switching occurs. For executing
this switch at run-time, at design-time a mechanism is derived and introduced into
the system. The switching decision and process (changing the knob positions)
may incur overhead, which is taken into account to further refine the scenario set.
Moreover, it is also taken into account at run-time to decide whether or not to
switch to a different scenario, together with other information (i.e., the sequence of
previous and possible following RTSs). The expected gain times the expected time
window where the scenario is applicable has to be compared to the exploitation
cost, as already mentioned. The structure of this switching mechanism should be
flexible enough to allow it to be calibrated.

Even if the switching overhead is exploitation dependent, our methodology treats
this overhead in a general way. It uses the scenario cost versus overhead reports
(e.g., energy, time) together with the information about how often a switch between
two given scenarios appears at run-time, to avoid spending most of the system’s
running time on switching between scenarios, instead of on doing relevant work.
For our H.264 example from section 2, the switching operation adjusts the supply
voltage and processor frequency. Its overhead in time and energy depends on the
implementation. Using the hardware circuit presented in [Burd et al. 2000] for
switching, the overhead measured in time is up to 70µs and in energy up to 4µJ .
These overheads affect both the final system cost (e.g., more energy consumption)
and its run-time properties (e.g., more deadline misses because of time overhead).
It is important to compare the time overhead with the minimum time the system
stays in a scenario, which is equal to the required period between two consecutive
frames (or smaller due to late scenario prediction). For a throughput of 30 frames
per second, a switch may be acceptable between each pair of consecutive frames,
as the overhead represents up to 0.2% of the time (70µs out of 33ms). On the
other hand, for an application with for example 2500 RTSs per second, the switch
overhead per frame represents 20% of the time, so the switches should be quite
rare. Another illustration of the very small overhead of the run-time controller is
reported in [Yang and Catthoor 2003].

The way how the exploitation step encodes the scenarios into the system affects
the switching cost. As we already mentioned, in the H.264 example, for each sce-
nario a frequency-voltage pair is stored. However, for other exploitation examples,
like the one presented in section 4.2, a copy of the source code for each scenario
should be stored. These copies introduce large supplementary costs into the final
system for each added scenario, and limit the total number of scenarios. The tech-
nique presented in section 4.2 can find a scenario set which achieves the best data
memory optimization for the given instruction memory overhead. For a scenario
ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, June 2008.



S. V. Gheorghita et al. · 23

that is rarely activated, its source code may be kept in a compressed version to re-
duce the storage cost, but as a decompression is done when the scenario is enabled,
this increases the switching overhead.

Thus, the overhead for switching between two scenarios depends on what the run-
time switching implies, and the scenarios between which the application switches.
The switching overhead affects both the final system cost (e.g., more energy con-
sumption) and its run-time properties (e.g., more deadline misses because of time
overhead). In the switching step at design-time, in parallel with deriving the switch-
ing mechanism, the set of scenarios, and consequently the predictor, may need to
be adapted. This adaptation takes into account the cost of each scenario, how often
the switch between each pair of scenarios appears at run-time and how expensive it
is. Two scenarios that were considered separately so far but which have a relatively
close cost, and between which the system switches very often at run-time might be
merged in a scenario with the worst case cost among them.

The time overhead introduced by switching may cause undesired side-effects in a
system, such as deadline misses in an H.264 decoder. Besides system and context
dependent ways of handling such side-effects (e.g., an H.264 decoder may display
the previous frame again if the deadline for the current frame is missed), we looked
at a general way for minimizing the side-effects that are caused by the time overhead
introduced by the switching mechanism. The most conservative way to handle this
overhead is to reserve time in each scenario, considering that the scenario is always
activated for only one RTS in a row and taking into account the largest switching
time that may appear. This approach might be very expensive, in which case it is
a viable solution only for systems that require hard guarantees. For systems where
more freedom is acceptable, in each scenario, we may reserve time considering the
switching time overhead averaged over the typical number of subsequent RTSs spent
in a scenario, and the possible over-estimation in timing requirements that exist in
the scenario. Such an over-estimation appears because for all RTSs clustered into
a scenario, their worst case cost is considered always when the scenario appears.
Moreover, buffers exist in almost all modern systems, such as an output buffer
in a video decoding system, which potentially can be used to compensate for the
overhead variations that appear at run-time.

3.7 Calibration

The previous presented steps of our methodology make different design-time choices
(e.g., scenario set, prediction algorithm) that depend very much on the possible val-
ues of RTS parameters, typically derived using profiling. This approach is obviously
limited by our ability to predict the actual run-time environment, including the in-
put data. It may lead to run-time problems, like encountering an RTS that was not
considered in the design-time choices, or an RTS with a higher cost than the one
of the scenario to which it is predicted to belong. The first case appears when an
RTS occurs at run-time of which the snapshot was not met during the identification
step. In the second case, its snapshot was considered during the identification step,
but the worst case cost observed for that snapshot is smaller than the actual cost
of this RTS. This is also related to a possibly imperfect choice of the parameters
or simplification of the predictor. Therefore, calibration can be used at run-time
to complement the methodology steps previously presented. And even if RTS pa-

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, June 2008.



24 · A System Scenario based Approach to Dynamic Embedded Systems

rameters guarantee correct prediction and costs are conservative, calibration can
be useful to exploit for example a situation in which low cost RTSs occur for long
periods of time in a row.

At run-time, information is collected about actual values of the RTS parame-
ters, the predicted scenario, the decisions taken by the switching mechanism, the
measured cost for each scenario prediction and the quality of the resulting system
(e.g., the number of deadline misses). Both the execution cycles of the collecting
process and the amount of stored information should be small as the collection is
executed for each RTS. To keep the overhead limited, the calibration mechanism
therefore has access to only a limited amount of information. Moreover, it should
be implemented as a low complexity algorithm.

Periodically, sporadically (e.g., when time slack is found into the system), or in
critical situations (e.g., when the system quality is too low due to a certain number
of missed deadlines), the calibration mechanism is enabled. Based on the collected
information, it may (i) change the ranges of parameter values and knob positions
that characterize each scenario, and (ii) adapt the scenario set by clustering exist-
ing scenarios or introducing new ones. In these cases, the prediction, and maybe
the switching mechanism have to be adapted as well. However, during the calibra-
tion, no new parameters or knobs are added, because this leads to a complicated
and expensive process, as to exploit the new parameters the predictor should be
redesigned and for the new knobs the scenario exploitation step should be redone.

Depending on the optimization applied in the exploitation step, the most com-
mon operations in the two above mentioned categories that can be done efficiently
considering the calibration’s limited processing and storage budgets are:

(1) To consider new RTSs that were not considered at design-time, and to map
them to the scenario where they fit the best, based on the cost function, or to
a new scenario. In this case, the predictor and the switching mechanism are
also extended. As the complexity of the extension algorithm should be low, the
resulting predictor will in general not be as efficient as if a new predictor were
derived from scratch taking into account these new RTSs. Moreover, because
an explosion in scenario storage has to be avoided, not for each RTS a new
scenario can be created, but only for the ones which appear frequently enough
to be promising for our final objective or problematic in terms of system quality.

(2) To increase the actual cost of a scenario, based on its RTSs observed at run-
time. This case may appear because the RTSs are defined using a limited set
of parameters, and it is possible that there exist multiple equivalent RTSs with
different cost and only the cheaper ones were considered at design time. The
same problem may occur also when prediction quality is low, if many RTSs
are incorrectly predicted to belong to a scenario with a cost that is too low
(under-prediction).

(3) To increase the cost of some or all scenarios, because the run-time overhead
introduced by related scenario mechanisms (e.g., prediction) is higher than
anticipated. The same problem appears when the run-time overhead variations
are too high and the buffering in the system can not handle those variations.
These cases are related to the fact that the input data and the environment in
which the system runs is an extreme case (e.g., a lot of scenario switches), and

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, June 2008.



S. V. Gheorghita et al. · 25

calibration(int RTSCounter , ...)

1 informationGathering()
2 smallAdaptations()
3 for i ← 1 to noCriticalCalibrations
4 do if (RTSCounter − cCalib[i].lastActivation > cCalib[i].period)
5 then cCalib[i].fn(...)
6 cCalib[i].lastActivation ← RTSCounter
7 for i ← 1 to noNonCriticalCalibrations
8 do if (RTSCounter −nCalib[i].lastActivation > nCalib[i].period)
9 then if enoughSlack(nCalib[i].wcec)

10 then nCalib[i].fn(...)
11 nCalib[i].lastActivation ← RTSCounter

Fig. 12. Calibration structure.

the system was dimensioned for the average case.
(4) To decrease the cost of a scenario, when only the RTSs with a low cost from

that scenario actually appear at run-time. This improves our system cost (e.g.,
reducing energy), but potentially affects system quality negatively when RTSs
with a higher cost occur. To maintain system quality, the cost may be increased
again via the mechanism described in item two of this list, or by monitoring
the scenario, the scenario cost may be reset to the value that it had before
calibration when one or a few of its RTSs with a higher measured cost than the
current scenario cost occur.

As an example of the introduction of a new scenario, consider the predictor
decision diagram and its implementation given in figure 9. Assume a new scenario
3 is defined for the case that variable ξ1 has value 7. This can be incorporated in the
implementation of the diagram by changing line 3 into a jmp x instruction to jump
to some given line x corresponding to an empty entry in the array implementing
the decision diagram. Line x is then set to seq 1, 7, 3 and line x+1 to SBK 1. In
this way, every newly introduced scenario corresponds to two lines in the program
implementing the decision diagram. This is not the most concise representation,
but it is very simple to implement, very simple to revert, if necessary, and it allows
to reserve space in the decision diagram implementation for a fixed number of new
scenarios to be added at run-time.

All the operations presented above have the role to control and to guarantee the
system quality, and to further improve our objective (i.e., to reduce the system cost)
by exploiting the information collected at run-time. Our implementation inserts in
the final application some calibration code in line with the structure presented in
figure 12. This code is executed immediately after each RTS was executed. While
the information gathering (line 1) and the small adaptations (line 2) are executed for
each RTS, the different calibration algorithms are executed periodically (lines 3-11)
to limit the introduced overhead and to give a chance to the system to become stable
between two consecutive calibrations. The small adaptations are low complexity
algorithms which are enabled usually when (i) severe quality problems occur, and
the adaptation cannot be delayed as the problems will really bother the end user, or
(ii) collecting and storing the information for a later calibration is more expensive
than executing the calibration on the spot. Moreover, these adaptation algorithms
usually update the currently selected scenario, while the calibration algorithms

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, June 2008.



26 · A System Scenario based Approach to Dynamic Embedded Systems

examine and calibrate all possible scenarios of the system.
To avoid introducing too much processing overhead in the processing of one

RTS, each calibration algorithm has a different activation period. Moreover, the
algorithms are divided in two categories: (i) critical algorithms (lines 3-6) and
(ii) non-critical algorithms (lines 7-11). The critical ones usually deal with the
application constraints (e.g., deadlines or image quality), and are executed with an
exact period. The non-critical ones deal with runtime tuning for cost reduction,
and they can be postponed until enough slack remains after processing an RTS,
such that their execution will certainly not result in a quality degradation.

Observe that for items (2) and (4) in the above list of calibration operations,
especially the predictive modeling required for the final platform is becoming a
major source of uncertainty. That is due to the ongoing deep-submicron technology
scaling which introduces strong process variability and reliability (degradation due
to aging) effects. These effects can only be calibrated for at run-time, and the
procedures described above allows for that.

For our H.264 example, a non-critical periodic calibration creates new scenarios
when so far unseen frame macroblock breakups appear at run-time, and for each
scenario sets the frequency-voltage pair based on the measured computation cycles
required to decode that frame. When a given maximum number of scenarios has
been reached, each time a new scenario needs to be introduced, one of the earlier
introduced scenarios is removed again (using some heuristic to select that scenario).
Moreover, another non-critical periodic calibration checks for the case when a large
difference in computation cycles appears between the amount reserved for a scenario
and the measured amount for all RTSs characterized to be in that scenario, so
the frequency-voltage pair is modified to reduce the system energy consumption.
However, when this adapted scenario introduces missed deadlines, the pair is reset
to its initial value by a small adaption that is run for each RTS.

4. CASE STUDIES

In this section, we present an overview of the case studies we performed and which
fit within the umbrella of the scenario methodology. Table II summarizes their
contributions in each of the methodology steps. As all of these case studies were
already published, in this paper, we emphasize only how the scenarios were de-
fined, identified and used to reduce the system cost in each specific case. For each
case, we show also how effective our approach was, by quantifying the final system
improvements.

``````````Step
Case study

4.1 4.2 4.3 4.4

Identification X X X X
Prediction X x x X
Exploitation x X X X
Switching x x x x
Calibration X ∼ ∼ x

Legend
X large contribution
x small contribution
∼ not implemented

Table II. Methodology steps: implementation in case studies.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, June 2008.



S. V. Gheorghita et al. · 27

Kernel 1

Kernel 2

Kernel 3

Kernel 4

Read 

object

Write 

object

 header 

internal state

Input bitstream:

header dataheader data …

object

Scenario Signature
P
re
d
ic
to
r

C
a
li
b
ra
ti
o
n

buffer

Periodic 

Consumer

fr
e
q
s
w
it
c
h

bypass

S
w
it
c
h
in
g

Fig. 13. Final implementation for the streaming application.

4.1 Energy Reduction via a Proactive DVFS-aware Scheduler

In [Gheorghita et al. 2008b], we have presented a general toolflow that can be
applied to streaming applications to reduce their energy consumption by taking
advantage of the DVFS mechanism available in modern processors. In this work,
we aim at applications that are often implemented as a main loop, called the loop of
interest, that is executed over and over again, reading, processing and writing out
individual stream objects (e.g., the H.264 video decoder presented in figure 4). Each
iteration of the loop of interest has a time constraint due to the throughput required
by the system (usually specified by a standard). The actions executed during a loop
iteration form an RTS. If in the beginning of each iteration of the loop of interest the
number of required computation cycles is known, this information can be exploited
to switch the processor frequency to the level that delivers the right performance
to process the streaming object just in time.

To identify the RTS parameters, our toolflow uses the tool presented in sec-
tion 3.3.1. The scenarios are derived by clustering the identified RTSs using as a
cost function the required cycle budget. Besides taking into account all the impor-
tant ingredients, like for example how often scenarios occur at run-time and the
introduced cycle-budget over-estimation within a scenario, we consider for our clus-
tering also the fact that the processor supply voltage/frequency cannot be changed
continuously within the operation range, but only to some discrete points mentioned
in its datasheet. Using the derived scenarios, our toolflow generates a predictor
based on a decision diagram, as presented in section 3.4.

The structure of the final implementation of the application generated by our tool
is shown in figure 13. The switching mechanism introduced into the application
checks if it is necessary and energy efficient to switch from the current processor
frequency to the one corresponding to the predicted scenario. When the required
frequency is higher than the current one, a switch always occurs; when the frequency
is lower, the application will switch only when the switching overhead is smaller
than the energy saved by running the next RTS at this lower frequency. The
calibration mechanism used in the application follows the structure given in figure
12. It changes the required cycle budget for a scenario when too many deadlines
are missed for that scenario. Moreover, it also tunes for energy at run-time, as
it implements all calibration situations presented in section 3.7. The calibration
mechanism adds new scenarios for the cases that lead to the backup scenario being
used, it defines different backup scenarios for different parts of the decision diagram,
and it reduces over-estimation for scenarios for which the reserved budget is too
high very often.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, June 2008.



28 · A System Scenario based Approach to Dynamic Embedded Systems

0.836
0.772

0.455
0.442

0.763
0.698

0 0.2 0.4 0.6 0.8 1

Energy ratio

Stereo

Mono

Mixed

B
it

s
tr

e
a

m
  
ty

p
e

No Scenarios Scenarios [Missratio = 0.013%] Oracle

Fig. 14. Normalized energy reduction for an MP3 Decoder.

Figure 14 shows the energy reduction that we obtained when applying our tra-
jectory to an MP3 decoder running on an Intel XScale PXA255 processor [Intel
Corporation 2003]. The identification tool described in section 3.3.1 reduced the
number of potential parameters ξ from all program variables to 41. This is done
by incrementally profiling a training bitstream of increasing length while removing
variables that can be assumed to have little effect on the program behavior. The
result is a collection of 2111 potential scenarios. Using clustering algorithms as
outlined in [Gheorghita et al. 2008b], we experimentally analyzed 34 different ways
of splitting the application into scenarios to estimate the potential benefit of each of
these options. The best obtained result contains 17 scenarios. The scenario identi-
fication process is time consuming, in particular the profiling based RTS parameter
selection and the experimental evaluation of the quality of potential scenario sets,
but it has been fully automated. The energy reduction obtained is 16% for stereo
and 24% for a mixed set of stereo and mono streams respectively, for a miss ratio
of up to one frame per 3 minutes (0.013%)3. The obtained energy improvement
represents more than 72% of the maximum theoretically possible improvement (as
visualized by the oracle bars in figure 14).

When omitting calibration, the energy reduction for the mixed set of stereo and
mono streams evaluated in the case study drops from 24% to 16%. This shows the
added value of calibration. A more detailed analysis of the experimental results
shows that calibration to some extent compensates for the fact that the training
bitstream used for RTS parameter discovery was insufficiently representative. The
training bitstream was composed by taking some fragments from some random
songs taken from internet. The results of this case study show that calibration
increases the robustness of the method, alleviating the problem of creating repre-
sentative input for parameter discovery.

We obtained similar results as those obtained for the MP3 decoder for two other
applications, the motion compensation task of an MPEG-2 decoder and a G.72x
voice decompression algorithm.

3These results differ from those presented in [Gheorghita et al. 2008b], because we used a dif-
ferent benchmark with less mono songs for the current experiments, and because the results of
[Gheorghita et al. 2008b] were obtained without the run-time calibration for energy optimization.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, June 2008.



S. V. Gheorghita et al. · 29

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0  1  2  3  4  5  6  7  8  9

N
r.

 o
f a

dd
iti

on
al

 A
S

T
 n

od
es

Estimated additional data memory size (kB)

Fig. 15. Tradeoff between additional data memory size and instruction memory size (estimated
by the nr. of additional AST nodes) for an MP3 Decoder.

4.2 Memory Access Optimization

In [Palkovic et al. 2005; Palkovic et al. 2006], we have presented an instantiation of
our scenario methodology in the form of a general toolflow that can be applied to
streaming applications to reduce their energy consumption by applying the scenario
concepts on top of the Data Transfer and Storage Exploration (DTSE) methodology,
particularly to enable more loop transformations in the DTSE. This work targets
the same type of applications as the flow presented in section 4.1.

Using the identified RTS parameters, the RTSs corresponding to all possible
different paths within the program’s main loop are determined. The scenarios
were derived by clustering the RTSs based on the possibility to apply similar loop
transformations to the scenario as those that can be applied to the individual RTSs
within this scenario and based on the code overhead of the scenario. We also took
into account occurrence frequencies of individual RTSs resulting from the profiling.
Thus, design-time static analysis of the available loop transformations and the
corresponding code overhead was supplemented with profiling information. The
six most frequently occurring RTSs (out of 234 RTSs in total) were grouped in
potential scenario sets for further evaluation.

During the exploitation, the DTSE methodology is applied on each scenario from
any selected potential scenario set, resulting in different source codes per scenario.
The output of our scenario based loop transformation technique is a Pareto bound-
ary (figure 15) which trades off additional data memory size and instruction memory
size (estimated by the number of the Abstract Syntax Tree (AST) nodes in the re-
sulting application code). Each point in the boundary corresponds to one scenario
set with certain optimization potential and code size overhead. In the figure, all
depicted non-Pareto points were obtained by a full exploration of all 203 options
to cluster the six considered RTSs in scenarios. A DTSE optimized version of
the original code was kept as a backup scenario for RTSs not part of the selected
scenarios.

Because for our example the RTS parameter values can be read before the RTS
itself occurs and because the scenario set is small, we do not need to use any

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, June 2008.



30 · A System Scenario based Approach to Dynamic Embedded Systems

Source code version Main data memory accesses Improvement

Original 714.2× 106 -
After DTSE 126.9× 106 82.2%
After Scenarios and DTSE 68.8× 106 90.3%

Table III. Comparison of different implementations of an MP3 audio decoder.

advanced predictor techniques. We use a simple scenario detector implemented
as a lookup table, which based on the obtained RTS parameter values selects the
appropriate (loop transformed) scenario. The scenario switching corresponds to
loading the given scenario to the on-chip program memory. To introduce calibration
mechanisms in the toolflow is not so simple, because the loop transformations on
scenarios happen during design-time. We could of course perform the optimizations
also during run-time, but the danger is that in such a way we do not meet many
real-time deadlines.

For our experiments, we used a memory subsystem consisting of 2kB L1 on-
chip data scratch-pad memory and off-chip main memory. Table III compares the
number of main memory data accesses for three implementations of the MP3 code:
original code, code after applying DTSE methodology and code after applying
scenario+DTSE methodology (with three scenarios and a backup scenario). The
DTSE methodology can reduce the number of main memory data accesses by 82.2%.
However, with the scenario methodology on top of the DTSE, we can reduce the
number of main memory data accesses by an additional 45.8% (8.1 percentage
points with respect to the original application).

4.3 Dynamic Memory Management Refinement

In this subsection, we present the case study of optimizing dynamic memory al-
location (i.e., malloc()/free()) for the IPv4 layer in an IEEE 802.11b wireless
network application (for more details see [Mamagkakis et al. 2007]). In the first
step of the scenario methodology, we identify all the RTSs, which consist of the
packet sizes that are communicated and buffered in the IPv4 layer. We have identi-
fied 1460 different packet sizes (i.e., 1460 different RTSs) that can be buffered, but
not all of them get buffered with the same frequency. As can be seen in figure 16,
we have used 18 different network traces, of 1,000,000 packets each, to profile the
wireless application. We concluded that the packet sizes that get buffered most
often are the ACK packet size (= 40 Bytes) and the MTU packet size (= 1500
Bytes). Therefore, we decided to cluster the RTSs in three main system scenarios,
according to their frequency distribution. This means that the predictor created in
the second step of the scenario method will choose between 40 Byte-packets, 1500
Byte-packets and variable-Byte packets.

Exploiting the system scenarios in the third step, we designed a customized
dynamic memory allocator which uses three system scenarios, each with one or more
different pools of memory blocks, see figure 17. According to the buffer request of
the wireless application, in the fourth step of the method, we switch to a different
dynamic memory allocation strategy and thus resource usage of the embedded
system is minimized. The selection algorithm is implemented in C++ with a single
linked list and using simple if/elsif statements to select the appropriate pool of
ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, June 2008.



S. V. Gheorghita et al. · 31

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 A
vg

Variable sizedMTUACK

Network traces

Fig. 16. Frequency distribution for the identification and prediction of three main system scenarios
(i.e., for ACK packet size, for MTU packet size and for variable packet size)

1500 byte

Pool
Alloc. Alloc. Free Free

1
0
0
0
 B
y
te
 P
a
c
k
e
t 
b
u
ff
e
r 
re
q
u
e
s
t

(V
a
ri
a
b
le
 s
y
s
te
m
 s
c
e
n
a
ri
o
 d
e
te
c
te
d
)

E
x
a
c
t 
F
it

Request satisfied by switching to System scenario 3!

40 Byte

Pool

F
ix
e
d
 s
iz
e
d
 

b
lo
c
k
s

N
o
 c
o
a
le
s
c
in
g
 o
r 

s
p
littin

g
 a
llo
w
e
d

64 Byte

Pool

128 Byte

Pool

... Byte

Pool ...

1024 Byte

Pool

First Fit

F
ir
s
t 
F
it

System scenario 1 for ‘ACK system scenario’

System scenario 2 for ‘MTU system scenario’

System scenario 3 for ‘Variable system scenario’

R
T
S
 d
e
te
c
te
d

Fig. 17. Customized dynamic memory allocator design, which exploits and switches between three
system scenarios (in the example the ’Variable system scenario’ is detected)

memory blocks. As can be seen in figure 17, a request to buffer a 1000 Byte packet is
detected and thus the request is satisfied by switching to the third system scenario.
With the use of our dynamic memory allocator, which is customized to detect
and exploit the most probable system scenarios, we manage to achieve on average a
reduction of 90% for energy consumption, of 62% for memory footprint and an 81%
improvement of performance compared to the dynamic memory allocator used in
the Linux operating system. The scenario switching (step 4) is inherently embedded
in the design of the run-time dynamic memory manager [Mamagkakis et al. 2007].

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, June 2008.



32 · A System Scenario based Approach to Dynamic Embedded Systems

4.4 High Performance Processor Adaptation

In another study [Vandeputte et al. 2007], we have used the scenario approach
to adapt the hardware configuration of high performance processors for energy
efficiency. When a program is being executed on a high performance processor,
it typically does not need all available processor resources at the same time. The
amount of resources that a program needs actually depends on the code that is
being executed and typically varies over time [Sherwood et al. 2002]. By switching
off the processor resources that are not needed during the execution of a program,
the energy consumption of the processor can be reduced substantially while limiting
the performance degradation.

At design-time, we extract a scenario set containing the different phases of a
given program by profiling the program. A program phase is the set of all parts of
the execution of a program that exhibit similar behavior. In our case, each scenario
corresponds with one program phase; the scenario set thus simply consists of all
program phases.

To extract the set of phases for a given program, we divide the execution of a
program into non-overlapping instruction intervals of a given fixed length. Each
instruction interval thus forms one RTS. For each instruction interval, we collect a
Basic Block Vector (BBV) [Sherwood et al. 2002], which is a weighted frequency
vector that captures which basic blocks of the program code have been executed
during the corresponding instruction interval. These BBVs are the RTS parameters
of our framework. We then group similar instruction intervals (i.e., RTSs) into
one phase (scenario) by clustering the BBVs through K-means clustering. During
the clustering process, we also take into account the predictability of the given
scenario set. Once we have extracted the scenario set, we then identify the energy-
optimal processor configuration for each individual scenario through an efficient
offline configuration space exploration algorithm.

At run-time, the per-phase optimal hardware configurations are first communi-
cated from software to hardware. The adaptive processor collects BBV-information
for each instruction interval. At the end of each instruction interval, the hardware
predicts if the running scenario will continue for at least one more interval or if the
program will switch to another scenario during the next interval. For this predic-
tion, we use a Markov-based predictor [Vandeputte et al. 2005]. If a scenario switch
is predicted, the configuration of the processor is adapted to the energy-optimal
hardware configuration of the predicted scenario. If the program is executing a
program phase that has not been captured at design-time, a back-up scenario is
used, meaning that the default processor configuration is being used.

We evaluated our approach on an aggressive 8-issue out-of-order superscalar pro-
cessor microarchitecture with an adaptive branch predictor, processor width, re-
order buffer, fetch buffer and caches. These microarchitectural parameters are the
knobs in our system. The entire configuration space consists of 1015 processor con-
figurations or knob positions. We evaluated this technique on the SPEC CPU2000
benchmarks. The results are shown in figure 18. On average, our hardware adapta-
tion approach achieves a 36% reduction in energy consumption with a performance
(Instructions Per Cycle or IPC) degradation of only 2.9%.
ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, June 2008.



S. V. Gheorghita et al. · 33

Fig. 18. Energy reduction and performance penalty.

4.5 Other Approaches

Besides the already presented case studies, in our research groups other approaches
have been developed at various levels of design abstraction, which are relevant and
demonstrate the proposed scenario-based methodology from many different angles.

The scenario concept was first used in the context of multi-task applications
[Yang 2004; Yang et al. 2002] to capture the data-dependent dynamic behavior
inside a thread, to better schedule a multi-thread application on a heterogenous
multi-processor architecture, allowing the change of voltage level for each individual
processor. The work also includes a system scenario based DVFS hybrid design-
time/run-time scheduler technique. However, the scenario identification and run-
time predictor are done manually.

In [Sanz et al. 2006], the energy and performance efficiency of memories is in-
creased using scenario-based methodologies that tackle process variability problems.
The paper shows that apart from the application RTSs, another significant source
of unpredictability is the platform itself when using technology scaling beyond the
90nm technology node.

In [Bougard et al. 2006], it is illustrated that the design of wireless systems ben-
efits from the scenario concept by characterizing wireless channels and user condi-
tions as RTS parameters. The predicted scenarios are used to exploit cross-layer
(in the OSI model) tradeoffs and switch between knob positions, adjusting the user
throughput and system power accordingly at run-time. Also in the wireless domain,
the work presented in [Pollin et al. 2007] manages to reduce energy consumption
considerably by exploiting run-time controllable knobs of actual RF components
and the 802.11 Medium Access Controller.

In [Peon-Quiros et al. 2007], a methodology is introduced that identifies scenarios
of wireless mobile streams in multi-threaded applications. The RTSs consider the
change in size among packets in a wireless network stream. The identified scenarios
are, then, used to control at run-time a knob that switches DMA block transfers of
heap data on and off and saves energy and execution cycles accordingly. In [Yang
et al. 2001], the scenario concept is used for energy-efficient scheduling of tasks

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, June 2008.



34 · A System Scenario based Approach to Dynamic Embedded Systems

for heterogeneous MPSoC embedded platforms. The scenarios are extracted from
the task graph of the software applications and used to reduce energy through the
proposed DVFS methodology.

In [Poplavko et al. 2007], a method for estimating the execution time of stream-
oriented applications mapped on a multi-processor on-chip is detailed. For this type
of systems, the pipelined decoding of sequential streaming objects has a high impact
on achieving the required throughput. The application is modeled as a homogenous
synchronous data flow graph (HSDF). Within the application’s loop of interest the
scenarios are manually defined based on the different execution workloads of tasks.
An accurate execution time estimation method is proposed that supports parallel
and pipelined decoding of streaming objects, taking into account the transient and
periodic behavior of scenario executions and the effect of scenario transitions. The
method can be applied in quality-of-service or resource management contexts. In
[Hamers and Eeckhout 2007], scenarios are used to allow prediction of decode time,
decode energy, and quality-of-service of media streams in a client-server quality-of-
service management context. The proposed resource prediction method runs on the
content-provider side. The results can be used at the client side to determine the
desired resource usage-quality tradeoff. A resource-constrained, battery-powered
handheld can for example choose to lower the resolution of a video stream to guar-
antee a battery life time that is sufficient to view the entire stream.

A more general model than the HSDF model used in [Poplavko et al. 2007] that is
still analyzable is the scenario-aware data flow model (SADF) [Theelen et al. 2006].
It is a design-time analyzable stochastic generalization of the synchronous data
flow (SDF) model, which can capture several dynamic aspects of modern streaming
applications by incorporating system scenarios. The scenarios and the run-time
predictor are explicitly described in the model, no further need for identification
of scenarios for applications written using this model being necessary. Moreover,
analysis of long-run average and worst case performance are decidable. SADF
combines both analyzability and explicit representation of scenarios. The only
current drawback is that not all possible forms of dynamism (e.g., interactions with
external events) can be represented with it.

The DVFS application of the system scenario concepts used throughout the pa-
per and detailed in section 4.1 assumes that timing constraints are soft. As already
mentioned, soft requirements allow to trade off quality and cost. In [Gheorghita
et al. 2005], we illustrate a DVFS application that provides hard guarantees. Sce-
nario identification is based entirely on a conservative static analysis. Also the
method of [Poplavko et al. 2007] described above is suitable to provide hard guar-
antees. In general, it may not always be easy to make all steps of the scenario
methodology conservative, but whenever this is possible our methodology applies,
omitting calibration which is not meaningful in a context requiring hard guarantees.

At a higher design abstraction level, in [Daylight et al. 2002], scenarios for mem-
ory management of the heap data are defined by the user using the steady-state
concept. The identified scenarios are used to switch between dynamic data types
according to the predicted scenarios in multimedia software applications. In [Tem-
merman et al. 2007], the design abstraction level is raised even higher and scenario-
based optimizations are made at the modeling level. In this paper, scenarios are
ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, June 2008.



S. V. Gheorghita et al. · 35

identified based on behavioral information and different UML transformations are
proposed for the abstract data types of multimedia applications in order to achieve
tradeoffs between energy, memory accesses and memory footprint.

Finally, a variant of the scenario concept with a much bigger number of RTSs to
accommodate even more dynamic situations has been used in [Tack et al. 2006] for
3D graphics applications. It considers so-called sub-scenarios that exhibit specific
correlated behavior and that are characterized individually at design-time, but that
are merged only at run-time.

5. RELATED WORK

This section consists of two parts. The first part compares our system scenario based
methodology with related approaches, while the second part presents exploitation
examples of scenarios found in the literature (not related to our own efforts, which
were already surveyed in the previous section).

5.1 Related Design Approaches

In the past, embedded system design was significantly improved using the inspector-
executor technique, which was developed at University of Maryland in the early
1990ties [Saltz et al. 1991]. The basic idea behind it is to compile the application
loops in two phases, an inspector and an executor. The inspector examines the data
access pattern in the loop body and creates a schedule for fetching the values stored
in remote memories. The executor retrieves remote values according to the schedule
and executes the loop. The authors have studied run-time methods to automatically
parallelize and schedule iterations of a loop in certain cases when compile-time
information is inadequate. At compile-time, these methods set up the framework
for performing a loop dependency analysis. At run-time, wavefronts of concurrently
executable loop iterations are identified and the loop iterations are reordered for
increased parallelism. A similar approach has been taken also in [Arenaz et al. 2004]
where a loop with irregular assignment computations contains loop-carried output
data dependencies that can only be detected at run-time. A load-balanced method
based on the inspector-executor model is proposed to parallelize this loop pattern.
The basic idea lies in splitting the iteration space of the sequential loop into sets
of conflict-free iterations that can be executed concurrently on different processors.
In [Yokota et al. 2002], the authors propose a modified inspector-executor method
for implementing accesses to a distributed array. In the method, the compiler runs
an inspector during compile time to obtain the information of data dependencies
among node processors, and it uses that information to optimize communication
code included in the executor. In [van der Mark et al. 2004], a novel strategy is
discussed, which dynamically drives the communication between the processors by
examining the content of the data at run-time in order to reduce communication
costs for numerical weather prediction modes. Compared to the inspector-executor
which is based on low-level data access patterns, this strategy includes high-level
application dependent information.

System workload characterization is another related field of research. It is par-
ticulary relevant for the scenario identification step of our methodology. It gained
interest already more than 30 years ago [Ferrari 1972]. First, it has been used for
selecting the appropriate workload for doing meaningful measurements on the per-

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, June 2008.



36 · A System Scenario based Approach to Dynamic Embedded Systems

formance of computer systems. Later, workload characterization has been extended
to wired [Lee 1991] and wireless [Kotz and Essien 2005] networks. Moreover, it also
was considered as a base for traffic shaping which is used for adapting the work-
load to the expected workload in the network/application [Raman and Chakraborty
2006]. A specific area in workload characterization is the identification of program
phases [Sherwood et al. 2002]. Programs usually consist of a number of repeating ex-
ecution patterns, which are identified. In the program phase detection, code-based
phase detection techniques [Huang et al. 2003] and interval-based phase detection
techniques [Sherwood et al. 2002] are used. In code-based phase detection, program
phases are associated with functions and loops. The interval-based phase detection
techniques divide the execution of a program into fixed-length instruction intervals
and group intervals with similar characteristics. A detailed survey about workload
characterization can be found in [Calzarossa and Serazzi 1993]. It identifies five
common steps followed by all workload characterization approaches, including our
scenario identification techniques: (i) choice of the set of parameters able to de-
scribe the behavior of the workload, (ii) choice of the suitable instrumentation, (iii)
experimental measurement collection, (iv) analysis of the workload data, and (v)
construction of workload models.

Workload characterization and the inspector-executor technique perform most of
the analysis at run-time. This approach is beneficial, when design-time analysis is
not available. The system scenario methodology for designing embedded systems
is more general in the sense that it can handle systems with unpredictable and
extremely varying workloads where the previous techniques cannot be used. The
system is made more predictable via design-time analysis. The actual behavior of
the system, obtained by combining static analysis and profiling approaches, is split
into distinct classes (scenarios) of typical workload behavior. System scenarios
allow optimization of the system mapping for each scenario, optimizations from
which the system profits when the scenario appears at run-time. This combination
of design-time analysis and classification of behaviors with run-time exploitation
and potentially calibration is the main novelty of the scenario based approach.

Due to the presence of the run-time calibration step in our methodology, the
scenario approach is related to adaptive controllers [Dumont and Huzmezan 2002].
However, the scenario approach distinguishes itself via the design-time preparation
and classification of system behaviors, which guides the calibration into the most
promising directions (by pruning directions that are known to be of no interest).
Furthermore, for cost reasons, at run-time, our calibration technique is only active
at certain designated moments in time (calibration time) whereas a typical adaptive
controller executes continuously.

The system scenario concept was identified explicitly for the first time in [Yang
et al. 2002], where it was used to improve the mapping of dynamic applications onto
a multi-processor platform. Concepts closely related to the scenario idea already
appear in [Marchal et al. 2000]. Our scenario methodology ideas were for the first
time briefly introduced in [Gheorghita et al. 2006]. That paper does not detail any
of the methodology steps, and even entirely omits the switching and calibration
steps. It also contains only one case study and a much less extensive literature
survey.
ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, June 2008.



S. V. Gheorghita et al. · 37

5.2 Scenario Exploitation Examples

Scenario-like concepts were applied in an ad-hoc manner several times, with an
emphasis on exploiting scenarios, and not on identifying and predicting them.
In [Chung et al. 2002], the authors use in a systematic way the information about
periodicity of multimedia applications to present a new concept of DVFS. Each
period in the application shows a large variation in terms of execution time. The
proposed idea is to supply the information of the execution time variations in ad-
dition to the content itself. This makes it possible to perform DVFS independent
of worst case execution time estimation providing energy consumption reduction of
client systems compared to previous DVFS techniques. However, the authors do not
specify how the periods should be identified. In [Sasanka et al. 2002], for each man-
ually identified scenario, the authors select the most energy efficient architecture
configuration that can be used to meet the timing constraints. The architecture
has a single processor with reconfigurable components (e.g., number and type of
function units), and its supply voltage can be changed. It is not clear how scenarios
are predicted at run-time. In [Choi et al. 2002], a reactive predictor is used to select
the lowest supply voltage for which the timing constraints of an MPEG decoder
are met. An extension [Sachs et al. 2003] considers two simultaneous resources for
scenario characterization. It looks for the most energy efficient configuration for
encoding video on a mobile platform, exploring the tradeoff between computation
and compression efficiency.

In the context of multi-task applications, in [Murali et al. 2006a], scenarios are
characterized by different communication requirements (such as different band-
width, latency constraints) and traffic patterns. The paper presents a method to
map an application to a network on chip (NoC) architecture, satisfying the de-
sign constraints of each individual scenario. This approach concentrates on the
communication aspect of the application mapping. It allows dynamic network re-
configuration across different scenarios. As the over-estimation of the worst case
communication is very large, this method performs poorly on systems where the
traffic characteristics of scenarios are very different or when the number of scenarios
is large. In [Murali et al. 2006b], the method was extended to work for these cases
too.

Besides the already mentioned applications of scenario concepts in the context
of the HSDF and SADF models of computation, in [Lee et al. 2002], a combination
of a hierarchical finite state machine (FSM) with a synchronous data flow model
(SDF) is used to capture scenarios within a multi-task streaming application. The
FSM represents the scenarios’ run-time detector. The scenarios are identified by
the designer and they are already described in the model. The authors showed that
by writing the application in this model, the scenario knowledge can be used to
save energy when mapping the application on one processor. The SADF model of
computation of [Theelen et al. 2006] generalizes this FSM-SDF model of computa-
tion.

Another example of improving a multi-task application analysis approach using
application scenarios is [Wandeler and Thiele 2005]. This paper extends an exist-
ing method for performance analysis of hard-real-time systems based on Real-Time
Calculus, taking into account correlations that appear between different compo-

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, June 2008.



38 · A System Scenario based Approach to Dynamic Embedded Systems

nents of the system. The knowledge about these correlations is used to derive the
system scenarios. The authors present only how these scenarios could be modeled
in their high level modeling/analytical approach, but no way to identify scenarios
and no prediction mechanism was considered.

As a final observation, quality of service (QoS) mechanisms may make use of
scenarios and related concepts. However, a detailed discussion of QoS techniques is
beyond the scope of this paper. More information can be found in papers related
to QoS, like [Goossens et al. 2003; Vogel et al. 1995].

In summary, compared to the previous work on workload characterization and
on the inspector-executor approach, which target a purely run-time approach, this
paper targets a combined design-time and run-time approach. The previous work in
system scenarios is either quite ad-hoc, e.g., [Chung et al. 2002; Sasanka et al. 2002;
Murali et al. 2006b], or targets specific contexts, e.g., [Yang et al. 2002; Gheorghita
et al. 2008b; Palkovic et al. 2006; Hamers et al. 2007]. In this paper, we propose
a general systematic scenario methodology, outlining generally applicable solutions
for the various steps whenever possible. The method can be instantiated for a wide
variety of specific goals, as illustrated in section 4.

6. CONCLUSIONS

In this paper, we introduced the concept of system scenarios, that cluster the Run-
Time Situations (RTSs) in which a system may run based on similarities from a
cost perspective (e.g., resource utilization), in such a way that a system can be
optimized at design-time and configured at run-time to exploit this cost similarity.
Different from the well known use-case scenarios, which are manually written dia-
grams that represent the user perspective on future system usage, system scenarios
can be automatically derived, are transparant to the user, and focus on system cost
optimization.

A combined design-time/run-time methodology for using system scenarios to im-
prove the final system cost is detailed. At design-time, the scenarios in the system
are identified and each of them is exploited by applying different and more ag-
gressive optimizations. The scenarios are combined together in the final system,
with a prediction, a switching and, potentially, a calibration mechanism. These
mechanisms have important roles at run-time. Prediction finds out in advance of
the RTS execution in which scenario the system will run, and using the switch-
ing mechanism the appropriate scenario is set enabling the optimizations applied
for that specific scenario at design-time. The calibration mechanism allows the
system to learn on-the-fly how to further reduce its final cost, by adapting to the
current environment (e.g., system temperature, input data). The operations done
by the calibration include extending (or reducing) the scenario set, modifying the
scenario definitions, and changing both the prediction and switching mechanisms.
Calibration can also be applied to preserve system quality, e.g., when scenarios
cause unexpected or incidental high overheads, or to trade off quality and cost.
Our system scenario based methodology can be integrated within existing embed-
ded system design flows, to increase their performance in reducing the cost of the
resulting systems, while maintaining their quality.

Besides the general method, the paper outlines general and coherent solution
ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, June 2008.



S. V. Gheorghita et al. · 39

Task 1
intra-task 
scenario 1,1

intra-task 
scenario 1,2

Task 2
intra-task 
scenario 2,1

intra-task 
scenario 2,2

Application Model

inter-task 
scenario 1

inter-task 
scenario 2

inter-task 
scenario 3

Predictor1 Predictor2

Predictor

Inter-task Scenarios Derivation

Task binding & Scheduling

Communication Mapping

System Realization

Fig. 19. Required design flow for multi-task multi-processor systems.

strategies for some of its core concepts, namely scenario identification, prediction,
and calibration. Furthermore, four case studies are presented to show how the
methodology was applied to several real-life design problems. The diversity of
these case studies, and the other given exploitation examples, emphasizes the fact
that, although the various design problems look different, they can be covered by
the same methodology. The obtained reductions in the final system costs prove
that applying our methodology in the design process leads to better products.

Although some of the surveyed applications of the system scenario concepts target
multi-task or multi-processor systems, the use of scenarios within a multi-processor
embedded system design trajectory has not been extensively explored yet. Given
the importance of multi-processor systems, we consider this as an interesting di-
rection for future research. A design flow like the one sketched in figure 19 can be
envisioned. The flow starts with extracting intra-task scenarios for each application
task, and based on them derives the inter-task application scenarios. The intra-
and inter-task scenarios are conceptually the same from a methodology perspective,
so that RTS parameter discovery techniques and scenario prediction techniques can
be reused. However, intra- and inter-task scenarios have a different impact on the
intra- and inter-task parts of the remaining design trajectory, their exploitation
being in general different. Certain parts of the scenario methodology are affected.
Characterizing the cost (e.g., the cycle budget) of an RTS, which is part of scenario
identification, has to be adapted to accommodate the specific problems that appear

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, June 2008.



40 · A System Scenario based Approach to Dynamic Embedded Systems

in multi-task applications, like, intra- and/or inter-processor scheduling, inter-task
communication costs and delays, pipelined execution. These problems make the
resource estimation for multi-task applications, especially in a multi-processor con-
text, a challenging research topic. The accuracy of resource estimation does not only
affect scenario identification, but also calibration. It may furthermore be necessary
to distribute calibration or to collect calibration information at a central location
in the system. After deriving inter-task system scenarios, they are used in decision
making along the design trajectory, like in task binding and scheduling. Depending
on the type of exploitation, various switching mechanisms may be needed, varying
from configuring simple settings to migrating tasks from one processor to another
one. Advanced switching mechanisms such as run-time task migration are another
interesting research direction. Finally, if multiple scenario-aware applications can
coexist in the same multi-application system, scenario-aware resource and quality
of service management across applications needs to be investigated.

Acknowledgements. This work was supported in part by the Dutch Science Foun-
dation, NWO, project FAME, number 612.064.101, by the Fund for Scientific Re-
search in Flanders, FWO, projects G.0160.02 and G.0255.08, by Ghent Univer-
sity via a BOF grant, and by the European Commission, through Marie Curie
project DACMA MEST-CT-2004-504767 and the Artist and HiPEAC Networks of
Excellence. Lieven Eeckhout is a Postdoctoral Fellow with FWO. We thank the
anonymous reviewers for their useful feedback.

REFERENCES

Arenaz, M., Touriño, J., and Doallo, R. 2004. An inspector-executor algorithm for irregu-
lar assignment parallelization. In 2nd International Symposium on Parallel and Distributed
Processing and Applications (ISPA 2004). Hong Kong, China, 4–15.

Bougard, B., Dejonghe, A., and Dehaene, W. 2006. Cross-layer power management in wireless
networks and consequences on system-level architecture. Signal Processing 86, 8, 1792–1803.

Burd, T., Pering, T., Stratakos, A., and Brodersen, R. 2000. A dynamic voltage scaled
microprocessor system. IEEE Journal of Solid-State Circuits 35, 11 (November), 1571–1580.

Calzarossa, M. and Serazzi, G. 1993. Workload characterization: a survey. Proceedings of the
IEEE 81, 8, 1136–1150.

Carroll, J. M., Ed. 1995. Scenario-based design: envisioning work and technology in system
development. John Wiley & Sons Inc, NY, USA.

Catthoor, F., Ed. 2000. Unified Low-Power Design Flow for Data-Dominated Multi-Media and
Telecom Applications. Kluwer Academic Publishers, Boston, MA.

Choi, K., Dantu, K., Cheng, W.-C., and Pedram, M. 2002. Frame-based dynamic voltage and
frequency scaling for a MPEG decoder. In Proc. of IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). ACM Press, New York, NY, 732–737.

Chung, E.-Y., De Micheli, G., and Benini, L. 2002. Contents provider-assisted dynamic volt-
age scaling for low energy multimedia applications. In Proceedings of the 2002 international
symposium on Low power electronics and design (ISLPED’02). ACM Press, New York, NY,
USA, 42–47.

Daylight, E. G., Wuytack, S., Ykman-Couvreur, C., and Catthoor, F. 2002. Analyzing
energy friendly steady state phases of dynamic application execution in terms of sparse data
structures. In Proceedings of the 2002 International Symposium on Low Power Electronics and
Design (ISLPED’02). ACM Press, New York, NY, 76–79.

De Sutter, B., De Bus, B., and De Bosschere, K. 2006. Link-time binary rewriting techniques
for program compaction. ACM Transactions on Programming Languages and Systems 27, 5,
882–945.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, June 2008.



S. V. Gheorghita et al. · 41

Debray, S., Evans, W., Muth, R., and De Sutter, B. 2002. Compiler techniques for code
compaction. ACM Transactions on Programming Languages and Systems 22, 2, 378–415.

Douglass, B. P. 2004. Real Time UML: Advances in the UML for Real-Time Systems. Addison
Wesley Publishing Company, Reading, MA.

Dumont, G. A. and Huzmezan, M. 2002. Concepts, methods and techniques in adaptive control.
In Proc. of the American Control Conference (ACC). Vol. 2. IEEE, 1137–1150.

Ferrari, D. 1972. Workload charaterization and selection in computer performance measurement.
Computer 5, 4, 18–24.

Fowler, M. 2003. Use cases. In UML Distilled: A Brief Guide to the Standard Object Modeling
Language, Third Edition. Addison Wesley Publishing Company, Reading, MA, Chapter 9, 99–
106.

Geilen, M. C. W., Basten, T., Theelen, B. D., and Otten, R. H. J. M. 2007. An algebra of
pareto points. Fundamenta Informaticae 78, 1, 35–74.

Gheorghita, S. V., Basten, T., and Corporaal, H. 2005. Intra-task scenario-aware voltage
scheduling. In Proc. of the International Conference on Compilers, Architecture and Synthesis
for Embedded Systesms (CASES). ACM Press, New York, NY, 177–184.

Gheorghita, S. V., Basten, T., and Corporaal, H. 2006. Application scenarios in streaming-
oriented embedded system design. In Proc. of the International Symposium on System-on-Chip
(SoC 2006). IEEE Press, Piscataway, NJ, 175–178. Revised version to appear as [Gheorghita
et al. 2008a].

Gheorghita, S. V., Basten, T., and Corporaal, H. 2008a. Application scenarios in streaming-
oriented embedded system design. IEEE Design & Test of Computers. Invited. Best paper of
SoC 2006. To appear.

Gheorghita, S. V., Basten, T., and Corporaal, H. 2008b. Scenario selection and prediction
for DVS-aware scheduling. Journal of Signal Processing Systems 50, 2, 137–161.

Gheorghita, S. V., Stuijk, S., Basten, T., and Corporaal, H. 2005. Automatic scenario
detection for improved WCET estimation. In Proc. of the 42nd Design Automation Conference
DAC. ACM Press, New York, NY, 101–104.

Goossens, K., Dielissen, J., van Meerbergen, J., Poplavko, P., Radulescu, A., Rijpkema,
E., Waterlander, E., and Wielage, P. 2003. Guaranteeing the quality of services in networks
on chip. In Networks on chip. Kluwer Academic Publishers, Hingham, MA, USA, Chapter 4,
61–82.

Hamers, J. and Eeckhout, L. 2007. Resource prediction for media stream decoding. In Proc.
of Design, Automation and Test in Europe (DATE). IEEE, 594–599.

Hamers, J. and Eeckhout, L. 2008. Exploiting media stream similarity for energy-efficient
decoding and resource prediction. ACM Transactions on Embedded Computing Systems. To
appear.

Hamers, J., Eeckhout, L., and De Bosschere, K. 2007. Exploiting video stream similarity for
energy-efficient decoding. In Proc. of the 13th International Multimedia Modeling Conference,
(MMM). LNCS, vol. 4352. Springer, Berlin, Germany, 11–22. Extended version to appear as
[Hamers and Eeckhout 2008].

Hansson, A., Coenen, M., and Goossens, K. 2007. Undisrupted quality-of-service during re-
configuration of multiple applications in networks on chip. In Proc. of Design, Automation,
and Test in Europe (DATE). IEEE Press, Piscataway, NJ, 954–959.

Huang, M., Renau, J., and Torrellas, J. 2003. Positional adaptation of processors: Application
to energy reduction. In International Symposium on Computer Architecture (ISCA). IEEE CS
Press.

Hughes, C. J., Srinivasan, J., and Adve, S. V. 2001. Saving energy with architectural and
frequency adaptations for multimedia applications. In Proc. of the 34th Annual International
Symposium on Microarchitecture (MICRO-34). IEEE Computer Society, Washington, DC, 250–
261.

IEEE. 2000. IEEE standard 1471: Recommended practice for architectural description of software-
intensive systems.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, June 2008.



42 · A System Scenario based Approach to Dynamic Embedded Systems

Intel Corporation. 2003. Intel XScale microarchitecture for the PXA255 processor: Users
manual. Order No. 278796.

Ionita, M. T. 2005. Scenario-based system architecting: a systematic approach to develop-
ing future-proof system architectures. Ph.D. thesis, Technische Universiteit Eindhoven, The
Netherlands.

Jha, N. K. 2001. Low power system scheduling and synthesis. In Proc. of the IEEE/ACM
International Conference on Computer Aided Design. San Jose, CA, USA, 259–263.

Kotz, D. and Essien, K. 2005. Analysis of a campus-wide wireless network. Wireless Net-
works 11, 1, 115–133.

Lee, R. 1991. An introduction to workload characterization.
http://support.novell.com/techcenter/articles/ana19910503.html.

Lee, S., Yoo, S., and Choi, K. 2002. An intra-task dynamic voltage scaling method for SoC
design with hierarchical FSM and synchronous dataflow model. In Proc. of the International
Symposium on Low Power Electronics and Design. ACM Press, 84–87.

Mamagkakis, S., Soudris, D., and Catthoor, F. 2007. Middleware design optimization of
wireless protocols based on the exploitation of dynamic input patterns. In Proc. of Design,
Automation, and Test in Europe (DATE). IEEE Press, Piscataway, NJ, 118–123.

Marchal, P., Wong, C., Prayati, A., Cossement, N., Catthoor, F., Lauwereins, R., Verk-
est, D., and De Man, H. 2000. Dynamic memory oriented transformations in the MPEG4
IM1-Player on a low power platform. In Proc. of the 1st International Workshop on Power-
Aware Computer Systems. Springer-Verlag, London, UK, 40–50.

Murali, S., Coenen, M., Radulescu, A., Goossens, K., and De Micheli, G. 2006a. Mapping
and configuration methods for multi-use-case networks on chips. In Proc. of the Asia South
Pacific Design Automation Conference (ASPDAC). ACM Press, 146–151.

Murali, S., Coenen, M., Radulescu, A., Goossens, K., and De Micheli, G. 2006b. A method-
ology for mapping multiple use-cases onto networks on chips. In Proc. of Design, Automation
and Test in Europe (DATE). IEEE, 118–123.

Okabe, T., Jin, Y., and Sendhoff, B. 2003. A critical survey of performance indices for multi-
objective optimisation. In Proc. of the Congress on Evolutionary Computation. Vol. 2. IEEE
Press, Piscataway, NJ, 878–885.

Palkovic, M., Brockmeyer, E., Vanbroekhoven, P., Corporaal, H., and Catthoor, F. 2006.
Systematic preprocessing of data dependent constructs for embedded systems. Journal of Low
Power Electronics 2, 1 (April), 9–17.

Palkovic, M., Corporaal, H., and Catthoor, F. 2005. Global memory optimisation for em-
bedded systems allowed by code duplication. In Proc. 9th Intnl. Workshop on Software and
Compilers for Embedded Systems (SCOPES). ACM, 72–79.

Pareto, V. 1906. Manuale di Economia Politica. Piccola Biblioteca Scientifica, Milan. Translated
into English by A.S. Schwier (1971), Manual of Political Economy, MacMillan, London.

Paul, J. M., Thomas, D. E., and Bobrek, A. 2006. Scenario-oriented design for single-chip
heterogeneous multiprocessors. IEEE Transations on Very Large Scale Integration (VLSI)
Systems 14, 8, 868–880.

Peon-Quiros, M., Bartzas, A., Mamagkakis, S., Catthoor, F., Mendias, J., and Soudris,
D. 2007. Direct memory access optimization in wireless terminals for reduced memory latency
and energy consumption. In Proc. of the 17th International Workshop in Power and Timing
Modeling, Optimization and Simulation (PATMOS). Springer, 373–383.

Pollin, S., Mangharam, R., Bougard, B., Van der Perre, L., Moerman, I., Rajkumar,
R., and Catthoor, F. 2007. MEERA: Cross-layer methodology for energy efficient resource
allocation in wireless networks. IEEE transactions on wireless communications 6, 2, 617–628.

Poplavko, P., Basten, T., and van Meerbergen, J. 2007. Execution-time prediction for dy-
namic streaming applications with task-level parallelism. In Proc. of 10th EUROMICRO Con-
ference on Digital System Design (DSD). IEEE Computer Society Press, 228–235.

Raman, B. and Chakraborty, S. 2006. Application-specific workload shaping in multimedia-
enabled personal mobile devices. In Proceedings of the 4th International Conference on Hard-
ware/Software Codesign and System Synthesis (CODES+ISSS). ACM, 4–9.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, June 2008.



S. V. Gheorghita et al. · 43

Sachs, D. G., Adve, S. V., and Jones, D. L. 2003. Cross-layer adaptive video coding to reduce
energy on general-purpose processors. In Proc. of IEEE International Conference on Image
Processing. IEEE Press, 109–112.

Saltz, J. H., Mirchandaney, R., and Crowley, K. 1991. Run-time parallelization and schedul-
ing of loops. IEEE Trans. Computers 40, 5, 603–612.

Sanz, C., Prieto, M., Papanikolaou, A., Miranda, M., and Catthoor, F. 2006. System-
level process variability compensation on memory organizations of dynamic applications: a
case study. Proceedings of the 7th International Symposium on Quality Electronic Design
(ISQED), 376–382.

Sasanka, R., Hughes, C. J., and Adve, S. V. 2002. Joint local and global hardware adaptations
for energy. ACM SIGARCH Computer Architecture News 30, 5, 144–155.

Sherwood, T., Perelman, E., Hamerly, G., and Calder, B. 2002. Automatically character-
izing large scale program behavior. In Proceedings of the 10th international conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS). ACM
Press, New York, NY, 45–57.

Shin, D. and Kim, J. 2005. Optimizing intra-task voltage scheduling using data flow analysis.
In Proc. of the 10th Asia and South Pacific Design Automation Conference (ASPDAC). ACM
Press, New York, NY, 703–708.

Tack, K., Lafruit, G., Catthoor, F., and Lauwereins, R. 2006. Platform independent op-
timisation of multi-resolution 3D content to enable universal media access. The Visual Com-
puter 22, 8, 577–590.

Temmerman, M., Daylight, E. G., Catthoor, F., Demeyer, S., and Dhaene, T. 2007. Op-
timizing data structures at the modeling level in embedded multimedia. Journal of Systems
Architecture 53, 8, 539–549.

Theelen, B. D., Geilen, M. C. W., Basten, T., Voeten, J. P. M., Gheorghita, S. V., and
Stuijk, S. 2006. A scenario-aware data flow model for combined long-run average and worst-
case performance analysis. In Proc. of the 4th ACM-IEEE International Conference on Formal
Methods and Models for Codesign (MEMOCODE). IEEE Computer Society Press, 185–194.

van der Mark, P., Wolters, L., and Cats, G. 2004. Using semi-lagrangian formulations
with automatic code generation for environmental modeling. In Proceedings of the 2004 ACM
Symposium on Applied Computing (SAC). ACM, 229–234.

Vandeputte, F., Eeckhout, L., and De Bosschere, K. 2005. A detailed study on phase predic-
tors. In Proceedings of the 11th International Euro-Par Conference, J. Cunha and P. Medeiros,
Eds. LNCS, vol. 3648. Springer, 571–581.

Vandeputte, F., Eeckhout, L., and De Bosschere, K. 2007. Exploiting program phase be-
havior for energy reduction on multi-configuration processors. Journal of Systems Architec-
ture 53, 8, 489–500.

Vogel, A., Kerherve, B., von Bochmann, G., and Gecsei, J. 1995. Distributed multimedia
and QoS: a survey. IEEE Multimedia 2, 2 (April), 10–19.

Wandeler, E. and Thiele, L. 2005. Characterizing workload correlations in multi processor
hard real-time systems. In Proc. of the 11th IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS). IEEE Computer Society Press, 46–55.

Wegener, I. 2000. Integer-Valued DDs. In Branching Programs and Binary Decision Diagrams:
Theory and Applications. SIAM Monographs on Discrete Mathematics and Applications. Soci-
ety for Industrial and Applied Mathematics, Philadelphia, PA, Chapter 9.

Yang, P. 2004. Pareto-optimization based run-time task scheduling for embedded systems. Ph.D.
thesis, Catholic University of Leuven, Belgium.

Yang, P. and Catthoor, F. 2003. Pareto-optimization-based run-time task scheduling for em-
bedded systems. In Proceedings of the 1st IEEE/ACM/IFIP international conference on Hard-
ware/software codesign and system synthesis (CODES+ISSS ’03). ACM Press, New York, NY,
USA, 120–125.

Yang, P., Marchal, P., Wong, C., Himpe, S., Catthoor, F., David, P., Vounckx, J., and
Lauwereins, R. 2002. Managing dynamic concurrent tasks in embedded real-time multimedia

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, June 2008.



44 · A System Scenario based Approach to Dynamic Embedded Systems

systems. In Proc. 15th ACM/IEEE Intnl. Symp. on System-Level Synthesis (ISSS). IEEE
Computer Society, Los Alamitos, CA, USA, 112–119.

Yang, P., Wong, C., Marchal, P., Catthoor, F., Desmet, D., Verkest, D., and Lauwereins,
R. 2001. Energy-aware runtime scheduling for embedded-multiprocessor socs. IEEE Des.
Test 18, 5, 46–58.

Ykman-Couvreur, C., Brockmeyer, E., Nollet, V., Marescaux, T., Catthoor, F., and
Corporaal, H. 2005. Design-Time Application Exploration for MP-SoC Customized Run-
Time Management. In Proc. of the International Symposium on System-on-Chip (SoC). IEEE
Press, Piscataway, NJ, 66–69.

Ykman-Couvreur, C., Nollet, V., Catthoor, F., and Corporaal, H. 2006. Fast Multi-
Dimension Multi-Choice Knapsack Heuristic for MP-SoC Run-Time Management. In Proc. of
the International Symposium on System-on-Chip (SoC). IEEE Press, Piscataway, NJ, 1–4.

Yokota, D., Chiba, S., and Itano, K. 2002. A new optimization technique for the inspector-
executor method. In International Conference on Parallel and Distributed Computing Systems
(PDCS 2002). Acta Press, 706–711.

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, June 2008.


