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Abstract. – We show the existence of a system size coherence resonance effect for cou-
pled excitable systems. Namely, we demonstrate numerically that the regularity in the signal
emitted by an ensemble of globally coupled FitzHugh-Nagumo systems, under excitation by
independent noise sources, is optimal for a particular value of the number of coupled systems.
This resonance is shown through several different dynamical measures: the time correlation
function, correlation time and jitter.

Noise-induced resonance is a topic that has attracted a lot of attention in the last years.
In particular, it has been unambiguously shown that the response of some systems to an
external perturbation can be enhanced by the presence of noise (stochastic resonance [1–4]).
A different effect is that of coherence resonance [5] by which an excitable system shows a
maximum degree of regularity in the emitted signal in the presence of the right amount
of fluctuations (or the related one of stochastic resonance without the need of an external
forcing [6, 7]). Coherence resonance has also been studied in dynamical systems close to the
onset of a bifurcation [8], as well as in other bistable and oscillatory systems [9, 10]. It has
also been analyzed in different neuronal models such as the FitzHugh-Nagumo [11, 12] and
Hodgkin-Huxley [13] models. It has been observed experimentally in electronic circuits, either
excitable [14,15] or chaotic [16,17], and in lasers operating in an excitable regime [18].

In an important recent paper [19], Pikovsky et al. have shown that when one considers
an ensemble of coupled bistable systems subjected to an external periodic forcing (and in the
presence of a constant amount of noise), it turns out that an optimal response is obtained
for an appropriate value of the number N of coupled systems. In other words, that there is
a resonance with respect to the number of coupled elements, rather than to the usual one
that involves the noise level. The authors speculate that this system size resonance might be
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relevant to neuronal dynamics, in which the neuronal connections or the coupling strengths
between neurons can be tuned in order to achieve maximum sensitivity to external signals.
Other independent results [20–22] show that specific models of the Hodgkin-Huxley type
predict that the pulses of K+ and Na+ concentration along biological cell membranes follow
optimally an external periodic signal (stochastic resonance) for a given size of the number of
ionic gates implied in the ionic transport. These latter results also show that, in the absence
of external stimulus, the periodicity of the pulses is also optimal (coherence resonance) for an
appropriate number of gates. At variance with the work in [19], there is no direct coupling
between the different gates, but the membrane potential depends on the number of open and
close gates, and the probability of having an open gate depends on the membrane potential.
The number of open gates, hence, acts as a stochastic variable in the evolution equation for
the potential.

In this paper, we extend the previous results by considering an ensemble of explicitly
coupled excitable systems, each one under the influence of its own noise with a fixed intensity,
but without an external forcing. We show that there is a coherence resonance effect as a
function of the number N of coupled systems. More specifically, we show that the excitable
systems pulse on average with a regularity which is optimal for a specific value of N .

Motivated by the biological applications to neuronal dynamics suggested in [19], we con-
sider an ensemble of generic FitzHugh-Nagumo systems, each one described by the activator,
xi, and inhibitor, yi, variables, i = 1, . . . , N . The FitzHugh-Nagumo model provides the sim-
plest representation of firing dynamics and has been widely used as a prototypic model for
spiking neurons as well as for cardiac cells [23, 24]. Our aim is to consider this model as a
prototypical model, without making reference to any specific application, in order to clarify
the minimal elements that an excitable model has to have in order to display the phenomenon
of system size coherence resonance. This is equivalent to the approach used in ref. [19], deal-
ing with system size stochastic resonance, with focus on generic (ϕ4, Ising) models for phase
transitions, rather than on a specific application. The dynamical FitzHugh-Nagumo equations
modified to account for the global coupling are as follows:

εẋi = xi − 1
3
x3

i − yi +
K

N

N∑
j=1

(
xj − xi

)
, (1)

ẏi = xi + a + Dξi(t), (2)

where independent noises of intensity D have been added to the slow variables yi as in
ref. [5]. The ξi(t) are white noises with Gaussian distribution of zero mean and correla-
tions 〈ξi(t)ξj(t′)〉 = δijδ(t − t′). The difference in the time scales of xi and yi is measured by
ε, a small number. The systems are globally coupled by a gap-junctional form, as indicated
by the last term of eq. (1), where K is the coupling strength. The assumption of global cou-
pling is not strictly necessary, but it will allow us to justify a theoretical approach based on
a mean-field–type approximation. Similar globally coupled models have been used previously
to study array-enhanced stochastic resonance in the coupled FitzHugh-Nagumo equation [25].

We consider the excitable regime, a > 1. In the absence of coupling, K = 0, each FitzHugh-
Nagumo system emits pulses. The pulses are trajectories that exit the basin of attraction of
the stable fixed point and are triggered by the influence of the noise term. For zero coupling,
coherence resonance exists when the regularity of the time between pulses is optimal for a
certain value of the noise intensity D [5]. This behavior is the same for all the systems,
although the response of each one is uncorrelated with any other.

Let us now study the collective response of the coupled system and compare it with the
individual responses. For the collective response, we introduce the average values of the
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Fig. 1 – Time series for the averaged variable X(t) (left panel), and for the individual variable x1(t)
(right panel) of the set of coupled FitzHugh-Nagumo systems, as obtained from a numerical integration
of eqs. (1)-(2), for different values of the number of coupled elements: N = 1 (top), N = 160 (middle)
and N = 1000 (bottom). Observe that the largest regularity is obtained for the intermediate value of
N . The equations have been integrated numerically using a stochastic Runge-Kutta method (known
as the Heun method [26]) with a time step h = 10−4 and setting the following parameters: a = 1.1,
ε = 0.01, K = 2, D = 0.7.

activator and inhibitor variables as

X(t) =
1
N

N∑
i=1

xi(t), Y (t) =
1
N

N∑
i=1

yi(t). (3)

By following the approach by Desai and Zwanzig [27] (see also ref. [19]), it is possible to reach
an approximate effective equation for these average values of the form

εẊ = F (X,K)− Y, (4)

Ẏ = X + a +
D√
N

ξ(t), (5)

where ξ(t) is a white-noise source. Although the exact form of the function F (X,K), which
depends on the global variable X as well on the coupling strength K, and the analysis of
the approximations assumed in the derivation will be presented elsewhere, we need only to
remark here that in the (exact) equation for Y (t) the noise intensity appears rescaled as
D/

√
N . Therefore, this approximation suggests that the optimal effective noise intensity

for the appearance of coherence resonance can be achieved by varying the number of coupled
elements N , as in the case of stochastic resonance for the bistable system considered in [19]. To
go beyond this approximation, we numerically integrate the equations of motion (1) and (2).

The left panel of fig. 1 shows the time trace for the variable X(t), while the right panel
of the same figure shows the time trace for the variable xi(t) of one of the elements chosen
randomly, for three different values of the number of coupled elements (see the caption of the
figure for details of the parameters). Notice that for N = 160, the regularity of the amplitude
of the emitted pulses is better than that corresponding to larger or smaller values of N . This
is a clear signature of coherence resonance. Moreover, it can be seen that the regularity in
the averaged variable X(t) is better than in one of the individual elements, showing that
the coupling allows for a smoothness of the trace. It is worth noting that the peaks in the
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Fig. 2 – Time series for the averaged variable Y (t) (left panel), and the individual variable y1(t) (right
panel) of the set of FitzHugh-Nagumo systems, eqs. (1)-(2). Similarly as in fig. 1, observe that again
the largest regularity for the averaged Y variable is obtained for the intermediate value of N . In this
case, however, there is no obvious increase in the regularity of the yi individual variables.

collective variable X(t) and xi(t) are very well synchronized in time, indicating that the
individual systems are pulsing synchronously in time. In fig. 2 (left panel) we plot the time
trace for the slow variable Y (t), as well as a time trace for a single one yi(t) (right panel). At
variance with the fast variable X, it turns out that the averaged Y (t) shows a very nice regular
behavior for an intermediate number of elements, while the individual traces yi(t) do not.

We have computed two indicators commonly used to quantify this effect [5]. First, we have
computed the time correlation function CX(t) of the averaged X variable, defined as

CX(t) =
〈δX(t′)δX(t + t′)〉

〈δX(t′)2〉 , δX(t) = X(t)− 〈X(t′)〉 (6)

and similarly for the correlation function CY (t) for the averaged Y variable. Here the averages
〈 〉 are with respect to the time t′, after a small transient has been neglected. Figure 3 shows
this correlation function for both the X and Y variables. It can be seen that the correlations
extend further in time for an intermediate value, neither very large nor very small, of the
number of coupled systems N . To obtain a quantitative indicator of this effect, we define the
characteristic correlation times τX and τY for each variable as

τX,Y =
∫ ∞

0

|CX,Y (t)|dt. (7)

In practice, the upper limit of the integral is replaced by a value tmax such that the correlation
function can be considered as decayed to its asymptotic value CX,Y = 0 (tmax = 50 for the
data shown in fig. 3). We have plotted these two correlation times in the left panel of fig. 4.
Both times reach a maximum at approximately the same value N ≈ 160, indicating that,
for the set of parameters chosen, the maximum extent of the time correlation occurs for this
number of coupled excitable systems.

Another common indicator for the regularity of the emitted pulses can be obtained by
the jitter of the time between pulses [5]. A pulse in the X(t) variable is defined when X(t)
exceeds a certain threshold value X0 (taken arbitrarily as X0 = 0.3, although other values
yield similar results). The jitter RX is defined as the root mean square of the time TX between
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Fig. 3 – Correlation functions CX(t) and CY (t) of the averaged variables X(t) and Y (t), respectively,
for the cases of N = 1 (dotted line), N = 160 (solid line) and N = 1000 (dashed line). Notice that, in
agreement with the qualitative results derived from figs. 1 and 2, the slower decay of the correlations
corresponds to the intermediate values of the system size N . Same parameters as in fig. 1.

two consecutive pulses normalized to its mean value:

RX =
σ[TX ]
〈TX〉 (8)

and an equivalent definition holds for the jitter RY of the Y variable. The smaller the value
of RX,Y , the larger the regularity of the pulses (a value of RX,Y = 0 indicates a perfectly
periodic signal). It is shown in the right panel of fig. 4 that indeed the jitter in both variables
have a well-defined minimum at a value of N ≈ 80, again showing the existence of the system
size resonance. When comparing with the results of the correlation time, it is not uncommon
that the two indicators (the correlation time τ and the jitter R) have their optimal values at
different values of the system parameters [5, 16].

In summary, we have shown that an ensemble of globally coupled FitzHugh-Nagumo ex-
citable systems subjected to independent noises pulse on average with a regularity that is
maximum for a given value of the number N of coupled systems. An approximate calculation
indicates that the collective variable Y (t) is subjected to a noise of effective intensity D/

√
N .

Fig. 4 – Panel (a) plots the correlation times τX and τY as obtained by integration of the absolute
value of the respective correlation functions. Clear maxima (maximum extent of the correlations)
can be observed around N = 160. Panel (b) plots the jitter of the time between consecutive pulses
of the collective variables X(t) (asterisks) and Y (t) (triangles). Clear minima (optimal regularity in
the emitted pulses) can be observed around N = 80 in both cases.
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Therefore, even in the presence of a large amount of noise (D large), it is possible to couple
the right number of systems in order to optimize the periodicity of the emitted pulses X(t).
Notice that, since the individual variables xi(t) follow the same pattern as the collective one
X(t) (see fig. 1), the periodicity is optimal in the individual trajectories xi(t) as well. Given
that the FitzHugh-Nagumo system has been used previously to model some biological sys-
tems, we believe that our results, in the same lines than those of ref. [20, 21], can be relevant
when analyzing the collective response of such systems in a noisy environment, and can help
to explain the observed size of some ensembles of excitable cells in living organisms.
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