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1. INTRODUCTION

In this article, we explore how to build applications for pervasive computing
environments. Pervasive, or ubiquitous, computing [Weiser 1991] has the po-
tential to radically transform the way people interact with computers. It is
motivated by the observation that computing and networking technologies are
becoming increasingly powerful and affordable, with the result that a wide va-
riety of computing devices can be deployed throughout our living and work-
ing spaces. These devices coordinate with each other and network services
[Dertouzos 1999], with the goal of providing people with universal access to
their information and seamlessly assisting them in completing their tasks. Per-
vasive computing thus marks a major shift in focus, away from the actual com-
puting technology and towards people and their needs. So, instead of manually
managing their computing environment by, for example, copying files between
devices or converting between data formats, users “simply” access their appli-
cations and their data whenever and wherever they need.

With its vision of ubiquitous information access, pervasive computing sig-
nificantly impacts how computing devices are deployed and how people in-
teract with the resulting computing infrastructure. First, in addition to
well-administered and -controlled computing laboratories and server rooms,
computing devices of various sizes and capabilities are now everywhere, of-
ten embedded in places not typically associated with computing, such as living
rooms or biology laboratories. Second, in contrast to conventional computing
environments, people focus on their activities and not on the computers. For ex-
ample, in a biology laboratory, researchers focus on their experiments and not
on the computing devices used to capture experimental results, such as digital
pipettes or incubators. Third, tasks often last days and may span many de-
vices, people, and places. Moreover, task requirements may change frequently.
For example, biology experiments often take hours, if not days, to complete,
and involve many collaborating researchers working at different laboratory
stations. As an experiment progresses, researchers may schedule additional
steps, for instance, to determine whether an unexpected outcome was caused
by contaminants.

The key challenge for developers is to build pervasive applications that con-
tinuously adapt to such a highly dynamic environment and continue to function
even if people move through the physical world and if the surrounding network
infrastructure provides only limited services. However, existing approaches to
building distributed applications, including client/server or multitier comput-
ing, are ill-suited to meet this challenge. The fundamental problem is that these
approaches try to hide distribution and rely on technologies, such as remote pro-
cedure call (RPC) packages [Birrell et al. 1982] or distributed file systems [Levy
and Silberschatz 1990], that extend single-node programming methodologies to
distributed systems. Because these technologies hide remote interactions, fa-
vor static composition through programmatic interfaces, and often encapsulate
data and functionality in the form of objects, they make it hard to anticipate fail-
ures, to extend applications, and to share and search data. Consistent with the
push towards hiding distribution, applications built on top of these technologies
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tend to be structured like single-node applications and assume an execution en-
vironment where resources are constant and continuously available.

As a result, users are forced to “stitch up the seams” and need to explicitly
reconfigure their computers every time the execution environment changes. For
example, with today’s wireless networking technologies, people need to manu-
ally adapt their computers every time they enter a different network. Existing
systems and applications have no notion of “entering a new network” and thus
need to be explicitly configured with the wireless network name and access key,
to say nothing of necessary file servers or close-by printers. However, forcing
users to adapt is impractical and, fundamentally, antithetical to the vision of
pervasive computing.

To mitigate this situation, we present a system architecture, called one.world,
that provides an integrated framework for building adaptable applications.
Our work is motivated by the insight that, in direct opposition to conventional
distributed systems, system support for pervasive applications must expose
distribution rather than hide it. That way, applications can see change and
then adapt to it instead of forcing users to repeatedly reconfigure their sys-
tems. More specifically, system support for pervasive applications must meet
three requirements. First, as people move throughout the physical world—
either carrying their own portable devices or switching between devices—
an application’s location and execution context change all the time. As a
result, system support needs to embrace contextual change and not hide it
from applications. Second, users expect that their devices and applications
just plug together. System support thus needs to encourage ad hoc compo-

sition and not assume a static computing environment with a limited num-
ber of interactions. Third, as users collaborate, they need to easily share
information. As a result, system support needs to recognize sharing as the

default.
Our architecture, one.world, represents a first stab at exploring how to address

these three requirements. one.world is layered over a traditional operating sys-
tem, such as Windows or Linux. It exposes a simple programming model that
relies on tuples (possibly nested records of name/value pairs) for all data, thus
making it easy to share data, and asynchronous events for all communications,
thus providing a well-defined mechanism for notifying applications of change.
Like any distributed system, it has facilities for managing processes, storage,
and point-to-point communications. More importantly, it provides a set of ser-
vices, such as discovery and migration, that directly simplify the task of cop-
ing with constant change. Our architecture reuses existing operating system
technologies where appropriate, and innovates where necessary; the focus is
to provide an integrated and comprehensive framework for building pervasive
applications.

We have validated our architecture by supporting the Labscape project
[Arnstein et al. 2002] in porting their digital biology laboratory assistant to
one.world and by building our own utilities and applications on top of one.world—
notably, Emcee, our user and application manager, and Chat, a text and audio
messaging system. Based on these experiences, we show that our architec-
ture (1) enables others to successfully build pervasive applications, (2) is not
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significantly harder to program than with conventional programming styles,
(3) is sufficiently complete to support additional services and utilities on top
of it, and (4) has acceptable performance, with applications reacting quickly to
changes in their runtime context. Our evaluation thus validates our approach.
At the same time, our own and others’ experiences with using one.world suggest
several opportunities for future research, including the need for data models
that are general and supported by a wide range of platforms and the need for
user interfaces that scale across a wide range of devices. Additionally, while our
architecture has been designed to support reference monitors and auditing, se-
curity for pervasive computing environments—specifically the authentication
of users, devices, and applications and the expression of appropriate security
policies—remains an important, open issue.

The contributions of this article are threefold. First, we discuss the short-
comings of existing distributed systems technologies, which typically extend
single-node programming methodologies, and present an alternative approach
that cleanly exposes distribution, thus providing a more appropriate foundation
for building pervasive applications. Second, we present a system architecture,
one.world, that embodies this approach, and we provide a detailed description
of its programming model. Third, we present the results of a thorough exper-
imental evaluation of one.world, which is based on our own as well as others’
experiences with our architecture, relay lessons learned, and identify opportu-
nities for future research.

This article is structured as follows. In Section 2, we motivate our work and
introduce our approach to building pervasive applications. Section 3 provides
an overview of our architecture. Next, Section 4 describes one.world ’s program-
ming model in detail. We present the results of our experimental evaluation in
Section 5 and reflect on our own and others’ experiences with using one.world

in Section 6. Section 7 reviews related work. Finally, Section 8 concludes this
article.

2. MOTIVATION AND APPROACH

From a systems viewpoint, the pervasive computing space presents the con-
siderable challenge of a large and highly dynamic distributed computing en-
vironment. However, existing approaches to building distributed systems do
not provide adequate support for addressing this challenge and fall short along
three main axes.

First, many existing distributed systems seek to hide distribution and, by
building on distributed file systems [Levy and Silberschatz 1990], or remote
procedure call (RPC) packages [Birrell et al. 1982], mask remote resources as
local resources. This transparency simplifies application development, since ac-
cessing a remote resource is just like performing a local operation. However, it
also comes at a cost in service quality and failure resilience. By presenting the
same interface to local and remote resources, transparency encourages a pro-
gramming style that ignores the differences between the two, such as network
bandwidth [Muthitacharoen et al. 2001], and treats the unavailability of a re-
source or a failure as an extreme case. But in an environment where people and
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devices keep on coming and going, change is inherent and the unavailability of
some resource is frequent.

Second, RPC packages and distributed object systems, such as Legion [Lewis
and Grimshaw 1996] or Globe [van Steen et al. 1999], compose distributed ap-
plications through programmatic interfaces. Just like transparent access to
remote resources, composition at the interface level simplifies application de-
velopment. However, composition through programmatic interfaces also leads
to a tight coupling between major application components because they directly
reference and invoke each other. As a result, it is unnecessarily hard to add
new behaviors to an application. Extending a component requires interposing
on the interfaces it uses, which requires extensive operating system support
[Jones 1993; Pardyak and Bershad 1996; Tamches and Miller 1999] and is
unwieldy for large or complex interfaces. Furthermore, extensions are limited
by the degree to which extensibility has been designed into the application’s
interfaces.

Third, distributed object systems encapsulate both data and functionality
within a single abstraction, namely objects. Yet again, encapsulation of data
and functionality extends a convenient paradigm for single-node applications
to distributed systems. However, by encapsulating data behind an object’s in-
terface, objects complicate the sharing, searching, and filtering of data. In con-
trast, relational databases define a common data model that is separate from
behaviors and thus make it easy to use the same data for different and new
applications. Furthermore, objects as an encapsulation mechanism are based
on the assumption that data layout changes more frequently than an object’s
interface, an assumption that may be less valid for a global distributed com-
puting environment. Increasingly, many different applications manipulate the
same data formats, such as XML [Bray et al. 1998]. These data formats are
specified by industry groups and standard bodies, such as the World Wide Web
Consortium, and evolve at a relatively slow pace. In contrast, application ven-
dors compete on functionality, leading to considerable differences in application
interfaces and implementations and a much faster pace of innovation.

Not all distributed systems are based on extensions of single-node program-
ming methodologies. Notably, the World Wide Web does not rely on program-
matic interfaces and does not encapsulate data and functionality. It is built on
only two basic operations, GET and POST, and the exchange of passive, semi-
structured data. In part due to the simplicity of its operations and data model,
the World Wide Web has successfully scaled across the globe. Furthermore, the
narrowness of its operations and the uniformity of its data model have made
it practical to support the World Wide Web across a huge variety of devices
and to add new services, such as caching [Chankhunthod et al. 1996; Tewari
et al. 1999], content transformation [Fox et al. 1997], and content distribution
[Johnson et al. 2000].

However, from a pervasive computing perspective the World Wide Web also
suffers from three significant limitations. First, just like conventional dis-
tributed systems, it places the burden of adapting to change on users, for ex-
ample, by making them reload a page when a server is unavailable because it
is overloaded or inaccessible. Second, it requires connected operation for any
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use other than reading static pages. Finally, it does not seem to accommodate
emerging technologies that are clearly useful for building adaptable applica-
tions, such as service discovery [Adjie-Winoto et al. 1999; Arnold et al. 1999;
Czerwinski et al. 1999] and mobile code [Thorn 1997]. While Java applets are
a form of mobile code, they are only active while the corresponding page is dis-
played and, by default, can only communicate with the originating server. As
a result, they are basically limited to enlivening web pages and implementing
site-specific chat clients.

2.1 The Unique Requirements of Pervasive Computing

The inadequacy of existing distributed systems raises the question of how to
structure system support for pervasive applications. On one side, extending
single-node programming models to distributed systems leads to the shortcom-
ings discussed above. On the other side, the World Wide Web avoids several
of the shortcomings but is too limited for pervasive computing. To help define
a better alternative, we identify the three unique requirements of pervasive
computing.

REQUIREMENT 1. Embrace contextual change.

As people move through the physical world, the execution context of their ap-
plications changes all the time. It is impractical to ask users to manually man-
age these changes, such as entering a new wireless network name and access
key every time they enter a different network. Systems thus need to expose
contextual changes rather than hiding distribution, so that applications can
implement their own strategies for handling changes and spare the users from
doing so. Event-based notification or callbacks are examples of suitable mech-
anisms. At the same time, systems need to provide primitives that simplify the
task of adequately reacting to change. Examples for such primitives include
“checkpoint” and “restore” to simplify failure recovery, “move to a remote node”
to follow a user as she moves through the physical world, and “find match-
ing resource” to discover suitable resources on the network, such as nearby
instruments in a biology laboratory or other users with whom to exchange
messages.

REQUIREMENT 2. Encourage ad hoc composition.

As people use different devices in different locations, they expect that appli-
cations and devices just plug together. It is impractical to ask users to man-
ually perform the composition. Consequently, systems should make it easy
to compose applications, services, and devices at runtime. In particular, in-
stalling a user’s applications on a device must be easy. Furthermore, interpos-
ing on an application’s interactions with other applications and network ser-
vices must be simple. Interposition makes it possible to dynamically change
the behavior of an application or add new behaviors without changing the
application itself. This is particularly useful for complex and reusable behav-
iors, such as replicating an application’s data or deciding when to migrate an
application.
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REQUIREMENT 3. Recognize sharing as the default.

In essence, pervasive computing strives to make information accessible any-
where and anytime. It is impractical to ask users to manage the corresponding
files (by, for example, moving them between different devices) and to convert
between different data formats. Systems thus need to make it easy to access
saved information and to share information between different applications and
devices. Ease of sharing is especially important for services that search and
filter large amounts of data. At the same time, data and functionality depend
on each other, for example, when migrating an application and its data. Sys-
tems thus need to include the ability to group data and functionality while still
making them accessible independently.

Individually, the three requirements have been recognized before. For in-
stance, Bayou [Petersen et al. 1997; Terry et al. 1995] exposes different data
values on different devices, and Odyssey [Noble et al. 1997] relies on asyn-
chronous notifications to expose contextual change to applications. Further-
more, as already discussed, the World Wide Web is built on only two basic
operations, GET and POST, which greatly simplifies dynamic composition. Fi-
nally, the recent move towards expressing all data on the Internet as XML
attempts to facilitate sharing. Our approach differs from these efforts in that
we advocate addressing all three requirements at the same time.

Common to the requirements is the realization, similar to that behind ex-
tensible operating systems [Bershad et al. 1995; Engler et al. 1995; Kaashoek
et al. 1997], that systems cannot automatically decide how to react to change,
because there are too many alternatives. Where needed, the applications them-
selves should be able to determine and implement their own policies [Saltzer
et al. 1984]. As a result, we are advocating a structure different from previous
distributed systems, which exposes distribution so that applications can adapt
to change instead of users.

At the same time, the three requirements do not preclude the use of es-
tablished programming methodologies. Embracing contextual change does not
prevent us from providing reasonable default behaviors. But it does empha-
size that applications must be notified of change. Similarly, encouraging ad hoc
composition does not preclude the use of strongly typed APIs. However, it does
emphasize the need for simplifying interposition. Finally, recognizing sharing
as the default does not preclude the use of object-oriented programming. The
ability to abstract data or functionality is clearly useful for structuring and im-
plementing applications. At the same time, ease of sharing, with its emphasis
on searching, filtering, and translating data, does suggest that application data
and functionality build on distinct abstractions.

Given a system that meets these requirements, application developers can fo-
cus on making applications adaptable, and the users, in turn, can focus on their
tasks instead of manually adapting their devices and applications. While pro-
gramming adaptable applications requires developer discipline when compared
to conventional distributed systems, it also provides an important opportunity
to transform the way people interact with their computers and applications.
This approach to building pervasive applications is illustrated in Figure 1.
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Fig. 1. Illustration of our approach. The three requirements guide the design of our system archi-
tecture and make it feasible for application developers to program for change, resulting in adaptable
applications.

2.2 Adaptability and Transparency

By exposing distribution, our approach differs from a large class of efforts that
have explored how to build services that adapt (largely) transparently to an
ever changing execution context. For instance, the Coda file system [Kistler
and Satyanarayanan 1992; Mummert et al. 1995] aggressively caches files on
clients—hoarding files before they might be accessed—to support disconnected
or weakly connected operation. Similarly, the Rover system [Joseph et al. 1995]
caches service objects on clients and provides queued RPC to support mobile de-
vices that may only be intermittently connected. The xFS file system [Anderson
et al. 1996] automatically distributes file storage, caching, and control across
a set of cooperating workstations and thus eliminates the need for dedicated
file servers. More ambitiously, the OceanStore project [Kubiatowicz et al. 2000;
Rhea et al. 2003] is trying to create a global storage utility, which runs on an
untrusted computing infrastructure and automatically moves and replicates
data between devices to optimize for locality and availability. Furthermore, the
Mobile IP architecture [Ioannidis and Maguire 1993] supports device mobility
by automatically forwarding TCP/IP traffic, even if a device is not connected to
its home network. Finally, the Barwan networking architecture [Brewer et al.
1998] includes support for transparently switching between wired and wireless
networks and for correspondingly switching between transport protocols to en-
sure that devices remain continuously and reliably connected, independent of
their current location.

Common to these efforts is that they focus less on delivering programming
methodologies (like the RPC and distributed object systems discussed above)
and more on providing particular services. As a result, they can focus on mak-
ing the provided services adaptable. More fundamentally, to be transparent,
these efforts also share a drive to contain changes to existing applications and
networking infrastructure as much as possible. One important technique em-
ployed by many of these efforts is the use of proxies. For example, xFS includes
NFS proxies that provide access to its file system data to unmodified clients.
Furthermore, Rover includes a web proxy to provide web access to mobile de-
vices while also leaving existing browsers and servers unchanged. Finally, both
Mobile IP and Barwan use proxies to isolate protocol additions to the mobile
clients and their routers, with Barwan also generalizing proxies under their
TACC (for transformation, aggregation, caching, and customization) model [Fox
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et al. 1997]. As a result, these services can adapt to a changing execution con-
text, while also being able to transparently interact with legacy systems and
applications.

Overall, we believe that these efforts are complimentary to our own approach
for two reasons. First, by providing continuous access to important services,
such as storage and networking, these efforts certainly lessen the burden of
making applications adaptable and thus simplify the development of pervasive
applications. In fact, one.world also reflects the desire to isolate applications from
at least some changes. Notably, the implementation of our architecture’s dis-
covery service relies on an automatically elected server and thus transparently
adapts to a changing device and network topology. Discovery server elections
ensure that the directory of discoverable resources is almost always available
while also hiding the directory’s location. This implementation trade-off is rea-
sonable, as directory availability is considerably more important to pervasive
applications than directory location.

Second, since a system architecture that meets the three requirements has
been specifically designed for implementing adaptable programs, we believe
that such an architecture can also simplify the implementation of transparently
adapting services—an important concern when considering the complexity of
services such as xFS or OceanStore. Furthermore, several of the above systems
are only transparent to a degree and need to expose some changes to applica-
tions. For example, the resolution of file conflicts in Coda is at least type-specific
if not application-specific [Kumar and Satyanarayanan 1995]. Furthermore,
Barwan needs to notify applications that the current network has changed so
that they can adapt, for example, the fidelity of streaming audio or video to
match available bandwidth. Clearly, a system architecture that follows our ap-
proach provides a convenient framework for exposing such changes.

2.3 The Biology Laboratory as an Example Application Domain

To illustrate the three requirements central to our approach to building perva-
sive applications, we now introduce the digital biology laboratory. Unlike the
scenarios presented in Esler et al. [1999] and Weiser [1991], the digital labo-
ratory does not illustrate the full potential of pervasive computing. However,
it addresses a real need of real people—performing reproducible biology exper-
iments. Furthermore, as discussed in Section 5.5, the digital laboratory has
been implemented on top of one.world by the University of Washington’s Lab-
scape project and has been deployed at the Cell Systems Initiative [Arnstein
et al. 2002]. As a result, it provides an apt example for a pervasive application
and the three requirements.

As already mentioned, the goal of researchers working in a biology laboratory
is to perform reproducible experiments. Today, they manually log individual
steps in their paper notebooks. This easily leads to incomplete experimental
records and makes it unnecessarily hard to share data with other researchers,
as the biologists need to explicitly enter the data into their PCs. In con-
trast, a digital laboratory employs digitized instruments, such as pipettes and
incubators, to automatically capture data, location sensors to track researchers’
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Fig. 2. A workbench in a biology laboratory. Notice how the touchscreen on the right hand side
becomes just another instrument on this workbench rather than being the focus of attention.

Fig. 3. A screenshot of Labscape’s user interface. Each experiment is represented as an experi-
mental flowgraph, or guide. The individual icons represent different experimental steps, and the
arrows represent ordering constraints.

movements, and touchscreens to display experimental data close to the re-
searchers (see Figure 2 for a workbench in the digital laboratory). As a result,
biologists in the digital laboratory have more complete records of their experi-
ments and can more easily share results with their colleagues.

A fundamental feature of the digital laboratory is that experimental data
follows a researcher as she moves through the laboratory. Furthermore, the
data can follow her as she leaves the laboratory, for example, so that she can
review a day’s results on her tablet computer while taking the commuter train
home. At the same time, there is no need to move the entire digital laboratory
application as the researcher moves through the physical world. Rather, only a
small component for capturing and displaying experimental data needs to follow
the researcher. Eventually, all data is forwarded to a centralized repository,
making it possible, for example, to mine the data of several experiments.

Figure 3 shows a snapshot of the capture and display component’s user in-
terface, which is also called a guide and has been developed by the Labscape
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project through user interface studies with actual biology researchers. Each ex-
periment is represented as a flowgraph. The individual icons represent different
experimental steps and the arrows represent ordering constraints between the
steps. Originally, the guide functions as a plan for the experiment to be per-
formed. A researcher can either select a flowgraph from a library of existing
flowgraphs or create her own (which may be based on an existing flowgraph).
As the researcher performs a step, she annotates the corresponding icon with
the results of that step, or, if she is using digital instruments, they are auto-
matically annotated. Over time, the flowgraph thus becomes a record of the
experiment.

The three requirements of pervasive computing—change, ad hoc composi-
tion, and pervasive sharing—show up in the digital laboratory as follows:

Embrace contextual change. Biology laboratories are organized into task-
specific work areas, often centered around a specific instrument, such as a
centrifuge or incubator, and biologists often move between work areas while
working on the same experiment. As a result, a researcher’s location changes
need to be exposed to her guide, so that it can automatically follow her to the
corresponding touchscreens.

Encourage ad hoc composition. As the researcher moves through the biol-
ogy laboratory, her guide needs to transparently connect to the digital instru-
ments in her current work area and incorporate readings into the experimental
flowgraph. Furthermore, as outside researchers visit the laboratory, their PDAs
or laptops need to be automatically integrated into the digital laboratory so that
the researchers can exchange and review experimental results.

Recognize sharing as the default. Biology experiments often last hours, if
not days, and biologists multitask between several experiments or focus on
performing a single step for many experiments in a row. As a result, it must be
easy to switch between different experiments, to hand off experiments between
researchers, and to compare different experiments.

As a pervasive application, the digital laboratory application needs to be
considerably more seamless and adaptable than conventional distributed ap-
plications. At the same time, it also illustrates an important property of per-
vasive computing environments: their human scale. In particular, the digital
laboratory only needs to scale to a limited number of concurrent users, as only
so many people can work in the same laboratory at the same time. Further-
more, the digital laboratory application typically needs to adapt at a human
time scale. A researcher walking from one work area to another thus leaves
a relatively large timespan (compared to the microsecond latencies often con-
sidered in distributed systems work) for migrating the researcher’s guide and
connecting to close-by instruments.

2.3.1 Short-comings of the Status Quo. To emphasize that pervasive ap-
plications are not just conventional distributed applications, we now consider
the limitations of conventional systems when implementing the digital labora-
tory. First, it is hard to move between devices. Even with existing networked
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application support, such as the X Window System [Nye 1995] or roaming pro-
files in Windows [Tulloch 2001], users have to manually log into a machine, start
their applications, and load the necessary data. Second, it is hard to connect to
different instruments as researchers move between work areas. Conventional
systems focus on providing point-to-point communications (with TCP being the
most prominent example) and lack facilities for dynamically discovering and
connecting to close-by instruments without explicit, manual configuration. Fi-
nally, it is hard to share data. On one hand, file systems support only coarse-
grained sharing—remember that biology experiments consist of many steps,
with each step only generating a small amount of data. On the other hand,
databases are difficult to set up and administer, typically requiring dedicated
facilities and staff.

Based on similar observations, several efforts have explored how to layer
additional middleware for building adaptable applications onto existing dis-
tributed systems. Sun’s Jini is probably the most popular example for such a
middleware platform [Arnold et al. 1999]. Like one.world, it supports distributed
events, tuple storage, and service discovery. Unlike one.world, it is layered on
top of Java RMI [Sun Microsystems 2002], a traditional distributed object sys-
tem, and thus inherits RMI’s limitations. In particular, Jini requires a statically
configured infrastructure to run its discovery server. Furthermore, it requires
an overall well-behaved computing environment because it relies on transpar-
ent and synchronous remote invocations, does not provide isolation between
applications running within the same Java virtual machine, and links objects
on different devices with each other through distributed garbage collection. In
other words, Jini is inherently limited because it builds on a conventional dis-
tributed system. To be effective, system support for pervasive applications must
be designed from the ground up to meet the three requirements: change, ad hoc
composition, and pervasive sharing.

3. ARCHITECTURE

With the three requirements in place, we now introduce one.world and its ser-
vices. Our architecture is structured according to the following four principles.
First, bias a set of foundation services to directly address the three require-
ments: change, ad hoc composition, and pervasive sharing. Second, express spe-
cific system services in terms of the foundation services and make them avail-
able as common application building blocks. Third, employ a classic user/kernel
split, with foundation and system services provided by the kernel, and libraries,
system utilities, and applications running in user space. Finally, remain neutral
on other issues, such as whether to implement applications as client/server or
peer-to-peer applications. The resulting organization is illustrated in Figure 4.
We now present the individual services as well as the provided library support
in more detail.

3.1 Foundation Services

The four foundation services directly address the three requirements of change,
ad hoc composition, and pervasive sharing. First, a virtual machine, such as
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Fig. 4. Overview of one.world ’s architecture. Foundation and system services are part of the kernel,
while libraries, system utilities, and applications run in user space.

the Java virtual machine [Lindholm and Yellin 1999] or Microsoft’s Common
Language Runtime [Thai and Lam 2002], provides a common execution envi-
ronment across all devices and hardware platforms.1 Since developers cannot
possibly predict all the devices their applications will run on, the virtual ma-
chine ensures that applications and devices are composable. Second, tuples

define a common data model, including a type system, for all applications and
thus make it easy to share data. They are records with named fields and are self-
describing in that an application can dynamically inspect a tuple’s fields and
their types. Third, all communications in one.world, whether local or remote, are
through asynchronous events; applications are composed from components that
exchange events through imported and exported event handlers. Events make
change explicit to applications, with the goal that applications adapt to change
instead of forcing users to manually reconfigure their devices and applications.

Finally, environments are the central mechanism for structuring and com-
posing applications. They serve as containers for stored tuples, application com-
ponents, and other environments, and form a hierarchy with a single root per
device. Each application consists of at least one environment, in which it runs
and stores its persistent data. However, applications are not limited to a sin-
gle environment and may span several, nested environments. Comparable to
processes in conventional operating systems, environments provide protection
and isolate applications from each other and from one.world ’s kernel, which is
hosted by each device’s root environment. Environments also are an important
mechanism for dynamic composition: an environment controls all nested en-
vironments and can interpose on their interactions with the kernel and the
outside world. Environments thus represent a combination of the roles served

1
one.world is implemented in Java. At the same time, its implementation does not rely on any features

that are unique to Java, and it could be implemented on a different virtual machine platform, such
as Microsoft’s Common Language Runtime.
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Fig. 5. Illustration of an example environment hierarchy. The User environment hosts the Emcee
application and has one child, named robert, which stores several tuples representing that user’s
preferences. The robert environment in turn has two children, named Clock and Chat. The Clock

environment only contains active application components, while the Chat environment, in addition
to hosting the Chat application, also stores tuples representing the music being broadcast by Chat.

Table I. Application Needs and Corresponding System Services

Applications need to . . . one.world provides . . .

Search Query engine

Store data Structured I/O

Communicate Remote events

Locate Discovery

Fault-protect Checkpointing

Move Migration

by file system directories and nested processes [Brinch Hansen 1970; Ford et al.
1996; Tullmann and Lepreau 1998] in other operating systems. Figure 5 shows
an example environment hierarchy.

3.2 System Services

In addition to the foundation services, one.world provides a set of system services
that serve as common application building blocks. Table I summarizes common
application needs and the corresponding system services.

The query engine provides the ability to search tuples by instantiating filters.
Queries support the comparison of a constant to the value of a field, the compar-
ison to the type of a tuple or field, and negation, disjunction, and conjunction.
Structured I/O lets applications access stored tuples in environments. It sup-
ports the writing, reading, querying, and deleting of tuples. The structured I/O
operations are atomic so that their effects are predictable and can optionally
use transactions to group several operations into one atomic unit. The query en-
gine and structured I/O simplify data access because applications can directly
access relevant data items.

Remote event passing (REP) forwards events to remote services and is
one.world ’s basic mechanism for communicating across the network. Consis-
tent with our push towards exposing distribution and in contrast to RPC or
distributed object systems, remote communications in one.world are explicit. To
use REP, services export event handlers under symbolic descriptors, that is,
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tuples, and clients send events by specifying the symbolic receiver. Discovery

locates services with unknown locations. It supports a rich set of options, in-
cluding early and late binding [Adjie-Winoto et al. 1999] as well as anycast and
multicast, and is fully integrated with REP, resulting in a simple, yet powerful
API. Discovery is especially useful for applications that migrate or run on mobile
devices and need to find local resources, such as a close-by digital instrument.

Checkpointing captures the execution state of an environment tree and saves
it as a tuple, making it possible to later revert the environment tree’s execution
state. Checkpointing simplifies the task of gracefully resuming an application
after it has been dormant or after a failure, such as a device’s batteries run-
ning out. Migration provides the ability to move or copy an environment and its
contents, including stored tuples, application components, and nested environ-
ments, either locally or to another device. It is especially useful for applications
that follow a person from shared device to shared device as she moves through
the physical world.

3.3 Library Support

Outside of one.world ’s kernel, our architecture provides additional, user-level
library support for implementing pervasive applications. The libraries include
functionality for constructing an application’s user interface and for the timed
execution of event handlers. More importantly, operations help manage asyn-
chronous interactions. They are based on what we call the logic/operation pat-
tern. This pattern structures applications into logic—computations that do not
fail, such as creating and filling in a message, and operations—interactions
that may fail, such as sending the message to its intended recipients. Oper-
ations simplify such interactions by keeping the state associated with event
exchanges and by providing automatic timeouts and retries.

3.4 The Big Picture

Pulling back, Figure 6 illustrates the big picture behind our architecture. The
basic idea is that all the different devices in a pervasive computing environ-
ment run the same system platform, namely one.world. While individual de-
vices may provide additional services over those supplied by our architecture,
applications can rely on the same basic operating environment on every device
(modulo differences in CPU speed and memory/storage capacity). Each device is
independent of other devices and need not be connected with (all) other devices.
Furthermore, each device may be administered separately.

The different applications running on the different devices interact with each
other by exchanging tuples and events. When communicating with other ap-
plications, an application may not necessarily know how many applications it
is communicating with and where those applications are located (hence the
heap of data in the figure). Furthermore, as people move through the physical
world, applications follow by migrating from device to device to device. Though,
as illustrated by the digital biology laboratory, we expect that many applica-
tions only need to migrate a relatively small component. Consistent with our
principle of remaining neutral on how to structure applications, the migrating
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Fig. 6. The big picture. All the different devices in a pervasive computing environment run the
same system platform, one.world. The different applications exchange tuples and events between
each other and migrate from one device to another.

component may rely on additional server-based or peer-to-peer services for its
full functionality.

For example, in the case of the digital biology laboratory, the digital instru-
ments send events describing performed operations to a researcher’s guide, and
the guide, in turn, forwards experimental results to the centralized data repos-
itory. As the researcher is switching between work areas, her guide follows her
by migrating from touchscreen to touchscreen to touchscreen while the data
repository remains in place. Similarly, when using Emcee and Chat, a user’s
Chat application sends text and audio messages by sending events to other peo-
ple’s instances of Chat. As the user moves between rooms, Emcee migrates her
Chat application so that Chat is always running on a device close to that person.

3.5 one.world and Distributed Systems Concerns

Like any distributed system, one.world must address several distributed sys-
tems issues, such as how to provide processes, storage, and communications.
Table II lists the most important issues and relates them to the corresponding
features in our architecture. The table also lists the specific sections that dis-
cuss these features in detail, thus serving as an index into the programming
model section of this article. The request/monitor mechanism listed in the ta-
ble is the interposition mechanism enabled by nested environments; it lets an
outer environment interpose on all interactions of nested environments with
the kernel and the outside world.

4. PROGRAMMING MODEL

We now explore one.world ’s programming model in detail. We describe our ar-
chitecture’s services and their operations, give code examples, and explain our
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Table II. one.world and Distributed Systems Concerns

Issue Feature Section

Namespaces Environments contain applications and their persistent
data.

4.1

Protection domains limit access to direct references. 4.1
The environment hierarchy limits access to nested
environments.

4.1

Data Tuples represent all data. 4.2
management The query engine searches tuples. 4.2.1

Structured I/O persistently stores tuples in environments. 4.2.2

Execution model Applications are composed from components that exchange
asynchronous events.

4.3

The request/monitor mechanism provides the system call
interface.

4.3.1

Operations manage event exchanges, notably those with
event handlers outside an application.

4.3.2

Communication Discovery locates remote receivers by their descriptions. 4.4
model Remote event passing sends events to remote receivers. 4.4

Application
persistence

Checkpointing captures an application’s execution state, and
migration moves or copies an application.

4.5

Security Protection domains isolate applications. 4.1
The request/monitor mechanism can be used to implement
reference monitors and auditing.

4.3.1

Resource
allocation

The request/monitor mechanism can be used to interpose on
requests for system services.

4.3.1

Extensibility The request/monitor mechanism can be used to add new
services.

4.3.1

Issue specifies the distributed systems concern. Feature describes the corresponding one.world service. Section

lists the programming model section discussing that feature.

design decisions. In contrast to the previous section, which is organized around
horizontal slices through our architecture—foundation services, system ser-
vices, and library support, this section is organized around conventional sys-
tems concerns, focusing on the perspective of application developers becom-
ing familiar with our architecture. In particular, we start with namespaces
in Section 4.1 and explore environments as containers for applications, their
persistent data, and other environments. We follow with data management in
Section 4.2 and discuss tuples, the query language and engine, as well as struc-
tured I/O. In Section 4.3, we explore one.world ’s execution model and present
events, the request/monitor mechanism, and operations. Next, in Section 4.4,
we discuss the communication model and describe discovery and remote event
passing. Finally, in Section 4.5, we explore application persistence and present
checkpointing and migration. We do not further discuss virtual machines, as
our architecture directly builds on existing virtual machine technology.

In summary, an application in one.world consists of an environment, which
acts as the namespace for the application’s objects and can include code, data,
and other environments. The application’s code executes in response to asyn-
chronous events, which may be generated by the system, the application it-
self, or by other applications, potentially on other devices. Events are delivered
through a rich event delivery interface. The application’s data is stored in an
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associative tuple store, which is part of the application’s environment. The ap-
plication’s execution state can be checkpointed and stored in its environment
so that the application can later be reverted to the saved state. The application
can also be migrated to a different device, which either moves the application’s
environment and all its contents to that device or creates a copy on the remote
device. one.world itself executes as a set of kernel services, available to, and
mediating, all applications running on a device.

4.1 Namespaces

Comparable to processes in conventional operating systems, environments host
applications and isolate them from each other through protection domains. By
default, each environment represents its own protection domain; though, a pro-
tection domain may span several, nested environments. To enforce isolation, all
data is copied between protection domains, while still allowing for the exchange
of event handlers so that applications can communicate with each other. Opera-
tions on environments and access to an environment’s tuple storage are limited
to the requesting environment and its descendants, thus making it possible to
limit an application’s effects to its subtree, which is important as potentially
untrusted applications move from one device to another.

Environments provide structure not only by isolating applications from each
other, but also by grouping application functionality and persistent data within
the same container. The grouping of functionality and data enables one.world to
load an application’s code from its environment and to store the application’s
checkpoints with the application. More importantly, it simplifies the develop-
ment of pervasive applications that follow a user through the physical world, as
an application and its data, including code and checkpoints, can be migrated in
a single operation. At the same time, environments always maintain a clear sep-
aration between functionality and data, which can be accessed independently
and, unlike objects, are not hidden behind a unifying interface.

In addition to providing structure, environments provide control through
nesting: an outer environment has full control over an inner environment, in-
cluding the ability to interpose on the inner environment’s interactions with
the kernel and the outside world. Nesting thus makes it possible to easily
factor important pervasive computing features, such as the logic to control
migration and the ability to synchronize data with other devices, out of an
application and reusing that functionality across several applications. To ex-
ploit nesting for this purpose, the reusable functionality is provided by an
outer environment, and the application relying on that functionality is placed
into an inner environment. Note that, as described in Ford et al. [1996] and
Tullmann and Lepreau [1998], nesting also facilitates hierarchical resource
controls on CPU time and main memory. While clearly important, we have not
further explored the use of environment nesting for managing these resources in
one.world.

Table III summarizes the environment operations. The majority of these
operations work as expected and are used to create and delete environments and
to start and stop applications. The checkpoint, restore, move, and copy operations
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Table III. The Environment Operations

Operation Explanation

create Create a new environment.

rename Rename an environment.

load Load an application into an environment.

activate Activate the application.

terminate Terminate the application.

unload Unload the application.

destroy Delete the environment and all its contents.

move Move the environment and all its contents.

copy Copy the environment and all its contents.

checkpoint Checkpoint the environment.

restore Restore a previously captured checkpoint.

Operation specifies the environment operation, and explanation describes the operation.

are used for checkpointing and migration and are described in Section 4.5.
To perform an operation, an application specifies the operation, the targeted
environment, and any additional arguments as necessary. Environments are
named by either a globally unique identifier [Leach and Salz 1998] (GUID) or
a human-readable path name, which, like a path name in Unix, is composed
of individual environments’ names separated by slashes (‘/’). An environment’s
GUID cannot be changed after creation, so that it can be used as a unique
reference for that environment. In contrast, an environment’s human-readable
name, just like a directory name in conventional file systems, can be changed
after creation through the rename operation to accommodate changing user
needs. one.world ’s kernel runs in a device’s root environment, which, just like
the root directory in Unix, is named “/”.

4.2 Data Management

Data management in one.world, that is, the ability to query, store, and exchange
information, is based on tuples. Tuples define the common data model, including
the type system, for applications running in our architecture. They are self-
describing, mutable records with named and (usually) typed fields. Valid field
types include numbers, strings, and arrays of basic types, as well as tuples,
thus allowing tuples to be nested within each other. Arbitrary objects can be
stored in a tuple in the form of a special container that encapsulates a serialized
representation of the object.

By providing a common, structured data model, tuples enable our archi-
tecture’s data management services, notably the query engine and structured
I/O. As a result, tuples let pervasive applications directly encode and exchange
the information they manage. They also obviate the need for separate internal
and external representations and for translating between different data for-
mats, generally simplifying the sharing of information. Consider, for example,
a personal information management application. It can directly encode a user’s
appointments, contacts, notes, and messages as tuples and, through the query
engine and structured I/O described below, search, store, and exchange that
data. As a result, it becomes easier to make a user’s data available throughout
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Fig. 7. Definition of a tuple. Each tuple has an ID field to support symbolic references and a
metadata field to support application-specific annotations. A set of methods provides programmatic
access to a tuple’s fields, and additional methods support the expression of semantic constraints
and a human-readable representation.

her living and working spaces and to synchronize between different devices,
applications, and people.

To capture the structure of application data, tuples are statically declared
and strongly typed. A tuple has a fixed set of fields with specific types, and
the overall tuple has a type. However, our architecture also includes a special
tuple, called DynamicTuple. In contrast to other tuples, the fields of a dynamic
tuple can be dynamically added and removed and are dynamically typed, that
is, they can have any allowable field type. As a result, dynamic tuples are more
flexible, but do not offer typing guarantees. They are useful for representing
ad hoc data, such as another tuple’s metadata, or for prototyping data records
during application development.

All tuples share the same base class shown in Figure 7. Each tuple has an ID
field specifying a GUID to support symbolic references, as well as a metadata
field to support application-specific annotations. Each tuple also has a set of
methods to programmatically reflect its structure and to access its data, thus
allowing applications to inspect and access data items with unknown types.
The accessor methods are final and are implemented using reflection (with
the remove() method only working for dynamic tuples). Finally, each tuple has
a validate() method to validate its semantic constraints (i.e., to determine
whether a tuple’s field values are consistent with each other) and a toString()

method to produce a human-readable representation. In contrast to the accessor
methods, individual tuple classes can override the latter methods to express
their own semantic constraints and human-readable representation.
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Table IV. The Structured I/O Operations

Operation Argument Explanation

put Tuple Write the specified tuple.

read Query Read a single tuple matching the specified query.

query Query Read all tuples matching the specified query.

listen Query Observe all tuples that match the specified query as they are
written.

delete ID Delete the tuple with the specified ID.

Operation specifies the structured I/O operation. Argument specifies how tuples are selected for that

operation. Explanation describes the operation.

4.2.1 Query Language and Engine. So that applications can easily search
and filter data, such as a user’s appointments or contacts, our data model also
defines a common query language for tuples. That language is designed to sup-
port complex queries over both the structure (i.e., types) and the contents (i.e.,
values) of tuples and is used by the APIs for the structured I/O and discovery
services. Queries support the comparison of a constant to the value of a field,
including the fields of nested tuples, the comparison of a type to the declared or
actual type of a tuple or (nested) field, and negation, disjunction, and conjunc-
tion. Since queries are data themselves, they are also expressed as tuples.

An example query in our architecture’s query language is shown in Figure 14.
It consists of several, nested Query tuples, which express a type comparison (as
indicated by the Query.COMPARE HAS SUBTYPE constant), a value comparison (as
indicated by the Query.COMPARE EQUAL constant), and a conjunction (as indi-
cated by the Query.BINARY AND constant). The overall query matches tuples
of type UserDescriptor whose user field equals the value of the fetchUser

variable.
The query engine processes queries over tuples, as expressed in our archi-

tecture’s query language. To use the query engine, services and applications
instantiate a filter for a specific query (such as the one referenced above) and
then feed tuples to the filter. Tuples matching the query are passed through
and tuples not matching the query are dropped.

4.2.2 Structured I/O. Structured I/O builds on our architecture’s data
model and lets applications persistently store tuples in environments. Com-
parable to different tables in a relational database, an environment’s tuple
storage is separate from that of other environments, and each tuple is stored in
a specific environment. However, as discussed in Section 5.2.1, replication can
be used to synchronize the contents of several environments. Comparable to
the primary key in a relational database table, a tuple’s ID uniquely identifies
the tuple stored within an environment. In other words, at most one tuple with
a given ID can be stored in a given environment. The structured I/O opera-
tions support the writing, reading, and deleting of tuples and are summarized
in Table IV. They are atomic, so that their effects are predictable and can op-
tionally use transactions to group several operations into one atomic unit. To
use structured I/O, an application binds to an environment’s tuple storage and
then performs operations on the bound resource. In other words, the applica-
tion specifies the environment whose tuple storage it wants to access (naming
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the environment as described in Section 4.1) and then issues requests to the
corresponding event handler returned by one.world ’s kernel. All bindings are
controlled by leases [Gray and Cheriton 1989], which limit the time an applica-
tion can access the environment’s tuple storage. Applications can renew these
leases to increase the length of access or cancel them to relinquish access.

In the spirit of Unix’s unified interface to storage and networking [McKusick
et al. 1996], structured I/O also provides the same basic API for reading and
writing tuples across the network. Because standard communication proto-
cols, such as TCP, provide no persistence and employ only limited buffering,
structured I/O networking supports only a subset of the operations shown in
Table IV. In particular, it only supports the put, read, and listen operations
and not transactions. To use structured I/O networking, applications bind to
network endpoints instead of tuple storage. Network endpoints can be either
UDP or TCP unicast sockets or UDP multicast sockets. Just as bindings for
tuple storage, bindings for network endpoints are leased.

We chose to base I/O on a structured data model instead of using unstructured
bytestrings because, by definition, tuples preserve the structure of application
data and thus simplify the sharing and searching of data. Furthermore, tuples
free applications from explicitly marshaling and unmarshaling data during I/O
and from implementing their own, internal database functionality, which is
a common strategy for desktop applications [Microsoft Corporation 1999] and
leads to considerable duplication of effort between applications from different
vendors. We chose tuples instead of XML [Bray et al. 1998] because tuples are
simpler and easier to use. The structure of XML-based data is less constrained
and also more complicated, including tags, attributes, and name spaces. Fur-
thermore, interfaces to access XML-based data, such as DOM [Le Hors et al.
2000], are relatively complex.

Structured I/O distinguishes between storage and networking, instead of pro-
viding a unified tuple space service [Carriero and Gelernter 1986; Davies et al.
1998; Freeman et al. 1999; Murphy et al. 2001; Wyckoff et al. 1998], because
such a separation better reflects how pervasive applications store and commu-
nicate data. On one hand, many applications need to modify stored data. For
example, a personal information manager needs to update stored contacts and
appointments. Structured I/O storage lets applications overwrite stored tuples
by writing a tuple with the same ID as the stored tuple. In contrast, tuple spaces
only support the addition, but not modification, of tuples. On the other hand,
some applications, such as streaming media, need to directly communicate data
in a timely fashion. Structured I/O networking provides that functionality. In
constrast, tuple spaces store all tuples before delivering them and consequently
retain them in storage, which is problematic for streaming media, as data tends
to be large. As a result, tuple spaces represent a semantic mismatch for many
pervasive applications, providing too little and too much functionality at the
same time.

An additional concern is that tuple spaces are not amenable to layering in
asynchronous systems. In particular, the in or take operation—an atomic read
and delete—makes it hard to layer additional services, such as replication, on
top of a tuple space. The problem is that the tuple to be deleted is only known
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Fig. 8. The event handler interface. An event handler has a single method that takes the event to
be processed as its only argument and returns no result.

after the in or take has been performed by the tuple space service, thus requiring
that the replication layer intercept both the request and the corresponding
response. In contrast, a replication layer on top of structured I/O only needs
to intercept requests, never responses, because requests for the destructive
put and delete operations are sufficiently descriptive to specify the affected
tuples.

4.3 Execution Model

Having described one.world ’s facilities for data management, we now turn to our
architecture’s execution model. In one.world, all functionality is implemented
by event handlers that process asynchronous events. Events are appropriate
for pervasive applications, as they make changes in an application’s execution
context—such as a person or device moving to a different location—explicit
and provide the application with an opportunity to adapt to those changes.
Since events are data, they too are represented by tuples. In addition to the
ID and metadata fields common to all tuples, all events have a source field
referencing an event handler. This event handler receives notification of fail-
ure conditions during event delivery and processing, as well as the response
for request/response interactions. Furthermore, all events have a closure field,
which can be of any allowable tuple field type including a tuple and is declared
to be an Object. When responding to an event, by sending another event to
the original event’s source event handler, the closure of the original event is
returned with the new event. Closures thus help simplify the implementation
of event handlers, as applications can include any additional state needed for
processing a response in the closure of the original request.

As shown in Figure 8, event handlers implement a uniform interface with a
single method that takes the event to be processed as its only argument and
returns no result. Any result for a request/response interaction must be sent
as a regular event to the event handler referenced by the request’s source field.
Event delivery has at-most-once semantics, both for local and remote event
handling. For remote event handling, at-most-once semantics are appropriate
because, in lieu of transactional delivery protocols (which are too heavy-weight
for basic event delivery), a remote device may fail after it has accepted an event
but before the intended recipient had an opportunity to process it. For local
event handling, exactly-once delivery is the norm. However, at-most-once se-
mantics allow one.world ’s implementation to recover from pathological overload
conditions by selectively shedding load.
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Fig. 9. Illustration of the relationship between imported and exported event handlers. Boxes repre-
sent components, indentations imported event handlers, and protrusions exported event handlers.
The dotted arrow indicates the direction of event flow. In the example, the Chat component im-
ports an event handler named imported, and the AudioSink component exports an event handler
named exported. The two event handlers are linked, with Chat sending received audio messages to
AudioSink, which then plays back the audio contained in the messages.

To simplify code reuse, application functionality is implemented by com-
ponents. Components are units of code that support a uniform linking proto-
col and interact solely by exchanging events. They import and export event
handlers, exposing the event handlers for linking, and are instantiated within
specific environments. Although imported and exported event handlers can be
added and removed after component creation, they are typically declared in a
component’s constructor. Imported and exported event handlers can be linked
and unlinked at any time. After linking an imported event handler to an ex-
ported event handler, events sent to the imported event handler are processed
by the exported event handler. Unlinking breaks this connection again. This
relationship between imported and exported event handlers is illustrated in
Figure 9.

An application’s main component has a static initialization method that in-
stantiates its components and performs the initial linking. It is called by our
architecture when loading the application into its environment through the load

operation listed in Table III. While the application is running, it can instantiate
additional components, add and remove imported and exported event handlers,
and relink and unlink components as needed. An example initialization method
is shown in Figure 10. It instantiates a single component, representing Emcee’s
main component, and then performs two linking operations. After these simple
initialization steps, the Emcee application is fully instantiated and ready to
execute.

When an event is sent between components in different environments, the
invocation of the exported, that is, receiving, event handler on the sent event is
performed asynchronously. The corresponding invocation of the imported, that
is, sending, event handler returns (almost) immediately. However, when an
event is sent between components in the same environment, the event handler
invocation is performed as a direct method call, so that the event is delivered
reliably and efficiently. This default can be overridden at link-time, so that
events within the same environment are also sent asynchronously.

We chose to use asynchronous events instead of synchronous invocations
through, for example, regular procedure calls or a mix between regular proce-
dure calls and asynchronous callbacks for three reasons. First and foremost,
asynchronous events provide a natural fit for pervasive computing, as appli-
cations often need to raise or react to events, such as sending or receiving a
text message or adapting to the execution context after a migration. Second,
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Fig. 10. Code example for initializing an application. An initialization method takes as its argu-
ments the environment for the application and a closure, which can be used to pass additional
arguments, for example, from a command line shell. The example method first instantiates the
Emcee component and then links that component with its environment, connecting Emcee’s ex-
ported main event handler with the environment’s corresponding imported event handler and
Emcee’s imported request event handler with the environment’s corresponding exported event
handler. The role of the main and request event handlers is explained in Section 4.3.1. Note that
linked event handlers need not have the same name, although they do in this example. This code
example is taken from Emcee’s source code.

where threads implicitly store execution state in registers and on stacks, events
make the execution state explicit. Systems can thus directly access execution
state, which is useful for implementing features such as event prioritization or
checkpointing and migration. Finally, taking a cue from other research projects
[Chou et al. 1999; Gribble et al. 2000; Hill et al. 2000; Pai et al. 1999; Welsh
et al. 2001] that have successfully used asynchronous events at very different
points of the device space, we believe that asynchronous events scale better
across different classes of devices than threads.

We chose a uniform event handling interface because it greatly simplifies
composition and interposition. Event handlers need to implement only a single
method that takes as its sole argument the event to be processed. Events, in
turn, have a well-defined structure and are self-describing, making dynamic
inspection feasible. As a result, event handlers can easily be composed with
each other. For instance, the uniform event handling interface enables a flexi-
ble component model, which supports the linking of any imported event handler
to any exported event handler. At the same time, the uniform event handling
interface does not prevent the expression of typing constraints. When compo-
nents declare the event handlers they import and export, they can optionally
specify the types of events sent to imported event handlers and processed by
exported event handlers.

4.3.1 Interacting with the Kernel and Other Environments. To an applica-
tion, its environment appears to be a regular component. Each environment
imports an event handler called main, which must be linked to an application’s
main component before the application can be started. It is used by one.world to
notify the application of important events, such as activation, restoration, mi-
gration, or termination of the environment, and thus exposes contextual change
to the application.
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Fig. 11. Illustration of the request/monitor mechanism. Boxes on the left represent application
components and boxes on the right represent environments. The dotted arrow indicates the direc-
tion of event flow. The app environment is nested within the debugger environment. The debugger

environment’s monitor handler is linked and thus intercepts all events sent to the app environ-
ment’s request handler.

Each environment also exports an event handler called request and im-
ports an event handler called monitor. Events sent to an environment’s request
handler are delivered to the first ancestral environment whose monitor handler
is linked. The root environment’s monitor handler is always linked to one.world ’s
kernel, which processes requests for environment operations, structured I/O,
discovery, and remote event passing. Consequently, the environment request
handler provides our architecture’s system call interface, and applications use
it for interacting with the kernel. For example, Emcee’s initialization method
as shown in Figure 10 links to its environment’s request handler so that Emcee
can utilize one.world ’s services. Furthermore, by linking to the monitor handler,
an application can interpose on all events sent to a descendant’s request han-
dler. For example, a debugger can monitor any application simply by nesting
the application in its environment, linking to its own monitor handler, and ob-
serving the application’s request stream. Similarly, a replication service can
synchronize any application’s data with another device by intercepting the ap-
plication’s structured I/O operations (in fact, as described in Section 5.2.1, our
replication service does exactly that). This use of the request/monitor mecha-

nism is illustrated in Figure 11.
We chose to represent environments as regular components, because it offers

considerable flexibility and power. In particular, the request/monitor mecha-
nism makes interposition trivial and greatly simplifies dynamic composition as
illustrated above. Furthermore, because of the uniform event handler interface,
the request/monitor mechanism is extensible; it can handle new event types
without requiring any changes. Applications can inspect events using the tuple
accessor methods shown in Figure 7, or pass them unexamined up the environ-
ment hierarchy. Finally, the same mechanism can be used to provide security
by interposing a reference monitor [Anderson 1972] and auditing by logging an
application’s request stream. It thus obviates the need for fixing a particular
security mechanism or policy in one.world ’s kernel [Grimm and Bershad 2001].
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Fig. 12. Illustration of the operation library. The box represents an operation. Protrusions
represent event handlers, which, unlike the event handlers shown in Figure 9 and Figure 11 are
directly referenced. The dotted arrows indicate the direction of event flow. To manage asynchronous
request/response interactions between a client and a service, an operation is interposed between
the event handler accepting requests and the event handler expecting responses. The operation
matches each request with exactly one response. It automatically detects timeouts and performs
retries.

4.3.2 Reliably Managing Event Exchanges. While asynchronous events
provide a good fit for pervasive computing, they also raise the question of how
to manage event exchanges, especially when compared to the more familiar
thread-based programming model. Of particular concern are how to maintain
the state associated with pending request/response interactions and how to
detect failures, notably lost events. These issues are especially pressing for per-
vasive computing environments, where people and devices keep coming and
going, and where failures are a common, not an exceptional, occurrence. How-
ever, in our experience, established styles of event-based programming, such
as event loops or state machines, are unsuitable. Since they combine all ap-
plication logic into a single control block, they are only manageable for simple
applications that process few distinct events. Furthermore, they do not help
with detecting failures, including lost events.

After some experimentation, we found the following approach, which we call
the logic/operation pattern, considerably more successful. Under this pattern,
an application is partitioned into logic and operations, which are implemented
by separate sets of event handlers. Logic are computations that do not fail,
barring catastrophic failures, such as creating and filling in a text message.
Operations are interactions that may fail, such as sending a text or audio mes-
sage to its intended recipients. Operations maintain the state associated with
these request/response interactions and also include all necessary failure detec-
tion and recovery code. A failure condition is reflected to the appropriate logic
only if recovery fails repeatedly or the failure condition cannot be recovered
from in a general way. As a result, the logic/operation pattern, unlike transpar-
ent, synchronous invocations, cleanly separates actual application logic from
outside interactions, notably I/O, and their failure detection and recovery. Fur-
thermore, unlike event loops or state machines, the logic/operation pattern does
allow for the nesting of logic and operations, thus supporting more modular ap-
plication code and scaling better with application size.

The Operation library reifies the logic/operation pattern. As illustrated in
Figure 12, it is an event handler that connects an event handler accepting re-
quests with an event handler expecting responses. For every request sent to an
operation, the operation keeps the state of the pending interaction, including
the request’s closure, and sends exactly one response to the event handler ex-
pecting responses. The operation automatically detects timeouts and performs
retries. If all retries fail, it notifies the event handler expecting responses of
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Fig. 13. Code example for creating an operation. The newly created operation does not perform
any retries, times out after the default timeout, and uses the timer timer. Requests are sent to the
request event handler and responses are forwarded to the continuation event handler. This code
example is taken from Emcee’s source code.

the failure through an exceptional event. Operations can be nested and can
also be used on both sides of multi-round interactions, such as those found in
many network protocols. As a result, operations provide an effective way for
expressing complex interactions and structuring event-based applications.

To utilize the operation library, an application simply creates a new opera-
tion and then uses the operation instead of the original event handler for is-
suing requests. Example code for creating an operation is shown in Figure 13.
The newly created operation connects the request event handler for receiving
requests to the continuation event handler for receiving the corresponding re-
sponses. As shown in Figure 14 and Figure 15, the operation is then used for
issuing requests instead of sending them to the request event handler directly.

4.4 Communication Model

The primary challenge in designing the communications facilities for one.world

is to provide services that are more flexible than established point-to-point
communications technologies and support a rich set of communication pat-
terns. In particular, as people and devices move through the physical world,
service discovery assumes a critical role for pervasive applications. After all,
if an application cannot locate necessary resources in an ever changing com-
puting environment, it cannot function. However, previous discovery systems,
such as Jini [Arnold et al. 1999] and INS [Adjie-Winoto et al. 1999], expose
considerably different APIs with distinct options, thus raising the question of
what options to support in one.world ’s discovery service.

To this end, we classify the major discovery options through a set of choices.
The first choice reflects the binding time and determines when to perform a dis-
covery query. With early binding, an application first uses discovery to resolve
a query and then point-to-point communications to interact with the resolved
resource. Early binding is appropriate when an application needs to repeatedly
send events to the same resource, such as a specific, close-by wall display, or
when services can be expected to remain in the same location, such as those
running on dedicated servers. In contrast, late binding [Adjie-Winoto et al.
1999] combines query resolution and event routing into a single operation, and
the discovery service routes the event directly to the matching resource. While
late binding introduces a performance overhead for every sent event, it also is
the most responsive and thus most reliable form of communication in a highly
dynamic computing environment. The second choice reflects the specificity and
determines the number of resources receiving an event. Anycast sends the event
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to a single matching resource, such as the above mentioned wall display, while
multicast sends the event to all matching resources, such as all users to chat
with.

Taken together, the binding time and specificity cover the design space of
previous discovery systems, where services make resources available under
descriptors and clients query for matching resources. When determining which
of these options to use in an application, the primary choice is whether to rely
on early or late binding; whether to use anycast or multicast typically follows
directly from the application’s requirements. In our experience, late binding
is generally preferable over early binding for pervasive applications, as it is
more responsive in an ever changing computing environment. However, if an
application sends many, possibly large messages to the same receiver in short
succession, the overhead of repeatedly resolving discovery queries becomes no-
ticeable, and early binding represents the more appropriate choice. At the same
time, with early binding, the application needs to be prepared to rediscover the
receiver if its computing context changes.

An additional, third choice reflects the query target and determines the en-
tity on which to perform a discovery query. Typically, a query is performed
on the resource descriptors, and the first two choices assume resource descrip-
tors as query targets. However, the query can also be performed on the events
themselves. In this case, an application receives all events sent through late
binding discovery that match the query. Using the event as a query target con-
stitutes a form of reverse lookup and is useful for implementing utilities that,
for example, log and debug remote communications or bridge between different
communication protocols by intercepting messages of one protocol and issuing
those of another. In the former example, the reverse lookups are observing, that
is, they do not count as matches for anycasts, while in the latter example, the re-
verse lookups are consuming, that is, they count as matches for anycasts (after
all, the intent is to intercept events). To correctly intercept events, consuming
reverse lookups need to be performed before regular, forward lookups.

We leverage our architecture’s uniform data model and event handling in-
terface to expose a common communications API to the discovery and remote
event passing (REP) services. Our API supports all discovery options just de-
scribed as well as point-to-point communications with only three operations,
namely export, resolve, and send. In short, the export operation makes an event
handler accessible across the network, while the resolve operation performs
early binding discovery lookups, and the send operation routes events both for
point-to-point communications and late binding discovery. Discovery resolves
queries in a directory that represents all discoverable resources on the local
network, while REP routes events directly to the specified device.

In detail, the three operations work as following:

Export. The export operation makes an event handler accessible across the
network by establishing a mapping between a descriptor and the actual event
handler; for discovery, all mappings are collected in a single directory for the
local network. As shown in Table V, the descriptor’s type determines how the
event handler is exported. A null or a Name descriptor is used for point-to-point
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Fig. 14. Code example for sending a remote event. This example sends the event msg for user
fetchUser, whose location fetchLocation may or may not be known. If the location is not known,
the event is sent through late binding discovery. The discovery query matches tuples of type
UserDescriptor whose user field equals fetchUser. If the location is known, the event is sent
through point-to-point communications. The operation forwards the RemoteEvent to one.world ’s ker-
nel, which then performs the actual send operation. This code example is taken from Emcee’s source
code.

Table V. Options for Exporting Event Handlers to Remote Event Passing and Discovery

Descriptor Explanation

null Make the event handler accessible through point-to-point communications.
The event handler can be referenced by the exporting device and the GUID
returned by the export operation.

Name Make the event handler accessible through point-to-point communications.
The event handler can be referenced by the exporting device and the name
contained in the Name tuple.

Query Make the event handler accessible for reverse discovery lookups. An
additional flag specifies whether the reverse lookups are consuming or
observing. The former count as matches for anycast, while the latter do not.
The event handler cannot be directly referenced. However, events sent
through late binding discovery and matching the query are routed to the
exported event handler.

All other tuples Make the event handler accessible for regular discovery lookups. The event
handler can be referenced by a query matching the specified tuple.

Descriptor specifies the tuple under which an event handler is exported. Explanation describes how the event

handler can be accessed.

communications, while a Query or any other tuple is used for reverse and for-
ward discovery lookups, respectively. REP provides two alternatives, so that
clients can either reference a specific service instance (through a GUID) or
a service independent of the current instance (through a name). Furthermore,
when exporting an event handler to discovery, the event handler is also exported
under a GUID, so that the resolve operation can make the event handler avail-
able for point-to-point communications. Comparable to the use of leases for
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structured I/O (as described in Section 4.2.2), the resulting binding between
the event handler and descriptor is leased.

Resolve. The resolve operation looks up event handlers in the discovery
directory, so that they can be used for point-to-point communications. It takes
a query and returns either any or all matching event handlers that have been
previously exported for regular discovery lookups. If no event handler matches
the query, the resolve operation results in a failure notification.

Send. The send operation sends an event to a previously exported event
handler. The targeted event handler is specified by a so-called symbolic han-

dler that contains the information necessary for routing the event. For late
binding discovery, the symbolic handler specifies the query and whether to per-
form anycast or multicast. The event is delivered to any or all event handlers
matching the query in the discovery directory. For point-to-point communica-
tions, the symbolic handler specifies the device exporting the event handler
and the corresponding GUID or name, and the event is delivered to the event
handler that has been exported under the specified GUID or name on the spec-
ified device. Both for discovery and point-to-point communications, if no actual
event handler matches the symbolic handler, the sender is notified of the failure
condition.

Example code for sending an event through both late binding discovery and
REP is shown in Figure 14. It illustrates how an application can easily switch
between late binding discovery and point-to-point communications, simply by
using a different symbolic handler. Switching from anycast to multicast for late
binding discovery is even simpler, as it requires only an additional Boolean
argument for the constructor of the DiscoveredResource.

4.5 Application Persistence

one.world ’s checkpointing and migration services help to protect pervasive ap-
plications against major failures, such as a portable device’s batteries running
out, and to move them between devices, so that they can easily follow a person
as she moves through the physical world. The checkpointing service provides
the checkpoint and restore operations listed in Table III. The checkpoint opera-
tion captures the in-memory state of an environment tree and then stores the
captured state as a tuple in the root of the tree. The restore operation reads a
previously stored checkpoint and restores the execution state to the saved state.
The migration service provides the move and copy operations listed in Table III.
Both operations capture the in-memory state of an environment tree, move the
tree, including the just created checkpoint and all stored tuples, to a different
device, and then restore the checkpoint. They differ in that the move operation
deletes the original environment tree, while the copy operation leaves the orig-
inal tree intact. In contrast to transparent migration systems, such as Sprite
[Douglis and Ousterhout 1991], our architecture’s checkpointing and migration
services are fully visible to applications. Notably, applications are explicitly no-
tified after they have been restored from a checkpoint or have been migrated
to a different device, so that they can adapt to a changed execution context.
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Furthermore, if a checkpointing or migration operation cannot be completed,
because, for example, the new device does not have sufficient resources to host
an environment tree, the operation is aborted and the requesting application
is notified of the error condition.

As hinted at by this first description, the functionality of the checkpointing
and migration services can be defined more precisely in terms of three proce-
dures: capture-state() to create a checkpoint tuple representing an environment
tree’s in-memory state, transfer-tree() to communicate an environment tree’s
complete contents from one device to another, and restore-state() to recreate
an environment tree’s in-memory state from a previously created checkpoint
tuple. Using these three procedures, the checkpoint operation simply invokes
capture-state() and stores the resulting checkpoint tuple in the root of the en-
vironment tree, while the restore operation reads such a checkpoint tuple and
then invokes restore-state() on the tuple. Both the move and copy operations
represent a sequence of capture-state(), transfer-tree(), and restore-state() invo-
cations, with the difference that the move operation also destroys the original
environment tree. We now discuss the three procedures in detail.

The capture-state() procedure creates a bytestring representing an environ-
ment tree’s in-memory state. It relies on the virtual machine to provide a uni-
form execution platform across different hardware architectures and on object
serialization to convert between virtual machine objects and bytestrings. By
traversing all objects reachable from a set of well-defined roots (the main and
monitor event handlers introduced in Section 4.3.1), the capture-state() pro-
cedure captures the in-memory state of the components instantiated in the
environment tree. Since all communications in one.world are through asyn-
chronous events, the capture-state() procedure also captures the environment
tree’s execution state by serializing pending 〈event handler, event〉 invocations.
Comparable to bus stops in Emerald [Steensgaard and Jul 1995], which define
application states that are safe to migrate, execution state can only be captured
for pending 〈event handler, event〉 invocations. Invocations that are currently be-
ing executed need to run to completion; invocations that do not complete within
a constant waiting period are forcibly terminated. The capture-state() procedure
does not capture the state of currently executing 〈event handler, event〉 invoca-
tions, because capturing them requires access to the virtual machine’s execu-
tion stack. However, many virtual machines, such as the Java virtual machine
[Lindholm and Yellin 1999] but unlike the Squeak virtual machine [Guzdial
and Rose 2002], do not explicitly expose their execution stacks and would thus
require modifications, which would limit portability.

While the capture-state() procedure does capture the state of the environment
tree’s application objects and pending 〈event handler, event〉 invocations, it does
not include references to resources outside the environment tree. Since envi-
ronments are isolated from each other, only references to event handlers can
be exchanged between environments; all other data is copied. Consequently,
the capture-state() procedure tests each event handler to determine whether
it is implemented by code running in one of the environments in the tree. If
the event handler is part of the tree, it is written to the checkpoint. If it is
not part of the tree, it is replaced by a null value. Environments thus provide
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a well-defined boundary for the state included in a checkpoint, and nulling
out event handlers provides a simple contract for revoking access to outside
resources. The capture-state() procedure revokes access to outside resources
in order to avoid residual dependencies [Powell and Miller 1983], which re-
quire an altogether well-connected computing environment. However, perva-
sive computing environments, with their reliance on wireless networking tech-
nologies such as 802.11 [Gast 2002] or Bluetooth [Bluetooth SIG 2002], often
exhibit weaker connectivity than traditional local networks [Mummert et al.
1995; Terry et al. 1995]. Furthermore, disconnected operation is a relatively
frequent occurrence, for example, as people travel in cars or on airplanes, and
connections, such as those using cell phones, often have high latency and low
bandwidth.

The transfer-tree() procedure eagerly communicates an environment tree and
all its contents, including the checkpointed in-memory state and all persistently
stored tuples, from one device to another in one atomic operation. It is eager,
again, because of the weaker connectivity typically found in pervasive comput-
ing environments. For a move operation, the transfer-tree() procedure invali-
dates references from the outside into the original environment tree to expose
the change in location. When sending an event to such a reference, the event
is not transparently redirected through a forwarding address [Fowler 1985];
instead, the sender is notified that the resource has been moved. Invalidating
references from the outside into the tree is unnecessary for a copy operation, as
the original tree remains in place. However, because the original tree remains
in place, the transfer-tree() procedure assigns fresh GUIDs to the environments
being communicated through a copy operation, thus avoiding duplicates.

The restore-state() procedure recreates an environment tree’s in-memory
state from a checkpoint tuple simply by deserializing it. It then notifies all
environments in the tree that they have been restored, moved, or copied.
This notification is delivered to each environment’s main event handler be-
fore any other 〈event handler, event〉 invocation can be performed, which gives
code running in the affected environments an opportunity to reconnect to out-
side resources before resuming regular event processing. Because the restored
environment tree’s execution context has likely changed, discovery becomes
a central service for reconnecting to outside resources, and, as discussed in
Section 4.4, one.world ’s discovery service has been carefully designed to expose
an easy-to-program and flexible interface. Furthermore, we believe that explic-
itly restoring access to outside resources does not place an additional burden
on developers, as applications running on our architecture already need to ex-
plicitly acquire resources at other points in their life cycles, such as when they
are activated.

One important issue in providing checkpointing and migration is how to con-
trol the use of the two services. This issue is especially pressing for migration, as
potentially untrusted applications move from one device to another. We rely on
environment nesting, which gives an outer environment complete control over
all nested environments, to address this issue. On the sending side, an outer
environment can use the request/monitor mechanism to intercept a request to
be migrated (that has been issued by a nested environment) and either modify
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Fig. 15. Code examples for checkpointing, restoring, and moving an environment. The first code
snippet checkpoints a user’s environment env, the second restores the latest checkpoint, and the
third moves a user’s environment user.env to the device named location. For all snippets, the op-
eration forwards the event to one.world ’s kernel, which then performs the requested operation. Note
that the first argument to each event’s constructor is the source for that event and is automatically
filled in by the operation. The code snippets are taken from Emcee’s source code.

it or reject it. Similarly, on the receiving side, the future outer environments
are notified by the transfer-tree() procedure that an environment is about to
be migrated to this device, and they can modify the parent environment or re-
ject the migration altogether. Environment nesting thus provides an effective
mechanism for limiting how untrusted applications migrate across a network.

Environment nesting also enables a useful pattern for initiating checkpoint-
ing and migration. Under this pattern, the logic to decide when to checkpoint
and restore an application or when and where to migrate an application is fac-
tored into its own environment. As a result, the checkpointing or migration logic
can be reused across different applications, thus simplifying the development
of pervasive applications. In fact, this pattern is used by Emcee, one.world ’s
Finder-like application management utility: As illustrated by the example code
in Figure 15, it leverages the environment nesting to trivially checkpoint, re-
store, and move all of a user’s applications.

Overall, one.world ’s checkpointing and migration services leverage our archi-
tecture’s other services as much as possible to avoid complexity and to provide
a clean and useful model for their operation. In particular, they rely on the
virtual machine to provide a uniform execution environment across different
devices and hardware architectures. They rely on environments to clearly de-
lineate what state to capture and what state not to capture. They also rely on
environments for controlling migration, both on the sending and the receiving
side, and for factoring the checkpointing and migration logic out of pervasive
applications. Furthermore, they rely on the integration of tuple storage with
environments to save checkpoints with an application and to migrate an appli-
cation’s persistent data with itself. Next, they rely on asynchronous events to
make an application’s execution state explicit. They also rely on asynchronous
events to notify an application of a completed restore, move, or copy operation,
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thus exposing the application’s changed execution context. Finally, they rely on
discovery so that an application can easily adapt to a changed execution context
by restoring access to the appropriate resources. In other words, by building on
the other elements of one.world ’s programming model, our architecture’s check-
pointing and migration services can provide important functionality without
incurring undue complexity.

5. EXPERIMENTAL EVALUATION

In this section, we present the user-space services, utilities, and applications we
and others have built and present the results of our experimental evaluation,
which is based on these programs. The goal is to answer the question of whether
one.world is good enough for building pervasive applications. Or, to be more
consistent with the approach discussed in Section 2, we are trying to determine
whether focusing on the requirements of pervasive computing has resulted in
a system architecture that enables developers to effectively build adaptable
applications. However, both questions are rather general and hard to answer.
Accordingly, we rely on four, more specific criteria and corresponding questions
to evaluate our architecture:

Completeness. Can we build useful programs using one.world ’s primitives?
This criterion determines whether our architecture is sufficiently powerful and
extensible to support interesting user-space programs, including additional ser-
vices and utilities akin to the Unix shell.

Complexity. How hard is it to write code in one.world? This criterion deter-
mines the effort involved in developing programs for our architecture. We are
especially interested in how making applications adaptable impacts program-
mer productivity.

Performance. Is system performance acceptable? This criterion determines
if our architecture performs well enough to support actual application work-
loads. Since our goal is to make applications adaptable, we are especially
interested in whether applications respond quickly to changes in their runtime
context.

Utility. Have we enabled others to be successful? This criterion determines
whether others can build real pervasive applications on top of one.world. It also
represents the most important criterion. After all, a system architecture is only
as useful as the programs running on top of it.

After a short overview of one.world ’s implementation (see Grimm [2000] for
a more in-depth description), we address these four criteria, with one criterion
per subsection. We discuss the user-space programs we and others built for our
architecture along the way, presenting our own programs in Section 5.2 and
the Labscape application in Section 5.5. In addition to these primary programs,
students have also built a music sharing system, a messaging system for future,
intelligent home appliances, a graphical debugger, and a web server on top of
our architecture. Since the students’ experiences largely confirm the results
derived from our own programs and the Labscape digital laboratory assistant,
we do not discuss them in this article.
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To summarize the results, we show that one.world (1) is sufficiently complete
to support interesting programs on top of it, (2) is not significantly harder to
program than with conventional programming styles, (3) has acceptable perfor-
mance, with applications reacting quickly to changes in their runtime context,
and, most importantly, (4) enables others to successfully build pervasive ap-
plications. In other words, our experimental results show that one.world does,
in fact, enable developers to build applications that adapt to change instead of
forcing users to constantly reconfigure their systems and, consequently, they
validate our approach.

5.1 Overview of one.world ’s Implementation

As described in detail in Grimm [2000], one.world ’s implementation runs on
Windows and Linux PCs. It is largely written in Java, which provides us with
a safe and portable execution platform. We use a small, native library to gener-
ate GUIDs, as they cannot be correctly generated in pure Java. Furthermore,
we use the Berkeley DB [Olson et al. 1999], which provides a transactional
hash table on top of an unreliable file system, to implement tuple storage. Our
implementation currently lacks support for transactions as part of structured
I/O (though, the individual structured I/O operations are fully implemented)
and for loading code from environments. As a result, applications cannot use
transactions to group several structured I/O operations into a single, atomic
unit, and application code must be manually distributed across all devices that
are expected to run an application. We expect that adding these features to our
implementation will be straightforward. Our implementation does, however,
include library support for building GUI-based applications, for a command
line shell, and for converting between files and stored tuples (to enable the
exchange of data between conventional operating systems and one.world).

one.world has been released as an open source package. The implementation
has approximately 19,000 non-commenting source statements (NCSS). Our en-
tire source tree, including regression tests, benchmarks, and applications, has
approximately 40,000 NCSS or 109,000 lines of well-documented code, repre-
senting an overall development effort of about six man years. A Java archive
file with the binaries for one.world itself is 514 KB. The GUID generation li-
brary requires 28 KB on Windows and 14 KB on Linux systems, while the
Berkeley DB libraries require another 500 KB on Windows and 791 KB on Linux
systems.

Our implementation does not rely on features that are unique to Java. It
requires a type-safe execution environment to provide basic protection. Next,
the ability to customize the code loading process (through classloaders [Liang
and Bracha 1998] in our Java-based implementation) is used to isolate differ-
ent environments from each other and to ensure that only trusted code can
access abstractions, such as files or sockets, that are outside one.world ’s pro-
gramming model. Furthermore, application control over threads is used to im-
plement asynchronous events. Finally, reflection and object serialization are
used to implement tuple-based I/O, checkpointing, and migration as well as to
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automatically copy events passed between environments. As a result, one.world

could also be implemented on other platforms that provide these features, such
as Microsoft’s Common Language Runtime [Thai and Lam 2002].

5.2 Completeness

To evaluate our architecture, including determining completeness, we built a
set of user-space programs. In this section, we first describe their functionality
and implementations and highlight how they utilize one.world ’s services. In par-
ticular, we present a replication service in Section 5.2.1, followed by Emcee—our
user and application management utility, as well as Chat—our text and audio
messaging application, in Section 5.2.2. We then discuss the results regarding
completeness in Section 5.2.3.

5.2.1 Replication Service. To provide ubiquitous access to people’s infor-
mation, pervasive applications need to access the corresponding data items,
even if several people share the same data and access it from different and pos-
sibly disconnected devices. One strategy for providing this capability is to repli-
cate the data. Our replication service does just that and makes stored tuples
accessible on multiple devices that may be disconnected. By providing replica-
tion as a common application building block, our replication service simplifies
the development of pervasive applications, as developers need not reimplement
this important, but also complex capability.

Our replication service is patterned after Gray et al.’s [1996] two-tier repli-
cation model. A master node owns all data and replicas have copies of that
data. Replicas can either be connected or disconnected. In connected mode, up-
dates are final and performed directly on the master. In disconnected mode,
updates are tentative and logged on the replica. When a replica becomes con-
nected again, it synchronizes with the master by replaying its log against the
master and by receiving updates from the master. The replica may then discon-
nect again or continue in connected mode.

We chose two-tier replication over Bayou’s epidemic replication model
[Petersen et al. 1997; Terry et al. 1995] for two reasons. First, two-tier replica-
tion is easier to explain to users, as tentative updates may only change once, dur-
ing synchronization, and not repeatedly. Relying on an easy-to-explain model for
replication is important, because pervasive computing is expressly targeted at
supporting all people and not just computer experts. Second, on a more technical
level, two-tier replication avoids system delusion [Gray et al. 1996]. Delusion
occurs when large numbers of replicas repeatedly reconcile with each other in
the absence of a master and consequently diverge further and further from each
other.

The implementation of our replication service runs in user-space and,
as illustrated in Figure 16, exploits environment nesting—through the re-
quest/monitor mechanism—to interpose on an application’s access to tuple stor-
age. The replicator logs updates in the log environment when in disconnected
mode and forwards them to the master when in connected mode. On reconnec-
tion of a disconnected device, instead of sending individual updates as remote
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Fig. 16. Illustration of our replication service’s structure. The replicator environment intercepts
all storage operations issued by the application. In disconnected mode, the replicator logs updates
in the log environment. In connected mode, it directly forwards them to the master.

Fig. 17. A screenshot of Emcee’s user interface. The main window lists the users whose applica-
tions run on the device. A popup menu for each user, shown for the user named robert, is used to
perform most operations, such as running a new application or checkpointing a user’s applications.
The user menu supports the creation of new users and the fetching of a user’s applications from
another device.

events, the log is sent to the master in one operation by copying the log environ-
ment. Similarly, updates are sent from the master to the replica by migrating
an environment containing such updates.

As illustrated by our replication service, migration can serve as an internal
building block for applications and can be used to simplify communications.
Furthermore, because environments host both computations and data, migra-
tion provides an effective way to move application-specific reconciliation logic to
the master: the replicator simply instantiates the necessary components in the
log environment before copying it. Finally, our replication service is not limited
to using migration internally; rather, the master and its replicas are migratable
themselves. Migrating the master is useful when, for example, upgrading the
computer the master is running on; migrating a replica is useful when the user
is switching devices.

5.2.2 Emcee and Chat. Emcee, whose user interface is shown in Figure 17,
manages users and their applications. It includes support for creating new
users, running applications for a user, and checkpointing all of a user’s
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Fig. 18. A screenshot of Chat’s user interface. The user interface is divided into four panels, which
can be independently expanded or collapsed by checking or unchecking the corresponding checkbox.
The listen panel shows received text messages and provides volume control for audio playback. The
send message panel lets the user send text messages, and the send audio panel lets the user send
audio, either from a microphone or from stored audio tuples. Finally, the subscribe panel lets the
user select the channels she is currently listening to.

applications. Emcee also provides the ability to move or copy applications be-
tween users, simply by dragging an application’s flag icon, as shown in the
upper right corner of Figure 18, and dropping it onto a user’s name in the
main window. Finally, it supports moving all of a user’s applications between
devices, so that the applications can follow a user as she moves through the
physical world. Applications can either be pushed from the current device to
another device, or they can be pulled from another device to the current device.
Emcee can manage any one.world application; an application does not need to
implement any features specific to Emcee. However, to support drag and drop
through the flag icon, an application’s developer needs to add three lines of code
to the application.

As illustrated in Figure 5, the implementation of Emcee structures the en-
vironment hierarchy according to the pattern /User/<user>/<application>.
Emcee runs in the /User environment and uses a child environment for each
user and a grandchild for each application. Each user’s root environment stores
that user’s preferences, including her password, and application checkpoints.
Emcee’s main event handler, which is linked to the /User environment’s main
event handler as shown in Figure 10, processes one.world events for activation
and termination. On activation, Emcee creates its user interface and then starts
performing user-requested operations. On termination, it tears down the user
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interface and then stops all event processing. The implementation of most oper-
ations is straight-forward, since, as illustrated in Figure 15, they directly map
to one.world ’s primitives.

The exception is fetching a user’s applications from a remote device, which
uses a challenge-response protocol to authenticate the user to the remote in-
stance of Emcee currently hosting the user’s applications. After the user has
been successfully authenticated, the remote Emcee initiates a migration of the
user’s environment tree to the requesting device. As illustrated in Figure 14,
the initial remote event for this fetcher protocol is routed through late binding
discovery if the user has not specified her applications’ location. Otherwise, it is
sent directly to the remote device. To process this initial remote event, Emcee
exports the corresponding event handler twice for each user: once to REP under
the /User/<name> name and once to discovery under a UserDescriptor tuple
whose user field equals the user’s name.

Chat, whose user interface is shown in Figure 18, provides text and audio
messaging. It is based on a simple model, under which users send text and audio
messages to a channel and subscribe to a channel to see and hear the messages
sent to it. The implementation sends all messages through late binding discov-
ery, using TCP as the underlying transport protocol for text messages and UDP
for audio messages. For each subscribed channel, Chat exports an event handler
to discovery, which then receives the corresponding messages. Audio can either
be streamed from a microphone or from sound tuples stored in an environment.
Since music files tend to be large, they are converted into a sequence of audio
tuples when they are imported into one.world. Using the tuple IDs as symbolic
references, the sequence of audio tuples forms a doubly-linked list. As Chat is
streaming audio messages, it traverses this list and reads individual tuples on
demand, buffering one second of audio data in memory.

Emcee and Chat illustrate the power of migration combined with dynamic
composition through discovery and environment nesting. Discovery connects
applications in the face of migration. Because Chat uses late binding discovery
to route text and audio messages, messages are correctly delivered to all sub-
scribed users even if the users switch devices. At the same time, environment
nesting makes it possible to easily migrate applications, such as Chat, that
have no migration logic of their own. Emcee controls the location of a user’s
applications simply by nesting the applications in its environment. Chat does
not need its own migration logic and can automatically benefit from future
improvements in Emcee’s migration support, such as using smart badges to
identify a user’s location instead of requiring the user to explicitly move and
fetch applications.

5.2.3 Discussion. The applications presented in this section clearly show
that our architecture is powerful enough to support a variety of useful programs.
Furthermore, our replication service and Emcee, both of which help providing
ubiquitous access to a person’s data and applications, demonstrate that services
and utilities can indeed be implemented in user-space. The key feature for
enabling user-space services and utilities is one.world ’s environment hierarchy.
Nested environments make it easy to control other programs and, through the

ACM Transactions on Computer Systems, Vol. 22, No. 4, November 2004.



System Support for Pervasive Applications • 461

request/monitor mechanism, to interpose on their request streams. However, as
discussed in Section 4.2.2, we had to carefully design the interface for structured
I/O to support layering, an effort akin to previous work on stackable file systems
[Heidemann and Popek 1994].

Furthermore, in the course of developing the above programs, we did en-
counter one relatively minor limitation to one.world ’s APIs: the performance
evaluation of our replication service [Grimm et al. 2001] suggests that the dura-
bility guarantees of structured I/O storage can result in too high an overhead
for some applications. In particular, immediately forcing each put operation
to disk is unnecessary when logging updates in disconnected mode, because
all updates are already tentative. We thus designed (but have not yet imple-
mented) a simple extension to structured I/O, under which applications can
optionally request that the destructive put and delete operations provide only
relaxed durability guarantees and are lazily written to disk. Just as with tra-
ditional file system interfaces, applications using this option need to explicitly
perform a flush operation to force pending updates to disk.

5.3 Complexity

To evaluate the effort involved in writing adaptable applications, we analyzed
the process of implementing Emcee and Chat. The general theme for develop-
ing Emcee and Chat was that “no application is an island.” Consistent with a
computing environment where people and devices keep coming and going, ap-
plications need to assume that their runtime context changes quite frequently
and that external resources are not static. Furthermore, they need to assume
that their runtime context may be changed by other applications. These as-
sumptions have a subtle but noticeable effect on the implementations of Emcee
and Chat. Rather than asserting complete control over the environments nested
in the /User environment, Emcee dynamically scans its children every second
and updates the list of users in its main window accordingly. Similarly, it scans
a user’s environments before displaying the corresponding popup menu (which
is displayed by selecting the “Environments” menu entry shown in Figure 17.

For Chat, these assumptions show up throughout the implementation, with
Chat verifying that its internal configuration state is consistent with its run-
time context. Most importantly, Chat verifies that the user, that is, the par-
ent environment’s name, is still the same after activation, restoration from a
checkpoint, and migration. If the user has changed, it updates the user name
displayed in its title bar, adjusts default channel subscriptions, and clears its
history of text messages. Furthermore, it runs without audio if it cannot initial-
ize the audio subsystem, but retains the corresponding configuration state so
that it can resume playback when migrating to a different device. Finally, it also
silences a channel if the audio tuples have been deleted from their environment.

In our experience with Chat and Emcee, programming for change has been
tractable. The implementation aspects presented above are important for Em-
cee’s and Chat’s correct operation, but are not overly complex. Furthermore,
programming for change can also simplify an application’s implementation.
For example, when Emcee fetches a user’s applications, it needs some way to
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Table VI. Breakdown of Development Times in
Hours for Emcee and Chat

Activity Time (hrs.)

Learning Java APIs 21.0
User interface 47.5
Logic 123.5
Refactoring 6.0
Debugging and profiling 58.0
Total time 256.0

The times shown are the result of three developers imple-

menting the two applications over a three month period.

The activities are discussed in the text.

detect that the user’s applications have arrived on the local device. But, be-
cause Emcee already scans its children every second, the arrival will be auto-
matically detected during a scan and no additional mechanism is necessary. To
put it differently, the initial effort in implementing an adaptable mechanism—
dynamically scanning environments—has more than paid off by simplifying
the implementation of an additional application feature—fetching a user’s
applications.

To quantify the effort involved in building Emcee and Chat, we tracked the
time spent developing the two programs. They were implemented by three de-
velopers over a three month period. During that time, we also added new fea-
tures to one.world ’s implementation and debugged and profiled the architecture.
Overall, implementing Emcee and Chat took 256 hours; a breakdown of this
overall time is shown in Table VI. Learning Java APIs is the time spent for
learning how to use Java platform APIs, notably the JavaSound API utilized
by Chat. User interface is the time spent for implementing Emcee’s and Chat’s
GUI. Logic is the time spent for implementing the actual application function-
ality. Refactoring is the time spent for transitioning both applications to newly
added one.world support for building GUI-based applications. It does not include
the time spent for implementing that support in our architecture, as that code
is reusable (and has been reused) by other applications. Finally, debugging and

profiling is the time spent for finding and fixing bugs in the two applications
and for tuning their performance.

Since Emcee and Chat have 4,231 non-commenting source statements
(NCSS), our overall productivity is 16.5 NCSS/hour.2 As discussed above,
one.world is effective at making programming for change tractable. In fact,
adding audio messaging, not reacting to changes in the runtime context, rep-
resented the biggest challenge during the implementation effort, in part be-
cause we first had to learn how to use the JavaSound API. We spent 125 hours
for approximately 1750 NCSS, resulting in an approximate productivity of
14 NCSS/hour. If we subtract the time spent learning Java platform APIs (in-
cluding the JavaSound API), working around bugs in the Java platform, and

2Productivity is traditionally measured in lines of code per hour or LOC/hour. NCSS/hour differs
from LOC/hour in that it is more exact and ignores, for example, a brace appearing on a line by
itself. As a result, NCSS/hour can be treated as a conservative approximation for LOC/hour.
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refactoring our implementation from the total time, our overall productivity
increases to 20.4 NCSS/hour, which represents an optimistic estimate of future
productivity. Our actual productivity of 16.5 NCSS/hour lies at the lower end
of the results reported for considerably smaller and simpler projects [Prechelt
2000], but is almost twice as large as the long-term results reported for a com-
mercial company [Ferguson et al. 1999]. Based on this, we extrapolate that
programming for change does not decrease overall programmer productivity
and conclude that it is not significantly harder than more conventional pro-
gramming styles.

5.4 Performance

To determine whether our implementation performs well enough for real ap-
plication usage, we measured the scalability of migration and late binding dis-
covery. Migration and discovery are the two services the programs discussed
in this section rely on the most and, in general, are indispensable for realiz-
ing applications that follow people through the physical world. Furthermore, to
characterize system and application reactivity, we explored how Chat reacts to
changes in its runtime context. Reactivity is especially important for pervasive
applications, as they need to continuously adapt to changes in their runtime
context. It also marks a clear point of departure from traditional distributed
applications such as Microsoft’s Outlook, which locks up for minutes when it
cannot reach the corresponding Exchange server.

All measurements reported on in this section were performed using Dell
Dimension 4100 PCs, with Pentium III 800 MHz processors, 256 MB of RAM,
and 45 or 60 GB 7,200 RPM Ultra ATA/100 disks. The PCs are connected by a
100 Mb switched Ethernet. We use Sun’s HotSpot client virtual machine 1.3.1
running under Windows 2000 and Sleepycat’s Berkeley DB 3.2.9.

To quantify the scalability of migration, we conducted a set of micro-
benchmarks. For the micro-benchmarks, we use a small application that moves
itself across a set of devices in a tight loop. We measure the application circling
25 times around three PCs for each experiment. To test the scalability of mi-
gration under different loads, we add an increasing number of tuples carrying
100 bytes of data, tuples carrying 100,000 bytes of data, and copies of our Chat
application in separate sets of experiments.

The results show that migration latency increases linearly with the number
of stored tuples or copies of Chat. We measure a throughput of 12.6 KB/second
for tuples carrying 100 bytes of data, 16.2 KB/second for copies of Chat, and
1,557 KB/second for tuples carrying 100,000 bytes of data. In the best case (tu-
ples carrying 100,000 bytes), migration utilizes 12% of the theoretically avail-
able bandwidth and is limited by how fast stored tuples can be moved from one
PC to the other. Since moving a stored tuple requires reading the tuple from
disk, sending it across the network, writing it to disk, and confirming its ar-
rival, a better performing migration protocol than the currently implemented
one should optimistically stream tuples and thus overlap the individual steps
instead of moving one tuple per protocol round (as the current implementation
does).
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Fig. 19. Discovery server throughput under an increasing number of receivers. Throughput is
measured as the number of audio messages leaving the discovery server. The results shown are
the average of 30 measurements, with error bars indicating the standard deviation. Each audio
message carries 8 KB of audio data.

To quantify the scalability of late binding discovery, we stream audio mes-
sages between a varying number of Chat applications. We chose to measure
streaming audio, because messages are large (see below) and must be deliv-
ered on time, thus exercising our implementation of the discovery service. As
described in detail in Grimm [2000], the implementation of our discovery ser-
vice relies on a centralized server, which holds the discovery directory and, to
ensure availability, is automatically elected from all devices running one.world

on the local network. Elections are called aggressively and complete within a
fixed time period. Discovery clients tolerate any resulting inconsistencies by
exporting bindings between descriptors and the corresponding event handlers
to all visible servers while forwarding requests to only one server.

Figures 19 and 20 show the discovery server throughput under an increasing
number of receivers for a single sender and an increasing number of senders
for a single receiver, respectively. Throughput is measured as audio messages
leaving the discovery server, and the results shown are the average of 30 mea-
surements. Each audio message carries 8 KB of uncompressed audio data at
CD sampling rate, which corresponds to 10,118 bytes on the wire when for-
warding from the sending node to the discovery server and 9,829 bytes when
forwarding from the discovery server to the receiving node. The difference in
on-the-wire sizes stems largely from the fact that messages forwarded to the
discovery server contain the late binding query, while messages forwarded from
the discovery server do not. The receivers and senders respectively run on four
PCs; we use Emcee’s support for copying applications via drag and drop to
spawn new ones.

When increasing the number of receivers, discovery server throughput in-
creases almost linearly with the number of receivers. However, when increas-
ing the number of senders, discovery server throughput levels off at about
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Fig. 20. Discovery server throughput under an increasing number of senders. As in Figure 19,
throughput is measured as the number of audio messages leaving the discovery server. The results
shown are the average of 30 measurements, with error bars indicating the standard deviation.
Each audio message carries 8 KB of audio data.

Fig. 21. Audio messages received by Chat in a changing runtime environment. Chat is subscribed
to an audio channel at point 1. It is then moved to a different node at point 2. The node hosting
the discovery server is shut down gracefully at point 3 and forcibly crashed at point 4. The audio
channel is unsubscribed at point 5.

10 senders and slightly degrades thereafter. At 10 senders, the PC running
the discovery server becomes CPU bound. While the cost of processing discov-
ery queries remains low, the cost of processing UDP packets and serializing and
deserializing audio messages comes to dominate that PC’s performance.

Figure 21 illustrates system and application reactivity by showing the au-
dio messages received by Chat as its runtime context changes. As for the dis-
covery server throughput experiments, each audio message carries 8 KB of
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uncompressed audio data at CD sampling rate. Unlike the migration latency
experiments, Chat is managed by Emcee and runs within its user’s environ-
ment. At point 1, Chat is subscribed to an audio channel and starts receiving
audio messages shortly thereafter. At point 2, Chat is moved to a different device
and does not receive audio messages for 3.7 seconds while it migrates, reini-
tializes audio, and reregisters with discovery. After it has been migrated and
its receiving event handler has been reexported to discovery, it starts receiv-
ing audio messages again. The PC running the discovery server is gracefully
shut down at point 3. one.world proactively calls a discovery server election, and
the stream of audio messages is not interrupted. By contrast, at point 4, the
PC running the discovery server is forcibly crashed. The stream of audio mes-
sages is interrupted for 2.3 seconds until a new discovery server is elected and
Chat’s receiving event handler is forwarded to the new discovery server. This
period is governed by detecting the crashed discovery server, which requires
two missed server heartbeats or 2 seconds. Finally, at point 5, Chat is unsub-
scribed from the audio channel and stops receiving audio messages shortly
thereafter.

Overall, our performance evaluation shows that service interruptions due to
migration or forced discovery server elections last only a few seconds, which
compares favorably with Microsoft’s Outlook hanging for several minutes. Fur-
thermore, while migration latency generally depends on the number and size
of stored tuples, it takes only 7 seconds for an environment storing 8 MB of
audio data, which is fast enough when compared to a person moving through
the physical world. Finally, our architecture performs well enough to support
several independent streams of uncompressed audio data at CD sampling rate.
However, our evaluation also suggests that discovery server scalability is lim-
ited. Adding a secondary discovery server could improve the scalability of our
discovery service and would also eliminate service interruption due to forced
server elections. Since, as described in Grimm [2000], our implementation al-
ready works with more than one discovery server, this change is a relatively
simple one.

5.5 Utility

To determine utility, we supported the Labscape project in porting their digital
laboratory assistant introduced in Section 2.3 to our architecture. Remember
that Labscape’s goal is to seamlessly capture, organize, and present biology pro-
cesses in order to help biologists perform reproducible experiments. The Lab-
scape application tries to achieve this goal by having an experimental guide
follow a researcher from touchscreen to touchscreen as she moves through the
laboratory. The constraints are that (1) the Labscape developers are program-
mers and not system builders, and (2) the resulting application has to be good
enough to be used by real biologists every day. In other words, the Labscape
application has to be responsive, stable, and robust. The application needs to
react quickly to changes in its execution context, and it needs to be continuously
available. Furthermore, when a failure occurs, its effects should be localized and
it should be easy to recover.
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The Labscape team actually created three different implementations of their
digital laboratory assistant. The first version centralizes all processing and re-
lies on remote windowing through VNC [Richardson et al. 1998] to display the
individual guides on a laboratory’s touchscreens. In the Labscape team’s experi-
ence, the first version is neither responsive nor robust. While a different remote
windowing system, such as X Windows [Nye 1995], might have alleviated the
performance concerns, it would not have eliminated the central point of failure.
Furthermore, the first version’s reliance on remote windowing precludes more
advanced features, such as a researcher reviewing her work while commuting
homewards and being disconnected from the digital laboratory.

The second version of Labscape uses distributed processing; code and data
follow the researchers through the laboratory by migrating from touchscreen
to touchscreen. The Labscape team implemented the second version directly
in Java, using TCP sockets for communications and their own, application-
specific migration layer to move the guides. In their experience, the second
version is neither stable nor robust, thus prompting the Labscape team to port
their application to one.world. This third version of Labscape has the same basic
structure as the second version. However, it relies on our architecture’s late
binding discovery for communications and the migration service for moving
guides between touchscreens. The resulting application is responsive, stable,
and robust.

The structure of the second and third versions is illustrated in Figure 22.
The individual application services work as following. The device access ser-

vice collects experimental data from RFID and barcode scanners and location
updates from IR sensors. It converts the data and the updates into the ap-
propriate events and then forwards them to the proximity service, which tracks
researchers’ locations. For experimental data, the proximity service determines
the researcher that performed the scanning operation and, in turn, forwards
the data to the researcher’s guide. For location updates, the proximity service
updates its internal data structures and then advises the researcher’s guide
to move to the closest touchscreen. The WebDAV service is used to publish ex-
perimental data on the World Wide Web. Finally, the state service serves as the
final repository for all experimental data, which it receives from the researchers’
guides.

Porting to one.world resulted in three major benefits over the Java version.
First, it reduced the development time from nine to four man months. In part,
the reduced development time stems from the fact that the Labscape team did
not have to redesign their application and could reuse existing code, as our
architecture remains neutral on an application’s structuring (as stipulated in
Section 3). Second, porting simplified code maintenance and improved perfor-
mance. In the Java version, every major modification of the guide requires cor-
responding changes in the migration layer. Yet, despite the application-specific
migration layer, moving a guide in the Java version is five to ten times slower
than in the one.world version. In Arnstein et al. [2002], the Labscape team re-
ports that migration latencies for the one.world version are between 2.5 sec-
onds for moving a guide with no experimental data and 7.1 seconds for moving
a guide with 64 samples, representing a large experiment. These results are
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consistent with our own measurements, as reported above, and are acceptable
when compared to a researcher moving through the laboratory—while migra-
tion latencies around a minute are not.

Finally, porting considerably improved application uptime and resilience to
failures. The Java version has a mean time between failures (MTBF) of 30 min-
utes, compared to an order of days for the one.world version. The short MTBF
of the Java version stems from a lack of appropriate system support as well as
from buggy application code. Porting to one.world can eliminate the first cause
but not the second cause. At the same time, system support can help with grace-
ful failure recovery. In particular, after a failure of the Java version, the entire

digital laboratory has to be restarted. In contrast, by building on late binding
discovery instead of direct TCP connections, the one.world version allows for
a piecemeal restarting of application services and thus is considerably more
resilient in the face of buggy application code.

Once more, the Labscape application illustrates the power of combining
one.world ’s migration with late binding discovery. As programs move from
one device to another, they easily communicate with each other by routing
events through the discovery service. At the same time, Labscape’s use of mi-
gration differs from the other programs discussed in this section. Unlike the
replication service—which uses migration as an internal building block—and
Emcee—which controls how other applications are migrated, the guides in Lab-
scape migrate themselves. Given this versatility of migration, we believe it
to be a general building block for system services, utilities, and applications
alike.

To improve their application’s resilience to failures, the Labscape team plans
to further exploit one.world ’s features. In particular, they intend to replicate
the proximity service, which currently represents a single point of failure. The
corresponding code changes are simple, as they only require changing event
delivery from anycast to multicast and ignoring duplicate events in the guides.
Furthermore, the Labscape team plans to add support for disconnected op-
eration to the guides. Currently, the guides require that the state service be
continuously available, so that they can directly forward updates. Support for
disconnected operation can easily be added by logging pending updates in local
tuple storage and forwarding them once the state service becomes available
again.

Overall, the Labscape application demonstrates that one.world provides a
solid platform for building and running real pervasive applications. However,
the Labscape team did encounter three limitations of our architecture. First, in
the Labscape team’s experience, one.world events are harder to program than, for
example, Java Swing events. In particular, they would like to write more concise
event code and see better support for managing asynchronous interactions (in
addition to our operation library). Second, one.world has its own data model
based on tuples and its own network communications in the form of REP and
discovery. As a result, it is unnecessarily hard to interact with legacy and web
systems. We revisit both issues in more detail in the next section.

Finally, due to security constraints enforced by our architecture, the Lab-
scape team had difficulties in reusing existing, third-party Java libraries. More
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specifically, our architecture prevents applications from accessing Java’s java.-
lang.System class and makes select methods, notably arraycopy() to copy the
contents of arrays and getProperty() to access system properties, accessible
through its own one.world.util.SystemUtilities class. Using a different class
to access these methods does not represent a restriction for applications writ-
ten from scratch; developers simply use a different class name in the source
code. However, it does prevent existing Java libraries, which frequently employ
these methods, from running on one.world. To address this issue, we developed
a simple utility that, through binary rewriting, transforms existing libraries
and replaces invocations to System’s methods with the corresponding one.world

methods.

6. DISCUSSION

As shown in the previous section, the user-space programs we and others built
provide us with a solid basis for evaluating one.world ’s design and implementa-
tion. The process of developing and using these programs also helped us gain a
better understanding of the strengths and limitations of our architecture and
its implementation. In this section, we focus on the resulting insights and iden-
tify lessons that are applicable beyond our work as well as opportunities for
future research into system support for pervasive applications.

The user-space programs presented in Section 5 make extensive use of
one.world ’s services and illustrate the power of a design that follows the three
requirements of change, ad hoc composition, and pervasive sharing:

Embrace contextual change. Event-based notification cleanly exposes
change to applications. For example, the Labscape application uses events to
expose location changes to a researcher’s guide, enabling that guide to move
to a close-by touchscreen. Furthermore, Chat relies on events to automatically
adjust its configuration when the user owning the application changes.

Encourage ad hoc composition. Environment nesting and discovery make
it easy to dynamically compose functionality. For example, Emcee relies on en-
vironment nesting to control a user’s applications, and both our debugger and
replication service use the request/monitor mechanism to interpose on an appli-
cation’s request stream. Furthermore, Emcee, Chat, and the Labscape applica-
tion all rely on discovery to connect different application instances or services.
Moreover, discovery not only simplifies communications in the face of migrating
applications—as is the case for Chat—but also increases applications’ resilience
to failures—as illustrated by Labscape.

Recognize sharing as a default. Tuples simplify the capturing and search-
ing of information. For example, the Labscape application directly encodes ex-
perimental data as tuples, thus allowing for the direct searching of that data.
Furthermore, the separation of data—in the form of tuples, and functionality—
in the form of components, provides considerable flexibility when compared to
systems that combine data and functionality in objects. For instance, we can
add music to a running Chat application, simply by importing the correspond-
ing files into Chat’s environment. Conversely, we can improve existing audio
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capabilities by instantiating the corresponding components in Chat’s environ-
ment. Yet, while upgrading the application, we do not need to change stored
audio tuples.

Additionally, migration and remote event passing provide powerful primi-
tives that cover the spectrum between collocation and remote interaction. On
one side, we rely on migration to make a user’s applications available on a close-
by device. On the other side, we rely on REP to let applications communicate
with each other.

The central role played by environments in our architecture implies, in our
opinion, a more general pattern, namely that nesting is a powerful paradigm for

controlling and composing applications. To reiterate, nesting provides control,
as illustrated by Emcee, and nesting can be used to extend applications, as illus-
trated by our replication service. Nesting thus makes it possible to easily factor
important and possibly complex behaviors and provide them as common appli-
cation building blocks. Furthermore, nesting is attractive because it preserves
the relationships between nested environments. For instance, when audio tu-
ples are stored in a child environment of Chat’s environment, the environment
with audio tuples remains a child, even if Chat’s environment is nested in a
user’s environment and subsequently moved between devices.

While the user-space programs provide ample examples for the power of our
architecture, they also helped in identifying several limitations. We discuss the
issues raised by our data model in Section 6.1, followed by event processing
in Section 6.2, leases in Section 6.3, and structured I/O’s unified interface to
storage and communications in Section 6.4. We then discuss user interfaces in
Section 6.5 and, finally, the interaction between one.world and the outside world
in Section 6.6.

6.1 Data Model

The biggest limitation of our architecture is that, to access a tuple, a compo-
nent also needs to have access to the tuple’s class. This does not typically pose
a problem for applications, which have access to their own classes. However, it
does pose a problem for services, such as discovery, that process many differ-
ent types of data for many different applications. One solution, which we have
not yet implemented, uses a generic tuple class, say StaticTuple, to provide
access to the fields of different classes of tuples by using the accessor methods
shown in Figure 7. When passing a tuple across protection domains or when
sending it across the network, the system tries to locate the tuple’s class. If the
class can be accessed, the tuple is instantiated in its native format. If the class
cannot be accessed, the tuple is instantiated as a StaticTuple. In contrast to
the DynamicTuple described in Section 4.2, whose fields are dynamically added
and removed as well as dynamically typed, a StaticTuple preserves all typing
information of a tuple’s original class. In particular, it ensures that field values
conform with the fields’ declared types, and it does not support the dynamic
addition or removal of fields. This solution works because services that pro-
cess many different types of data already use the accessor methods instead of
accessing a tuple’s fields directly.
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A StaticTuple can provide access to a tuple’s fields even if the tuple’s class
cannot be accessed. At the same time, it cannot capture the semantic constraints
expressed by the tuple’s validate() method or the human-readable represen-
tation expressed by the toString() method. As a result, it represents a work-
able yet incomplete solution. The fundamental problem is that we have taken
a single-node programming methodology, namely a programmatic data model,
which expresses data schemas in the form of code, and applied it to a distributed
system. This suggests that we need to abandon the programmatic data model
altogether and instead use a data-centric data model, which expresses schemas
as data and not as code. With a data-centric data model, applications still need
to access a data item’s schema in order to manipulate the data item. However,
since the schemas themselves are data and not code, they are easier to inspect
programmatically and not tied to a specific execution platform. As a result,
we conclude that data-centric data models provide better interoperability than

programmatic data models.
We believe that defining an appropriate data-centric data model is an im-

portant topic for future research into pervasive computing. The challenge is to
define a data model that meets conflicting requirements. On one side, to sup-
port the pervasive sharing of information, the data model must be general and
supported by a wide range of platforms. One possible starting point is XML
Schema [Biron and Malhotra 2001; Thompson et al. 2001]. It already defines
the data model for SOAP [Box et al. 2000], which is the emerging standard
for remote communications between web services and used, for example, by
Microsoft’s .NET platform [Thai and Lam 2002]. On the other side, the data
model must be easy to program and efficient to use. For an XML-based data
model, this means avoiding the complexities of a general data access interface,
such as DOM [Le Hors et al. 2000], and providing a more efficient encoding,
perhaps by using a binary encoding [Martin and Jano 1999] or by compressing
the data [Liefke and Suciu 2000]. Ideally, a data-centric data model should be
as easy to program as field access for tuples in our architecture. Probably, such
a data model will specify a generic data container and a provision for automat-
ically mapping data to application-specific objects, comparable to our proposed
use of StaticTuple.

While tuples are limited by being based on a programmatic data model,
the uniform and ubiquitous use of tuples in our architecture has proven to be
very powerful. In particular, it allowed us to gracefully evolve the discovery
service and integrate new functionality not found in other discovery systems.
The initial design of our discovery service did not include support for reverse
lookups (as described in Section 4.4). However, while implementing Chat, we
needed some means for debugging remote communications through late binding
discovery. We considered adding a dedicated interface for debugging discovery,
but rejected that option as not general enough. We then converged on reverse
lookups as a more flexible technique. Because of our architecture’s uniform use
of tuples, integrating reverse lookups with discovery was easy. Since events
are tuples, they can be treated just like any other data, and reverse lookups on
events can be directly expressed as regular queries. Furthermore, since queries
are tuples, we simply added one more option to the export operation. We thus
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conclude that the uniform use of structured data enables new functionality and

helps to gracefully evolve a system.

6.2 Event Processing

We still believe that asynchronous events provide a good fit for pervasive appli-
cations, as they make changes in an application’s execution context explicit. But
even with library support for managing request/response interactions, in the
form of our architecture’s operation library, developers require additional facil-
ities for writing event-based applications. In particular, several event handlers
in the programs described in Section 5 need to process many different types of
events or perform different actions for the same type of event depending on the
event’s closure. Their implementation requires large if-then-else blocks that
use instanceof tests to dispatch on the type of event or more general tests to
dispatch on the value of the closure. The result is that these event handlers are
not very modular and are relatively hard to understand, modify, or extend—an
issue expressly noted by the Labscape team. This suggests the need for bet-
ter programming language support to structure event handlers. Alternatives
include predicate dispatch as provided by JPred [Millstein 2004] or pattern
matching as provided by Standard ML [Milner et al. 1997].

Overall, our experience with event-based programming suggests that, con-
trary to Ousterhout [1996], asynchronous events are as hard to program as

threads. Just like threads, asynchronous events can result in complex interac-
tions between components. For example, a better performing alternative to the
migration protocol measured in Section 5.4 might optimistically stream tuples
rather than waiting for an acknowledgement for each tuple. However, provid-
ing flow control for streamed events can easily replicate the full complexity of
TCP’s flow control [Stevens 1994]. Furthermore, just as a system can run out
of space for new threads, event queues can run out of space for new events.
Finally, asynchronous events are not a panacea and some interactions must
be synchronous. For example, timers to detect lost events must be scheduled
synchronously because scheduling them asynchronously would use the same
mechanism whose failure they are meant to detect.

6.3 Leases

As described in Section 4.2 and Section 4.4, resource access in our architecture
is leased. Leases provide an upper bound on the time resources can be accessed,
although leases can still be revoked by one.world ’s kernel before their expiration,
notably when an application is migrated. To make the use of leases practical,
we introduced a lease maintainer library early on in our implementation effort.
The lease maintainer automatically renews the lease it manages until it is
explicitly canceled. While lease maintainers work most of the time, they can
still fail, allowing a lease to expire prematurely. For example, when a device is
overloaded, lease renewal events may not be delivered on time. Furthermore,
when a device, such as a laptop or handheld computer, is hibernating, renewal
events cannot be delivered at all. As a result, applications need to be prepared
to reacquire local resources, such as their environment’s tuple storage, even
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though the resources are guaranteed to be available. We thus conclude that
leases do not work well for controlling local resources. Instead, we prefer a simple
bind/release protocol, optionally with callbacks for the forced reclamation of
resources, and use leases only for controlling remote resources.

6.4 A Unified Interface to Storage and Communications

As described in Section 4.2.2, we took a cue from Unix and carefully designed
structured I/O to expose the same basic interface for storage and communi-
cations (though, in contrast to tuple spaces, structured I/O storage and net-
working are distinct services). However, none of the programs we and others
built actually use structured I/O networking; they all rely on remote event
passing and discovery for network communications. Only REP and discovery
themselves employ structured I/O networking in their implementations. We
believe that developers favor REP and discovery over structured I/O network-
ing for remote communications because the former are higher-level and more
flexible services. As a result, we conclude that we overdesigned structured I/O.
We could have omitted structured I/O networking and instead used a simpler,
internal networking layer for implementing REP and discovery. In other words,
storage and communications are orthogonal to each other and best implemented

by separate services with distinct interfaces.

6.5 User Interface

All GUI-based programs running on top of one.world use Java’s Swing toolkit
[Walrath and Campione 1999] to implement their user interfaces. The inte-
gration between Swing’s event model and one.world ’s event model has worked
surprisingly well. When an application needs to react to a Swing event, it gen-
erates the corresponding one.world event and sends it to the appropriate event
handler. Long-lasting operations, such as fetching a user’s applications, are
broken up into many different one.world events, which are processed by our ar-
chitecture’s thread pools [Gribble et al. 2000; Welsh et al. 2001]. Swing’s event
dispatching thread, which executes an application’s user interface code, is only
used for generating the first one.world event in a sequence of one.world events.
As a result, applications in our architecture, unlike other applications using
Swing, do not need to spawn separate threads for processing long-lasting op-
erations. In the opposite direction, when an application needs to update the
user interface in reaction to a one.world event, it simply schedules the update
through Swing’s SwingUtilities.invokeLater() facility.

An important limitation of Swing and other, comparable toolkits is that the
user interface does not scale across different devices. For example, we success-
fully used Emcee and Chat on tablet computers but would be hard pressed to
also run them on, say, handheld computers. However, an important property of
pervasive computing environments is the variety of supported devices. While
most of these devices rely on screens—albeit considerably smaller ones than
those used with PCs—for output and some pointing device for input, some de-
vices, such as Sony’s Aibo robotic dog, employ entirely different forms of input
and output, including speech. Consequently, we believe that an important topic
for future research into pervasive computing is how to implement scalable user
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interfaces. One promising approach, which is being explored by the user in-
terface markup language [Abrams and Helms 2002] (UIML) and the Mozilla
project’s XML-based user interface language [Bullard et al. 2001] (XUL), is to
define a declarative specification of an application’s interface, which is auto-
matically rendered according to a device’s input and output capabilities.

An unexpected lesson relating to user interfaces is that GUI-based applica-

tions help with the testing, debugging, and profiling of a system. Once we started
using Emcee and Chat, we quickly discovered several bugs in our architecture
that we had not encountered before. The two applications also helped us with
identifying several performance bottlenecks in our implementation. We believe
that this advantage of GUI-based applications stems from the fact that GUIs
encourage users to “play” with applications. As a result, the system is exer-
cised in different and unexpected ways, especially when compared to highly
structured regression tests and interaction with a command line shell. Fur-
thermore, it is easier to run many GUI-based applications at the same time
and, consequently, to push a system’s limits.

6.6 Interacting with the Outside World

To provide its functionality, one.world prevents applications from using abstrac-
tions not defined by our architecture. By default, applications cannot spawn
their own threads, access files, or bind to network sockets. These restrictions are
implemented through a Java security policy [Gong 1999]. As a result, specific
applications can be granted access to threads, files, and sockets by modifying a
device’s security policy. However, because these abstractions are not supported
by our architecture, applications are fully responsible for their management,
including their proper release when an application is migrated or terminated.

Access to sockets is especially important for applications that need to inter-
act with the outside world, including with Internet services. For example, we
have used a modified security policy to let a web server run in our architec-
ture. The web server’s implementation is split into a front end and a pluggable
back end. The front end manages TCP connections, translates incoming HTTP
requests into one.world events, and translates the resulting responses back to
HTTP responses. It also translates between MIME data and tuples by rely-
ing on the same conversion framework used for translating between files and
stored tuples. The default back end provides access to tuples stored in nested
environments.

In the opposite direction, it is not currently practical for outside applications
to communicate with one.world applications through REP or discovery, espe-
cially if the outside applications are not written in Java. Because of our pro-
grammatic data model, an outside application would have to reimplement large
parts of Java’s object serialization, which is unnecessarily complex. However, to
provide ubiquitous information access, pervasive applications must easily inter-
act with each other, independent of the underlying systems platform, as well as
with Internet services. After all, the Internet is the most successful distributed
system, used by millions of people every day. We believe that moving to a data-
centric, XML-based data model, as discussed above, and using standardized
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communication protocols will help in providing better interoperability between
pervasive applications, even if they run on different system architectures, and
with Internet services. To put it differently, modern distributed systems need

to be compatible with Internet protocols first and offer additional capabilities

second.

7. RELATED WORK

one.world incorporates several technologies that have been successfully used by
other systems. The main difference is that our architecture integrates these
technologies into a simple and comprehensive framework, with the goal of
enabling applications to adapt to an ever changing computing environment.
Furthermore, where necessary, our architecture does introduce new services.
Most importantly, our environment service is unique in that it combines the
management of computations and persistent storage into a single, hierarchical
structure. Other innovations include our remote event passing and discovery
services, which expose an integrated API that covers the spectrum of network
communications options, our migration service, which makes migration in the
wide area practical, and our operation library, which effectively manages asyn-
chronous interactions. In this section, we highlight relevant systems and dis-
cuss their differences when compared to one.world. Note that we have already
reviewed systems that adapt transparently in Section 2.2.

The environment service was inspired by the ambient calculus [Cardelli
1999]. Similar to environments, ambients are containers for data, function-
ality, and other ambients, resulting in a hierarchical structuring. Unlike envi-
ronments, which are used to implement pervasive applications, ambients are
abstractions in a formal calculus and are used to reason about mobile computa-
tions. The MobileSpaces agent system [Satoh 2000] also relies on a hierarchical
structuring, where agents can be embedded within other agents. Like envi-
ronments, MobileSpaces agents are migrated together with all nested agents.
Unlike environments, MobileSpaces agents provide only limited isolation (an
outer agent can directly access the objects of an inner agent), cannot interpose
on the request stream of inner agents (as provided in one.world through the
request/monitor mechanism), and do not include persistent storage.

Asynchronous events have been used across a wide spectrum of systems, in-
cluding networked sensors [Hill et al. 2000], embedded systems [Chou et al.
1999], user interfaces [Petzold 1998; Walrath and Campione 1999], and large-
scale servers [Gribble et al. 2000; Pai et al. 1999; Welsh et al. 2001]. Of these
systems, one.world ’s support for asynchronous events closely mirrors that of
DDS [Gribble et al. 2000] and SEDA [Welsh et al. 2001]. As a result, it took
one author a very short time to reimplement SEDA’s thread pool controllers
in one.world. Our architecture also provides two improvements over these two
systems. First, in DDS and SEDA, the event-passing machinery is exposed to
application developers, and events need to be explicitly enqueued in the ap-
propriate event queues. In contrast, as described in Grimm [2000], one.world

automates event-passing through the use of proxied event handlers. Second,
DDS and SEDA lack support for structuring event-based applications beyond
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breaking them into so-called stages (which map to environments in our archi-
tecture). While stages represent a significant advance when compared to prior
event-based systems, operations in one.world provide additional structure for
event-based applications and simplify the task of writing asynchronous code.

Odyssey [Noble et al. 1997] relies on asynchronous notifications to expose
contextual change to applications. It is based on a client/server model, where
applications’ access to services is mediated by the Odyssey runtime. Under
this model, applications specify allowable fidelity ranges for the services they
use. The runtime, in turn, relies on type-specific components to map these fi-
delity ranges to actual resources, for example, to select an appropriate res-
olution for streaming video. When a service cannot be provided within the
requested fidelity range, for example, because of insufficient network band-
width, the Odyssey runtime notifies the application through an upcall, thus
allowing the application to select a different fidelity range. Odyssey’s use of
asynchronous upcalls for exposing contextual change is comparable to our ar-
chitecture’s use of events. However, Odyssey has been designed as a minimal
extension to a traditional operating system (NetBSD). As a result, it is far less
flexible in specifying what resources to access (it only supports file names) and
in notifying applications of contextual change (it only supports a single upcall
with three simple parameters). Furthermore, it lacks more advanced services
that help applications adapt, such as our architecture’s migration and discovery
services. At the same time, Odyssey’s framework for mapping fidelity ranges to
actual resources based on a resource’s type is complimentary to our own work.

Starting with Linda [Carriero and Gelernter 1986], tuple spaces have been
used to coordinate loosely coupled applications [Davies et al. 1998; Freeman
et al. 1999; Murphy et al. 2001; Wyckoff et al. 1998]. Departing from the
original tuple space model, several of these systems support more than one
global tuple space and may even be extended through application-specific
code, for example, to automatically synchronize a local and a remote tuple
space. Our architecture’s use of tuples differs from these systems in that, as
discussed in Section 4.2.2, structured I/O storage is a separate service from
communications—whether through structured I/O networking or through re-
mote event passing and discovery—and more closely resembles a database in-
terface than Linda’s in, out, and rd operations. At the same time, applications
that require a traditional tuple space can easily implement such a service on
top of remote event passing and structured I/O storage. Linda’s out and rd

operations map directly to structured I/O’s put and read operations (though,
every tuple written through a put must have a fresh GUID as its ID). Linda’s
in operation can be implemented as a transactional read and delete.

Like tuple spaces, the information bus helps with coordinating loosely cou-
pled services [Oki et al. 1993]. Unlike tuple spaces, it is based on a pub-
lish/subscribe paradigm and does not retain sent messages in storage. While
its design is nominally object-based, data exchanged through the bus is self-
describing and separate from service objects, comparable to the separation of
data—in the form of tuples—and functionality—in the form of components—
in one.world. The information bus dynamically matches senders and receivers
based on so-called subjects. Subjects are hierarchically structured strings,

ACM Transactions on Computer Systems, Vol. 22, No. 4, November 2004.



478 • R. Grimm et al.

similar to DNS names, and matching supports equality testing as well as wild-
cards. Messages are published under specific subjects and then delivered to
all interested parties. In its ability to deliver messages to receivers based on
a property of the message, the information bus resembles our architecture’s
reverse discovery lookups. However, the information bus provides only a very
limited form of reverse lookup and does not support forward lookups at all. In-
terestingly, the information bus also includes an option for point-to-point com-
munications (albeit through synchronous remote method invocations), just like
our architecture supports both point-to-point communications and the dynamic
matching between senders and receivers.

On the surface, Sun’s Jini [Arnold et al. 1999] appears to provide many of
the same services as our architecture. However, Jini embodies a fundamentally
different approach to building distributed applications: it extends single-node
programming methodologies, is strongly object-oriented, and relies on remote
method invocations. As a result, Jini requires an overall well-behaved com-
puting environment, and its services are rather limited when compared to the
corresponding services in one.world. In particular, Jini requires a statically con-
figured discovery server. Moreover, Jini’s discovery supports only early binding
and simple equality queries. Furthermore, Jini does not provide isolation be-
tween applications running on the same Java virtual machine (JVM), thus
making it impossible to terminate ill-behaved programs without terminating
all programs running on that JVM. Likewise, Jini synchronously sends remote
events through Java RMI, thus exposing the sender to arbitrary delays on the
receiving side. Finally, Jini relies on distributed garbage collection [Plainfossé
and Shapiro 1995] (DGC) for controlling objects’ lifetimes. However, the illu-
sion of a global pool of objects provided by DGC is misleading. Objects can still
be prematurely reclaimed, for example, when devices are disconnected for a
sufficiently long time and DGC’s internal leases expire. DGC also makes it un-
necessarily hard to provide migration on top of Jini. Since DGC controls objects’
lifetimes, a migration service cannot move objects without either proxying every
remotely accessible object or being fully integrated with DGC’s implementation.

In addition to Jini, the intentional naming system [Adjie-Winoto et al. 1999]
(INS), the secure discovery service [Czerwinski et al. 1999] (SDS), the ser-
vice location protocol [Guttman et al. 1999] (SLP), and universal plug and
play [Microsoft Corporation 2000] (UPnP) all provide the ability to locate re-
sources by their descriptions. Out of these systems, INS comes the closest to
our architecture’s discovery service. Like one.world, INS supports early and
late binding as well as anycast and multicast. Furthermore, comparable to
the use of discovery server elections in our architecture, INS’ servers auto-
matically form an overlay network to route late binding messages; though,
individual servers still need to be manually configured. SDS and SLP both
explore how to secure service discovery. Additionally, SDS includes a mech-
anism for aggregating service descriptions into a global hierarchy of discov-
ery servers. Both efforts are complimentary to our own work. Finally, UPnP
is largely targeted at automatically connecting PCs and stand-alone devices,
such as printers and displays. As a result, it supports only simple matching
queries (comparable to subject matching for the information bus). At the same
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time, UPnP does include support for event-based notifications when a device’s
state changes. The main difference between these services and our own is that
one.world integrates discovery with point-to-point communications, resulting in
a simple and elegant API that covers the spectrum of remote communications
options. Furthermore, our discovery service is the only one to support reverse
lookups.

A considerable number of projects have explored migration in distributed
systems [Milojic̆ić et al. 1999]. Notable examples include migration at the op-
erating system level, as provided by Sprite [Douglis and Ousterhout 1991],
and at the programming language level, as provided by Emerald [Jul et al.
1988; Steensgaard and Jul 1995]. In these systems, providing support for a
uniform execution environment across all nodes and for transparent migration
of application state has resulted in considerable complexity. In contrast, many
mobile agent systems, such as IBM’s aglets [Lange and Oshima 1998], avoid
this complexity by implementing what we call “poor man’s migration”. They do
not provide transparency and only migrate application state by serializing and
deserializing an agent’s objects. Since these systems are thread-based, they do
not migrate an application’s execution state, forcing application developers to
implement their own mechanisms for managing execution state. Because of its
programming model, one.world can strike a better balance between the complex-
ity of fully featured migration and the limited utility of poor man’s migration.
While one.world does not provide transparency, it does migrate an application’s
execution state as well as its persistent data.

Several other projects are exploring aspects of system support for pervasive
applications. Notably, InConcert, the architectural component of Microsoft’s
EasyLiving project [Brumitt et al. 2000], provides service composition in a
dynamic environment by relying on location-independent names and asyn-
chronous events. Furthermore, iROS, the operating system for Stanford Uni-
versity’s iRoom project [Johanson et al. 2002], features an asynchronous event
distribution system, a shared tuple space that not only stores but also trans-
forms data, and an automatic user interface generation system. An important
common theme to these efforts and our own is the need for networked communi-
cations that are asynchronous and dynamically match senders with receivers.
iROS and one.world also share their reliance on tuples for representing all data,
including events. At the same time, we fundamentally differ in our approaches.
The EasyLiving and iRoom projects seek to better integrate the applications
running in a single, intelligent room. As a result, they reuse existing applica-
tions wherever possible and provide only as much system support as strictly
necessary. In contrast, one.world has been designed from the ground up to meet
the requirements of pervasive applications. Consequently, our architecture is
more complete and powerful, but also requires that applications be written from
scratch.

Like one.world, Carnegie Mellon University’s Aura project [Garlan et al. 2002;
Satyanarayanan 2001] targets pervasive computing environments that are not
limited to a single room. Unlike one.world, Aura takes a more backwards com-
patible approach: it builds on existing system support for mobile computing,
including Coda [Kistler and Satyanarayanan 1992; Mummert et al. 1995] and
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Odyssey [Noble et al. 1997], and supports standard desktop operating systems,
such as Windows and Linux. To accommodate different operating systems,
users’ tasks in Aura are described as abstract services that are automatically
mapped onto the underlying platform and its native applications. Task migra-
tion in Aura then builds on these descriptions to move platform-independent
representations between devices. Another important component of Aura is
the integration of staging servers to off-load resource intensive computations
from mobile devices and to improve performance when accessing far-away data
sources.

Several efforts, including Globe [van Steen et al. 1999], Globus [Foster and
Kesselman 1997], and Legion [Lewis and Grimshaw 1996], explore an object-
oriented programming model and infrastructure for wide area computing. They
share the important goal of providing a common execution environment that
is secure and scales across a global computing infrastructure. However, these
systems are targeted at collaborative and scientific applications running on con-
ventional PCs and more powerful computers. As a result, these systems are too
heavy-weight and not adaptable enough for pervasive computing environments.
Furthermore, as argued in Section 2, we believe that their reliance on RPC for
remote communications and on objects to encapsulate data and functionality
is ill-advised.

8. CONCLUSIONS

In this article, we have explored how to build pervasive applications. Based
on the observation that many existing distributed systems extend single-node
programming methodologies, with the result that users need to manually adapt
their computing environment in the presence of change, we have suggested a
more suitable approach. Under this approach, system support exposes distri-
bution rather than hide it, so that applications can see contextual change and
then adapt to it. More specifically, system support needs to address the following
three requirements. First, systems need to embrace contextual change, so that
applications can implement their own strategies for handling changes. Second,
systems need to encourage ad hoc composition, so that applications can be dy-
namically connected and extended in an ever changing runtime environment.
Third, systems need to recognize sharing as the default, so that applications
can make information accessible anywhere and anytime.

We have presented one.world, a system architecture for pervasive computing,
that represents a first stab at exploring how to realize this approach. Our ar-
chitecture builds on four foundation services that directly address the three re-
quirements. First, a virtual machine provides a uniform execution environment
across all devices and supports the ad hoc composition between applications and
devices. Second, tuples define a common type system for all applications and
simplify the sharing of data. Third, events are used for all communications
and make change explicit to applications. Finally, environments host applica-
tions, store persistent data, and—through nesting—facilitate the composition
of applications and services. On top of these foundation services, our architec-
ture provides a set of system services that address common application needs,
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including discovery to locate resources across the network and migration to
move or copy applications between devices.

We have validated our architecture by supporting the Labscape team in
porting their digital biology laboratory assistant to our architecture and by
developing our own programs—including a replication service, a user and ap-
plication manager, and a text and audio messaging system. Our experimen-
tal evaluation has demonstrated that one.world (1) is sufficiently complete to
support additional services, utilities, and applications on top of it, (2) is not
significantly harder to program than with conventional programming styles,
(3) has acceptable performance, with applications reacting quickly to change,
and, most importantly, (4) enables others to successfully build pervasive appli-
cations. However, our experimental evaluation has also shown that the scalabil-
ity of our implementation, notably that of service discovery, is limited, making
it suitable only for pervasive computing environments with several dozens of
people and devices. Yet, despite these performance concerns, our evaluation has
demonstrated that one.world lets developers effectively build applications that
adapt to change, thus validating our approach.

Based on our own and others’ experiences with one.world, this article has also
identified important lessons, both positive and negative, that are applicable
beyond this work. Notably, we have demonstrated that nesting is a powerful
paradigm for controlling and composing applications and that the uniform use
of structured data enables new functionality and helps to gracefully evolve a
system. However, we have also found that—unlike our architecture, which de-
fines its own communication protocols—modern distributed systems need to be
compatible with Internet protocols first and offer additional capabilities second.
Furthermore, we have found that asynchronous events are as hard to program
as threads, that leases do not work well for controlling local resources, and that
storage and communications are orthogonal to each other and best implemented
by separate services with distinct interfaces. We have also suggested areas
for future work on pervasive computing, specifically data-centric data models
and scalable user interfaces. More information on our architecture, including a
source release, is available at http://www.cs.nyu.edu/rgrimm/one.world/.
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