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ABSTRACT

Large scale surveys in mammalian tissue culture cells suggest that the protein ex-

pressed at the median abundance is present at 8,000–16,000 molecules per cell and

that differences in mRNA expression between genes explain only 10–40% of the dif-

ferences in protein levels. We find, however, that these surveys have significantly un-

derestimated protein abundances and the relative importance of transcription. Using

individual measurements for 61 housekeeping proteins to rescale whole proteome

data from Schwanhausser et al. (2011), we find that the median protein detected is

expressed at 170,000 molecules per cell and that our corrected protein abundance es-

timates show a higher correlation with mRNA abundances than do the uncorrected

protein data. In addition, we estimated the impact of further errors in mRNA and

protein abundances using direct experimental measurements of these errors. The

resulting analysis suggests that mRNA levels explain at least 56% of the differences

in protein abundance for the 4,212 genes detected by Schwanhausser et al. (2011),

though because one major source of error could not be estimated the true percent

contribution should be higher. We also employed a second, independent strategy to

determine the contribution of mRNA levels to protein expression. We show that the

variance in translation rates directly measured by ribosome profiling is only 12%

of that inferred by Schwanhausser et al. (2011), and that the measured and inferred

translation rates correlate poorly (R2 = 0.13). Based on this, our second strategy

suggests that mRNA levels explain ∼81% of the variance in protein levels. We also

determined the percent contributions of transcription, RNA degradation, translation

and protein degradation to the variance in protein abundances using both of our

strategies. While the magnitudes of the two estimates vary, they both suggest that

transcription plays a more important role than the earlier studies implied and trans-

lation a much smaller role. Finally, the above estimates only apply to those genes

whose mRNA and protein expression was detected. Based on a detailed analysis by

Hebenstreit et al. (2012), we estimate that approximately 40% of genes in a given cell

within a population express no mRNA. Since there can be no translation in the ab-

sence of mRNA, we argue that differences in translation rates can play no role in

determining the expression levels for the ∼40% of genes that are non-expressed.
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Figure 1 The steps regulating protein expression. The steady state abundances of mRNAs and proteins

are each determined by their relative rates of production (i.e., transcription or translation) and their rates

of degradation.

INTRODUCTION
The protein products of genes are expressed at very different levels from each other in a

mammalian cell. Thousands of genes are not detectably expressed. Of those that are, their

proteins are present at levels that differ by five orders of magnitude. Cytoplasmic actin,

for example, is expressed at 1.5 × 108 molecules per cell (Kislauskis et al., 1997 ), whereas

some transcription factors are expressed at only 4 ×103 molecules per cell (Biggin, 2011).

There are four major steps that determine differences in protein expression: the rates at

which genes are transcribed, mRNAs are degraded, proteins are translated, and proteins

are degraded (Fig. 1). The combined effect of transcription and mRNA degradation

together determines mRNA abundances (Fig. 1). The joint effect of protein translation

and protein degradation controls the differences between mRNA and protein

concentrations (Fig. 1).

Transcription has long been regarded as a dominant step and is controlled by sequence

specific transcription factors that differentially interact with cis-regulatory DNA regions.

The rates of the other three steps, however, vary significantly between genes as well

(Boisvert et al., 2012; Cambridge et al., 2011; Cheadle et al., 2005; de Sousa Abreu et al.,

2009; Eden et al., 2011; Guo et al., 2010; Han et al., 2014; Hentze and Kuhn, 1996 ; Hsieh

et al., 2012; Ingolia et al., 2011; Kristensen et al., 2013; Loriaux & Hoffmann, 2013; Rabani

et al., 2011; Schwanhausser et al., 2011; Sharova et al., 2009; Yang et al., 2003).

MicroRNAs, for example, differentially interact with mRNAs to alter rates of RNA

degradation and protein translation (Ambros, 2011; Baek et al., 2008; Elmen et al., 2008;

Gennarino et al., 2012; Guo et al., 2010; Hobert, 2008; Krutzfeldt et al., 2005; Pillai et al.,

2007 ; Rajewsky, 2011; Selbach et al., 2008; Subtelny et al., in press; Xiao et al., 2007 ).

To quantify the relative importance of each of the four steps, label free mass

spectrometry methods have been developed that measure the absolute number of protein

molecules expressed per cell for thousands of genes (Bantscheff et al., 2012; Beck et al.,

2011;Maier, Guell & Serrano, 2009; Schwanhausser et al., 2011; Vogel et al., 2010; Vogel &

Marcotte, 2012). By comparing these data to mRNA abundance data, one can determine

the importance of transcription and mRNA degradation combined versus the importance
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of protein translation and protein degradation combined (Maier, Guell & Serrano, 2009;

Schwanhausser et al., 2011; Vogel & Marcotte, 2012) (Fig. 1). By measuring mRNA

degradation and protein degradation rates as well, the rates of transcription and

translation can be additionally inferred indirectly. Using this approach to study mouse

NIH3T3 fibroblasts, Schwanhausser et al. (2011) concluded that mRNA levels explain

∼40% of the variability in protein levels; that the cellular abundance of proteins is

predominantly controlled at the level of translation; that transcription is the second

largest determinant; and that the degradation of mRNAs and proteins play a significant

but lesser role.

The above work has provided critically important datasets and an initial framework for

analysis. We noticed, however, that Schwanhausser et al.’s (2011) protein abundance

estimates are mostly lower than established values for individual proteins in the literature

and that statistical methods to quantitate the impact of experimental error had not been

employed. We therefore set out to explore if we could refine the analysis of these datasets

and to compare our results to those of Schwanhausser et al. (2011) and other systemwide

studies.

RESULTS AND DISCUSSION

A non-linear underestimation of protein abundances

Our starting point was a set of published abundances of 53 mammalian housekeeping

proteins, most of which are based on SILAC mass spectrometry or western blot data

(Biggin, 2011; Brosi, Hauri & Kramer, 1993; Gregory et al., 2002; Hanamura et al., 1998;

Kimura et al., 1999; Kislauskis et al., 1997 ; Princiotta et al., 2003;Wollfe, 1998;Wong et al.,

2011; Zeiler et al., 2012). On average these established estimates are 16 fold higher than

those from Schwanhausser et al.’s (2011) original label free mass spectrometry data

(Dataset S1). Once we brought this discrepancy to the authors’ attention, they upwardly

revised their label free abundance estimates for all 5,028 detected proteins and in addition

provided western blot or Selected Reaction Monitoring (SRM) mass spectrometry

measurements for eight polypeptides in NIH3T3 cells (see Corrigendum; Schwanhausser

et al., 2011). However, Schwanhausser et al.’s (2011) second whole proteome abundance

estimates are still lower than individual measurements for proteins expressed below 106

molecules per cell, with the lowest abundance proteins showing the largest discrepancy

(Fig. 2A; Dataset S1).

Western blot and SILAC mass spectrometry measurements show the same discrepancy

versus the label free whole proteome data (Dataset S1). For example, for proteins

expressed below 1 million molecules per cell, the 26 SILAC measurements are a median

of 2.95 fold higher than Schwanhausser et al.’s (2011) second estimates, and the 19

western blot measurements are 3.10 fold higher. This suggests that the discrepancy is not

due to error in the individual measurements as a similar bias in two independent

methods is unlikely.

Of the 61 individual measurements of protein abundance available to us, 15 were made

in NIH3T3 cells and 42 were made in HeLa cells. The discrepancy between
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Figure 2 Anon-linear bias in protein abundance estimates and its correction. (A) The y axis shows the

ratios of 61 individually derived protein abundance estimates each divided by the corresponding abun-

dance estimate from Schwanhausser et al.’s (2011) second whole proteome dataset. The x axis shows the

abundance estimate from Schwanhausser et al.’s (2011) second whole proteome dataset. The red line in-

dicates the locally weighted line of best fit (lowess parameter f = 1.0), and the vertical dotted grey lines

show the locations of the 1st quartile, median and 3rd quartile of the abundance distribution of the 5,028

proteins detected in the whole proteome analysis. (B) The same as panel A. except that the whole pro-

teome estimates of Schwanhausser et al. (2011) have been corrected using a two-part linear model and the

abundances from the 61 individual protein measurements, see Fig. 3B.
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Schwanhausser et al.’s (2011) second whole proteome abundances and these individual

measurements is not due to differences in expression levels between HeLa and NIH3T3

cells for the following reasons. One, it is unlikely that such a difference would only occur

for lower abundance proteins. Two, five of the individual measurements for lower

abundance proteins (Orc2, Orc4, HDAC3, NFkB1, and NFkB2) were made in NIH3T3

cells and are on average 3.7 fold higher than the second whole proteome estimates in this

same cell line (Dataset S1). Three, later in the paper we show that collectively the 61

individual proteins measured have on average the same relationship in expression values

versus all other cellular proteins in both NIH3T3 and HeLa cells. Finally, Schwanhausser

et al.’s (2011) second estimates for RNA polymerase II and general transcription factors

such as TFIIB and TFIIE are only 1.6 fold higher than those in yeast (Borggrefe et al.,

2001) and are 7.1 times less than those in HeLa cells (Kimura et al., 1999). Yeast cells have

1/40th the volume, 1/200th the amount of DNA and 1/4 the number of genes of NIH3T3

and HeLa cells (Milo et al., 2010). Two fold reductions in the concentrations of a single

general transcription factor have, in some cases, phenotypic consequence (Aoyagi &

Wassarman, 2001; Deutschbauer et al., 2005; Eissenberg et al., 2002; Kim et al., 2010).

Thus, it is unlikely that a rapidly dividing mammalian cell could function with much

larger reductions in the amounts of all of these essential regulators to levels close to those

found in yeast.

Correcting the non-linear bias

Schwanhausser et al. (2011) calibrated protein abundances by spiking known amounts of

protein standards into a crude protein extract from NIH3T3 cells and then measuring the

abundances of several thousand proteins in the mixture by iBAC label free mass

spectrometry. The 20 ‘spiked in’ protein standards detected in this experiment, however,

were present at the equivalent >8.0 × 105 molecules per cell, a level that represents only

the most highly expressed 11% of the proteins detected (Fig. 3A) (M Selbach, personal

communication; Schwanhausser et al., 2011). To convert mass spectrometry signals to

protein abundances, Schwanhausser et al. (2011) assumed that a linear relationship

defined using the 20 ‘spiked in’ standards holds true for proteins at all abundances

(Fig. 3A). The discrepancy between the resulting estimates and individual protein

measurements (Fig. 2A), however, suggests that this assumption is not valid. A recent

benchmarking study also supports this conclusion, showing that in general in the iBAC

method ‘low-abundance proteins were dramatically underestimated’ (Ahrne et al., 2013).

We therefore employed the 61 individual protein measurements from the literature as

they span a much wider abundance range. In a plot of these data versus Schwanhausser

et al.’s (2011) second whole proteome estimates, we found that a two-part linear

regression gave a statistically better fit over a single regression (Figs. 3B and 3C) (p-value

= 0.002, Materials and Methods). We then used this two-part regression to derive new

abundance estimates for all 5,028 proteins in Schwanhausser et al.’s (2011) dataset

(Dataset S1). As Fig. 2B shows, the correction removes the non-linear bias.

In our rescaled data, the median abundance protein is present at 170,000 molecules per

cell (Fig. 2B), considerably higher than Schwanhausser et al.’s (2011) original estimate of
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Figure 3 Calibrating absolute protein abundances. (A) The relationship between iBACmass spectrometry signal (x axis) and the amounts of the

20 ‘spiked in’ protein standards (y axis) used by Schwanhausser et al. (2011) to calibrate their whole proteome abundances (data kindly provided by

Matthias Selbach, Dataset S2). The line of best fit is shown (red). (B) The relationship between individually derived estimates for 61 housekeeping

proteins (y axis) and Schwanhausser et al.’s (2011) second whole proteome estimates (x axis). The two part line of best fit used to correct the second

whole proteome estimates is shown (solid red line) as is the single linear regression (dashed red line). (C) The fit of different regression models

for the data in panel b. The y axis shows the leave-one-out cross validation root mean square error for each model. The x axis shows the protein

abundance used to separate the data for two part linear regressions. The red curve shows the optimum change point for a two part linear model is

at an abundance of ∼106 molecules per cell. The dashed red horizontal line shows the root mean square error for the single linear regression.

16,000 molecules per cell and significantly above their second estimate of 50,000

molecules per cell. For low abundance proteins the effect is larger. In our corrected data,

the median sequence specific transcription factor is present at 71,000 molecules per cell

versus Schwanhausser et al.’s (2011) estimates of first 3,500 then 9,300 molecules per cell

(Dataset S1). Our correction reduces the range of detected abundances by ∼50 fold

(unlogged) compared to Schwanhausser et al.’s second estimates (Dataset S1) and the

variance in protein levels from 0.97 (log10) to 0.36 (log10).

Corrected protein abundances show an increased correlation with

mRNA abundances

As an independent check on the accuracy of our corrected abundances, we compared

them to Schwanhausser et al.’s (2011) RNA-Seq mRNA expression data. Our corrected

protein abundances correlate more highly with mRNA abundances than do

Schwanhausser et al.’s (2011) second whole proteome estimates (compare Figs. 4A and

4B). The increase in correlation coefficient is highly significant (p-value< 10-29)

(Materials and Methods), arguing that our non-linear correction to the whole proteome

abundances has increased the accuracy of these estimates. The most dramatic change is

that the scatter about the line of best fit is reduced and shows a stronger linear

relationship. The 50% prediction band shows that prior to correction the half of proteins

whose abundances are best predicted by mRNA levels are expressed over an 11 fold range

(unlogged), but after correction they are expressed over a narrower, 4 fold range

(Figs. 4A and 4B). The correction reduces the width of the 95% prediction band even

further, by 18 fold.
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Figure 4 Protein abundance estimates versus mRNA abundances. (A) The relationship between

Schwanhausser et al.’s (2011) second protein abundance estimates versus mRNA levels for 4,212 genes

in NIH3T3 cells. The linear regression of the data is shown in red, the 50% prediction band by dashed

green lines, and the 95% prediction band by dashed blue lines. (B) The relationship between our cor-

rected estimates of protein abundance versus mRNA levels. The linear regression and prediction bands

are labeled as in panel A.

For our corrected data, the median number of proteins translated per mRNA is 9,800

compared to Schwanhausser et al.’s (2011) original estimate of 900 and their second

estimate of 2,800. In yeast, the ratio of protein molecules translated per mRNA is

4,200–5,600 (Ghaemmaghami et al., 2003; Lu et al., 2007 ). Given that mammalian cells

have a higher protein copy number than yeast (Milo et al., 2010), it is not unreasonable

that the ratio in mammalian cells would be higher.
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Estimating the impact of molecule specific measurement error

In addition to the above general error in scaling protein abundances, there are additional

sources of experimental error that uniquely affect data for each protein and mRNA

differently. As a result of these molecule specific measurement errors, the coefficient of

determination between measured mRNA and measured protein levels—i.e., R2 shown in

Fig. 4B—is lower than the actual value between true protein and true mRNA levels. With

an accurate estimate of the errors, it is possible to calculate the increased correlation

expected between true protein and true mRNA abundances. Because the variance in the

residuals in Fig. 4B (i.e., the displacement along the y axis of data points about the line of

best fit) is composed of both experimental error and the genuine differences in the rates

of translation and protein degradation between genes, once the experimental error has

been estimated, it is also possible to infer the combined true effects of translation and

protein degradation.

There are two classes of molecule specific experimental error: stochastic and

systematic. Stochastic error, or imprecision, is the variation between replica experiments

and is estimated from this variation. Systematic error, or inaccuracy, is the reproducible

under or over estimation of each data point, and is estimated by comparing the results

obtained with the assay being used to those from gold standard measurements obtained

with the most accurate method available.

Schwanhausser et al. (2011) limited their estimation of experimental error to stochastic

errors. Because our correction of the whole proteome abundances reduces the total

variance in measured protein expression levels, we first reestimated the proportion of the

variance in the residuals in Fig. 4B that is due to stochastic measurement error using

replica datasets (Materials and Methods). We find that 7% of this variance results from

stochastic protein error and 0.8% from stochastic mRNA error.

Schwanhausser et al. (2011), however, also noted a significant variance between their

whole genome RNA-Seq data and NanoString measurements for 79 genes (R2 = 0.79 in

Figure S8(A) in Schwanhausser et al., 2011), though they did not take this into account

subsequently. RNA-Seq is well known to suffer reproducible several fold biases in the

number of DNA sequence reads obtained for different GC content genomic regions

(Cheung et al., 2011; Dohm et al., 2008). In contrast, NanoString gives an accurate

measure of nucleic acid abundance as correlation coefficients of R2 = 0.99 are obtained

when NanoString data are compared to known concentrations of nucleic acid standards

(Geiss et al., 2008). Thus, it is reasonable to consider NanoString as a gold standard that

can be used to assess the systematic error in the RNA-seq data by assuming that the

variance between the two methods is due mostly to systematic error in RNA-seq. Using

Analysis of Variance (ANOVA), the variance in Schwanhausser et al.’s (2011)

NanoString/RNA-Seq comparison can be shown to be equivalent to 23.3% of the variation

in the residuals in Fig. 4B, 29 fold larger than the stochastic component of mRNA error

(see Materials and Methods for a discussion of the assumptions used in this analysis).

It is also important to assess the systematic error in the whole proteome abundances as

label free mass spectrometry includes such biases (Ahrne et al., 2013; Bantscheff et al.,

Li et al. (2014), PeerJ, 10.7717/peerj.270 8/26



2012; Kuntumalla et al., 2009; Lu et al., 2007 ; Peng et al., 2012). In principle the ‘spiked in’

protein standards in Schwanhausser et al.’s (2011) calibration experiment (i.e., the data in

Fig. 3A) should provide gold standard data. In practice, however, the variance in mass

spectrometry estimates for protein standards present at supposedly the same amounts is

too high (i.e., the scatter along the x axis in Fig. 3A). This variance would contribute 61%

to the variance in the residuals in Fig. 4B, yet the variance of the residuals between the

corrected whole proteome estimates and the 61 individual protein measurements (i.e., the

scatter along the x axis about the solid red line in Fig. 3B) would contribute only 44%.

Since the western blot and SILAC methods used to make the 61 individual protein

measurements introduce some experimental error, it seems likely that the commercial

protein standards used by Schwanhausser et al. (2011) were not as accurately prepared at

the correct protein concentrations as one would expect. Since no other suitable gold

standard is available, we are thus unable to estimate the systematic protein error, though

it is likely to be less than 44% of variance in the residuals in Fig. 4B.

Taking the stochastic protein error as a minimum estimate of protein error and the

variance from the NanoString/RNA-Seq comparison as an estimate of all RNA errors, it

can be shown that true mRNA levels explain at least 56% of true protein levels, and by

extension protein degradation and translation combined explain no more than 44% (see

Materials and Methods).

Estimating the relative importance of transcription, mRNA

degradation, translation and protein degradation

In addition to determining protein and mRNA abundances, Schwanhausser et al. (2011)

also directly measured mRNA and protein degradation rates and calculated the

percentage that each contributed to the variance in protein abundances. Using this

information, it is possible to determine the relative importance of transcription, RNA

degradation, translation and protein degradation for different scenarios (Table 1, see

Materials and Methods). For the 4,212 genes whose protein and mRNA expression was

detected, our analysis suggests that transcription explains ∼38% of the variance in true

protein levels, RNA degradation explains ∼18%, translation ∼30%, and protein

degradation ∼14% (Table 1). Clearly these estimates are tentative and depend on the

particular assumptions we have made. We believe, though, that they will prove more

accurate than Schwanhausser et al.’s (2011) suggestion that translation is the predominant

determinant of protein expression and that mRNA levels explain around 40% of the

variability in protein levels (Table 1).

Direct measurements of translation rates support our analysis

Direct measurements of system wide translation rates using ribosome profiling (Guo

et al., 2010; Ingolia et al., 2011; Subtelny et al., in press) provide independent evidence that

translation rates vary less than Schwanhausser et al. (2011) suggest. The distributions of

the rates of translation rates measured in mouse embryonic stem cells, mouse

neutrophils, mouse NIH3T3 cells and human HeLa cells are all significantly narrower
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Table 1 The contribution of different steps in gene expression to the variance in protein abundances between genes.

Variance in

protein levels

(log10)*

Percent contribution to variance in protein levels

mRNA

(%)

Transcription

(%)

RNA degradation

(%)

Translation

(%)

Protein degradation

(%)

Schwanhausser 2nd dataa 0.97 40 34 6 55 5

Measured protein error strategyb 0.34 56 38 18 30 14

Measured translation strategyc 0.61 81 71 10 11 8

∗ In this column, the value given for Schwanhausser et al.’s (2011) 2nd data is the variance in their measured protein abundances; the remaining

values are our estimate for the variance in true protein levels for different scenarios.
a Estimates from Schwanhausser et al. (2011) based on the 4,212 genes for which NIH3T3 cell protein and mRNA abundance data are available.
b Our estimates for the same 4,212 genes studied by Schwanhausser et al. (2011) after correcting the overall scaling of the NIH3T3 cell protein

abundance data and taking several sources of molecule specific experimental error into account: stochastic protein error and all mRNA errors.
c Our estimates for the same 4,212 genes studied by Schwanhausser et al. (2011) derived using measured translation rates from Subtelny et al.

(in press).

than Schwanhausser et al. (2011) inferred for mouse NIH3T3 cells (Fig. 5A; Table S1). For

NIH3T3 cells the translation rates measured by ribosome profiling for 95% of the genes

detected vary only 5.8 fold, but the rates inferred for 95% of genes by Schwanhausser et al.

(2011) vary 115 fold (Fig. 5A). Because each of these datasets contain differing numbers

of genes (Table S1), to provide a more direct comparison we took the intersection of genes

detected by Schwanhausser et al. (2011) and by ribosome profiling in NIH3T3 cells

(Fig. 5B). The variance in measured translation rates for the genes in the intersection is

only 12% of the variance in rates inferred by Schwanhausser et al. (2011) for these same

genes (Fig. 5B; Table S1).

Having direct measurements of the variance in translation rates opens up a second

strategy to estimate the relative importance of each step in gene expression (Materials and

Methods). In our first strategy—the measured protein error strategy—protein

degradation rates and errors in protein and mRNA abundances were determined from

direct experimental data; and the variance in true protein levels explained by translation

was inferred as that part of the variance in the residuals in Figure 4B that is not explained

by the three experimentally measured terms. In our second strategy—the measured

translation strategy—translation rates, protein degradation rates and mRNA errors are

determined from direct experimental data; and the variance in measured protein levels

explained by protein error is inferred as that part of the variance in the residuals in

Figure 4A that is not explained by the sum of variances of the three experimentally

measured components (Materials and Methods). This measured translation strategy is

thus independent of our rescaling of Schwanhausser et al.’s (2011) second protein

abundance estimates and of our estimate of stochastic protein measurement error.

According to our second strategy, for NIH3T3 cells the variance in true protein levels is

63% of the variance in Schwanhausser et al.’s (2011) measured protein abundances;

mRNA levels contribute 81% to the variance in true protein expression; transcription
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Figure 5 Measured versus inferred translation rates. (A) The relative density of ribosomes per mRNA

for each gene directly measured by ribosome profiling (Guo et al., 2010; Ingolia et al., 2011; Subtelny et al.,

in press) (colored lines) compared to the translation rates for each gene inferred by Schwanhausser et al.

(2011) (black lines). The distribution of values from the ribosome profiling experiments was scaled pro-

portionally to have the same median as that of the Schwanhausser et al. (2011) values, and the gene fre-

quencies of the each distribution was normalized to have the same total. The locations of the 2.5 and 97.5

percentiles of the two distributions for NIH3T3 cells are shown as dashed lines. (B) As panel A. except that

the data for all genes in the Schwanhausser et al. (2011) dataset are shown in the solid black line and data

for the genes in the intersection of the Schwanhausser et al. (2011) and Subtelny et al.’s (in press) datasets

are shown in dashed lines. The variances and numbers of genes for each dataset are given in Table S1.
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71%; RNA degradation 10%; translation 11%; and protein degradation 8% (Table 1).

Despite the significant differences in the underlying data and assumption used, these

results agree broadly with those of our first strategy (Table 1). Both strategies suggest that

the variance in Schwanhausser et al.’s (2011) second protein abundance estimates is too

high. Both suggest that translation contributes less to protein levels and that transcription

contributes more that Schwanhausser et al. (2011) claimed. In effect, the measured rates of

translation provide independent support for our rescaling of Schwanhausser et al.’s (2011)

protein abundances and our estimates of stochastic protein error, and visa versa.

Our second strategy, though, does estimate that mRNA levels and transcription explain

a higher percent of protein expression than the first (Table 1), but this is not entirely

unexpected. In our first strategy, we were not able to take account of systematic, molecule

specific errors in protein abundances because appropriate control measurements were

not available. Thus, this first strategy could well have underestimated error. In contrast,

our second strategy estimates all types of protein abundance errors in a single term and

thus has the potential to be the more accurate if the error in the ribosome profiling and

protein degradation data is not too large.

To further explore the relationship between our two strategies, we compared the

correlation between translation rates inferred by Schwanhausser et al. (2011) and those

measured by ribosome profiling in NIH3T3 cells (Fig. 6). The coefficient of

determination is small (R2 = 0.13), indicating that the ribosome profiling data explain

only 13% of the variance in Schwanhausser et al.’s (2011) inferred rates. Considered in

isolation this result does not establish if the poor correlation is due to errors in either or

both datasets. However, our measured protein error strategy shows that the variance in

true translation rates contributes no more than 19% to the variance in Schwanhausser

et al.’s (2011) inferred translation rates, with the remaining 81% of the variance being due

to experimental error (Table 1; 0.19 = (0.34 × 0.30)/(0.97 × 0.55)). The close agreement

of this estimate with the actual correlation between measured and inferred translation

rates (R2 ≤ 0.19 versus R2 = 0.13) suggests that the poor correlation is almost entirely

due to error in Schwanhausser et al.’s (2011) inferred rates. In addition, this result

provides further evidence that our two strategies broadly agree, with the measured

protein error strategy potentially underestimating the degree of error in Schwanhausser

et al.’s (2011) data.

Ribosome profiling has also shown that translation rates change only several fold upon

cellular differentiation and, with the exception of the translation machinery, the change

affects all expressed genes to a similar degree (Ingolia et al., 2011). Other systemwide

studies, including a separate analysis by Schwanhausser et al. (2011), also suggest that the

differential regulation of translation may be limited to modest changes at a subset of

genes (Baek et al., 2008; Hsieh et al., 2012; Kristensen et al., 2013; Schwanhausser et al.,

2011; Selbach et al., 2008). This work seems consistent with our analysis and suggests that

translation may be used chiefly to fine tune protein expression levels.
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Figure 6 Correlation between measured versus inferred translation rates. The relationship between

the measured rates of translation determined by Subtelny et al. (in press) using ribosome footprinting

versus the inferred rates of translation determined by Schwanhausser et al. (2011) for the same set of 3,126

genes in NIH3T3 cells, see Table S1 for further details. The units shown are those provided in the original

datasets. The linear regression is shown.

Estimating the number of non-transcribed genes

Both Schwanhausser et al.’s (2011) and all of our analyses presented above consider only

those genes whose protein and mRNA expression was detected. There are many

thousands of other genes, however, which express no mRNA and as a result cannot be

translated. To estimate the proportion of such genes in a typical cell, we made use of a

detailed analysis by Hebenstreit et al. (2011), Hebenstreit et al. (2012), who showed that

there is a trimodal distribution of mRNA expression when the data is derived as an

average for a population of cells of a single cell type (Figure S1). The first mode contains

Highly Expressed (HE) genes, present at one or more molecules per cell; the second mode

is comprised of Low Expressed (LE) genes, which are not expressed in most cells but—as

shown by single molecule fluorescent in situ hybridization—are present at one to several

molecules per cell in a small percent of cells; and the third mode contains genes that are

not detectably expressed (NE genes) and thus, given the assays sensitivity, are present at

less than one mRNAmolecule per 100 cells. LE genes tend to be closer to HE genes on the

chromosome than are NE genes, and it has been suggested that this proximity may allow

escape from repressive chromatin structures in a few cells, explaining the stochastic

bursts of rare transcription observed (Hebenstreit et al., 2012; Hebenstreit et al., 2011).
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To account for variation in the expression of individual genes between cells, which all

LE genes at a minimummust suffer, we assume that the general distribution of mRNA

expression levels does not vary from cell to cell even when the expression of individual

genes does. The mRNA expression of each LE gene was divided into a component

representing expression of one mRNAmolecule in some cells and a second component

representing the remaining cells that express no mRNA (Materials and Methods). This

yields 8,763 NE and LE gene equivalents that are not expressed and 12,546 LE and HE

gene equivalents that are expressed. For the 8,763 non-expressed gene equivalents, the

complete absence of their mRNAs from the cell means that they are not being translated

in these cells. Therefore, there can be no variation in the rates at which they are

translated. Instead, we assume that the absence of transcription is overwhelmingly the

reason why these genes express no protein.

Implication for other system wide studies

Two other systemwide estimates of protein abundance in mammalian cells are, like

Schwanhausser et al.’s (2011), lower than ours. These two reports suggest that the median

abundance protein detected is present at 8,000 (Vogel et al., 2010) or 9,700 (Beck et al.,

2011) molecules per cell versus our estimate of 170,000 molecules per cell. Since these

lower estimates provide less than 1/10th of the number of histones needed to cover the

diploid genome with nucleosomes and are lower than published estimates for a wide

array of other housekeeping proteins, it is unlikely that they are accurate.

Another study byWisniewski et al. (2012) provided protein abundance estimates for

HeLa cells that are generally higher than ours and spread over a broader range (Fig. 7A).

These estimates are 240% higher on average than the set of individual protein

measurements from the literature (Dataset S3, Fig. 7B). Since over 80% of these

individual measurements were made for proteins in HeLa cells,Wisniewski et al.’s (2012)

estimates must be incorrectly scaled. Using our two part linear regression strategy, we

therefore correctedWisniewski et al.’s (2012) whole proteome data (Materials and

Methods, Figure S2; Dataset S3), bringing the average variation between the whole

proteome estimates and individual protein measurements to within 6% of each other

(Fig. 7B; Dataset S3). Interestingly, the correction dramatically increases the similarity

between the distributions of protein abundances in HeLa and NIH3T3 cells for all

orthologous proteins (Fig. 7A). This establishes the important point, mentioned at the

beginning of the Results: in aggregate the 60+ housekeeping proteins show a similar

relationship to the expression values of all other cellular proteins in both cell lines, and

thus the discrepancies with the uncorrected whole proteome data are not due to

differences in expression levels in HeLa versus NIH3T3 cells. The correction also

increases the correlation between HeLa cell protein and HeLa mRNA abundances to a

statistically significant extent (p-value, 6 × 10−20) and reduces the 50% and 95%

confidence bounds for this relationship by 1.7 fold and 4.6 fold respectively.Wisniewski

et al. (2012) scaled their protein abundances using the total cellular protein content and

the sum of the mass spectrometry signals for all detected polypeptides. They assumed
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that mass spectrometry signals are proportional to protein abundance. In contrast, our

scaling strategy makes no such assumption and instead uses many individual

measurements of housekeeping proteins to estimate a multipart (spline) function. The

increased correlations obtained with individual protein measurements and with mRNA

abundances for two cell lines suggests that our scalings are the more accurate.

Other estimates for the contribution of mRNA levels in determining protein expression

in mammals are lower than ours, suggesting that mRNA levels contribute 10%–40%

(Maier, Guell & Serrano, 2009; Vogel & Marcotte, 2012). In comparison, we estimate that

mRNA abundance explains 56%–81% for a set of 4,212 detected proteins. We also have

suggested that for the 40% of genes in a given cell that express no mRNA, translation rates

likely play no role in determining protein expression levels. The other groups neither took

systematic experimental errors into account or made use of direct measures of translation

rates and generally do not discuss non-transcribed genes. For this reason, their likely

analyses underestimate the contribution of transcription.

CONCLUSIONS
Quantitative whole proteome analyses can offer profound insights into the control of gene

expression and provide baseline parameters for much of systems biology. As these

important new technologies continue to be refined, it is critical that the data be correctly

scaled, that experimental errors be measured and accounted for as much as possible, that

all genes be considered, and that direct measurements of each step in gene expression be

made. Additional measurements and controls will be needed to derive a more assured

systemwide understanding of protein and mRNA abundances and the relative

importance of each of the four steps in gene expression.

MATERIALS AND METHODS

Correcting protein abundance

For NIH3T3 cells, all credible individual protein abundance measurements available to us

for housekeeping proteins (a total of 61 proteins, Dataset S1) were log10 transformed

along with the corresponding estimates from Schwanhausser et al.’s (2011) second whole

proteome dataset. Model selection of different regressive models by leave-one-out

cross-validation was used to fit the training data (Bickel & Doksum, 2001). This showed

that a plausible two-part linear regression with a change point at 106 molecules per cell

(line < 1 × 106 . . . slope = 0.56, intercept = 2.64; line > 1 × 106 . . . slope = 1.06,

intercept = −0.41) fit the data far better than by chance (likelihood ratio test bootstrap

p-value = 0.002 Bickel & Doksum, 2001; Figs. 3B and 3C). The resulting two-part linear

model was used to correct all 5028 protein abundance estimates (Fig. 2B, Dataset S1).

The null hypothesis that the correlation coefficient of the uncorrected Schwanhausser

et al. (2011) protein abundance estimates versus mRNA estimates (R1 = 0.626) is equal to

that of our corrected protein estimates versus mRNA estimates (R2 = 0.642) was tested.

The method for comparing dependent correlation coefficients (Olkin & Finn, 1990) was

employed because both correlations involve the same mRNA-seq data and it is reasonable
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Figure 7 Comparison of corrected and uncorrected whole proteome abundance estimates. (A) The

distributions of protein abundance estimates for 4,680 orthologous proteins in NIH3T3 cells (black lines)

or HeLa cells (red lines). The values from Schwanhausser et al.’s (2011) second estimates andWisniewski

et al.’s (2012) estimates are shown as dashed lines. The values for our corrected abundance estimates are

shown as solid lines. (B) The ratios of HeLa cell whole proteome abundance estimates divided by individ-

ual measurements from the literature for 66 proteins. Results for the original data fromWisniewski et al.

(2012) (dashed line) and after these values have been corrected (solid line) are plotted. The green dashed

vertical line indicates a ratio of 1.

to assume that the uncorrected and corrected protein abundance estimates and the

mRNA estimates have a multivariate Gaussian distribution. The resulting two-sided

p-value < 10-29 shows that R2 is significantly larger than R1.

To correct protein abundance estimates for HeLa cells (Wisniewski et al., 2012), the

same strategy used for NIH3T3 cells was used. A two-part linear regression with a change
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Figure 8 The relationship between true and measured protein and mRNA levels.

point at 106.8 molecules per cell fit the data far better than by accident (likelihood ratio

test bootstrap p-value = 0.001) (Figure S2). The resulting two-part linear model was used

to correct all HeLa cell protein abundance estimates (Fig. 7; Dataset S3). The correlation

of HeLa cell protein abundance estimates with mRNA abundances was determined using

the mean values of replica HeLa cell RNA-Seq datasets from the ENCODE consortium

(The ENCODE Project Consortium, 2011) (GEO Accession ID GSM765402). The

hypothesis that our corrected protein abundances correlate more highly with these HeLa

mRNA abundances than the uncorrected estimates was tested as above, resulting in a two

sided p-value of 6 × 10-20.

The contribution of mRNA to protein levels: measured protein error

strategy

The variance term in a linear model between measured protein abundance (MP)

(response) and measured mRNA levels (MR) (predictor) is decomposed in a standard

way (ANOVA; Bickel & Doksum, 2001) into three components (Fig. 8). These

components of the variance in the residuals represent mRNA measurement error (eR),

protein measurement error (eP), and the variance in a linear model between true protein

abundance (TP) and true mRNA levels (TR) that results from the centered genuine

differences in the rates of protein degradation and translation (PDT). The measured

protein abundances considered in this case are our rescaled estimates.

Statistically, we can write three linear models from Fig. 8

TR = bRMR + cR + eR (1)

TP = bTR + c + PDT (2)

MP = TP + cP + eP (3)

where TR,MR, TP,MP are abundance values on a log10 scale; the three sources of

variation (eR, eP and PDT ) are assumed to be independent random variables with mean

0; the amount of protein degradation and translation (PDT) is taken to be independent of
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true mRNA levels (TR) on the basis of partial evidence: the variance in the residuals in

Fig. 4B is similar for different mRNA abundances; the reversal of the causal relationship

between TR and MR in model (1) assumes that TR and MR have an approximately joint

Gaussian distribution; the slope of TP in model (3) is assumed to be 1 because the ratios

between the 61 protein published abundance measurements and our corrected estimates

are close to 1 (Fig. 2B); and finally we note that implicit in the analysis of variance is the

assumption that the various datasets employed can be thought of as originating from a

relatively homogeneous superpopulation. Combining (1)–(3), we write the linear model

between measured protein abundance and measured mRNA levels as

MP = bbRMR + bcR + c + cP + beR + PDT + eP (4)

Based on model (4)

i. We first estimated as var(beR + PDT + eP) as σ 2
all and bbR as b̂all from fitting the above

model with the 8,424 corrected mass spec and RNA-Seq data points pooled from the

two replicates (Dataset S1). By independence, we have

var(beR + PDT + eP) = b2var(eR) + var(PDT ) + var(eP).

ii. We next estimated var(eR) as σ̂ 2
R and bR as b̂R from fitting model (1) with the 77

NanoString (‘TR’) versus RNA-Seq (‘MR’) data points, after removing two outliers

(Dataset S2).

iii. We could not estimate var(eP) from directly fitting model (3), as TP data is not

available. As a surrogate, we estimated var(eP) as σ̂ 2
P from the following linear model

that quantifies the stochastic error in mass spec replicate data:

MP ij = avgMP i + (eP)ij, j = 1, 2 (5)

whereMP ij is the corrected mass spec data for the ith protein in the jth replicate in

Schwanhausser et al. (2011), and avgMP i is the average of our corrected protein data

for the ith protein, i = 1,. . ., 4,212 (Dataset S1). Please note that σ̂ 2
P is likely an

underestimate of the protein error as we only consider the stochastic error, not the

systematic error.

iv. From the estimates σ 2
all , b̂all , σ̂

2
R , b̂R and σ̂ 2

P above, we estimate var(PDT ) as

σ̂ 2
PDT = σ̂ 2

all −

(

b̂all

b̂R

)2

σ̂ 2
R − σ̂ 2

P .

Hence, we have successfully decomposed the variance estimate, σ̂ 2
all i.e., the estimated

variance of residuals between measured protein levels and measured mRNA levels, into 3

components:
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• σ̂ 2
R—RNA error (23.3% of σ 2

all)

• σ̂ 2
P—protein error (7% of σ 2

all)

• σ̂ 2
PDT—protein degradation and translation (69.6% of σ 2

all).

From the diagram and the above calculation, we also derived the percentage of

variability in the unobserved true protein levels explained by the unobserved true mRNA

levels.

σ̂ 2
MP − σ̂ 2

P − σ̂ 2
PDT

σ̂ 2
MP − σ̂ 2

P

= 55.9%

where σ̂ 2
MP is the variance of the corrected measured protein levels.

We separately estimated the stochastic mRNA error from the replicate RNA-Seq

measurements of the 4,212 genes (Dataset S1). The stochastic mRNA error contributes

0.8% of σ 2
all .

The contributions of transcription, translation and protein and

mRNA degradation: measured error strategy

To determine the relative contributions of measured RNA degradation (RD) and

measured protein degradation (PD) to the variance in true protein expression (TP), we

estimated their variances, var(RD) and var(PD). We took Schwanhausser et al.’s (2011)

calculated percentages for the contribution of RD and PD to explain the variance of their

uncorrected mass whole proteome abundances (6.4% for RD and 4.9% PD, M Selbach,

personal communication). Since the variance of the 8,424 uncorrected mass spec data

points from the two replicates is 0.97, we thus calculated var(RD) and var(PD) as 0.062

and 0.048 respectively. The relative contributions of var(RD) and var(PD) to var(TP)

(estimated as σ̂ 2
MP − σ̂ 2

P ) was calculated (Table 1). We also determined the contribution of

transcription (var(TXN )) to var(TP) as (var(TR) − var(true RD))/var(TP), where

var(TR) was estimated as σ̂ 2
MP − σ̂ 2

P − σ̂ 2
PDT , and the contribution of translation as

(var(TP) − var(TR) − var(true PD))/var(TP) (Table 1).

The contributions of each step of gene expression to protein levels:

measured translation strategy

We calculated the relative contributions of each of the four steps in gene expression by an

independent, second approach that does not rely either on our rescaling of Schwanhausser

et al.’s (2011) protein abundance estimates or on our estimate of stochastic protein errors.

Instead, our second approach infers true protein abundance based on Subtelny et al.’s (in

press) direct measurements of translation rates in NIH3T3 cells by ribosome profiling

(Subtelny et al., in press) and on our estimate of RNA measurement error. The measured

protein abundances considered are thus Schwanhausser et al.’s (2011) second estimates,

not our rescaling of these estimates. A central assumption is that since the variance in

Subtelny et al.’s (in press) measured translation rates is 12% of the variance in the rates of
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translation inferred by Schwanhausser et al. (2011), then the contribution of translation to

the variance in true protein levels is 12% of the value provided by Schwanhausser et al.

(2011).

The variance term in a linear model between measured protein abundance (MP) and

measured mRNA levels (MR) was decomposed as before (Fig. 8) except that the variance

in the linear model between true protein abundance (TP) and true mRNA levels (TR)

that results from the variance in the rates of protein degradation (PD) and protein

translation (PT) were considered separately as cPD and dPT respectively. Similar to our

measured error strategy, we can write three linear models using the same assumptions.

TR = bRMR + cR + eR (6)

TP = bTR + cPD + dPT + f (7)

MP = TP + cP + eP . (8)

Thus, we can write the linear model between measured protein abundance (MP) and

measured mRNA levels (MR) for the measured translation strategy as

MP = bbRMR + bcR + f + cP + beR + cPD + dPT + eP . (9)

Based on this revised model (9).

i. We first estimated var(beR + cPD + cPT + eP) as σ̂ 2
all and bbR as b̂all from fitting the

above model with the 8,424 mass spec and RNA-Seq data points pooled from the two

replicates using Schwanhausser’s second estimates (Dataset S1). By independence, we

thus have

var(beR + cPD + cPT + eP) = b2var(eR) + var(cPD) + var(dPT ) + var(eP).

ii. The values of var(eR) and bR are the same as those derived previously by our measured

error strategy. Thus, we can estimate b̂ = b̂all/b̂R.

iii. We used the estimate of var(cPD) from Schwanhausser et al. (2011), i.e., 0.97 × 5%=

0.0475.

iv. From Schwanhausser et al.’s (2011) results, we have var(dPT ) = d2var(PT ) estimated

as 0.97 × 55%= 0.54. From Schwanhausser et al.’s (2011) estimates for each of 3,633

genes (Dataset S1, second tab, column AG) has an estimate of 0.29. Hence, the

estimate of d2 is 1.86. From Subtelny et al. (in press), we have a separate, directly

measured estimate of var(PT ) as 0.03533, which we obtained by slightly increasing the

variance of their data for the 3,126 genes in the intersected dataset (Fig. 5B; Table S1)

by the ratio of the variances for Schwanhausser et al.’s (2011) inferred rates for the

3,633 genes and the 3,126 genes (Table S1). Using this value to replace that of

Schwanhausser et al. (2011), we obtained a new estimate of var(dPT ) = d2var(PT ) as

1.86 × 0.03533= 0.06593132.
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v. Now we can estimate var(eP) as σ̂ 2
P = σ̂ 2

all − b̂σ̂ 2
R − σ̂ 2

cPD − σ̂ 2
dPT where σ̂ 2

cPD is an

estimate of var(cPD) and σ̂ 2
dPT an estimate of var(dPT ).

vi. Given Schwanhausser et al.’s (2011) second 8,424 uncorrected mass spec data, we can

also estimate var(TP) as σ̂ 2
TP = σ̂ 2

MP − σ̂ 2
P , where σ̂ 2

MP is an estimate of var(MP).

Given the estimates σ̂ 2
cPD and σ̂ 2

dPT and Schwanhausser et al.’s (2011) estimate of the

contribution of the variance in RNA degradation (defined as σ̂ 2
gRD), we can decompose

σ̂ 2
TP as:

• variance explained by PD: σ̂ 2
cPD/σ̂ 2

TP

• variance explained by PT: σ̂ 2
dPT/σ̂ 2

TP

• variance explained by TR: 1 −
σ̂ 2
cPD

σ̂ 2
TP

−
σ̂ 2
dPT

σ̂ 2
TP

• variance explained by RD: σ̂ 2
gRD/σ̂ 2

TP

• variance explained by TXN: 1 −
σ̂ 2
cPD

σ̂ 2
TP

−
σ̂ 2
dPT

σ̂ 2
TP

−
σ̂ 2
gRD

σ̂ 2
TP

.

The number of genes not transcribed in a typical cell within a

population

To estimate the number of genes not transcribed in a typical cell within a population, we

employed a deep RNA-Seq dataset that detected polyA + mRNA for 15,325 protein

coding genes in mouse Th2 cells (Hebenstreit et al., 2011). To place these abundance

estimates on the same scale as those of Schwanhausser et al.’s (2011) data the 3,841

mRNAs expressed above 1 RPKM (reads per kilobase of exon per million mapped reads)

in common between the two datasets were identified. The Th2 cell data were then scaled

to have the same median and variance for these common genes in numbers of mRNA

molecules per cell (Figure S3). Following Hebenstreit et al. (2012), we divided the

expressed genes into 11,301 Highly Expressed (HE) genes, present at one or more mRNA

molecule per cell, and 4,024 Low Expressed (LE) genes, expressed below one molecule

per cell. The remaining 5,984 genes whose expression was not detected were designated

Not Expressed (NE) genes. We then divided each LE gene into two: a fraction of a gene

expressed at 1 molecule per cell with a weight w and a fraction of a gene that is not

expressed in any cells with a weight 1−w. The 4,024 LE genes were thus decomposed into

1,245 gene equivalents expressed at 1 molecules per cell and 2,779 gene equivalents that

are not expressed. Combining these with the 11,301 HE genes and 5,984 NE genes, we

obtained 12,546 HE and LE expressed gene equivalents and 8,763 NE and LE

non-expressed gene equivalents.

Li et al. (2014), PeerJ, 10.7717/peerj.270 21/26



ACKNOWLEDGEMENTS
We are indebted to Matthias Selbach for providing his second whole proteome abundance

estimates and ancillary data from the Schwanhausser et al. (2011) analysis. We

acknowledge his patient answering of our questions about the Schwanhausser et al. (2011)

paper. We are particularly grateful to Stephen Eichhorn and David Bartel for generously

providing their ribosome profiling data for NIH3T3 cells prior to publication. We also

thank Sarah Teichmann for helping us better understand the Hebenstreit et al. (2012)

analysis of mRNA expression and Susan Celniker, Ben Brown, and David Knowles for

constructive comments on our manuscript.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

This work was supported in part by NIH grant P01 GM009655. Work at Lawrence

Berkeley National Laboratory was conducted under Department of Energy contract

DEAC02-05CH11231. The funders had no role in study design, data collection and

analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures

The following grant information was disclosed by the authors:

NIH grant P01 GM009655.

Work at Lawrence Berkeley National Laboratory was conducted under Department of

Energy contract DEAC02-05CH11231.

Competing Interests

Mark Biggin is an Academic Editor for PeerJ. The authors declare that they have no

competing interests.

Author Contributions

• Mark D Biggin conceived and designed the experiments, performed the experiments,

wrote the paper.

• Jingyi Jessica Li conceived and designed the experiments, performed the experiments,

analyzed the data, contributed analysis tools, wrote the paper.

• Peter J Bickel conceived and designed the experiments, wrote the paper.

Supplemental Information

Supplemental information for this article can be found online at

http://dx.doi.org/10.7717/peerj.270.

REFERENCES
Ahrne E, Molzahn L, Glatter T, Schmidt A. 2013. Critical assessment of proteome-wide

label-free absolute abundance estimation strategies. Proteomics 13:2567–2578

DOI 10.1002/pmic.201300135.

Ambros V. 2011.MicroRNAs and developmental timing. Current Opinion in Genetics &

Development 21:511–517 DOI 10.1016/j.gde.2011.04.003.

Li et al. (2014), PeerJ, 10.7717/peerj.270 22/26

http://dx.doi.org/10.7717/peerj.270
http://dx.doi.org/10.1002/pmic.201300135
http://dx.doi.org/10.1016/j.gde.2011.04.003


Aoyagi N, Wassarman DA. 2001.Developmental and transcriptional consequences of mutations

in Drosophila TAF(II)60.Molecular Cell Biology 21:6808–6819

DOI 10.1128/MCB.21.20.6808-6819.2001.

Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP. 2008. The impact of microRNAs on

protein output. Nature 455:64–71 DOI 10.1038/nature07242.

Bantscheff M, Lemeer S, Savitski MM, Kuster B. 2012.Quantitative mass spectrometry in

proteomics: critical review update from 2007 to the present. Analytical and Bioanalytical

Chemistry 404:939–965 DOI 10.1007/s00216-012-6203-4.

Beck M, Schmidt A, Malmstroem J, Claassen M, Ori A, Szymborska A, Herzog F, Rinner O,

Ellenberg J, Aebersold R. 2011. The quantitative proteome of a human cell line.Molecular

Systems Biology 7:549 DOI 10.1038/msb.2011.82.

Bickel PJ, Doksum KA. 2001.Mathematical statistics: basic ideas and selected topics. Upper Saddle

River: Prentice Hall.

Biggin MD. 2011. Animal transcription networks as highly connected, quantitative continua.

Developmental Cell 21:611–626 DOI 10.1016/j.devcel.2011.09.008.

Boisvert FM, Ahmad Y, Gierlinski M, Charriere F, Lamont D, Scott M, Barton G, Lamond AI.

2012.A quantitative spatial proteomics analysis of proteome turnover in human cells.Molecular

& Cellular Proteomics 11:M111 011429 DOI 10.1074/mcp.M111.011429.

Borggrefe T, Davis R, Bareket-Samish A, Kornberg RD. 2001.Quantitation of the RNA

polymerase II transcription machinery in yeast. The Journal of Biological Chemistry

276:47150–47153 DOI 10.1074/jbc.M109581200.

Brosi R, Hauri HP, Kramer A. 1993. Separation of splicing factor SF3 into two components and

purification of SF3a activity. The Journal of Biological Chemistry 268:17640–17646.

Cambridge SB, Gnad F, Nguyen C, Bermejo JL, Kruger M, Mann M. 2011. Systems-wide

proteomic analysis in mammalian cells reveals conserved, functional protein turnover. Journal

of Proteome Research 10:5275–5284 DOI 10.1021/pr101183k.

Cheadle C, Fan J, Cho-Chung YS, Werner T, Ray J, Do L, Gorospe M, Becker KG. 2005.

Control of gene expression during T cell activation: alternate regulation of mRNA transcription

and mRNA stability. BMC Genomics 6:75 DOI 10.1186/1471-2164-6-75.

Cheung MS, Down TA, Latorre I, Ahringer J. 2011. Systematic bias in high-throughput

sequencing data and its correction by BEADS. Nucleic Acids Research 39:e103

DOI 10.1093/nar/gkr425.

de Sousa Abreu R, Penalva LO, Marcotte EM, Vogel C. 2009. Global signatures of protein and

mRNA expression levels.Molecular bioSystems 5:1512–1526.

Deutschbauer AM, Jaramillo DF, Proctor M, Kumm J, Hillenmeyer ME, Davis RW, Nislow C,

Giaever G. 2005.Mechanisms of haploinsufficiency revealed by genome-wide profiling in

yeast. Genetics 169:1915–1925 DOI 10.1534/genetics.104.036871.

Dohm JC, Lottaz C, Borodina T, Himmelbauer H. 2008. Substantial biases in ultra-short read

data sets from high-throughput DNA sequencing. Nucleic Acids Research 36:e105

DOI 10.1093/nar/gkn425.

Eden E, Geva-Zatorsky N, Issaeva I, Cohen A, Dekel E, Danon T, Cohen L, Mayo A, Alon U.

2011. Proteome half-life dynamics in living human cells. Science 331:764–768

DOI 10.1126/science.1199784.

Eissenberg JC, Ma J, Gerber MA, Christensen A, Kennison JA, Shilatifard A. 2002. dELL is an

essential RNA polymerase II elongation factor with a general role in development. Proceedings

Li et al. (2014), PeerJ, 10.7717/peerj.270 23/26

http://dx.doi.org/10.1128/MCB.21.20.6808-6819.2001
http://dx.doi.org/10.1038/nature07242
http://dx.doi.org/10.1007/s00216-012-6203-4
http://dx.doi.org/10.1038/msb.2011.82
http://dx.doi.org/10.1016/j.devcel.2011.09.008
http://dx.doi.org/10.1074/mcp.M111.011429
http://dx.doi.org/10.1074/jbc.M109581200
http://dx.doi.org/10.1021/pr101183k
http://dx.doi.org/10.1186/1471-2164-6-75
http://dx.doi.org/10.1093/nar/gkr425
http://dx.doi.org/10.1534/genetics.104.036871
http://dx.doi.org/10.1093/nar/gkn425
http://dx.doi.org/10.1126/science.1199784


of the National Academy of Sciences of the United States of America 99:9894–9899

DOI 10.1073/pnas.152193699.

Elmen J, LindowM, Schütz S, Lawrence M, Petri A, Obad S, LindholmM, Hedtjärn M, Hansen

HF, Berger U, Gullans S, Kearney P, Sarnow P, Straarup EM, Kauppinen S. 2008.

LNA-mediated microRNA silencing in non-human primates. Nature 452:896–899

DOI 10.1038/nature06783.

Geiss GK, Bumgarner RE, Birditt B, Dahl T, Dowidar N, Dunaway DL, Fell HP, Ferree S,

George RD, Grogan T, James JJ, Maysuria M, Mitton JD, Oliveri P, Osborn JL, Peng T,

Ratcliffe AL, Webster PJ, Davidson EH, Hood L, Dimitrov K. 2008.Direct multiplexed

measurement of gene expression with color-coded probe pairs. Nature Biotechnology

26:317–325 DOI 10.1038/nbt1385.

Gennarino VA, D’Angelo G, Dharmalingam G, Fernandez S, Russolillo G, Sanges R, Mutarelli

M, Belcastro V, Ballabio A, Verde P, Sardiello M, Banfi S. 2012. Identification of

microRNA-regulated gene networks by expression analysis of target genes. Genome Research

22:1163–1172 DOI 10.1101/gr.130435.111.

Ghaemmaghami S, HuhWK, Bower K, Howson RW, Belle A, Dephoure N, O’Shea EK,

Weissman JS. 2003. Global analysis of protein expression in yeast. Nature 425:737–741

DOI 10.1038/nature02046.

Gregory SG, Sekhon M, Schein J, Zhao S, Osoegawa K, Scott CE, Evans RS, Burridge PW, Cox

TV, Fox CA, Hutton RD, Mullenger IR, Phillips KJ, Smith J, Stalker J, Threadgold GJ,

Birney E, Wylie K, Chinwalla A, Wallis J, Hillier L, Carter J, Gaige T, Jaeger S, Kremitzki C,

Layman D, Maas J, McGrane R, Mead K, Walker R, Jones S, Smith M, Asano J, Bosdet I,

Chan S, Chittaranjan S, Chiu R, Fjell C, Fuhrmann D, Girn N, Gray C, Guin R, Hsiao L,

Krzywinski M, Kutsche R, Lee SS, Mathewson C, McLeavy C, Messervier S, Ness S, Pandoh

P, Prabhu AL, Saeedi P, Smailus D, Spence L, Stott J, Taylor S, Terpstra W, Tsai M, Vardy J,

Wye N, Yang G, Shatsman S, Ayodeji B, Geer K, Tsegaye G, Shvartsbeyn A, Gebregeorgis E,

Krol M, Russell D, Overton L, Malek JA, Holmes M, Heaney M, Shetty J, Feldblyum T,

NiermanWC, Catanese JJ, Hubbard T, Waterston RH, Rogers J, de Jong PJ, Fraser CM,

Marra M, McPherson JD, Bentley DR. 2002. A physical map of the mouse genome. Nature

418:743–750 DOI 10.1038/nature00957.

Guo H, Ingolia NT, Weissman JS, Bartel DP. 2010.Mammalian microRNAs predominantly act

to decrease target mRNA levels. Nature 466:835–840 DOI 10.1038/nature09267.

Han K, Jaimovich A, Dey G, Ruggero D, Meyuhas O, Sonenberg N, Meyer T. 2014. Parallel

measurement of dynamic changes in translation rates in single cells. Nature Methods 11:86–93

DOI 10.1038/nmeth.2729.

Hanamura A, Cáceres JF, Mayeda A, Franza BR Jr, Krainer AR. 1998. Regulated tissue-specific

expression of antagonistic pre-mRNA splicing factors. RNA 4:430–444.

Hebenstreit D, Deonarine A, Babu MM, Teichmann SA. 2012.Duel of the fates: the role of

transcriptional circuits and noise in CD4+ cells. Current Opinion in Cell Biology 24:350–358

DOI 10.1016/j.ceb.2012.03.007.

Hebenstreit D, Fang M, Gu M, Charoensawan V, van Oudenaarden A, Teichmann SA. 2011.

RNA sequencing reveals two major classes of gene expression levels in metazoan cells.

Molecular Systems Biology 7:497 DOI 10.1038/msb.2011.28.

Hentze MW, Kuhn LC. 1996.Molecular control of vertebrate iron metabolism: mRNA-based

regulatory circuits operated by iron, nitric oxide, and oxidative stress. Proceedings of the

National Academy of Sciences of the United States of America 93:8175–8182

DOI 10.1073/pnas.93.16.8175.

Li et al. (2014), PeerJ, 10.7717/peerj.270 24/26

http://dx.doi.org/10.1073/pnas.152193699
http://dx.doi.org/10.1038/nature06783
http://dx.doi.org/10.1038/nbt1385
http://dx.doi.org/10.1101/gr.130435.111
http://dx.doi.org/10.1038/nature02046
http://dx.doi.org/10.1038/nature00957
http://dx.doi.org/10.1038/nature09267
http://dx.doi.org/10.1038/nmeth.2729
http://dx.doi.org/10.1016/j.ceb.2012.03.007
http://dx.doi.org/10.1038/msb.2011.28
http://dx.doi.org/10.1073/pnas.93.16.8175


Hobert O. 2008. Gene regulation by transcription factors and microRNAs. Science 319:1785–1786
DOI 10.1126/science.1151651.

Hsieh AC, Liu Y, Edlind MP, Ingolia NT, Janes MR, Sher A, Shi EY, Stumpf CR, Christensen

C, BonhamMJ, Wang S, Ren P, Martin M, Jessen K, Feldman ME, Weissman JS, Shokat

KM, Rommel C, Ruggero D. 2012. The translational landscape of mTOR signalling steers
cancer initiation and metastasis. Nature 485:55–61 DOI 10.1038/nature10912.

Ingolia NT, Lareau LF, Weissman JS. 2011. Ribosome profiling of mouse embryonic stem cells
reveals the complexity and dynamics of mammalian proteomes. Cell 147:789–802
DOI 10.1016/j.cell.2011.10.002.

Kim Dong-Uk, Hayles J, Kim D,Wood V, Park H-O, Won M, Yoo H-S, Duhig T, NamM,

Palmer G, Han S, Jeffery L, Baek S-T, Lee H, Shim YS, Lee M, Kim L, Heo K-S, Noh EJ, Lee

A-R, Jang Y-J, Chung K-S, Choi S-J, Park J-Y, Park Y, Kim HM, Park S-K, Park H-J, Kang

E-J, Kim HB, Kang H-S, Park H-M, Kim K, Song K, Song KB, Nurse P, Hoe K-L. 2010.

Analysis of a genome-wide set of gene deletions in the fission yeast Schizosaccharomyces pombe.
Nature Biotechnology 28:617–623 DOI 10.1038/nbt.1628.

Kimura H, Tao Y, Roeder RG, Cook PR. 1999.Quantitation of RNA polymerase II and its
transcription factors in an HeLa cell: little soluble holoenzyme but significant amounts of
polymerases attached to the nuclear substructure.Molecular Cell Biology 19:5383–5392.

Kislauskis EH, Zhu X, Singer RH. 1997. Beta-Actin messenger RNA localization and protein
synthesis augment cell motility. Journal of Cell Biology 136:1263–1270
DOI 10.1083/jcb.136.6.1263.

Kristensen AR, Gsponer J, Foster LJ. 2013. Protein synthesis rate is the predominant regulator of
protein expression during differentiation.Molecular Systems Biology 9:689
DOI 10.1038/msb.2013.47.

Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M. 2005.

Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438:685–689
DOI 10.1038/nature04303.

Kuntumalla S, Braisted JC, Huang S-T, Parmar PP, Clark DJ, Alami H, Zhang Q,

Donohue-Rolfe A, Tzipori S, Fleischmann RD, Peterson SN, Pieper R. 2009. Comparison of
two label-free global quantitation methods, APEX and 2D gel electrophoresis, applied to the
Shigella dysenteriae proteome. Proteome Science 7:22 DOI 10.1186/1477-5956-7-22.

Loriaux PM, Hoffmann A. 2013. A protein turnover signaling motif controls the
stimulus-sensitivity of stress response pathways. PLOS Computational Biology 9:e1002932
DOI 10.1371/journal.pcbi.1002932.

Lu P, Vogel C, Wang R, Yao X, Marcotte EM. 2007. Absolute protein expression profiling
estimates the relative contributions of transcriptional and translational regulation. Nature
Biotechnology 25:117–124 DOI 10.1038/nbt1270.

Maier T, Guell M, Serrano L. 2009. Correlation of mRNA and protein in complex biological
samples. FEBS Letters 583:3966–3973 DOI 10.1016/j.febslet.2009.10.036.

Milo R, Jorgensen P, Moran U, Weber G, Springer M. 2010. BioNumbers–the database of key
numbers in molecular and cell biology. Nucleic Acids Research 38:D750–D753
DOI 10.1093/nar/gkp889.

Olkin I, Finn JD. 1990. Testing correlated correlations. Psychological Bulletin 108:330–333
DOI 10.1037/0033-2909.108.2.330.

Peng M, Taouatas N, Cappadona S, van Breukelen B, Mohammed S, Scholten A, Heck AJ.

2012. Protease bias in absolute protein quantitation. Nature Methods 9:524–525

DOI 10.1038/nmeth.2031.

Pillai RS, Bhattacharyya SN, Filipowicz W. 2007. Repression of protein synthesis by miRNAs:

how many mechanisms? Trends in Cell Biology 17:118–126 DOI 10.1016/j.tcb.2006.12.007.

Li et al. (2014), PeerJ, 10.7717/peerj.270 25/26

http://dx.doi.org/10.1126/science.1151651
http://dx.doi.org/10.1038/nature10912
http://dx.doi.org/10.1016/j.cell.2011.10.002
http://dx.doi.org/10.1038/nbt.1628
http://dx.doi.org/10.1083/jcb.136.6.1263
http://dx.doi.org/10.1038/msb.2013.47
http://dx.doi.org/10.1038/nature04303
http://dx.doi.org/10.1186/1477-5956-7-22
http://dx.doi.org/10.1371/journal.pcbi.1002932
http://dx.doi.org/10.1038/nbt1270
http://dx.doi.org/10.1016/j.febslet.2009.10.036
http://dx.doi.org/10.1093/nar/gkp889
http://dx.doi.org/10.1037/0033-2909.108.2.330
http://dx.doi.org/10.1038/nmeth.2031
http://dx.doi.org/10.1016/j.tcb.2006.12.007


Princiotta MF, Finzi D, Qian SB, Gibbs J, Schuchmann S, Buttgereit F, Bennink JR, Yewdell

JW. 2003.Quantitating protein synthesis, degradation, and endogenous antigen processing.

Immunity 18:343–354 DOI 10.1016/S1074-7613(03)00051-7.

Rabani M, Levin JZ, Fan L, Adiconis X, Raychowdhury R, Garber M, Gnirke A, Nusbaum C,

Hacohen N, Friedman N, Amit I, Regev A. 2011.Metabolic labeling of RNA uncovers

principles of RNA production and degradation dynamics in mammalian cells. Nature

Biotechnology 29:436–442 DOI 10.1038/nbt.1861.

Rajewsky N. 2011.MicroRNAs and the Operon paper. Journal of Molecular Biology 409:70–75

DOI 10.1016/j.jmb.2011.03.021.

Schwanhausser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M. 2011.

Global quantification of mammalian gene expression control. Nature 473:337–342

DOI 10.1038/nature10098.

Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N. 2008.Widespread

changes in protein synthesis induced by microRNAs. Nature 455:58–63

DOI 10.1038/nature07228.

Sharova LV, Sharov AA, Nedorezov T, Piao Y, Shaik N, Ko MS. 2009.Database for mRNA

half-life of 19 977 genes obtained by DNAmicroarray analysis of pluripotent and differentiating

mouse embryonic stem cells. DNA Res. 16:45–58 DOI 10.1093/dnares/dsn030.

Subtelny AO, Eichhorn SW, Chen GR, Sive H, Bartel DP. 2014. Poly(A)-tail lengths and a

developmental switch in translational control. Nature In press DOI 10.1038/nature13007.

The ENCODE Project Consortium. 2011. A user’s guide to the encyclopedia of DNA elements

(ENCODE). PLoS Biology 9:e1001046 DOI 10.1371/journal.pbio.1001046.

Vogel C, de Sousa Abreu R, Ko D, Le SY, Shapiro BA, Burns SC, Sandhu D, Boutz DR,

Marcotte EM, Penalva LO. 2010. Sequence signatures and mRNA concentration can explain

two-thirds of protein abundance variation in a human cell line.Molecular Systems Biology 6:400

DOI 10.1038/msb.2010.59.

Vogel C, Marcotte EM. 2012. Insights into the regulation of protein abundance from proteomic

and transcriptomic analyses. Nature Reviews Genetics 13:227–232 DOI 10.1038/nrg3185.

Wisniewski JR, Ostasiewicz P, Duś K, Zielinska DF, Gnad F, Mann M. 2012. Extensive

quantitative remodeling of the proteome between normal colon tissue and adenocarcinoma.

Molecular Systems Biology 8:611 DOI 10.1038/msb.2012.44.

Wollfe A. 1998. Chromatin: structure and function. San Diego: Academic Press.

Wong PG, Winter SL, Zaika E, Cao TV, Oguz U, Koomen JM, Hamlin JL, Alexandrow MG.

2011. Cdc45 limits replicon usage from a low density of preRCs in mammalian cells. PLoS ONE

6:e17533.

Xiao C, Calado DP, Galler G, Thai TH, Patterson HC, Wang J, Rajewsky N, Bender TP,

Rajewsky K. 2007.MiR-150 controls B cell differentiation by targeting the transcription factor

c-Myb. Cell 131:146–159 DOI 10.1016/j.cell.2007.07.021.

Yang E, van Nimwegen E, Zavolan M, Rajewsky N, Schroeder M, Magnasco M, Darnell JE Jr.

2003.Decay rates of human mRNAs: correlation with functional characteristics and sequence

attributes. Genome Research 13:1863–1872 DOI 10.1101/gr.997703.

Zeiler M, Straube WL, Lundberg E, Uhlen M, Mann M. 2012. A Protein Epitope Signature Tag

(PrEST) library allows SILAC-based absolute quantification and multiplexed determination of

protein copy numbers in cell lines.Molecular & Cellular Proteomics 11:O111 009613

DOI 10.1074/mcp.O111.009613.

Li et al. (2014), PeerJ, 10.7717/peerj.270 26/26

http://dx.doi.org/10.1016/S1074-7613(03)00051-7
http://dx.doi.org/10.1038/nbt.1861
http://dx.doi.org/10.1016/j.jmb.2011.03.021
http://dx.doi.org/10.1038/nature10098
http://dx.doi.org/10.1038/nature07228
http://dx.doi.org/10.1093/dnares/dsn030
http://dx.doi.org/10.1038/nature13007
http://dx.doi.org/10.1371/journal.pbio.1001046
http://dx.doi.org/10.1038/msb.2010.59
http://dx.doi.org/10.1038/nrg3185
http://dx.doi.org/10.1038/msb.2012.44
http://dx.doi.org/10.1016/j.cell.2007.07.021
http://dx.doi.org/10.1101/gr.997703
http://dx.doi.org/10.1074/mcp.O111.009613

	Introduction
	Results and discussion
	A non-linear underestimation of protein abundances
	Correcting the non-linear bias
	Corrected protein abundances show an increased correlation with mRNA abundances
	Estimating the impact of molecule specific measurement error
	Estimating the relative importance of transcription, mRNA degradation, translation and protein degradation
	Direct measurements of translation rates support our analysis
	Estimating the number of non-transcribed genes
	Implication for other system wide studies

	Conclusions
	Materials and methods
	Correcting protein abundance
	The contribution of mRNA to protein levels: measured protein error strategy
	The contributions of transcription, translation and protein and mRNA degradation: measured error strategy
	The contributions of each step of gene expression to protein levels: measured translation strategy
	The number of genes not transcribed in a typical cell within a population

	Acknowledgements
	Additional Information and Declarations
	Funding
	Competing Interests
	Author Contributions

	References

