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Abstract

Abrupt shifts between alternative regimes occur in complex systems, from cell regulation to
brain functions to ecosystems. Several model-free Early Warning Signals (EWS) have been
proposed to detect impending transitions, but failure or poor performance in some systems
have called for better investigation of their generic applicability. In particular, there are still
ongoing debates whether such signals can be successfully extracted from data. In this work,
we systematically investigate properties and performance of dynamical EWS in different
deteriorating conditions, and we propose an optimised combination to trigger warnings as
early as possible, eventually verified on experimental data. Our results explain discrepancies
observed in the literature between warning signs extracted from simulated models and from
real data, provide guidance for EWS selection based on desired systems and suggest an
optimised composite indicator to alert for impending critical transitions.

Highlights

• How to extract early warning signals (EWS) against critical transitions from data is
still poorly understood

• A mathematical framework assesses and explains the performance of EWS in noisy
deteriorating conditions

• Composite indicators are optimised to alert for impending shifts

• The results are applicable to wide classes of systems, as shown with models and on
empirical data.
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1. Introduction1

The dynamics of many complex systems is characterised by critical thresholds (tipping2

points) and abrupt shifts between alternative regimes (Scheffer et al., 2009; Ashwin and3

Zaikin, 2015). Various examples have been observed in diverse research fields and include4

collapses of ecosystems (Hirota et al., 2011; Wang et al., 2012a), sudden climate shifts5

(Lenton et al., 2012; Drijfhout et al., 2015) or financial crashes (Dmitriev et al., 2017; Diks6

et al., 2019). Abrupt regime shifts have particularly been theorised and observed in systems7

biology and medicine (Korolev et al., 2014; Trefois et al., 2015; Aihara et al., 2022), at the8

onset of certain disease states like atrial fibrillation (Quail et al., 2015) or epileptic seizures9

(Meisel and Kuehn, 2012), as well as in biological processes like regulation of gene networks10

(Angeli et al., 2004; Sharma et al., 2016) and cell fate decisions (Ghaffarizadeh et al., 2014;11

Mojtahedi et al., 2016), including epithelial-mesenchymal transitions (Lang et al., 2021).12

Correctly detecting and alerting for these critical changes allows to better understand com-13

plex developments and to anticipate dangerous outcomes. However, many such complex14

systems have not been fully characterised with mechanistic models, thus requiring simpler15

and more generic approaches to support data-driven estimates.16

The critical transitions (CT) framework have been proposed to address tipping points us-17

ing low-dimensional systems descriptions (Kuehn, 2011) and associated early warning signals18

(EWS), computed from statistical indicators extracted from data like increasing variance,19

autocorrelation or coefficient of variation (Drake and Griffen, 2010; Lade and Gross, 2012).20

These signs and derived indexes (Chen et al., 2012; Navid Moghadam et al., 2020; Mat-21

sumori et al., 2019), in principle generic for broad classes of systems, have been tested and22

applied on biological, epidemiological and medical data with alternate success (Carpenter23

et al., 2011; Dai et al., 2012; Wilkat et al., 2019; Proverbio et al., 2022a). Therefore, recent24

studies have recommended caution when attempting predictions based on EWS (Boettiger25

and Hastings, 2012; Clements and Ozgul, 2018; Dudney and Suding, 2020). Since there is26

an increasing interest for EWS in systems biology and biomedicine, it is thus compelling27

to provide a unified framework for the analysis and interpretation of such indicators, to28

determine in which cases they can be safely applied and to understand their limitations.29

In addition, going beyond univariate indicators will improve their performance in detecting30

and alerting for impending critical transitions.31

32

In this work, we provide a systematic analysis of the CT framework and its associated33

EWS, to define their range of applicability and understand why discrepancies have been34

observed between theoretical predictions and experimental data (Kuehn et al., 2022; Cohen35

et al., 2022). Systems biology is characterised by two main paradigms (Mazzocchi, 2012):36

one investigating the single details of molecular combinations or regulatory networks, alike37
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to “microstates” in statistical mechanics (Stumpf et al., 2017), and another looking for gen-38

eral analytical models, built upon kinetic theories, to understand complicated biochemical39

processes in simpler and general terms (Ferrell Jr et al., 2009). The latter allows to construct40

classes of systems according to universal routes of dynamical development, regardless of the41

microscopic details. We leverage this paradigm to make sense of critical transitions and42

identify the most relevant classes pertaining to biological systems (Box 1). We also provide43

guidance for EWS selection and optimisation, depending on realistic noise properties and44

other notable features of classes of complex systems, developing new composite indicators.45

Our work bridges mathematical insights and observations of real systems to classify46

various tipping mechanisms. There are ongoing debates whether regime shifts in biological47

systems, like cell-fate decision, are primarily driven by deterministic bifurcations (Andrecut48

et al., 2011; Stanoev et al., 2021) or by random fluctuations (Wang et al., 2011; Stumpf49

et al., 2017), which prompted several authors to question the old “Waddington landscape”50

interpretation (Moris et al., 2016). By systematically analysing known regime shifts, we51

classify the mathematical models to address various types of critical transitions, subject52

to combinations of bifurcations and noise (Berglund and Gentz, 2006), and to develop a53

method to extract systems’ robustness proxies from data (Box 2).54

We first employ a framework based on dynamical manifolds, underpinning universal55

routes to explosive transitions (Kuehn and Bick, 2021), to characterise the warning signals56

associated to “noisy” bifurcations, and to study their dependency on noise properties and57

other dynamical features like rapid approaches to threshold values. This way, we provide58

general results about EWS robustness and sensitivity to dynamical features, to guide appli-59

cations on various systems, understand their limitations and promote future developments.60

Then, we focus on a critical transition sub-class of high biological relevance, the stochastic61

saddle-node bifurcation (Ferrell Jr et al., 2009). For this tractable, yet realistic model of62

complex biological processes, we develop a composite EWS indicator to optimise the leading63

time of the alerts, i.e., how much in advance reliable signals are triggered, with respect to64

an impending transition. The new indicator is optimised over realistic noise types using65

the common genetic toggle switch model (Sharma et al., 2016), as representative of the66

considered CT class. This way, we overcome the limitations of other EWS from literature,67

which have mostly been developed over Gaussian noise while biological systems usually68

feature correlated and state-dependent noise (Hasty et al., 2000; Dunlop et al., 2008; Zhang69

et al., 2012). Thanks to this extension, the indicator also provides additional insights about70

the systems under investigation, such as inference of noise type from data. The theoretical71

results are finally tested and verified on publicly available experimental data, demonstrating72

their potential for monitoring and interpreting diverse systems.73
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Box 1: Classification of critical transitions
Consider a dynamical system whose state (or regime) is usefully characterised by a set of
dynamic variables x ∈ Rn, whose relations to each other are modeled by a set of parameters
p ∈ Rm:

dx

dt
= F (x(t), p), (1)

where F : Rn+m → Rn is a system of sufficiently smooth functions. If p is not explicitly
dependent on time, the system is termed autonomous ; if p = p(t), the system is called
non-autonomous. The distinction between autonomous and non-autonomous can be sup-
ported when considering naturally fixed parameters (Maini et al., 1991), or when addressing
timescale separation (“slow-fast system”) between biochemical processes, like mRNA tran-
scription versus protein degradation times (Yasemi and Jolicoeur, 2021). This results in sets
of dynamical (for variables) and algebraic (for parameters, termed at quasi-steady state)
equations (Del Vecchio et al., 2016). Together, variables and parameters define and shape
a state space (or “landscape”) that, if F (x, p) has elements of non-linearity, can be charac-
terised by multiple attractors (MacArthur et al., 2009), i.e., region of stability for systems’s
states. If parameters are allowed to change (either non-autonomously, or at quasi-steady
state), the state space is dynamic and attractors can change, as opposed to static landscapes
like Waddington’s.
The state space can be multidimensional. However, near bifurcation points, it can be aptly
described using low-dimensional models associated to critical thresholds in the values of
leading parameters (usually corresponding to the largest eigenvalues (Kuznetsov, 2013)).
Such models are termed “normal forms” of a dynamical system, simplified minimal-order
forms that determine the system’s behaviour and retain universal properties of generic bifur-
cations (see Kuehn and Bick (2021) and STAR Method C.1). Normal forms can be inferred
from bistability properties (Angeli et al., 2004) or deduced from network models, if they are
available for the considered systems (Gao et al., 2016; Tu et al., 2021).
In addition to bifurcation points, noise can characterise the system’s dynamics. Noise is
ubiquitous in biology (Tsimring, 2014; Su et al., 2019) and can correspond to stochasticity
in intrinsic biochemical processes or cell-cell variation (Zhang et al., 2012). Mathematically,
noise variables can be modelled as fast degrees of freedom augmenting system (1), which
is a dualistic representation to stochastic processes (Berglund and Gentz, 2006). Noise
can push the system out of original attractors onto new ones, therefore causing random
switches between phenotypic states even in the absence of dynamical bifurcations.

We propose to use the relative timescales between dynamical variables, parameters and
noise to develop a systematic classification of transitions between system states. This way,
we synthesise and improve the contributions of Thompson and Sieber (2011); Kuehn (2011);
Ashwin et al. (2012); Shi et al. (2016) towards the establishment of a theory on critical tran-
sitions in real systems. To do so, extend and disentangle Eq. 1 to explicit the dependencies
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on state variables x ∈ Rm and system parameters p ∈ Rn, on the introduced stochastic
variables ξ ∈ Rl and on the relative timescales modelled by time parameters τi, i = {x, p, ξ}.
This results in a multiscale slow-fast system

τx
dx
dt

= f(x, p, ξ)

τp
dp
dt

= g(x, p, ξ)

τξ
dξ
dt

= h(x, p, ξ) .

(2)

Using this representation, tipping systems can be classified into three main classes of criti-
cal transitions on the basis of relative timescales: bifurcation-induced (“b-tipping”), noise-
induced (“n-tipping”) and rate-induced (“r-tipping”), following the nomenclature introduced
by Ashwin et al. (2012):

b-tipping: τp � τx � τξ
n-tipping: τp � τx ' τξ
r-tipping: τp ' τx � τξ

(3)

If τξ > τx, the system becomes ergodic and visits the full state-space uniformly without
displaying transitions (Shi et al., 2016).
The b-tipping class thus encompasses all those transitions primarily driven by bifurcations,
i.e., slow changes in control mechanisms modelled as quasi-steady approaches of leading
parameters to their threshold values. They modify the attractor landscape, in the presence
of low noise-to-signal ratios, and can be further sub-classified according to dimension m
and co-dimension n (Thompson and Sieber, 2011). In this work, we only consider low-
dimensional ones, commonly found in cell dynamics studies. Examples include toggle-switch
mechanisms for the lac-operon (Ozbudak et al., 2004), population collapses of microbiological
colonies past threshold concentrations of stressors or nutrients (Dai et al., 2015), or epithelial-
mesenchymal determination (Sarkar et al., 2019). Higher m and n yield more complex
bifurcations associated to, e.g., neural network activity (Izhikevich, 2007).
The n-tipping class groups various transitions driven by stochastic fluctuations on fixed
landscapes, including large, impactful and unexpected events (sometimes called “dragon
kings” (Sornette, 2006)). Example range from enzymes crossing activation chemical barriers
via “promoting vibrations” (Antoniou and Schwartz, 2011), “rebellious cells” undergoing
contrasting development pathways during cell reprogramming (Mojtahedi et al., 2016), and
other long-studied cases of noise-induced transitions (Horsthemke and Lefever, 1984).

B-tipping and n-tipping directly link to the the aforementioned debates in systems biology
about deterministic or stochastic drivers of critical changes. R-tipping refers to critical
ramping of control parameters, not coped by the system, which has been so far observed
in climate (Wieczorek et al., 2011) and engineering (Bonciolini et al., 2018) systems. The
heat-shock response of plants to ramping temperature conditions (Moejes et al., 2017) may
fall within this class, but further studies are required. The critical transition classes can be
visualised on bifurcation diagrams or using quasi-potential landscapes (Zhou et al., 2012),
which can be obtained as integrals of vector fields like Eq. 1 or inferred from data.
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Fig. 1 shows the classification between the transition classes, with illustrative examples of
what can happen to systems within simplified attractors. Note that the hard-cut classifica-
tion derives from the mathematical assumptions in Eq. 3: gradients between the transition
classes may exist and call for deep investigation. In particular, our work focuses on “noisy
bifurcations”, i.e., dynamics characterised by bifurcation points and the presence of low to
moderate noise-to-signal ratio.
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Figure 1: Classification of transitions between states x of a dynamical system, controlled
by a slow changing parameter p. x and p may also correspond to network combinations of
variables and parameters (Moris et al., 2016; Gao et al., 2016). (a): Illustration of b-tipping and
n-tipping using a bistable system with saddle-node bifurcations (unstable branch in red; saddle-
node template shown in inset). Hysteresis can occur, i.e., asymmetric routes to tipping from one
stable state or from the other (orange, from up to down with increasing p; black, from down to
up with decreasing p). B-tipping: the system approaches the bifurcation point. The associated
landscape is molded by p and the basin of attraction becomes shallower (as visualised by the bars)
until disappearing; there, the system tips. N-tipping: if subject to strong fluctuations, depicted as
wiggling of the red ball, the system can be pushed over the barrier onto an alternative attractor,
even before the bifurcation point. (b) Illustration of r-tipping: rapid ramping of the control
parameter makes it as if the landscape shifts and the systems does not manage to move along,
therefore tipping onto another attractor “sliding” underneath. See Ashwin et al. (2012) for formal
definitions. (c): Example of “smooth” transition without hysteresis, using a dynamical system
close to a pitchfork bifurcation (inset) as template. To reproduce the plots, see STAR Method C.3.
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Box 2: Bifurcations with noise and system robustness Among the critical transition
classes described above, let us consider those primarily driven by bifurcations, with noise
further influencing the dynamics. In this sense, we can speak of “noisy b-tipping”, with the
first condition in Eq. 3 becoming

τp � τx > τξ , (4)

that is, the noise-to-signal ratio is not negligible but the slow-fast condition between variables
and parameters still applies.
For this class, normal forms can be used to analytically study systems’ robustness and
derive early warning signals for impending tipping points (Kuehn, 2011). Normal forms
are general and low-dimensional models ẋ = f(x, p) that describe topologically equivalent
systems within a bifurcation class, in the vicinity of critical points (Kuznetsov, 2013). They
allow to extract analytical and generic results for wide classes of systems (Kuehn and Bick,
2021), at the price of neglecting homeostatic dynamics far from tipping points. As a result,
they allow to focus on critical transition mechanisms across various systems, instead of
studying the full evolution of a single system. Details about topological equivalence and
construction of normal forms are in STAR Method C.1. Fig. 2 shows an example of reduction
to normal forms for two simple models.
Here, we consider those normal forms of primary biological interest. The saddle-node bi-
furcation, often associated with population collapses (Scheffer et al., 2009; Dai et al., 2012)
or biological state transitions (Alon, 2006), is defined by f(x, p) = ±p ± x2. At p = 0, a
stable (x̃s =

√
p) and unstable (x̃u = −√p) branch collide and vanish, resulting in a critical

transition to an alternative branch (if it exists). Transcritical bifurcations f(x, p) = px− x2
are characteristic, for instance, of epidemic outbreaks (Proverbio et al., 2022a). Here, the
two equilibria x1 = 0 and x2 = p meet at p = 0 and exchange stability. Finally, the family
of pitchfork bifurcations f(x, p) = px + l x3 describe branching processes from one to two
states (or viceversa); l > 0 identifies subcritical bifurcations, associated to critical transi-
tions, while l < 0 defines the supercritical case, with a continuous transition over mean
values. This mechanism is identified in cell regulation processes (Moris et al., 2016).
Stochastically forced systems, associated to “noisy b-tipping”, can be written in the Itô form
(Thompson and Sieber, 2011)

dx = f(x, p)dt+ h(x, p)dW , (5)

where dW is a Wiener process with variance σ and f(x, p) is a suitable normal form from
those described above. The term h(x, p) allows to represent different noise types, to reflect
modern knowledge of stochastic processes occurring in biological systems. Additive Gaussian
noise with h(x, p) = 1 is usually associated to extrinsic cell-cell variability. State-dependent
(multiplicative) noise h(x, p) 6= const represents intrinsic stochasticity determined by, e.g.,
reaction rates, timescales or species concentrations of the underlying biochemical processes
(O’Regan and Burton, 2018). Combinations of additive and multiplicative noise, with vari-
ous ratios depending on different systems, are more realistic (Liu et al., 2009; Sidney et al.,
2010) and fit experimental data better than Gaussian noise (Wang et al., 2012b).
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If the microscopic kinetics is known, the noise terms can be exactly derived from the
Master equation using Gillespie formalism (Gillespie, 2000). Alternatively, a diffusion
approximation (Allen, 2010; Van Kampen, 1992) derives noise terms proportional to system
state (h(x, p) = x), or to the drift term of Eq. 5, h(x, p) ∝ f(x, p). Here, for multiplicative
noise, we consider h(x, p) =

√
f(x, p) (O’Regan and Burton, 2018) and h(x, p) = f(x, p), to

reflect modelling of biological regulatory circuits (Hasty et al., 2000). This way, mechanistic
and stochastic normal-form bifurcation models are examined to study the effects of intrinsic
and extrinsic noise on statistical patterns of variability and related EWS.

Following the procedure detailed in STAR Method C.2, Eq. 5 is analysed by solving the
slow dynamics, linearising around a trajectory inside the stable (attracting) manifold and
changing the coordinates to highlight the residuals y(t) around the linearization. This
procedure gives

dy = ∂xf(x̃s(t), t)y dt+
√
h2(x)dW (6)

where x̃s corresponds to the attracting part of the critical manifold (stable solutions). The
linearised drift term corresponds to the leading eigenvalue of the deterministic normal form.
Its magnitude |∂xf(x̃s(t), t)| is the asymptotic decay rate of a perturbation. It corresponds
to the concept of engineering resilience (Holling, 1996), which is akin to that of robustness
(Kitano, 2004). A change of notation |∂xf(x̃s(t), t)| = k makes explicit that Eq. 6 corre-
sponds to a (possibly non-autonomous) Ornstein-Uhlenbeck process, with critical k given by
k0 = 0. It is a well-studied problem in stochastic processes theory, with analytical solutions
for its statistics in different regimes (Allen, 2010; Gardiner, 1985). Eq. 6 can be regarded as
a first order autoregressive model. However, its derivation from normal forms allows more
nuanced interpretation: rather than being hypothesised as a statistical model to capture
simple relationships, it is general for all models that can be reduced to normal forms.
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Figure 2: Visual example of topological equivalence. a) Plot for dX/dt = f(x, p = c′) =
X (1−X/K)− c′X2/(X2 + 1), a model of harvested ecological populations (Scheffer et al., 2009),
also akin to Allee effects observed in microbiological colonies (Dai et al., 2012); X is the population
density, K is the carrying capacity and c′ is the maximum harvest rate. b) Plot for f(x, c) of the
autocatalytic loop model Eq. 15. c) Plot for f(x, p) of the saddle node normal form ẋ = −p− x2.
The two realistic models are locally topologically equivalent to the normal form within the red
rectangle (visual reference): they approach a bifurcation point, marked by f(x, p) crossing the
x-axis, as the parameter c′ or c changes.
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2. Results79

2.1. Robustness of EWS for noisy bifurcations80

Within the class of critical transitions induced by bifurcations characterised by small81

fluctuations, discussed in Box 1 and 2, we study the early warning signals associated to82

impending tipping points, considering different noise types that are better representative of83

biological dynamics that pure Gaussian noise (see Box 2).84

Analytic expressions for key summary statistics indicators can be obtained from Eq. 685

using standard approaches for stochastic processes (Allen, 2010; Gardiner, 1985). Their86

behaviour as the control parameter changes provides early warning signals for approaching87

noisy bifurcations (Scheffer et al., 2009). The lag-τ autocorrelation function does not depend88

on h2(x, p) but only on |∂xf(x̃s, p)| = k:89

AC(τ) = e−kτ . (7)

Hence, the common indicator lag-1 autocorrelation (AC(1), with τ = 1) only depends on
the dampening rate. The power spectrum of the Fourier transforms and the variance, two
common indicators, explicitly depend on h2(x, p):

S(ω) =
h2(x̃, p)

k2 + ω2
(8)

Var =
h2(x̃, p)

2k
. (9)

Coefficient of variation (CV) and Index of dispersion (ID), defined as90

CV =

√
Var

x̃s
, ID =

Var

x̃s
, (10)

also depend on h2(x̃, p). Other statistical moments, for stochastic processes with quasi-91

steady state parameter, can be expressed as92

〈yν〉 − 〈y〉ν =

∫ ∞
−∞

(y′ − µ)νP (y′)dy′ (11)

where P (y′) is the probability density function from the associated Fokker-Plank equation93

(Gardiner, 1985) and µ is the expected average value. Skewness and kurtosis, sometimes94

suggested as indicators for EWS (Guttal and Jayaprakash, 2008), can be easily extracted95

from Eq. 11 as third and fourth moments (ν = 3 and 4). Entropy-based indicators are more96

challenging to derive in case of multiplicative noise, as their defining integrals may not be97

solvable. Their derivation in case of Gaussian noise is described in STAR Method C.4; for98

the other cases, their behaviour is estimated below using computer simulations.99

In all cases, the analytical results for each normal form can be obtained by substituting100

the corresponding dependency of the drift term to the control parameter: for the saddle-101

node, k = 2
√
p, for the transcritical k = p and for the pitchforks k = 2p. In Fig. 3, the102
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effect of multiplicative noise on the trends of common indicators is shown using h(x̃, p) = x103

and h(x̃, p) = x2.104

Fig. 3 shows expected trends of common statistical indicators, for the three main normal105

forms and different noise types. Although the scaling induced by k(p) differs, the qualitative106

trends are conserved across the bifurcations. This observation suggests genericity of EWS,107

but also difficulties to infer the existence of one or another bifurcation using statistical108

indicators alone. Other methods (e.g. Angeli et al. (2004)) are recommended to complement109

the inference.110

For Gaussian noise, EWS are associated with increasing trends of statistical indicators111

(Dakos et al., 2015; Scheffer et al., 2009). However, multiplicative noise may alter or com-112

pletely disrupt them (as also noted by O’Regan and Burton (2018)), resulting in no early113

warnings prior to tipping points. Eq. 8 shows that even power spectrum trends can be114

subject to alterations from expected patterns, potentially resulting in spurious signals.115

116
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Figure 3: Trends of common statistical indicators. We consider Var, AC(1) and CV for
saddle-node, transcritical and pitchfork bifurcations as p → 0, in different dynamical contexts
(combinations of noise characteristics and stationarity for the control parameter). WN: white
(Gaussian) noise; MN 1: multiplicative (state-dependent) noise h(x̃, p) = x; MN 2: multiplicative
noise h(x̃, p) = x2. As the autocorrelation is independent on noise, only MN 1 is show and it
overlaps with the white noise case.

A preliminary investigation on ramping parameters (Pavithran and Sujith, 2021) can
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also be conducted. In this case, τx ' τp: the quasi-steady-state (stationary) assumption is
relaxed, but r-tipping may not yet occur. Let us consider linear ramping as k = k0 − at,
where k0 is any initial condition, a is a small rate coefficient and the ramping stops at the
critical value k = 0. Both coefficients are set to 1 to represent commensurable time scales.
Only Gaussian noise is considered. This is a particular case of inhomogeneous processes
(Gardiner, 1985) for which statistical moment solutions exist in the form

〈y(t)〉 = e−
∫ t
0 k(t

′)dt′ (12)

〈y(t)y(t′)〉 =
σ2

2k
e−2

∫ t
0 k(t”)dt” + σ2

∫ t

0

e−2
∫ t
t′ k(s)dsdt′ . (13)

Derived statistics are calculated analogously. Eq. 13 is solved using Mathematica software117

to tackle the rightmost integral yielding the non-elementary Error function Erf(t). Fig. 3118

shows that trends of common indicators may be modified by commensurable time scales of119

parameters evolution. Hence, raising reliable alerts becomes more challenging.120

121

Overall, this analysis demonstrates that theoretical early warning signals due to increas-122

ing trends of summary statistics are sensitive to the “dynamical context”, i.e. noise proper-123

ties and reciprocal time-scales. Hence, if the dynamical context is not carefully accounted124

for, spurious signals may be extracted from data, as observed in early findings from single125

systems (Brett et al., 2017; Proverbio et al., 2022a).126

If the context is known, the current results suggest which indicators to use to obtain127

robust early warnings. The autocorrelation is robust against changing noise properties; the128

variance is more sensitive to multiplicative noise, but maintains its expected trends in case129

of ramping parameters. The coefficient of variation is also robust in case of commensurable130

time scales and copes well in case of certain types of multiplicative noise. Overall, what131

matters is the competition between changes in noise and changes in resilience: depending on132

which one is more rapid, the indicators and their associated EWS may perform as expected133

or fail to anticipate an impending critical transition.134

135

Measurement processes or details of realistic models may further influence EWS. Mea-136

surement uncertainties, assumed as Poisson processes associated with measuring instruments137

or procedures and thus independent of systems’ dynamics, can be introduced in the formu-138

las of statistical indicators by error propagation in quadrature (see STAR Method C.4 for139

details). In case of Gaussian noise and stationary processes, the expected trends of common140

indicators are not altered, hence, EWS can be in principle extracted even when using noisy141

measurements (cf. STAR Method C.4).142

Single indicators may also be skewed in case realistic details are considered. For instance,143

on empirical data, normalising by the critical value and set a normal form around p0 = 0144

and x̃s(p) = 0 may be challenging, since such critical values are largely unknown. Hence,145

instead of computing x̃s(p) → 0 like on perfectly reconstructed normal forms, x̃s(p) → x′0146

is often computed (Dai et al., 2015), where x′0 corresponds to the critical value, unknown a147
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priori. Such case can be modelled as x̃s(p) = x′0 +
√
p. Hence, Eq. 10 becomes148

CVr =

√
Var

x′0 +
√
p
. (14)

Here, other multiplicative noise forms may alter its behaviour and shadow possible early149

warnings. Finally, skewness and kurtosis calculated from Eq. 11 display increasing trends150

when P (y′) is symmetric (STAR Method C.4). However, this may not be true in case of151

multiplicative noise (Sharma et al., 2016), resulting in distorted trends and early warnings.152

In this sense, there is no ambiguity between the results of Guttal and Jayaprakash (2008),153

proposing EWS from skewness, and Dai et al. (2012), observing flat and fluctuating trends154

on experimental data: likely, the noise properties were different than what assumed.155

2.2. Optimisation of EWS156

Having assessed in which cases the proposed early warning signals are expected to work157

for noisy b-tipping transitions, we now optimise their performance to provide significant and158

as-early-as-possible alerts, in a range of dynamical contexts and for the most common tran-159

sitions observed in systems biology. To this end, we focus on multistable systems (Sarkar160

et al., 2019), develop and solve an optimisation problem using computer simulations to go161

beyond the first-order approximation from Eq. 6 (see STAR Method C.2 for details), and162

study a wide range of noise levels and types, to establish a composite indicator that is robust163

and performing across multiple systems.164

165

Multistable systems are systems whose deterministic landscape features at least two166

attractors (Feng et al., 2016), and usually undergo either saddle-node bifurcations or n-167

tipping. Bistability means local multistability across two attractors. Angeli et al. (2004)168

provides necessary and sufficient conditions for bistability in a wide range of biological169

systems. Among them, a feedback model with three-points I/O characteristic curves suffices.170

A simple linear system with monotonic sigmoidal feedback can do the job, in a range of171

parameters (Fig. 4). As a case study, the autocatalytic positive feedback loop derived from172

Michelis-Menten kynetics (Sharma et al., 2016)173

ẋ = f(x, c) + η(t) = K + c
xk

1 + xk
− x+ η(t) . (15)

satisfies the bistability conditions, and can thus display transitions between attractors, if174

0 < K < 1/(3
√

3) for k = 2 (Weber and Buceta, 2013). In Eq. 15, x is the concentration175

of a transcriptional factor activator, activating its own transcriptions when bound to a176

responsive element; K is the basal expression rate, c is the maximum production rate, k177

is the Hill coefficient and η(t) accounts for the stochastic terms. Eq. 15 comes from a178

two-variable genetic toggle switch, assuming slow-fast timescale separation between the two179

variables (Strogatz, 2015) and after a-dimensionalising the chemical details to retain the180

dynamical scaffold. Notably, networks of Michelis-Menten regulators can be reduced to Eq.181

15 after dimension reduction techniques (Gao et al., 2016).182
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Figure 4: Bistable systems, studied with (a) characteristic curves or (b) bifurcation
diagram x̃ (stable state) vs control parameter. Among the systems undergoing saddle-node
bifurcations, any linear system with nonlinear feedback and adequate feedback gain, such that the
characteristic curve crosses the activation function in three points (two stable, one unstable), can
display bistability. This example uses Eq. 15. a) The feedback function FB corresponds to the
Hill function (k = 2), the feedforward FF to the linear part −(K − x) with K in its appropriate
range. The control parameter c tunes the FB function. Dashed-dotted line: c is not sufficient
to promote bistability, corresponding to left stable region of (b). Dashed line: the critical value
for which FB is tangent to FF , corresponding to saddle-node point, open circle in (b). Solid
line: bistable system with three intersection points (stable, i and iii; unstable, ii). When studying
the vector field f(x, c) is easier than the characteristic curves, one can use the representation and
interpretation in Fig. 2b. Note that the line styles have the same meaning in panel (a) and Fig. 2.

Eq. 15 displays bistability for a range of values c (the exact range depends on K and k183

(Proverbio et al., 2022b)) and, in particular, a saddle-node bifurcation between two alterna-184

tive steady states at a critical value c0 of the parameter c, such that ∂f/∂x|(x̃,c0) = 0:185

c0 =
(xk0 + 1)2

kxk−10

(16)

where x0 is the tipping value for the system state. Therefore, system 15 can be used as186

a paradigmatic example of biological systems, within the saddle-node b-tipping class, to187

perform optimisation studies that go beyond the local and low-noise-to-signal-ratio approx-188

imation provided by normal forms.189

190

The quasi-steady state assumption is generally accepted for such systems (Del Vecchio191

et al., 2016), so we focus on dynamical contexts characterised by different types of noise,192

whether yielding n-tipping or possibly skewing statistical indicators due to multiplicative193

and/or additive nature. To model combinations of intrinsic and extrinsic noise, we set194

η(t) = [α + (1− α)h(x)]dW , (17)

where α weights the white or multiplicative noise component (α = 1 corresponds to purely195

additive Gaussian noise, α = 0 to purely multiplicative); like above, h(x) = x or h(x) ∝196
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f(x) = xk/(1 + xk) (Hasty et al., 2000) and dW is a Wiener process with variance σ. With-197

out loss of generality (Proverbio et al., 2022b), we set k = 2.198

199

As early warning signals are associated with increases of statistical indicators, we need200

to establish a measure of statistically significant increase, to rule out false positives and201

false negatives due to random fluctuations in the indicators. To do so, we employ the202

p-value analysis used in Proverbio et al. (2022b) (see STAR Method C.6 for details). It203

allows to measure at which value of the control parameter c, before c0, a significant signal204

is triggered, thus obtaining a “lead-parameter” cIsig(σ, α) depending on noise properties and205

the considered indicator I (see STAR Method C.6 for details). cIsig(σ, α) is first computed206

for each indicator individually. Fig. 5a shows the results in case of white noise, while207

various functionals of multiplicative noise h(x) (with α = 0) are reported in Supplementary208

Figure S3. Each indicator yields various csig; in Fig. 5a, Var, AC(1) and HS maximise csig209

over various noise levels, while other indicators like skewness and kurtosis perform poorly,210

as anticipated by the analytical results. CV and ID are also rather poor, likely due to211

fluctuations of mean values and anticipating n-tipping (cf. also Supplementary Figure S2 and212

S3). For the case of multiplicative noise (Supplementary Figure S3), HS keeps performing213

well while Var, as expected from the theoretical analysis, decreases its performance despite214

being still better that Skew and Kurt.215

Complementing the analysis of the lead parameter requires understanding how many216

noise-induced tipping events occurred before it and assessing whether the increasing indi-217

cators alert for impending collapses or reflect transitions that have already happened. The218

analysis thus interprets warning indicators as “anticipating” or “just-on-time detecting” the219

tipping events. To do so, a counter C quantifies, for each parameter value c and for each220

noise level σ, how many trajectories tip onto the alternative stable state. The results are221

in Fig. 5b: as σ increases, more n-tipping events occur before the bifurcation point. In222

particular for σ > 0.42, several noise-induced transitions occur at c ' csig. Hence, as noise223

increases, the indicators capture ongoing critical transitions but are not able anymore to pro-224

vide much earlier alerts. This likely explains the remarks from Dudney and Suding (2020),225

that EWS could not anticipate several transitions in real-world systems, in particular those226

characterised by high noise-to-signal ratios.227

228

The previous results are also employed to define an optimisation problem to maximise229

cIsig(σ, α) for varying α. To do so, we define a composite indicator as linear combination of230

indicators231

S =
∑
k

wkIk (18)

and look for a set of weights w = {wk} that maximises all cIsig(σ, α) as σ increases (to232

guarantee robustness against noise levels), for the various α:233

ŵ s.t. max
w

S = max
w

[∑
l

cSsig(w, σl)

]
, (19)
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a) b)

c) d)

Figure 5: Optimisation of leading indicators for EWS, according to lead parameter
csig. a) csig at various noise intensities σ, for all the most common indicators. b) The counter
C, normalised by all transitions to be interpreted as probability of n-tipping, at different noise
intensities σ and distances c − c0 from the bifurcation point. c) Scores S, corresponding to the
argument of the cost function Eq. 19, for various combinations S from Eq. 18. In the panel below,
the color code shows the weights wk for each indicator, in each combination. Results in panels a, b
and c refer to α = 1. For various types of h(x) and α = 0, see Supplementary Figure S3. d) Optimal
weights ŵ for each indicator, as a function of noise mixing α. As a representative of multiplicative
noise, we used h(x) = x. Other h(x) conserve the trends, albeit changing the corresponding csig.
It may happen that the optimisation is solved by multiple combinations (dashed lines).

where S are scores composed by sums of cSsig(w, σl) over all σ. In the set I, we include those234

indicators that are expected to be robust and performing, first and foremost in the white235

noise case. Leveraging on the previous results, we therefore select Var, AC(1) and HS. As236

the problem is non-convex (Fig. 5c), we perform a grid search for all combinations of wk,237

with a stride 0.1 and such that
∑

k wk = 1. See Fig. Fig. 5c for the considered combinations238

to construct S.239

Figure 5d reports the results of the optimisation procedure. Combinations of Var and240

AC(1) make up for optimal indicators in case of white noise, ŵ = [0.9, 0.1, 0] for Var, AC(1)241

and HS, respectively, in case of α = 0. In this case, HS is log-proportional to Var (see Eq.242

C.11) and does not add much information. In turn, combining the indicators maximises243

cSsig(σ, α) in case of mixed noise types. Finally, when multiplicative noise is prevalent in244

the system, using Shannon entropy is preferred (ŵ = [0, 0, 1] for α = 0). Note that, as245
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the problem is non-convex, there may be more than one combination to create the optimal246

S. However, changes in weights wk are always within ∆wk ∼ ±10%wk and the trends are247

conserved (see dashed lines in Fig. 5d). Such small ∆wk yield changes of ±4% on the scores248

S, on average over all α (∆S ∈ [1.8; 6.5]%), while off-setting wk by more than 50% (e.g.,249

using full variance in case of multiplicative noise) worsens S (and consequently the optimal250

lead parameter) up to more than 20%.251

2.3. Verification on experimental data252

The theoretical predictions are verified and used to interpret experimental data from a253

previous publication (Dai et al., 2012). The data are sampled from controlled experiments254

of budding yeast population collapse. Budding yeast cooperatively breaks down the sucrose255

necessary for its survival, thus inducing a density-dependent dynamics that realises the Allee256

effect of bistable population dynamics (cf. Fig. 2b). Repeated experiments empirically257

reproduced a saddle-node bifurcation by measuring population density (state variable) as258

a function of dilution factors (DF, control parameters) affecting the sucrose environment.259

Various EWS for population collapse can be estimated using distributional data. More260

details about data collection and analysis are in STAR Method C.7. Testing our theoretical261

results on a different system than Eq. 15, yet still belonging to the saddle-node driven262

b-tipping class, would thus assess their generic applicability within this class.263

Fig. 6 shows trends of each indicator individually, as function of the dilution factor264

(with critical value at 1600). The error bars are estimated from bootstrapping (STAR265

Method C.7). Fig. 6 reproduces the results from Dai et al. (2012) and includes the additional266

indicators considered in this paper. The mean is used to reconstruct the upper stable267

branch of a saddle-node bifurcation diagram (see Fig. 1), reconstructed from data (the268

full diagram can be found in the original publication). However, it can not be used as269

proper EWS as decreasing mean values could signify smooth changes rather than critical270

transitions, if the transition type and critical parameter are not known. Skewness and271

kurtosis fluctuate around 0 and 3, respectively, without providing EWS, as one expects in272

case of symmetric potentials (see Eq. C.17 and C.18). AC(1) and the autocorrelation time273

(defined as −1/ log[AC(1)] (Dai et al., 2012)) first drop before increasing sharply just before274

the critical value. Comparing it with Fig. 3, we speculate that there are commensurable275

time scales between the intake of sugar by yeast cells and their evolution in density. Further276

experiments are suggested to check for this intriguing hypothesis.277

Even in this case, as expected, Var, Entropy (HS), CV and ID display monotonous in-278

creasing trends close to the bifurcation point. The increases are thus assessed using the279

p-value test (cf. STAR Method C.6) to check whether they are significant or associated280

with fluctuations. To trigger a significant early warning signal, we require a conservatory281

significant p-value< 0.01. This way, we estimate the significant dilution factor DFsig for282

each indicator. For variance, DFsig = 1133, for the others DFsig = 1000. Comparing with283

the optimisation results (from the previous section and Fig. S3), we infer the presence of284

multiplicative noise in the system’s dynamics. Note that entropy showcases the smallest285

p-value at DFsig = 1000; it is also the most robust when changing the repetitions in the286
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bootstrapping procedure (STAR Method C.7).287

288

Figure 6: Statistical indicators calculated on empirical data. Data are from Dai et al. (2012),
as functions of dilution factor (DF). Their corresponding p-values are estimated when the trend
is increasing while approaching the bifurcation point (rightwards point). All statistical moments
of degree γ have units of measure (cells/µl)γ . The autocorrelation time is in days. The mean
reproduces the upper stable branch of a saddle-node bifurcation diagram (cf. Fig. 1) until the
empirically estimated bifurcation point at DF=1600. Horizontal solid lines mark p-value = 0.01.

To test the hypothesis of association between EWS performance and noise type, we test289

combined indicators with HS and Var. According to the optimisation above, the higher the290

variance content in the mixture, the lower the significance of the increasing trend. This is291

what is observed in Fig. 7: having a balance between Var and HS yields DFsig = 1000, but292

with a higher p-value than when reducing the ratio Var/HS or when comparing with the293

case of entropy alone (from Fig. 6).294

Finally, we test combining CV and HS, since Fig. 6 suggests that CV could perform295

well. Indeed the new combined indicator yields DFsig = 750 (Fig. 7, right), one dilution296

step before the others. This is not in contrast with the optimisation analysis: CV is, in fact,297

expected to be as performing as HS if the noise levels are relatively high (see Fig. S3). We298
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recall that CV was not included in the optimisation analysis to be generic and robust across299

noise types and levels. However, if high σ in state-dependent noise is known, constructing a300

composite indicator using both CV and HS may improve the alerting performance.301
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Figure 7: Combined indicators calculated on empirical data. The analysis is analogous to
that in Fig. 6, using combinations of indicators. The horizontal solid lines mark p-value = 0.01.

3. Discussion302

The paper provides a systematic classification of tipping mechanisms, highlights their303

underlying modelling assumptions, and bridges mathematical insights and observations of304

real systems to classify various tipping mechanisms, towards quantitative understanding and305

prediction of such relevant phenomena. The work shifts the focus from studying specific sys-306

tems, that may undergo some transitions, to studying transitions, along with their classes307

and properties, which can accommodate the behaviour of different systems. An interesting308

question for future studies will be to develop data-driven methods to classify each system309

within its corresponding class, much like those developed to distinguish stochastic or chaotic310

signals (Rosso et al., 2007). This will dramatically help the understanding of biological pro-311

cesses and guide the selection of EWS or other methods to anticipate critical transitions, as312

well as informing methods to reconstruct cell developmental trajectories like those proposed313

by Eugenio et al. (2014).314

Moreover, we systematically investigate early warning signals associated to noisy bifurcation-315

induced transitions, key dynamical routes for the regulation and control of many natural316

processes. So far, EWS have been mostly studied in highly controlled computational settings,317

or checked on empirical data with alternate success. Our results make sense of previous ob-318

servations, help to define their range of applicability to reliably predict systems’ behaviours,319

and allow to understand why spurious signals may be triggered in certain cases. We also320

assess whether and when EWS can be interpreted as anticipating or just-on-time detecting321

critical transitions in the presence of noise. By carefully analysing noise types and parame-322

ter dynamics, we also extend previous results to more realistic settings, to guide real-world323

applications.324

Using both analytical and computational methods, we observe that the variance – a325

highly employed indicator for EWS – may be sensitive to state-dependent noise, while AC(1)326
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can be skewed by ramping control parameters. Both are good indicators in case of quasi-327

steady-state dynamics and Gaussian noise, with the ability to provide information about328

augmented risk of tipping events. In the other cases, Shannon entropy is the most robust329

and performing indicator and is suggested for applications in case of uncertain settings.330

If precise information about noise type and intensity are available, constructing composite331

indicators can improve the early-alerting performance, e.g., by combining CV and HS.332

The optimisation of composite indicators points to the use of machine learning methods333

when abundant data are available (Bury et al., 2021), but also opens important caveats334

for their application in real life: feature combinations may be optimised for certain settings335

(e.g., noise intensity or type) but may be hardly generalisable for others. Our results remark336

that training should be performed considering all possible combinations, or by first assessing337

which critical transition class is being considering. Otherwise, misleading signals may be338

triggered and wrong conclusions reached. On the other hand, our results can be used339

for feature selection of more interpreteable machine learning algorithms that leverage the340

proposed composite indicators, insofar defined for a-priori assessment of systems that lack341

big data.342

This work provides results and guidelines for the application of early warning signals from343

the critical transitions framework, but some points should still be covered by future stud-344

ies. They include more refined analytical derivations of indicators in case of inhomogeneous345

processes as well as closed formulae for entropy in exotic settings. Further investigations on346

realistic systems, including non-autonomous transitions currently understudied in systems347

biology, are thus suggested as extensions of our work. Another limitation of the present348

study is the restriction to low dimensional systems. In principle, they are representative of349

any system after dimension reduction techniques are applied, but it is necessary to assess if350

and how the latter induce performance drops. Extending the analysis to high dimensional351

systems, e.g., by testing multivariate indicators (Weinans et al., 2021) or further refining352

EWS performance when multiple independent variables can be observed, is thus suggested353

to future studies. Finally, our theoretical results have been verified on empirical data from354

literature, but we acknowledge the need of performing additional experiments to continu-355

ously validate our predictions. In particular, we suggest to design new experiments to test356

the quantitative predictions about lead parameters and to assess what happens in case of357

rapidly ramping parameters.358

Our results can be readily tested and applied on real-world monitoring systems and can359

inform the development of new indicators to address specific problems like cancer onset,360

much like previous works (Chen et al., 2012) did using less performing measurements. In361

addition, leveraging the sensitivity of indicators’ trends to noise type and parameter dy-362

namics can provide new methods to infer the latter from empirical data. For instance,363

comparing Fig. 6 with Fig. 3 supports hypothesis of commensurable time scales between364

intake of sucrose (affected by the dilution factor) and cells’ growth in yeast experiments (Dai365

et al., 2012); such hypothesis, to be confirmed using controlled experiments, could advance366

our knowledge beyond the current slow-fast approximations (Del Vecchio et al., 2016). Sim-367

ilarly, the prevalence of certain noise types can be inferred by comparing data and theory.368

Overall, we connect theory and data, such that knowledge about the dynamical settings al-369
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lows optimising early warning signals, and analysis of statistical indicators enables inference370

of dynamical properties.371
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Figure legends382

Figure 1: Classification of transitions between states x of a dynamical sys-383

tem, controlled by a slow changing parameter p. x and p may also correspond to384

network combinations of variables and parameters (Moris et al., 2016; Gao et al., 2016). (a):385

Illustration of b-tipping and n-tipping using a bistable system with saddle-node bifurcations386

(unstable branch in red; saddle-node template shown in inset). Hysteresis can occur, i.e.,387

asymmetric routes to tipping from one stable state or from the other (orange, from up to388

down with increasing p; black, from down to up with decreasing p). B-tipping: the system389

approaches the bifurcation point. The associated landscape is molded by p and the basin390

of attraction becomes shallower (as visualised by the bars) until disappearing; there, the391

system tips. N-tipping: if subject to strong fluctuations, depicted as wiggling of the red392

ball, the system can be pushed over the barrier onto an alternative attractor, even before393

the bifurcation point. (b) Illustration of r-tipping: rapid ramping of the control parameter394

makes it as if the landscape shifts and the systems does not manage to move along, therefore395

tipping onto another attractor “sliding” underneath. See Ashwin et al. (2012) for formal396

definitions. (c): Example of “smooth” transition without hysteresis, using a dynamical sys-397

tem close to a pitchfork bifurcation (inset) as template. To reproduce the plots, see STAR398

Method C.3.399

400

Figure 2: Visual example of topological equivalence. a) Plot for dX/dt = f(x, p =401

c′) = X (1−X/K) − c′X2/(X2 + 1), a model of harvested ecological populations (Scheffer402

et al., 2009), also akin to Allee effects observed in microbiological colonies (Dai et al., 2012);403

X is the population density, K is the carrying capacity and c′ is the maximum harvest rate.404
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b) Plot for f(x, c) of the autocatalytic loop model Eq. 15. c) Plot for f(x, p) of the saddle405

node normal form ẋ = −p−x2. The two realistic models are locally topologically equivalent406

to the normal form within the red rectangle (visual reference): they approach a bifurcation407

point, marked by f(x, p) crossing the x-axis, as the parameter c′ or c changes.408

409

Figure 3: Trends of common statistical indicators. We consider Var, AC(1) and410

CV for saddle-node, transcritical and pitchfork bifurcations as p→ 0, in different dynamical411

contexts (combinations of noise characteristics and stationarity for the control parameter).412

WN: white (Gaussian) noise; MN 1: mult noise with h(x̃, p) = x; MN 2: mult. noise with413

h(x̃, p) = x2. As the autocorrelation is independent on noise, only MN 1 is show and it414

overlaps with the white noise case.415

416

Figure 4: Bistable systems, studied with (a) characteristic curves or (b) bifur-417

cation diagram x̃ (stable state) vs control parameter. Among the systems undergoing418

saddle-node bifurcations, any linear system with nonlinear feedback and adequate feedback419

gain, such that the characteristic curve crosses the activation function in three points (two420

stable, one unstable), can display bistability. This example uses Eq. 15. a) The feedback421

function FB corresponds to the Hill function (k = 2), the feedforward FF to the linear part422

−(K−x) with K in its appropriate range. The control parameter c tunes the FB function.423

Dashed-dotted line: c is not sufficient to promote bistability, corresponding to left stable424

region of (b). Dashed line: the critical value for which FB is tangent to FF , corresponding425

to saddle-node point, open circle in (b). Solid line: bistable system with three intersection426

points (stable, i and iii; unstable, ii). When studying the vector field f(x, c) is easier than427

the characteristic curves, one can use the representation and interpretation in Fig. 2b. Note428

that the line styles have the same meaning in panel (a) and Fig. 2.429

430

Figure 5: Optimisation of leading indicators for EWS, according to lead pa-431

rameter csig. a) csig at various noise intensities σ, for all the most common indicators. b)432

The counter C, normalised by all transitions to be interpreted as probability of n-tipping,433

at different noise intensities σ and distances c − c0 from the bifurcation point. c) Scores434

S, corresponding to the argument of the cost function Eq. 19, for various combinations S435

from Eq. 18. In the panel below, the color code shows the weights wk for each indicator,436

in each combination. Results in panels a, b and c refer to α = 1. For various types of h(x)437

and α = 0, see Supplementary Figure S3. d) Optimal weights ŵ for each indicator, as a438

function of noise mixing α. As a representative of multiplicative noise, we used h(x) = x.439

Other h(x) conserve the trends, albeit changing the corresponding csig. It may happen that440

the optimisation is solved by multiple combinations (dashed lines).441

442

Figure 6: Statistical indicators calculated on empirical data. Data are from Dai443

et al. (2012), as functions of dilution factor (DF). Their corresponding p-values are estimated444

when the trend is increasing while approaching the bifurcation point (rightwards point). All445

statistical moments of degree γ have units of measure (cells/µl)γ. The autocorrelation time446

is in days. The mean reproduces the upper stable branch of a saddle-node bifurcation dia-447
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gram (cf. Fig. 1) until the empirically estimated bifurcation point at DF=1600. Horizontal448

solid lines mark p-value = 0.01.449

450

Figure 7: Combined indicators calculated on empirical data. The analysis is451

analogous to that in Fig. 6, using combinations of indicators. The horizontal solid lines452

mark p-value = 0.01.453

STAR Method A. Key Resources454

Software: Matlab R2021b (Matworks), Mathematica v12 (Wolfram)455

Analysis and figures script: GitHub (https://github.com/daniele-proverbio/EWS o456

ptimise)457

STAR Method B. Resource availability458

STAR Method B.1. Material availability459

This study did not generate new materials460

STAR Method B.2. Data and code availability461

• All original code has been deposited at GitHub, https://github.com/daniele-pro462

verbio/EWS optimise, and is publicly available.463

• All data used are publicly available on Zenodo: Dai, L., Vorselen, D., Korolev, K.464

S., Gore, J. (2012). Generic Indicators for Loss of Resilience Before a Tipping Point465

Leading to Population Collapse. Science. https://doi.org/10.1126/science.1219466

805467

STAR Method C. Method details468

STAR Method C.1. Topological equivalence and normal forms469

Bifurcations model drastic changes in the qualitative behaviour of dynamical systems,470

such as shifts in equilibria and regimes (Kuznetsov, 2013; Kuehn and Bick, 2021). Before471

delving into bifurcations and their representation as normal forms, recall the concept of472

topological equivalence.473

Local topological equivalence between two dynamical systems {T ,Rn, φt} and {T ,R, ψt}474

is established if there exist a homeomorphism h : Rn → Rn that maps orbits of the first475

system to orbits of the second one, and the direction of time is preserved. Local topo-476

logically equivalence near an equilibrium û is, in turn, established between a dynamical477

system {T ,Rn, φt} and a dynamical system {T ,R, ψt} near an equilibrium ŷ if there exist a478

homeomorphism h : Rn → Rn that is defined in a small neighborhood U ∈ Rn of û, satisfies479

ŷ = h(û), and maps orbits of the {T ,Rn, φt} ∈ U onto orbits of {T ,R, ψt} ∈ V = h(U) ⊂ Rn
480

while preserving the direction of time.481

482
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A bifurcation consists in the appearance of a topologically non-equivalent phase portrait483

under variation of parameters. The difference between the dimension of the parameter space484

and the dimension of the corresponding bifurcation boundary is called “codimension”.485

To determine a system’s behaviour near bifurcations, minimal-order forms, called “nor-486

mal forms”, can be employed. In fact, the normal form of the bifurcation is locally topologi-487

cally equivalent near an equilibrium to all systems exhibiting that certain type of bifurcation488

(Haragus and Iooss, 2010).489

Consider a dynamical system490

ẋ = f(x, p′) , x ∈ Rn , p′ ∈ Rn (C.1)

and a polynomial model491

ζ̇ = g(ζ, p; β) , ζ ∈ Rn , p ∈ Rk , β ∈ Rl (C.2)

having dimension n, codimension k and polynomial order l. Without loss of generality,492

a change of coordinates can set the bifurcation point occurs at (x, p) = (0, p0) (Strogatz,493

2015). System C.2 is thus called a topological normal form for a given bifurcation if any494

generic system C.1 with the equilibrium x = 0 satisfying the same bifurcation conditions at495

p′ = 0 is locally topologically equivalent near the origin to model (C.2) for some values of496

the coefficients βi. Using normal forms, it is thus possible to study classes of bifurcations497

using simple polynomials. If the system satisfies certain conditions on ∂jf/∂ϕj|(0,p0) around498

the critical point, where j is the derivative order and ϕ = {x, p}, it is called “generic”. The499

nondegeneracy conditions ∂jf/∂xj are related to the “criticality” of a bifurcation (Kuehn,500

2011), while the trasversality conditions ∂jf/∂pj govern the bifurcation unfolding and thus501

its genericity (the bifurcation exists even after small perturbations). The saddle-node in-502

vestigated in the main text (cf. Fig. 4) is the most common generic normal form with503

dimension 1 and codimension 1 (Haragus and Iooss, 2010).504

505

For low-dimensional systems, their associated normal forms can be explicitly obtained506

using e.g. Taylor expansion methods over both nondegeneracy and trasversality conditions507

(Strogatz, 2015). For high-dimensional systems, numerical methods like XPP-AUT (http:508

//www.math.pitt.edu/~bard/xpp/whatis.html) or network reduction techniques (Gao509

et al., 2016; Tu et al., 2021) can be employed to infer or derive the normal forms. Obtaining510

analytical results for any system is still an open research field.511

STAR Method C.2. Analysis of slow dynamics512

The fluctuations around the stable manifold of Eq. 5 can be analysed by studying the513

fast-slow dynamics around it and determining stochastic equations for the residuals (Kuehn,514

2011; Berglund and Gentz, 2006; O’Regan and Burton, 2018). Here, we briefly recall the515

procedure to derive Eq. 6. Recall the normal form of a generic fold bifurcation:516

ẋ = p+ x2 , (C.3)
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It has two steady states:517

x̂1 = −
√
−p− 0 (stable) (C.4)

518

x̂2 = −
√
−p− 0 (unstable) (C.5)

where the term “−0” explicits the distance from the bifurcation point x0 = 0 (by definition).519

Consider a neighborhood of the attractor (stable fixed point) x̂1 and see what happens after520

small perturbations. To do so, perform a local linearization by considering δx = (x − x̂1).521

Thus:522

dδx

dt
' f(x̂1) +

∂f

∂x
|x̂1δx+ O(δx2) . (C.6)

So, using Eq. C.3 and Eq. C.4, we obtain:523

dδx

dt
' 2
√
−pδx . (C.7)

This deterministic form con be augmented by a Wiener process with variance σ arbitrary524

multiplied by h(x), representing non-Gaussian noise properties. This modelling choice con-525

verts the family of ODEs into SDEs (Berglund and Gentz, 2006; Namachchivaya and Leng,526

1990; Khas’ minskii, 1966). A change δx→ y makes the notation lighter into:527

dy = 2
√
−py dt+

√
h2(x)dW . (C.8)

The equation describes a system evolving under small noise in a neighbourhood of the stable528

equilibrium, when this is not far away from the bifurcation point.529

The term (x̂1 − 0) =
√
−p is the distance of the stable equilibrium from the bifurcation530

point and depends on the leading parameter p. We can thus rescale it to a new variable −k:531

dy = −k y dt+
√
h2(x)dW (C.9)

The sign “−′′ in “− k′′ is included so that Eq. C.9 is interpreted as the associated Langevin532

equation to a Ornstein-Uhlenbeck process (Gardiner, 1985). The term multiplying the de-533

terministic drift can thus be interpreted as −∂V/∂x where V (x) is the potential governing534

the drift of the particle subjected to random noise. In our case, thanks to the choices made,535

V =
1

2
k y2 , (C.10)

that is, a quadratically shaped adjoining potential typical of an overdamped oscillator under536

noise, of which k represents the depth. The working hypothesis is that boundary of the537

ideal potential V can grasp the boundary of the attracting basin of the original model after538

sufficiently long time. Eq. C.9 is analytically tractable to understand the main qualitative539

features of more complicated critical transitions. However, it requires ad hoc extensions540

when studying system-specific quantitative details like observability boundaries and lead541

times. Gardiner (1985) also extends Eq. C.9 to inhomogeneous processes with ramping542

parameters, used in Eq. 13.543
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STAR Method C.3. Reproduce Fig 1544

Fig. 1 displays examples of a bistable system with critical transitions and hysteresis as545

well as smooth transitions. Panel (a) corresponds to the bifurcation diagram of Eq. 15,546

flipped along the vertical axis to highlight the hysteresis.547

Panel (c) shows the bifurcation diagram, over an unfolded supercritical pitchfork bifur-548

cation, of ẋ = q + p(x − 1) − (x − 1)3, which corresponds to the bifurcation normal form,549

shifted (to better visualize the diagram) and modified by a small perturbing term q = 0.01550

unfolding the bifurcation (Thompson and Sieber, 2011) into a smooth branch. In brief, an551

unfolding of a dynamical system under static equivalence is one that exhibits all possible552

bifurcations of the equilibrium (rest) points, up to topological equivalence of the set of equi-553

libria (Kuznetsov, 2013). In other terms, it investigates what happens when small terms are554

added to the original bifurcation, mimicking extra parameters, small offsets or “impurities”.555

The illustrative attractors in panel (a) and (b) are two-well potentials associated, e.g., to556

the cusp bifurcation (aka “organising centre” Thompson and Sieber (2011); Eugenio et al.557

(2014)), a generic bifurcation described by ẋ = a+ bx− x3, where the combination of a and558

b determine bistability and the route to a saddle-node bifurcation.559

STAR Method C.4. Supporting analytical results560

STAR Method C.4.1. Entropy in case of Gaussian noise561

Within a symmetric potential, elicited by a (locally) quadratic normal form, consider a
Gaussian distributed variable y ∼ N (µ,Var). Its entropy is:

HS(y) = −
∫
p(y′) log p(y′)dy′ =

= −E [logN (µ,Var)] = E
[
log

[
1√

2πVar
exp

(
− 1

2Var
(x− µ)2

)]]
=

=
1

2
log (2πVar) +

1

2Var
E
[
(x− µ)2

]
=

=
1

2
[log(2πVar) + 1] ,

(C.11)

That is, for the case of Gaussian noise, HS is directly proportional to the variance and562

displays similar trends, that can be used to derive EWS.563

STAR Method C.4.2. Measurement noise564

Consider a measurement process with uncertainties σ2
m, independent from system vari-565

ance (Eq. 9). The resulting expected error, obtained from summing the two standard566

deviation in quadrature (Taylor, 1997), is:567

σ2
tot = V ar + σ2

m . (C.12)

To derive the autocorrelation, combine its definition568

AC(τ) =
Cov(x(t)x(t+ τ))√

V ar(x(t))V ar(x(t+ τ))
= e−k·|τ | for t→∞ (C.13)
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(where Cov indicates the covariance and V ar the variance) with Eq. C.12 (substituting569

V ar = σ2
tot). In principle, we can explicitly consider multiplicative noise like in the main570

text. However, the goal in this case is to compute if notable discrepancies exist between571

ideal measurements (no uncertainty) and realistic measurements (with some uncertainty,572

that can be filtered to correspond to white noise). Hence, only the case of white process573

noise is currently considered. This results in:574

AC(1)m =
σ2

2k
e−k√(

σ2

2k
+ σ2

m

)2 . (C.14)

Obviously, limσ2
m→0AC(1)m = AC(1). Fromm Eq. C.14, we can immediately see that575

measurement uncertainties σm induce small scaling but do not alter the functional. Only576

relatively high measurement uncertainty levels change the absolute values of expected lag-1577

autocorrelation, but maintain the increasing patterns close to critical points.578

STAR Method C.4.3. Skewness and kurtosis579

For certain simulated systems, the third statistical moment (skewness) has been sug-580

gested to provide useful early warnings (Guttal and Jayaprakash, 2008). However, experi-581

mental results (Dai et al., 2012) were not able to confirm the expectations, estimating flat582

and fluctuating trends before a tipping point.583

For a stochastic process with quasi-steady state parameter, its statistical moments are584

〈yn〉 − 〈y〉n =

∫ ∞
−∞

(y′ − µ)nP (y′)dy′ (C.15)

where P (y′) is the associated probability density function and µ is the expected average585

value.586

For odd n, if µ = 0 and P (y′) is symmetric, the integral equals 0 by definition. Symmetric587

probability density functions are associated, for instance, with quadratic potentials (Eq.588

C.10) that are typical of bifurcation normal forms under white noise, for which (Gardiner,589

1985)590

P (y) =

√
k

πσ2
Exp

[
− 2

σ2
U(y)

]
=

√
k

πσ2
Exp

[
−ky

2

σ2

]
(C.16)

Consequently, the normal forms – in particular, the saddle-node – considered above are591

expected to display a flat skewness.592

On the other hand, the integral C.16 may be non-zero, and even dependend on the drift593

parameter k, if µ 6= 0 or if P (y) is asymmetrical. In the first case, solving Eq. C.16 yields594

(provided that Re[k] > 0):595

Skew = −µ(3 + 2kµ2)

2k
. (C.17)

In this case, as k → 0, the skewness is expected to increase, potentially providing an early596

warning597
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On the other hand, an asymmetric potential can be obtained in case of multiplicative598

noise (Gardiner, 1985; Sharma et al., 2016). Depending on the specific form, it may be599

possible to observe increasing trends associated to EWS, but they may be system-specific600

and not generalisable. In this sense, there is no ambiguity between the results of Guttal601

and Jayaprakash (2008) and Dai et al. (2012): they were studying systems with different602

properties, using an indicator that is not particularly performing and generalisable.603

604

As for the kurtosisn, in case of µ = 0 (typical white noise), kurtosis = 3Var2. This can605

be obtained by solving Eq. C.16. If µ 6= 0, or for other exotic noise forms, and if Re[k] > 0:606

Kurt =
3 + 4kµ2(3 + kµ2)

4k2
, (C.18)

whose leading term for 0 < k < 1 still equals Var2. Hence, the variance is already represen-607

tative of higher moments, which are not expected to improve EWS unless system-specific608

noise and drift forms are considered. Note that, for both Eq. C.17 and Eq. C.18, the609

constant noise level σ is normalised to 1 for ease of notation.610

STAR Method C.5. Computational simulations611

In all computer simulations of Eq. 15, K = 0.1 to set bistability. The analysis con-612

centrates on the upper stable branch of the bifurcation diagram (Fig. 4, right) to compare613

with white noise results. In this case, multiplicative noise corresponds to intrinsic regulatory614

mechanisms (Hasty et al., 2000; Norman et al., 2015) rather than stochasticity due to small615

numbers (Gillespie, 2000). Simulations are performed in Matlab (R2021b) using the Mil-616

stein method with a time step of 0.01 (arbitrary units). For quasi-steady state simulations,617

distributional data for each c from far to close the bifurcation point are computed upon618

stable values of system’s state, after a transient.619

The Milstein method runs Monte Carlo chains over Itô-Taylor expanded stochastic dif-620

ferential equations for any variable z, up to second order:621

z(ti + 1) = z(ti) + f(z(t))∆t+ g(z(ti))∆Wi +
1

2
g(z(ti))g

′(z(ti))
[
(∆Wi)

2 −∆t
]

; . (C.19)

It better converges to the true Itô integral and was proven to have improved accuracy622

(Bayram et al., 2018). When g(z(t)) = const (only additive noise without state-dependency),623

it is equivalent to the common Euler-Maruyama scheme.624

625

Setting simulation parameters of noise intensity and distance to critical points require626

understanding their reciprocal scales. To do so, we employ a methodology introduced in627

(Kuehn, 2011; Proverbio et al., 2022b), that is, to look for significant changes in the Kramers’628

escape rates out of bistable potentials. The Kramers escape rate is (Gardiner, 1985)629

τ = 2π(
√
|U ′′(x̃1)U ′′(x̃2)|)−1 exp[(U(x̃2)− U(x̃1))/σ] (C.20)
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and measures the average expected rate of escape of multiple noisy particles from attracting630

wells. For any saddle-node bifurcation ẋ = p − x2 equipped with additive noise, U(x̃2) −631

U(x̃1) = 32/3p3/2 and |U ′′(x̃1,2)| = 2
√
p. Hence,632

τ ' O
(

exp

[
p3/2

σ

])
(C.21)

Comparable ranges of control parameters and noise levels are studied in (Proverbio et al.,633

2022b) and reproduced in Supplementary Figure S4. We use those results to distinguish two634

regimes, one where few noise-induced transitions might occur and another regime primar-635

ily determined by the approach to the bifurcation. We set values of c − c0 (distance from636

bifurcation point) and σ (noise intensity) accordingly, to span both regimes and see what637

changes when n-tipping becomes more frequent.638

639

Finally, the statistical indicators are computed using their standard definitions, using640

their corresponding Matlab functions. For example, variance and Shannon entropy HS641

are:642

Varj =
1

N − 1

N∑
r=1

(Bj,r − B̂j)
2 (C.22)

643

HS = −
∑

pj log pj (C.23)

for any point j corresponding to a single parameter value, with N data B distributed644

around a mean value B̂ and probability density function pj. Other statistical moments and645

indicators can be computed similarly.646

STAR Method C.6. p-value assessment of significant increase and optimisation647

By theory, an early warning signal is triggered when an increasing trend of suitable sta-648

tistical indicators is observed (Scheffer et al., 2009). However, during real-time monitoring,649

it is often challenging to say whether a measured increase of mean values is significant or650

not, due to random fluctuations and uncertainties that may occur. If increasing trends are651

not quantified properly, spurious signals may be triggered (Boettiger and Hastings, 2012).652

For analysis performed using moving windows over time-series data, the Kendall’s τ score of653

monotonous increases have been proposed (Boettiger and Hastings, 2012; Proverbio et al.,654

2022a), as well as threshold of confidence intervals, with respect to baseline values (Drake655

and Griffen, 2010).656

Since we work with distributional data, we propose to employ significance levels on657

Welch’s p-value scores (non-equal variances allowed between the populations), which relate658

to threshold in confidence intervals and are readily interpreteable (Proverbio et al., 2022b).659

They also allow to estimate the sensitivity to noise intensities and the expected lead pa-660

rameter for detection or anticipation of critical transitions. The idea is to compare the full661

distributions at each parameter value c with a reference one, usually taken far from the662

bifurcation point and without n-tipping, and check whether they are significantly separated663

towards increasing values. The p-value scores are used to assess the significance. This664
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method can still be sensitive to fluctuating scores (hence, a smoothing is employed), but it665

has the advantage of relying on a-prioristic values, e.g. significant p-value psig = 0.05. Of666

course, a p-value does not distinguish between increasing or decreasing trends: it is thus667

coupled with simple visualization of the direction of the trends.668

Examples of the three methods are provided in Supplementary Figure S1.669

670

Quantifying the significance of increasing trends is leveraged as follows: we extract671

at which value of the control parameter c the p-value crosses the significance threshold672

psig = 0.05 as a reference. Other common thresholds p = 0.1 or p = 0.01 can be used,673

yielding consistent results. When p-value < psig, it means that an indicator has significantly674

increased more than the baseline, triggering a warning signal. Consider all ci tested during675

the simulations, i = 1..N with N = (cmax − cmin)/0.002; cmax and cmin are two arbitrary676

values greater and lower than the bifurcation value c0, within the bistable region, and 0.002677

is the simulation step |ci − ci−1|. Out of all ci, estimate csig = cj, where j is the first index678

at which p-valuej < psig stably, i.e., without considering small fluctuating values (for that,679

a smoothing is employed). This is performed for each indicator I and each noise level σ.680

Hence, the analysis estimates681

cIsig(σ) = cj s.t. p-valuej(I) < psig ∧min(j) . (C.24)

The optimisation problem described in the main text aims at maximising the combination682

of all cIsig(σl) obtained at different noise levels σl, so that the results are robust against a683

range of signal-to-noise ratios. As described in the main text, the analysis is complemented684

with a counter C to quantify how many tipping events occurred before the bifurcation point,685

for each σ.686

687

A final comment regards the set of considered indicators I. In principle, CV could688

be included among the as its performance improves in case of multiplicative noise (see689

Supplementary Figure S3. However, the optimisation procedure does not strongly select it,690

preferring the combinations in Fig. 5d. Hence, it has been removed altogether, to improve691

the computational speed when using more fine-grained steps for the grid search.692

STAR Method C.7. Data collection and analysis693

Experimental data were collected and curated by the original study (Dai et al., 2012).694

We refer to it for details about the experimental protocols. The publicly available data695

correspond to ensemble of replicate populations, at each observation time corresponding to696

input dilution factors altering the environmental sucrose concentration. The eight dilution697

are 250, 500, 750, 1000, 1133, 1266, 1400 and 1600. Population densities were recorded by698

measuring optical density at 620 nm using a Thermo Scientific Multiskan FC microplate699

photometer. The values used in the analysis represent cell numbers, estimated from optical700

densities converted through calibration curves described in thee original publication. For701

each observation time, several statistical indicators were calculated over the ensembles as702

explained in the previous section.703
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The standard errors and confidence intervals of the indicators were given by bootstrap.704

In bootstrap, the replicates are resampled by combining the data over 5 days (observation705

lag for one dilution factor) into a single distribution. Resapling was performed by 50 to706

1000 repetitions, to check the robustness of final p-values against bootstrapping hyper-707

parameters and to confirm consistency with the original results. Since there are, on average,708

60 data entries for each dilution factor value, we eventually employ bootstrapping with 50709

repetitions, to avoid biases in the p-values due to random over-repetitions of some data.710

The p-values to quantify significant increases in the distributions of indicators are cal-711

culated as described in STAR Method C.6, using the distribution at dilution factor 250712

(the smallest and furthest from the bifurcation point) as baseline, and comparing all other713

distributions against it, making sure that the mean value was increasing before drawing714

conclusions.715

STAR Method D. Supplementary information titles and legends716

Figure S1: Quantitative definition of EWS. Left: Example of looking for trends717

past thresholds of confidence intervals. In this case, past the 2σ interval (dashed line) over718

the uncertainty of the rightmost point, used as baseline far from the bifurcation value c0.719

Centre: Example of Kendall’s τ estimation. Compare the trends within two sliding win-720

dows. If the new one is monotonously increasing with respect to the old one, τ > 0, while721

no increase corresponds to τ = 0; the steeper the trend, the higher τ . Right: Example of722

p-value between two distributions corresponding to different parameter values: the baseline,723

corresponding to the rightmost c, and another generic c′. Each distribution corresponds to724

an average value of the statistical indicator (superimposed and shifted for visualization pur-725

poses). p-values’s significance can be checked with standard statistical methods, to assess726

whether the registered increase is significant or not. All figures use variance computed from727

simulations of Eq. 15 in main text, with n = 2, K = 0.1 and σ = 0.02. c0 is the critical728

value for bifurcation point.729

730

Figure S2: Trends of notable indicators before and after the bifurcation point731

c0. It is displayed as a function of the control parameter c from Eq. 15 of main text. The in-732

creasing trends yield early warning signals. The violet ribbon represents confidence intervals733

of 2 standard deviations, estimated from repeated simulations. Indicators are: Variance,734

lag-1 Autocorrelation, Skewness, Kurtosis, Coefficient of Variation, Index of Dispersion,735

Shannon Entropy (HS). Note that some of them peak at the transition point, while others736

don’t due to noise-induced transitions altering their expected trends. All simulations are737

performed with white noise, σ = 0.012.738

739

Figure S3: Dependency of csig (Eq. C.24 of main text) for each considered740

indicator I and noise intensity σ. It is displayed with the corresponding counting C of741

noise-induced transitions happening before the bifurcation point, at each noise intensity σ.742

Different multiplicative noise types are considered (cf. Eq. 17 of main text): a) h(x) = x.743

b) h(x) = x2. c) h(x) = x2/(1 + x2). Due to differing fluctuation types, the indicators have744
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different performances in identifying the lead parameter. Conserved patterns are: entropy745

HS is normally the best, particularly for high σ; Skew and Kurt perform poorly. AC(1)746

follows HS closely, but with slightly lower csig. Var and ID are normally worse that CV,747

as they are less sensitive to mean values. Notably, CV works better that in the case of748

white noise (compare with Fig. 5 of main text) but it still lags behind HS, particularly in749

case of low σ. Note that several n-tipping occur before the bifurcation point as σ increases,750

except for h(x) = x2/(1 + x2) that better buffers the system variability, as also noted in751

(Proverbio et al., 2022b). Particularly for this case, the main indicators provide anticipating752

signals (around csig ≥ 0.05) while n-tipping starts around c ' 0.02. In the other cases, the753

indicators are normally providing early warnings, except in the case σ > 0.046 for which754

they may just-on-time detect the few n-tipping events already happening.755

756

Figure S4: Kramers’ escape rate τ as a function of noise level σ and p (distance757

from bifurcation point). Its analytical form is in Eq. C.21 of main text of the main text.758

We use the boundary colored in yellow as a proxy to set commensurable magnitudes between759

control parameter and noise intensity in computer simulations.760
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