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Abstract

In the course of infecting their hosts, pathogenic bacteria secrete numerous effectors, namely, bacterial proteins that

pervert host cell biology. Many Gram-negative bacteria, including context-dependent human pathogens, use a type IV

secretion system (T4SS) to translocate effectors directly into the cytosol of host cells. Various type IV secreted effectors

(T4SEs) have been experimentally validated to play crucial roles in virulence by manipulating host cell gene expression and

other processes. Consequently, the identification of novel effector proteins is an important step in increasing our under-

standing of host–pathogen interactions and bacterial pathogenesis. Here, we train and compare six machine learning

models, namely, Naı̈ve Bayes (NB), K-nearest neighbor (KNN), logistic regression (LR), random forest (RF), support vector

machines (SVMs) and multilayer perceptron (MLP), for the identification of T4SEs using 10 types of selected features and

5-fold cross-validation. Our study shows that: (1) including different but complementary features generally enhance the

predictive performance of T4SEs; (2) ensemble models, obtained by integrating individual single-feature models, exhibit

a significantly improved predictive performance and (3) the ‘majority voting strategy’ led to a more stable and accurate

classification performance when applied to predicting an ensemble learning model with distinct single features. We further

developed a newmethod to effectively predict T4SEs, Bastion4 (Bacterial secretion effector predictor for T4SS), and we show

our ensemble classifier clearly outperforms two recent prediction tools. In summary, we developed a state-of-the-art T4SE

predictor by conducting a comprehensive performance evaluation of different machine learning algorithms along with a

detailed analysis of single- and multi-feature selections.

Key words: type IV secreted effector; bioinformatics; sequence analysis; comprehensive performance evaluation; machine

learning; feature analysis

Introduction

Pathogenic bacteria are microorganisms that cause infections.

During this process, bacteria invade a host organism where

they multiply, producing and secreting effector proteins. Such

effector proteins fulfill a range of functions critical for the viru-

lence of the pathogen, that is the degree of damage that the bac-

terium causes to the host. In most cases, effector proteins are

directly injected into host cells via dedicated secretion systems,

enabling them to modulate or manipulate a wide range of cellu-

lar processes, including actin dynamics (e.g. Beps secreted by

Bartonella spp.) [1–3], phagocytosis (e.g. various effectors of

Yersinia and Salmonella enterica) [4, 5], endocytic trafficking (e.g.

effectors of Legionella pneumophila) [6–8], apoptosis (e.g. Shigella

effectors IpgD and OspG) [9, 10], immune response (YopJ from

Yersinia enterocolitica) [4, 11] and secretion (e.g. Escherichia coli ef-

fector EspG) [12].

Currently, Gram-negative bacterial secretion systems are

classified into six types (I-VI) [13]. Among them, type III and

type IV secretion systems (T3SS and T4SS, respectively) and

their associated effectors (T3SEs and T4SEs, respectively) have

been widely studied, as they are critical for virulence of various

human pathogens. For example, S. enterica, Yersinia pestis and

Pseudomonas syringae use type III secretion systems [14], while

Brucella spp., Bartonella spp., Helicobacter pylori and L. pneumophila

use T4SSs [15]. Despite their clinical significance, a fundamental

biological question remains: How does a given secretion system

recognize a given effector protein as a substrate, which it must

bind and secrete? These secretion systems are highly selective

nanomachines, and do not inadvertently secrete non-effector

proteins. Clearly, some element or elements of effector protein

sequence and/or structure must dictate recognition by the cog-

nate secretion system, but there is an outstanding need for an

integrative understanding what these recognition elements are

and how they determine substrate protein secretion. While

specific wet-lab experimental studies can answer underlying

questions for individual effector proteins, bioinformatics-based

tools are needed to address the matter more efficiently and

comprehensively.

Recently, machine learning algorithms were introduced to

predict T4SEs [16–18]. For instance, Burstein et al. [16] developed

a machine learning model for differentiating T4SEs from non-

effectors in L. pneumophila. Their model used seven types of

features including ‘taxonomic distribution among bacteria and

metazoa’, ‘sequence similarity to known effectors’ and ‘hom-

ology to known eukaryotic proteins’, which the authors con-

cluded from their analysis were the three best representative

features [16]. To examine the classification performance of

different algorithms, they used support vector machine (SVM),

multilayer perceptron (MLP), Naı̈ve Bayes (NB), Bayesian net-

works (BNs) and a Voting Algorithm, the latter of which was

based on the former four classifiers. The study successfully

predicted and experimentally verified 40 novel T4SEs from

Legionella. In another recent work, Zou et al. [17] developed an

SVM-based classifier called T4EffPred using four distinct feature

types, including amino acid composition (AAC) and position-

specific scoring matrix (PSSM), as well as feature combinations.

T4EffPred could distinguish IVA and IVB effectors, which are the

two main subtypes of T4SEs [17]; it has also been successfully

applied to perform genome-wide predictions of effectors in

the bacterium Bartonella henselae, where �50 putative T4SEs

were found. In a third study, Wang et al. [18] presented a T4SE

inter-species cross-prediction tool based on C-terminal

features, such as AACs, motifs, secondary structures (SSs) and

solvent accessibility (SA). The tool comprises three computa-

tional models that were trained using SVM-based machine

learning (T4SEpre_psAac, trained using position-specific,

sequence-based AACs; T4SEpre_bpbAac, trained using AACs

based on bi-profile Bayes feature extraction combined with

SVM; T4SEpre_Joint, trained using position-specific AACs, SSs

and SA). When applied to the genome of H. pylori, 25 candidate

T4SEs were identified by the authors. Also based on C-terminal

Signals, Zou et al. [19] analyzed the performance of C-terminal

sequence features such as AAC and position-specific amino

acid composition (PSAac). They used multiple machine learning

algorithms to train models of T4SEs with a majority vote strat-

egy. Based on their findings, an SVM predictor of type IV-B

932 | Wang et al.



effectors trained with PSAac and AAC was developed and vali-

dated through a genome-scale prediction in Coxiella burnetii. Our

previous work [20] comprehensively reviewed the currently

available bioinformatics approaches for T4SE prediction, and

offered an assessment of these approaches in terms of software

utilities and prediction performance. A recent review from Zeng

et al. [21] further discussed and highlighted some potential im-

provements of the prediction performance after benchmarking

the available identification tools of secreted effector proteins in

bacteria. The schematic figures in such article give a bird’s-eye

view of computational toolkits in the field of secreted effector

predictions.

While previous work has demonstrated that machine

learning approaches can successfully predict effector proteins,

the features or combinations of features that are most appropri-

ate for efficient T4SE prediction have not been systematically

assessed. Here, we used 10 types of features and 6 different

machine learning algorithms to train predictors with 390 T4SS

effectors and 1112 non-effectors. We first compared the 10 types

of features with their combinations on multiple performance

assessments and found that, while combinations of features in

a single model do not yield statistically significant improve-

ments, the ensemble of multiple individual models trained with

different single features significantly improved the overall per-

formance. Our direct comparison of six representative models,

namely, NB, K-nearest neighbor (KNN), logistic regression (LR),

random forest (RF), SVM and MLP, shows that RF and SVM out-

performed all others in terms of predictive and computational

performance. In addition, the ensemble model that integrated

all six machine learning methods further improved the predic-

tion performance. With this valuable knowledge, we developed

Bastion4, an online T4SE predictor that operates as an ensemble

classifier based on six machine learning models, each of which

consists of individual models trained with various types of

selected features. Our subsequent analysis presented here

shows that Bastion4 outperforms T4Effpred and T4SEpred based

on independent tests. Bastion4 is available at http://bastion4.

erc.monash.edu/.

Materials and methods

The Bastion4 methodology development (Figure 1) involved five

major stages: Data set Curation, Feature Extraction, Feature

Selection, Model Training and Validation and Prediction. Each

of these major stages is described in the following sections.

Data sets collection

The input data set consisted of two parts: the training data set

and the independent data set. We constructed the training data

set by extracting known T4SEs from independent data sets

described in the literature. Specifically, 347 T4SE sequences

were extracted from the T4SEpre data set constructed by Wang

et al. [18]. The pathogen B. henselae has two subtypes of T4SS

(IVA and IVB), and 340 effectors including 30 IVA proteins and

310 IVB proteins were acquired from Zou et al. [17]. Finally, we

added 120 proteins identified by Burstein et al. [16]. For the nega-

tive training set, we chose the entire set of 1132 non-effectors in

Zou et al. [17]. After forming the preliminary data set, CD-HIT

[22] was used to remove highly homologous sequences (defined

as having 60% sequence identity) to reduce sequence redun-

dancy, which may otherwise lead to a potential bias in

the trained models. The final training data set contained 390

positive and 1112 negative sequences.

To evaluate the model performance in comparison with

existing T4SE prediction tools, we generated an independent

data set containing both positive and negative samples. For the

former, 43 positive samples were acquired from the UniProt

Database [23] and Meyer et al. [24], while for the latter, we used

150 samples from the data set of Vibrio parahaemolyticus

serotype O3: K6 (strain RIMD 2210633) [25]. After removal of

duplicate samples, which appear in our training set and the

data sets used by the existing T4SE predictors, we obtained

a final independent data set made up of 30 positive and 150

negative samples.

Feature extraction

The variety of features used in this work can be categorized into

three main types: local sequence encoding, global sequence

encoding and structural descriptor encoding. Extracted from the

type-specific information available for any given protein, each

feature is represented by a number of encoding vectors.

Local sequence encoding

Feature associated with local sequence encoding refers to dis-

tinguishable patterns in the protein sequence.

(1) Amino acid composition

AAC is represented as a 20-dimensional feature vector, in which

each element characterizes the frequency of an amino acid type

in the whole protein sequence [26].

Each element in this feature vector was calculated according

to the following formula:

vi ¼
ci

lenðseqÞ ; i ¼ 1; . . . ; 20;

where ci is the number of occurrences of amino acid i in the

whole protein sequence, and lenðseqÞ is the length of the se-

quence. Finally, vi represents the i-th element in the feature

vector, which indicates the frequency of the amino acid i in the

protein sequence.

(2) Dipeptide composition

A protein’s dipeptide composition (DPC) is encoded in a 400-di-

mensional feature vector {fp1; fp2; . . . ; fp400}, which represents

the frequencies of all 400 possible amino acid pairs in the pro-

tein sequence. Each element fpi is obtained using the following

formula:

fpk ¼ pi
len seqð Þ � 1

; i ¼ 1; 2; . . . ; 400;

where pi denotes the number of occurrences of the i-th amino

acid pair [17], and len seqð Þ � 1 refers to the total number of di-

peptides in the whole sequence.

(3) Composition of k-spaced amino acid pairs

As a widely used feature type in sequence analysis [27, 28], the

composition of k-spaced amino acid pairs (CKSAAPs) is in effect

a generalization of the DPC. Two amino acids form a k-spaced

amino acid pair if they have k amino acids in-between them. In

this sense, amino acid pairs in the DPC can be viewed as 0-

spaced amino acid pairs in the CKSAAP. For CKSAAP, all pairs

with space � k are considered. Thus, CKSAAP outputs a

400� ðkþ 1Þ-dimensional feature vector for a given protein

sequence. We use k¼ 5, and, consequently, a 2400-dimensional

vector is constructed.
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(4) Property composition

The property composition (PPT) [29] maps amino acids to three

distinct amino acid alphabets, namely, the classical amino acid

alphabet, the amino acid property alphabet and the hydropho-

bic/hydrophilic alphabet. Each amino acid corresponds to a cer-

tain property class. When an amino acid fits to multiple property

classes, it was categorized into the most specific (smallest) class.

For each property class, di- and tripeptides were measured in

terms of frequency. Moreover, only the features that occur more

than one time in both positive and negative data sets were se-

lected to avoid over-fitting. Consequently, a 72-dimensional fea-

ture vector is formed for each protein sequence.

Global sequence encoding

PSSMs have proved beneficial for incorporating evolutionary in-

formation in machine learning methods [17, 30–35]. Here, we

generated PSSM profiles by running PSI-BLAST against the

nonredundant database of NCBI with parameters j ¼ 3 and

h ¼ 0:001. There are two types of methods for exploiting pat-

terns from PSSM profiles, which are explained below.

(5) PSSM profiles with auto covariance transformation

A PSSM is a L� 20 matrix, where L is the length of the corres-

ponding protein sequence. The (i, j)-th element of the matrix de-

notes the probability of amino acid j to appear at the i-th

position of the protein sequence. The PSSM encoding converts

the PSSM profile into a 20� 20 matrix by summing up all rows

of the same amino acid residue [34], thereby forming a 400-di-

mensional vector as part of the input for model training.

Based on the original L� 20 matrix, the PSSM_AC encoding

uses the auto covariance (AC) transformation to further meas-

ure the correlation between two properties [17, 36] by using the

following formula:

AC j; lgð Þ ¼
X

L�lg

i¼1

Si;j � �S j

� �

Siþlg;j � �S j

� �

= L� lgð Þ;

where j refers to one of the 20 amino acids, L denotes the length

of the whole protein sequence, Si;j denotes the PSSM score of

amino acid j at position i and �S j is the average score for amino

acid j along the whole sequence:

�Sj ¼
X

L

i¼1

Si;j=L:

Consequently, the number of AC components amounts

to 20� LG, where lg runs from 1; 2; . . . ; LG, with LG < L. Here,

we set LG ¼ 10 as previously used in Zou et al. [17], yielding a

200-dimensional feature vector.

Figure 1. Overview of the proposed methodology for predicting T4SEs. First, a large number of protein sequences are collected, forming the input data set. Then, 10

types of features are extracted that characterize those proteins in different ways. Using the mRMR/Gain Ratio technique, a subset of features is selected to optimize the

following model training. Next, the performance of trained models is evaluated by a 5-fold cross-validation test and an independent test. Finally, by applying a voting

mechanism to various models, an ensemble classifier is formed, which separates the input into putative effectors and non-effectors.
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(6) Smoothed PSSM encoding

A transformation of the standard PSSM profile, the Smoothed

PSSM (PSSM_SMTH) encoding, has been previously used to

predict RNA-binding sites of proteins [37] and drug-binding resi-

dues [38]. Assuming the size of a smoothing window is w and vi
represents the ith row vector of the PSSM, each row vector of

the PSSM_SMTH can be constructed by summation of the

current row vector and the following w� 1 row vectors (Figure

2):

vsmoothed i
¼ vi þ � � � þ viþ w�1ð Þ:

For this method, we use values of w ranging from 1 to 10.

Therefore, 10 PSSM_SMTH profiles are obtained. For each

PSSM_SMTH profile, rows corresponding to the first 50 amino

acids starting from the protein’s N-terminus are considered to

form a vector with dimension 50� 20¼ 1000. As a result, a

10 000-dimensional vector is constructed.

To extract the PSSM_AC encoding and the 10 PSSM_SMTH

encodings, we used the POSSUM server, which is a bioinformatics

toolkit for generating numerical sequence feature descriptors

based on PSSM profiles [39].

Structural descriptor encoding

Protein structural information has been widely used to improve

the prediction performance in a number of bioinformatics appli-

cations [40–45], but has not been comprehensively analyzed for

the prediction of T4SEs. In our machine learning framework

described here, we extract SS, SA and natively disordered region

information for T4SE sequences and use them as features for

model training.

(7) Predicted SS

Protein SS is a widely used attribute in bioinformatics pre-

dictors. As the SS is known for only a relatively small number of

proteins, we instead predicted protein SSs from amino acid se-

quences using SSpro [46]. Specifically, for each residue of

the query sequence, SSpro predicts one of three types of SS:

alpha-helix, beta-strand or coil. Here, we represent these types

of predicted SS by using a 3-bit encoding and encode the first 50

Figure 2. Example of a PSSM_SMTH profile using a smoothing window of size 7. The PSSM profile shows the evolutionary information extracted from the PSSM file,

which is generated by PSI-BLAST. When the size of the smoothed window is set to 7, the values of the 7th row in the PSSM_SMTH profile are equal to the sum of the

corresponding values from the 7th row to the 13th row of the PSSM file.
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residues of the queried sequence, thereby forming a vector of

length 3� 50¼ 150.

(8) Predicted SA

SA is another important feature for prediction. The SSpro program

can be used to predict SA from protein sequence data. For each

residue in a sequence SSpro predicts, it being in one of the two pos-

sible states ‘exposed’ or ‘buried’. Therefore, we use a 2-bit encoding

to represent predicted SA and encode the first 50 residues of the

queried sequence, forming a vector of length 2� 50¼ 100.

(9) Predicted natively disordered region

Disordered (DISO) protein regions lack fixed tertiary structure,

being either fully or partially unfolded [47]. Contrary to initial

concerns that these regions were functionally ‘useless’, recent

studies indicate that such regions are commonly involved in

many biological functions [47]. Here, we predict the native dis-

order information using DISOPRED2 [48], which provides a quan-

titative real-valued score ranging from 0 to 1, which represents

the probability of a residue being disordered. For this structural

descriptor, we used seven different sizes of smoothing windows

as previously suggested [49] (w ¼ 1; 7; 11; 21; 27; 31; 41) to

encode the first 50 residues of the queried sequence, resulting in

a feature vector of length 7� 50¼ 350.

Feature normalization

After feature extraction, we found that some features have val-

ues ranging between 0 and 0.01, while others have values rang-

ing from 1 to 1000. However, features that can frequently

assume larger numeric values are also more likely to have a

larger impact on the prediction as compared with features with

ranges of smaller numeric values. Thus, to improve the predic-

tion accuracy and avoid having a particular feature dominating

the prediction because of it assuming larger numerical values,

we normalize values of different features so that all values fall

into the same numeric interval [50].

Here, we use the following formula to normalize all feature

values to the numeric interval [0, 1]:

x
0 ¼ x� xmin

xmax � xmin
;

where x; xmin; xmax denote the original value, the minimum val-

ue and the maximum value in the feature vector, respectively,

and x
0
denotes the output value of x after scaling. If the numbers

in a feature vector are equal to each other, i.e. xmax � xmin ¼ 0,

we assign the value 0.

Feature selection

Feature selection plays an important role in machine learning.

Biological data sets are usually characterized by a large number

of initial features, making it a formidable task to deal with

oversized feature sets; some of the typical problems include

slow algorithm speed and a low predictor performance.

Thus, the objective of feature selection is 3-fold: improving the

prediction performance of the predictors, providing faster and

more cost-effective predictors and providing a better under-

standing of the underlying process that generated the data [51].

Gain ratio

The gain ratio algorithm is a powerful method based on infor-

mation theory [52]. In this binary classification problem, we as-

sume the probability of a positive sample to be P and the

probability of a negative sample to be 1� P. The entropy of the

classification can be denoted as:

H Cð Þ ¼ �Plog2 P� 1� Pð Þlog2 1� Pð Þ;

where C denotes the positive class label. The conditional entropy

of the feature Fj can be calculated as follows:

H CjFj
� �

¼
X

m

j¼1

PF¼FjHðCjF ¼ FjÞ;

where m denotes the total number of features. Therefore, we

can express the formula of gain ratio as:

GR Fj
� �

¼
H Cð Þ �H CjFj

� �

HðCÞ :

mRMR

The mRMR algorithm is based on mutual information [53]. It was

originally proposed by Peng et al. [53] and can be downloaded from

http://penglab.janelia.org/proj/mRMR/. The mRMR algorithm has

been widely used in a number of feature-selection tasks in many

research areas [54–59], including protease cleavage sites predic-

tion, acetylation site prediction and other posttranslational

modification site predictions.

Model training

Naive Bayes

NB is a commonly used statistical classifier that is generally

adopted to calculate the conditional probability without assum-

ing any dependence between features. It has been successfully

applied in many disciplines of science, and performs consist-

ently well even when considering relatively few attributes [60].

NB operates based on the Bayes’ theorem:

p CjF1; F2; . . . ; Fnð Þ ¼ p Cð Þ
p F1; F2; . . . ; Fnð Þ

Y

n

i¼1

p FijCð Þ;

where C represents the binary class variable, and F denotes the

input feature vector of the classifier.

K-nearest neighbor

KNN is a simple but powerful classification method, which

predicts a new candidate by evaluating the distance functions

to k nearest known neighbors. It has been successfully used in

many bioinformatics endeavors such as the prediction of

protein function [61], protein subcellular localization [62] and

membrane protein architecture [63]. According to the KNN

algorithm, a new instance is classified by a majority vote of its

top KNNs. The instance is then assigned to the most common

class among the top KNNs.

The choice of parameter k is important, and has a direct ef-

fect in the performance and outcome of a KNN classifier. In this

work, k was optimized so as to minimize the classification error

for values k ¼ 1; 2; . . . max f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

featureNum
p

; featureNum=2g
j k

,

where featureNum is the number of features used during model

training.

Logistic regression

As a widely used algorithm [64, 65], LR results from a linear

regression using the following equation:
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p yð Þ ¼ 1

1þ e� b0þb1xð Þ ;

where pðyÞ refers to the expected probability of dependent

variables, and b0; b1 are constants.

As the values of LR range from 0 to 1, it is a useful technique

for handling classification problems, especially in situations

where only the probability of occurrence of the response is

concerned.

Random forest

The RF algorithm is a classification algorithm developed by Leo

Breiman [66] using an ensemble of classification trees. It has

been widely used and implemented as the RF package in R [67].

RF is one of the most powerful algorithms in machine learning

[68]. In RF, two key parameters are the number of the trees, M,

and the number of features selected randomly, mtry.

Here, we selected M ¼ 1000, and optimized the param-

eter mtry over the set of integers between 1 and

max f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

featureNum
p

; featureNum=2g
j k

to minimize the classi-

fication error. Here, featureNum is the total number of features.

Support vector machine

SVM is a powerful machine learning algorithm and is com-

monly used to deal with binary classification problems. SVM

has been widely applied to solve many classification and regres-

sion problems in bioinformatics and computational biology [17,

18, 26, 27] and, particularly, SVM with a Gaussian radial basis

kernel is widely used for nonlinear classification problems.

There are two parameters that affect the performance of the

nonlinear SVM model: Cost (C), which controls the cost of mis-

classification during data training, and Gamma ðcÞ, which is the

free parameter of the Gaussian radial basis function.

In this study, we adopt the radial basis kernel for SVM model

training by using the e1071 package [69] in R language. We use

the grid search method to identify the optimal parameters C

2 2�6; 2�5; . . . 1; . . . ;25; 26
�

and c 2 2�6; 2�5; . . . 1; . . . ; 25; 26
�

.

Accordingly, our number of grid points is 13� 13¼ 169. Based on

the training data, the SVM is optimized by finding the optimal

values for C and c that minimize the classification error by

performing 10-fold cross-validation.

Neural networks

A neural network is a nonlinear statistical classifier that is able

to detect complex relationships between dependent and inde-

pendent variables [70]. One type of neural network is called

MLP. An MLP is characterized by multiple layers, that is there

can be one or more nonlinear layers (hidden layers) between

the input and the output layers. An increase in the number of

hidden layers facilitates neural network models to solve

increasingly nonlinear problems.

Using RSNNS [71], an R implementation of SNNS [72], we

train an MLP classifier with two hidden layers. The numbers of

nodes in the first and second hidden layers are set to 64 and 32,

respectively, while the maximum number of iterations to learn

is set to 1000.

Randomized 5-fold cross-validation test

Cross-validation is a common method for estimating the per-

formance of a classification model. In this study, the benchmark

data set is randomly partitioned into five equal-sized subsets,

and tests are repeated five times. For each cross-validation

test, one subset is used as testing data, while the remaining

four subsets form the training set are used to train the classifier.

Hence, each subset is used once for testing and four times

for training. The five numerical results obtained from these

tests are averaged to obtain a single value that represents the

performance of the classification model.

Independent test

In this study, we compare the performance of our models with

three previously published classifiers: T4Effpred [17] and

two variant models of T4SEpred (i.e. T4SEpred_bpbAac and

T4SEpred_psAac) [18]. As noted earlier, we constructed an inde-

pendent test data set, which is completely different from the

training data sets of these three models. Performance compari-

son is conducted on this independent data set.

Performance assessment

Six performance measures, namely, Sensitivity (SN), Specificity

(SP), Precision (PRE), Accuracy (ACC), F-value and Matthew’s

correlation coefficient (MCC) [73], are used to evaluate the

overall predictive performance of classification models. These

measures are defined as:

SN ¼ TP

TPþ FN

SP ¼ TN

TNþ FP

PRE ¼ TP

TPþ FP

ACC ¼ TPþ TN

TPþ FPþ TNþ FN

F� score ¼ 2� TP

2TPþ FPþ FN

MCC ¼ TP� TNð Þ � ðFN� FPÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðTPþ FNÞ � ðTNþ FPÞ � ðTPþ FPÞ � ðTNþ FNÞ
p ;

where TP; TN; FP and FN represent the numbers of true positives,

true negatives, false positives and false negatives, respectively.

Additionally, the receiver operating characteristic (ROC)

curve, which is a plot of the true-positive rate versus the false-

positive rate, is depicted to visually measure the comprehensive

performance of different classifiers. The area under the curve

(AUC) is also provided in each of the ROC plots, to quantify the

respective performance.

Results and discussion

Sequence analysis

We analyzed the amino acid occurrences (including those over-

represented and underrepresented) on each position of T4SS ef-

fectors. We examined the first 50 N-terminal and 50 C-terminal

positions of sequences of T4SEs [18, 20], non-effectors and

control proteins with the pLogo program [74], and studied the

differences among the three groups of proteins with respect to

their amino acid preferences (Figure 3).

For the N-terminus, remarkable consensus was found in

T4SE sequences, while amino acid residues tended to be more

disordered in non-T4SE and control sequences. Specifically, the

Type IV secreted effector prediction | 937



N-terminal sequences of T4SEs showed a significant overrepre-

sentation of lysine and asparagine residues, with glycine and

alanine largely absent. Likewise, the C-terminal sequences

showed an enrichment for glutamate residues at positions

35–42 for the T4SEs (i.e. in residues located at �16 to �8 posi-

tions relative to the C-terminus). There was no significant motif

pattern in the C-terminal sequences of non-T4SEs or the control

sequences. Such characteristic features distinguish T4SEs from

non-effectors, and are useful for explaining protein features

that might be captured in machine learning models. Previous

work on several specific T4SEs has shown that the C-terminal

segment of the proteins incorporates at least part of the signal

for engagement by the T4SS [75].

As shown in Table 1, L. pneumophila has 291 T4SEs, thereby

accounting for the largest proportion (74.6%) of T4SEs. To ad-

dress whether this biases the outcomes of putative signal

sequence motifs, we analyzed sequences from L. pneumophila

and C. burnetii, respectively (Figure 4). The enrichment of

glutamate (‘E’) residues is clear in sequences from L. pneumo-

phila. While sequences from C. burnetii commonly have glutamic

residues, these have a much reduced preference. Biologically,

this could indicate two distinct targeting signals, with the one

composed of glutamic residues being the predominant form in

species, such as L. pneumophila, but with this glutamic acid-rich

signal used by fewer of the T4SEs in species like C. burnetii.

Computationally, this finding reveals that there is no common

motif in T4SS effectors across multiple species, which further

supports the need to look at many features to develop globally

effective machine learning models.

Performance evaluation using randomized 5-fold cross-
validation tests

For each of the 10 feature encodings, all six classifiers were

trained and validated to predict T4SEs based on a randomized

5-fold cross-validation test. As negative samples, 390 protein se-

quences were randomly selected from the non-type IV effector

data set, to generate a balanced training data set with a 1:1 ratio

of positive to negative samples. All experiments were repeated

five times. The results are documented in Table 2, Figures 5 and

6, and discussed below.

Performance evaluation of various classifiers

For most of the feature encodings, RF and SVM predictors

clearly outperformed the other classifiers in terms of ACC,

F-score and MCC (Table 2, Figures 5 and 6). This observation is

Figure 3. Position-specific amino acid sequence profiles of T4SEs and non-effectors for N- and C-terminal 50 positions. Images were generated by pLogo. The vertical

axis denotes the log-odds binomial probability, while the horizontal one represents the N-terminal position number. The red horizontal bars on the images denote the

statistical significant thresholds (P¼ 0.05) following a Bonferroni correction. (A), (B) and (C) illustrate sequence logo representations for T4SEs, non-effectors and control

effectors (i.e. cytoplasmic proteins), respectively.
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consistent with and supports the conclusion drawn by

Fernández-Delgado et al. [68], who found that RF and SVM are

most likely the best classifiers among all compared 17 machine

learning algorithms based on 112 different data sets. Among

all the classifiers corresponding to various feature encoding

methods, RF classifiers achieved the highest F-score (0.905) and

MCC (0.811) when PSSM was used for training.

To make a fair performance comparison of a variety of

different classifiers, the trade-off between SN and SP was taken

into consideration. The difference between SN and SP for RFmod-

els, in most cases, is lower than for other models. This implies

that the RF classifier provides a better trade-off between SN and

SP, and achieves a more comprehensive and stable performance

on the prediction of T4SEs. As an ensemble classifier, RF can even

fit training data that suffers heavily from noisy, high-dimensional

and highly correlated features without over-fitting [76].

To evaluate the computational efficiency of various classi-

fiers, we compared the computational time for each classifier,

using 200-dimensional PSSM features (selected by GainRatio)

for model training. The total computational time for each

classifier included parameter tuning time (Tuning time) and

randomized 5-fold cross-validation time (CV time). As can be

seen in Figure 7A, SVM and MLP were most time-consuming

among all methods in terms of the total computational process,

which consists of parameter tuning and model training.

Parameter tuning for SVM was computationally costliest

(Figure 7C), highlighting difficulties associated with optimizing

parameters for SVM models. In contrast, training MLP model

(without performing parameter optimization in advance, which

is another extremely complex task)-associated cross-valid-

ations are most time-consuming. Finally, when compared with

SVM, RF achieved a better trade-off with remarkably less tuning

time and only slightly longer CV time (Figure 7B and C).

Performance evaluation of various feature encoding schemes

Among all feature encoding schemes, the most powerful one is

PSSM (Table 2), achieving the highest AUC values for five of six

classifiers when compared with other feature encodings (Figure

6). The local sequence encoding and global sequence encoding

(except for PSSM) achieved similar performances, while the

structural descriptor encoding showed a poor performance

(Figure 6). CKSAAP performed worse than DPC for most

classifiers (Table 2 and Figure 6): a possible explanation is that

DPC might recognize the most valuable patterns in protein

sequences, while CKSAAP may introduce redundant and noisy

information that reduce the performance of T4SE prediction.

We explored the contribution of all features and three distinct-

ive groups of them (AAC group, PSSM group and structure group)

in two ways: feature ensemble and feature combination. For

feature ensemble, we trained single-feature models and then

integrated these as an ensemble model. For feature combination,

features were first combined into a vector to train a model.

As shown, for each machine learning method, models

trained based on all features and the three distinctive groups

using feature ensemble (Figure 6 and Table 2) outperformed

those trained using feature combination (Supplementary Figure

S1 and Supplementary Table S1). When compared with single

feature-based models, feature ensemble models achieved more

stable performance across various machine learning methods

(Figure 6 and Table 2).

Performance evaluation of feature selection methods

To remove redundant features and properly characterize fea-

ture importance, we conducted feature selection experiments

(Figure 8). For different feature encodings, models trained using

GainRatio-selected features (such as the top 50, 100, 150, 200,

250, 300 and 350 features) generally resulted in a comparable or,

in some cases, better performance compared with models

trained using all original features (Figure 8A). This finding indi-

cates that the most discriminative features from the original set

could be extracted to form a subset that preserved the original

semantics of the variables. Owing to the removal of noisy fea-

tures, a selected feature set is also likely to be better modeled

and interpreted by machine learning methods [77]. It is also

advantageous to use selected feature sets, which can help

significantly reduce the computational time during model train-

ing. This is especially so for feature encodings with a large num-

ber of features (such as PSSM_SMTH). By using the mRMR

feature selection, we obtained similar results as with GainRatio

(Figure 8B). It is noteworthy that mRMR failed to recognize an

informative feature set for PSSM_SMTH encoding, leading to a

decreased performance after feature selection as compared

with the full original feature set. A side-by-side performance

comparison of GainRatio and mRMR revealed that, overall,

GainRatio achieved a more stable performance (Figure 8C).

Performance comparison of models trained using
individual feature types versus feature combinations

Although previous studies have used a combination of features

to train prediction models [17, 18, 28], our experiments indicate

that simply combining features did not help in further enhanc-

ing the model performance. Classifiers trained with different

combinations of feature types did not show improved perform-

ances, compared with the model trained using PSSM feature

encoding only (Figure 9). There are possible reasons for this. As

the PSSM features dominate others for T4SE prediction [17] (also

refer to Figure 6, Table 2), the performance of a feature

Table 1. The components of various species in T4SEs

Species Number

Agrobacterium rhizogenes 4

Agrobacterium tumefaciens str. C58 2

Agrobacterium tumefaciens 4

Anaplasma marginale str. St. Maries 3

Anaplasma phagocytophilum HZ 2

Bartonella grahamii as4aup 1

Bartonella henselae str. Houston-1 5

Bordetella pertussis Tohama I 4

Brucella melitensis biovar Abortus 2308 6

Brucella melitensis bv. 1 str. 16M 2

Coxiella burnetii CbuG_Q212 1

Coxiella burnetii CbuK_Q154 3

Coxiella burnetii Dugway 5J108-111 7

Coxiella burnetii RSA 331 15

Coxiella burnetii RSA 493 34

Ehrlichia chaffeensis str. Arkansas 1

Helicobacter pylori 26695 1

Legionella pneumophila subsp. pneumophila

str. Philadelphia 1

35

Ochrobactrum anthropi ATCC 49188 1

Legionella pneumophila subsp. pneumophila

(strain Philadelphia 1/ATCC 33152/DSM

7513)

256

Unknown 3

Total 390

The top two species with the largest numbers of known T4SEs are highlighted

in bold.
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combination model could largely depend on the proportion of

PSSM features among the combined features. Other features,

when directly combined with the PSSM features, may not con-

tribute to the performance improvement and/or could even re-

sult in a decreased performance.

These observations support training single-feature models

and subsequently assembling them into ensemble models,

instead of merging all features into a vector to train a model.

A majority voting strategy based on ensemble learning
models further improves the prediction performance

We first assessed the performance of various classifiers (single-

feature encoding-based models and ensemble models) using RF

by performing independent tests. All experiments were conducted

five times. Each time, 30 negative randomly chosen samples were

used to form the balanced independent data set along with the

positive samples. The performance results are shown in Table 3

and Figure 10. The predictive performance of models trained by

single-feature encodings showed a highly consistent trend with

respect to the performance evaluation based on 5-fold cross-

validation, further confirming the effectiveness of local and global

sequence encodings (Table 3 and Figure 10).

Ensemble models based on selections of single-feature-

encoding models were assessed in combination with majority

voting, to determine whether this could further improve the

predictive performance. Table 3 reports only on a few represen-

tative ensemble models selected after comprehensively

examining the behaviors of all possible combinations of single-

feature models. Several important conclusions were drawn

from these results. First, ensemble models achieved a better

and more robust performance as compared with single

encoding-based models. In particular, the majority voting

scheme {1, 3, 5, 6, 8, 10} achieved the overall best performance,

with a maximum accuracy of 95.7%, an F-score of 0.959 and

an MCC value of 0.918 (Table 3). Second, combinations of

similar-feature-group encoding-based models did not lead to

visible performance improvement. This has been observed

in the case of ensemble classifiers {1, 2, 3} (AAC feature group),

{5, 6, 7} (PSSM feature group) and {8, 9, 10} (structural feature

group). On the other hand, ensembles of models that were

trained on different feature groups resulted in clear

Figure 4. Position-specific amino acid sequence profiles of L. pneumophila effectors and C. burnetii effectors for both N- and C-terminal 50 positions.
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Table 2. The performance of various classifiers based on the 5-fold cross-validation tests

Feature Method PRE SN SP F-score ACC MCC

AAC RF 0.836 6 0.009 0.82560.005 0.8396 0.012 0.82960.006 0.8316 0.007 0.6636 0.014

SVM 0.85660.007 0.84560.011 0.8596 0.009 0.84960.007 0.85160.007 0.70360.014

LR 0.81660.006 0.83460.005 0.8136 0.007 0.82460.003 0.8236 0.004 0.6476 0.009

NB 0.79260.005 0.83760.004 0.7826 0.005 0.81360.004 0.8096 0.003 0.6196 0.007

KNN 0.82760.005 0.83860.009 0.8266 0.006 0.83160.005 0.8316 0.003 0.6646 0.008

MLP 0.86460.010 0.72760.008 0.88660.011 0.78860.007 0.8056 0.007 0.6206 0.013

PPT RF 0.81660.006 0.81660.014 0.8176 0.005 0.81560.010 0.8166 0.008 0.6336 0.017

SVM 0.81860.009 0.82860.007 0.8176 0.011 0.82260.005 0.82260.005 0.64560.010

LR 0.80360.007 0.78860.003 0.8086 0.008 0.79460.004 0.7976 0.004 0.5966 0.008

NB 0.71560.006 0.34860.003 0.8606 0.004 0.46460.004 0.6036 0.002 0.2436 0.007

KNN 0.80860.008 0.74560.008 0.8246 0.008 0.77360.010 0.7836 0.009 0.5706 0.016

MLP 0.84360.016 0.68960.035 0.87260.019 0.75560.020 0.7796 0.014 0.5716 0.027

DPC RF 0.81160.015 0.81060.006 0.8126 0.017 0.80960.010 0.8106 0.011 0.6216 0.023

SVM 0.83760.007 0.80560.010 0.84460.010 0.81960.005 0.82360.004 0.64860.007

LR 0.81260.003 0.83960.005 0.8066 0.002 0.82460.003 0.8226 0.002 0.6456 0.005

NB 0.79360.002 0.84060.003 0.7826 0.004 0.81560.002 0.8116 0.003 0.6236 0.006

KNN 0.79760.004 0.82060.006 0.7936 0.003 0.80760.005 0.8066 0.003 0.6126 0.006

MLP 0.81360.015 0.68160.012 0.8436 0.014 0.73960.013 0.7616 0.012 0.5316 0.023

CKSAAP RF 0.84060.004 0.81360.009 0.8466 0.005 0.82560.003 0.82960.002 0.65960.006

SVM 0.87760.005 0.72660.009 0.90060.006 0.79360.004 0.8126 0.002 0.6356 0.005

LR 0.73760.009 0.74260.012 0.7366 0.012 0.73860.009 0.7386 0.009 0.4776 0.018

NB 0.81960.003 0.83160.004 0.8176 0.004 0.82460.003 0.8236 0.003 0.6486 0.006

KNN 0.76360.008 0.86060.007 0.7326 0.010 0.80860.006 0.7966 0.006 0.5986 0.011

MLP 0.83160.008 0.73360.006 0.8526 0.007 0.77960.005 0.7926 0.005 0.5896 0.010

PSSM RF 0.90960.004 0.90060.005 0.9116 0.003 0.90460.004 0.90560.003 0.81160.007

SVM 0.93360.001 0.86160.008 0.93960.003 0.89560.004 0.9006 0.003 0.8036 0.006

LR 0.80860.007 0.85160.016 0.7976 0.011 0.82860.008 0.8246 0.006 0.6496 0.012

NB 0.88860.004 0.88760.003 0.8896 0.003 0.88760.004 0.8886 0.003 0.7766 0.006

KNN 0.89960.003 0.91160.003 0.8986 0.003 0.90460.003 0.9046 0.003 0.8096 0.005

MLP 0.93560.013 0.85960.010 0.9436 0.010 0.89560.009 0.9026 0.008 0.8066 0.016

PSSM_AC RF 0.90660.006 0.77160.009 0.92160.005 0.83260.007 0.84660.006 0.69960.012

SVM 0.89760.012 0.76560.022 0.9146 0.012 0.82560.015 0.8396 0.012 0.6866 0.022

LR 0.72060.011 0.75760.012 0.7056 0.015 0.73660.008 0.7306 0.008 0.4636 0.017

NB 0.61060.001 0.86760.003 0.4476 0.003 0.71560.002 0.6566 0.002 0.3466 0.006

KNN 0.83360.004 0.81660.004 0.8366 0.004 0.82360.002 0.8256 0.002 0.6526 0.006

MLP 0.89660.021 0.69060.009 0.9216 0.018 0.77760.007 0.8056 0.007 0.6286 0.018

PSSM_SMTH RF 0.85960.006 0.82560.007 0.8656 0.006 0.84060.005 0.84460.005 0.69160.011

SVM 0.87360.007 0.79060.014 0.8866 0.004 0.82860.010 0.8376 0.008 0.6796 0.017

LR 0.73360.017 0.73460.014 0.7306 0.026 0.73260.008 0.7326 0.011 0.4666 0.020

NB 0.65860.003 0.87060.002 0.5486 0.006 0.74860.001 0.7086 0.002 0.4416 0.006

KNN 0.80460.004 0.78460.005 0.8096 0.007 0.79360.003 0.7966 0.005 0.5946 0.010

MLP 0.88660.016 0.75660.022 0.90960.013 0.81560.018 0.8356 0.016 0.6756 0.030

DISO RF 0.71460.011 0.73360.015 0.7086 0.011 0.72260.012 0.7196 0.011 0.4416 0.022

SVM 0.73660.016 0.72660.020 0.7396 0.020 0.72860.015 0.73260.014 0.46660.027

LR 0.60460.008 0.60760.018 0.6026 0.020 0.60360.009 0.6036 0.007 0.2096 0.016

NB 0.63160.026 0.65760.033 0.6256 0.009 0.63760.033 0.6406 0.016 0.2836 0.037

KNN 0.69560.005 0.74660.008 0.6746 0.010 0.71860.004 0.7096 0.004 0.4226 0.006

MLP 0.73360.016 0.57060.032 0.79160.016 0.63960.022 0.6806 0.014 0.3716 0.028

SA RF 0.61160.005 0.64260.010 0.5906 0.005 0.62360.008 0.61360.006 0.23260.013

SVM 0.60460.010 0.60660.022 0.6006 0.022 0.60160.013 0.6006 0.010 0.2066 0.018

LR 0.58560.014 0.59160.015 0.5816 0.016 0.58560.012 0.5836 0.012 0.1726 0.026

NB 0.54360.006 0.91160.011 0.2076 0.007 0.67260.006 0.5606 0.007 0.1796 0.015

KNN 0.63360.014 0.49860.007 0.71160.019 0.55560.008 0.6036 0.010 0.2146 0.020

MLP 0.57660.019 0.44960.036 0.6716 0.017 0.50260.030 0.5606 0.014 0.1236 0.032

SS RF 0.56060.022 0.53560.030 0.5796 0.016 0.54460.025 0.5556 0.022 0.11560.046

SVM 0.56260.021 0.46360.043 0.6346 0.023 0.49260.034 0.5406 0.021 0.1026 0.037

LR 0.53660.017 0.54260.022 0.5316 0.018 0.53760.019 0.5366 0.018 0.0736 0.037

NB 0.54360.007 0.67360.018 0.4326 0.010 0.59760.012 0.55560.007 0.1116 0.015

KNN 0.53060.017 0.49360.018 0.5646 0.020 0.50560.017 0.5246 0.016 0.0576 0.032

MLP 0.53560.024 0.36160.029 0.68860.032 0.42860.025 0.5256 0.018 0.0526 0.037

Group 1 RF 0.83560.004 0.82560.003 0.8386 0.005 0.82960.002 0.8316 0.003 0.6636 0.006

SVM 0.85060.008 0.83360.004 0.8546 0.010 0.84060.004 0.84260.005 0.68760.011

(continued)
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performance improvements, e.g. ensemble classifiers {1, 2, 3, 4,

5, 6, 7}, {1, 2, 3, 4, 8, 9, 10}, {5, 6, 7, 8, 9, 10} and {1–10}. This is in

agreement with the result in [17] by exploring the vote of vari-

ous feature-based models (including two sequence-based mod-

els and two PSSM-based models). The ensemble classifier {1, 2,

3, 4, 5, 6, 7, 8} is an excellent example portraying the advantages

of ensemble learning. Comparing it with the ensemble classifier

{1, 2, 3, 4, 5, 6, 7} showed that the DISO feature-based model still

contributes to an improved performance of the ensemble classi-

fier, while it only gives a moderate performance when used as a

single-feature model.

For each of machine learning methods (i.e. SVM, KNN, NB,

LR and MLP), we trained an ensemble model by integrating eight

top single-feature-based models (i.e. AAC, PPT, DPC, CKSAAP,

PSSM, PSSM_AC, PSSM_SMTH and DISO). By further integrating

ensemble models with the majority vote scheme, we studied

the prediction performance of these single machine learning-

based models and their ensemble models using the independ-

ent test. As shown in Table 4, the RF- and SVM-based models

outperformed other method-based models, while the ensemble

model of these two models ({a, b}) further improved the predic-

tion performance. The ensemble model integrating all six

method-based models ({a, b, c, d, e, f}) achieved the best

performance in terms of F-value, ACC and MCC, consistent with

the observations reported in [19]. Based on these findings, we

constructed Bastion4 with a default setting: all six machine learn-

ing methods were integrated, and for each of them the eight top

single-feature-basedmodels were generated for assembling.

Performance evaluation of specific training data sets

To investigate whether the diversity of positive samples affects

the performance of the predictors, we trained another two

predictors using a part of the training data set. In more detail,

from the positive samples in the training data set, 291 Legionella

samples were chosen to construct a new balanced independent

data set together with randomly selected negative samples from

V. parahaemolyticus serotype O3: K6. The remaining 99 positive

samples and an equal number of negative samples from the

original training set were used to form a new training data set.

Based on this new data set, we used eight feature types (i.e. AAC,

PPT, DPC, CKSAAP, PSSM, PSSM_AC, PSSM_SMTH and DISO) to

train individual models and aggregated their outputs to form an

ensemble model for each of the six machine learning methods.

Table 2. Continued

Feature Method PRE SN SP F-score ACC MCC

LR 0.82860.009 0.82960.017 0.8296 0.011 0.82760.010 0.8286 0.009 0.6586 0.018

NB 0.83160.001 0.82060.004 0.8356 0.003 0.82460.002 0.8266 0.003 0.6546 0.005

KNN 0.80560.002 0.84960.004 0.7966 0.003 0.82560.002 0.8216 0.001 0.6456 0.003

MLP 0.88260.005 0.74360.017 0.90260.007 0.80560.009 0.8216 0.007 0.6526 0.013

Group 2 RF 0.93060.003 0.86560.004 0.9356 0.003 0.89560.003 0.8996 0.003 0.8026 0.006

SVM 0.93860.003 0.85660.012 0.9456 0.003 0.89560.007 0.9006 0.005 0.80460.010

LR 0.82760.012 0.85260.009 0.8226 0.013 0.83860.007 0.8366 0.006 0.6746 0.012

NB 0.67960.003 0.88160.002 0.5846 0.006 0.76560.001 0.7316 0.002 0.4876 0.006

KNN 0.90560.006 0.89460.004 0.9076 0.007 0.89960.005 0.90060.004 0.8006 0.008

MLP 0.96460.007 0.78960.052 0.97260.007 0.86460.033 0.8796 0.026 0.7756 0.044

Group 3 RF 0.73060.012 0.73760.014 0.7286 0.015 0.73160.011 0.7306 0.010 0.4656 0.019

SVM 0.74260.011 0.73660.017 0.7446 0.014 0.73760.013 0.73860.012 0.48160.020

LR 0.62260.006 0.62960.017 0.6176 0.009 0.62360.010 0.6216 0.007 0.2466 0.016

NB 0.58260.010 0.82960.016 0.3936 0.014 0.67960.010 0.6116 0.010 0.2506 0.028

KNN 0.71860.006 0.70360.009 0.7256 0.010 0.70860.006 0.7126 0.006 0.4276 0.011

MLP 0.68460.009 0.44560.021 0.79460.014 0.53660.015 0.6196 0.007 0.2556 0.014

All features RF 0.91260.005 0.86060.006 0.9196 0.004 0.88560.005 0.8896 0.005 0.7796 0.008

SVM 0.93160.004 0.86460.009 0.9376 0.003 0.89660.007 0.90060.006 0.80360.010

LR 0.88760.006 0.87360.010 0.8906 0.006 0.87860.007 0.8806 0.006 0.7626 0.012

NB 0.80960.005 0.88560.003 0.7926 0.007 0.84460.002 0.8386 0.003 0.6806 0.007

KNN 0.90060.006 0.88760.006 0.9046 0.006 0.89360.003 0.8946 0.002 0.7906 0.005

MLP 0.94360.009 0.71560.039 0.95660.007 0.80660.027 0.8336 0.017 0.6926 0.026

Note: The values were expressed as mean6 standard error. Except for AAC (20D) and PPT (72D), all the feature vectors were 200-dimensional, and their selection was

performed using GainRatio. Group 1 denotes the AAC group (AAC, DPC, CKSAAP and PPT); Group 2 denotes the PSSM group (PSSM, PSSM_AC and PSSM_SMTH); Group 3

denotes the structure group (SA, SS and DISO), while all features include all the 10 feature types and are used as a whole group. For each group, individual models were

trained with the corresponding group and then integrated as an ensemble model using the majority vote scheme. For each performance measure, the best perform-

ance value across different machine learning methods within a feature group is highlighted in bold for clarification. These highlights also apply to Tables 3, 4 and 6.

Figure 5. Prediction performance of different machine learning models trained

with various feature encodings in terms of MCC on the 5-fold cross-validation test.
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We further integrated all these single method-based models

with the majority vote scheme to construct a new predictor

(labeled ‘Predictor_without_Legionella’). The new independent

data set (containing all 291 Legionella samples as positives)

was used to analyze the predictive performance. We applied

the same procedures to construct a predictor (labeled

‘Predictor_without_Coxiella’) and analyzed its performance on

the new independent data set (containing all 60 Coxiella samples

as positives). In addition, eight single models trained using the

full training data set were assembled as a reference predictor

(labelled ‘Predictor_with_Full_Dataset’). The overall performance

of the three predictors was assessed based on their respective

independent test data sets and is listed in Table 5.

The Predictor_with_Full_Dataset outperformed the Predictor

_without_Coxiella and the Predictor_without_Legionella in terms

of F-value, ACC and MCC (Table 5). These results indicate that

the increase of samples diversity can improve the performance

of predictors. Owing to limited training data, the Predictor_

Figure 6. ROC curves of RF, SVM, NB, KNN, LR and MLP predictors of T4SEs with different feature encodings. Group 1 denotes the AAC group (AAC, DPC, CKSAAP and

PPT); Group 2 denotes the PSSM group (PSSM, PSSM_AC and PSSM_SMTH); Group 3 denotes the structure group (SA, SS and DISO), while all features include all the 10

feature types and are used as a whole group. For each group, individual models were trained with the corresponding group and then integrated as an ensemble model

using the majority vote scheme.
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without_Legionella failed to achieve a competitive performance.

Note that the high SN value of the Predictor_without_Coxiella

suggests that it is well able to identify the Coxiella T4SEs even

without using such data set for model training. This hints at an

underlying similarity between Legionella, Coxiella and other

T4SEs. Here, we used an unsupervised learning approach to in-

vestigate the potential similarity further. We encoded all T4SEs

using PSSM encoding, partitioned them into three groups using

the k-means clustering algorithm [78] and then performed

dimension-reduction using t-SNE [79] to map to the 2D space for

better visualization (Figure 11A). From Figure 11B–D, we can see

that each of the identified three clusters is a mixture of

Legionella, Coxiella and other T4SEs. This supports the idea that,

because of their similarity, these types of T4SEs are not separ-

able. The observation that Legionella samples dominate all three

clusters can be attributed to their abundance in the original

three classes of positive samples (Figure 11E).

While there are similarities between Legionella’s, Coxiella’s and

other T4SEs, it is noteworthy that the performance of Predictor_

without_Legionella was less than that of the Predictor_without_

Coxiella. To explore why this is so, we used Clustal Omega [80] to

do multiple sequence alignment on the T4SE data set. Based on

the alignment results, a phylogenetic tree of T4SS effectors was

generated (Supplementary Figure S2) using iTOL [81]. From inspec-

tion of Supplementary Figure S2, we found that T4SEs in Legionella,

Coxiella and other species were often mixed, while some T4SEs in

Legionella clustered alone (marked in light green). This finding

indicated that some T4SEs in Legionella differ from those in other

species, shedding light on why Predictor_without_Legionella could

not distinguish some of T4SEs in Legionella species.

Performance comparison with existing tools

There are currently two tools [17, 18] available for T4SE predic-

tion. Three classifiers (T4SEpred_bpbAac, T4SEpred_psAac and

T4SEpre_Joint) were implemented in Wang et al. [18], while a se-

cond tool (T4Effpred) with multiple options was developed in

Zou et al. [17]. Accordingly, we compared their performance on

the independent test data set (Table 6).

All options of T4Effpred were explored but, for the sake of

brevity, Table 6 only presents the best-performing model from

among different T4Effpred variant models [17]: an ensemble

model based on a 3-in-4 voting scheme. For the same reason,

only the results of T4SEpred_bpbAac and T4SEpred_psAac are

listed in Table 6. In Bastion4, default settings were used to con-

struct the predictor. As can be seen from Table 6, Bastion4

achieved an overall accuracy of 95.3% with an F-value of 0.954

and an MCC of 0.907. This is the best performance among all

compared predictors. T4Effpred achieved the second-best per-

formance, also using an ensemble classifier based on multiple

feature encodings. Moreover, we observed that both

T4SEpred_bpbAac and T4SEpred_psAac performed poorly on

the independent test data set.

The poorer performance of T4SEpred_bpbAac and T4SEpred_

psAac is intriguing, especially considering important features of

T4SE proteins that might be biologically important. The imple-

mentation of the two predictors did not extract features from

the PSSM profiles, which are regarded as the primary features

[18], and these have proved to be powerful for T4SE prediction

both in our current work and in the work by Zou et al. [17].

Coupled with this, in T4SEpred_bpbAac and T4Sepred_psAac,

only the 50 C-terminal amino acids, rather than whole protein

sequences, were used to extract features [18]. As also shown in

this study, pronounced sequence signals are present at the C-

terminus of L. pneumophila effectors, but are not universal and

diagnostic of all T4Ses. Our results presented here demonstrate

that the complete sequences contain important information

that is relevant for accurate T4SE prediction and, presumably,

for their recognition by the T4SS.

Genome-wide prediction of T4SEs in Klebsiella
pneumoniae

Klebsiella pneumoniae is emerging as a devastating pathogen of

humans [82]. The T4SS of this pathogen has only been recently

noted [83, 84], and effector proteins and T4SEs have not been

identified to our knowledge. We took this opportunity to predict

T4SEs with Bastion4 using our default settings, and to identify

these on physical genome maps of three clinically relevant

Figure 7. (A) Computational time of various classifiers when using the PSSM feature for training (after applying feature selection to form a 200-dimensional vector using

GainRatio). Parameter tuning time and CV time are counted into the overall computational time for the classifiers. For classifiers without parameter optimization (LR,

NB and MLP), the tuning time is 0. (B) and (C) represent the proportions of parameter tuning time and CV time of RF and SVM, respectively.
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Figure 8. Feature selection by using GainRatio and mRMRmethods. The error bars indicate the SDs of MCC values over five different randomized 5-fold cross-validation

tests. (A) Performance of various feature encodings with different numbers of top features selected by GainRatio; (B) performance of various feature encodings with

different numbers of top features selected by mRMR; (C) side-by-side performance comparison of various feature encodings with different numbers of top features

selected by GainRatio versus mRMR.
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strains: K. penumoniae AJ218, B5055 and MGH 78578. Studies with

other bacteria have identified the physical location of genomic

regions encoding T4SEs [85–87], and the genes encoding certain

T4SEs were found to be clustered within specific genomic

regions with an observed bias in GþC content, leading to mod-

els, whereby T4SE genes are acquired by lateral gene transfer

between different bacterial species [16, 88, 89].

Circular maps [90] of extant genome sequence data were gen-

erated (Figure 12) to graphically depict the relationships between

genome properties and the distribution of predicted effectors in

these genomes [91]. The GþC content of the tentative T4SEs in

each of the three genomes is significantly lower than expected

from the overall GþC contents (Table 7), all with significant

P-values according to the Welch’s t-test. The Venn diagram in

Figure 12D illustrates the distributions of both predicted strain-

specific and common effectors across these three bacterial gen-

omes. While they share some common effectors (four common

effectors shared across the three strains), AJ218, B5055 and MGH

78578 had 42, 33 and 33 strain-specific effectors possibly because

of relatively recent horizontal gene transfer events [89]. This is

consistent with our knowledge that genes encoding effector pro-

teins are often shared via lateral gene transfer from other species.

In the K. penumoniae B5055 genome, there is a cluster of predicted

T4SEs genes that sit spatially in the nearby genes encoding the

components of the T4SS nanomachine. Taken together, the

genome-wide predictions of T4SEs provide a basis to explore

their genome-level distributions, and to build a compendium of

novel putative T4SEs that can be characterized by genetic and

biochemical experiments.

Availability of online Web servers

As an implementation of the methodology presented here, we de-

veloped Bastion4, an online Web server for characterizing protein

Figure 9. Performance comparison of models trained using single features versus combined features, based on 5-fold cross-validation using the training data set.

Combine1 denotes the composition of PSSM and PSSM_AC; Combine2 denotes the composition of PSSM, PSSM_AC and AAC; Combine3 denotes the composition of

PSSM, PSSM_AC, AAC and DPC.

Table 3. The performance of various classifiers based on the independent tests

Modela Votingb PRE SN SP F-value ACC MCC

1. AAC – 0.82660.044 1.00060.000 0.7876 0.069 0.90460.027 0.89360.035 0.80660.057

2. PPT – 0.78760.057 0.9676 0.000 0.7336 0.091 0.86760.035 0.8506 0.046 0.7216 0.077

3. DPC – 0.79160.039 0.9006 0.000 0.7606 0.055 0.84260.022 0.8306 0.027 0.6676 0.050

4. CKSAAP – 0.83960.014 0.9336 0.000 0.8206 0.018 0.88360.008 0.8776 0.009 0.7586 0.017

5. PSSM – 0.82160.033 1.00060.000 0.7806 0.051 0.90160.020 0.8906 0.025 0.8006 0.042

6. PSSM_AC – 0.88260.049 0.8336 0.000 0.88760.051 0.85760.023 0.8606 0.025 0.7226 0.053

7. PSSM_SMTH – 0.81160.080 0.8006 0.000 0.8076 0.095 0.80460.039 0.8036 0.048 0.6096 0.097

8. DISO – 0.77860.061 0.8006 0.000 0.7676 0.082 0.78860.032 0.7836 0.041 0.5686 0.080

9. SA – 0.64560.059 0.6676 0.000 0.6276 0.095 0.65560.030 0.6476 0.048 0.2946 0.095

10. SS – 0.66560.065 0.7006 0.000 0.6406 0.092 0.68160.032 0.6706 0.046 0.3426 0.093

{1, 2, 3, 4} 3-in-4 0.85460.025 0.9676 0.000 0.8336 0.033 0.90660.014 0.9006 0.017 0.8076 0.030

{5, 6, 7} 2-in-3 0.88060.048 0.8676 0.000 0.8806 0.051 0.87360.023 0.8736 0.025 0.7486 0.052

{8, 9, 10} 2-in-3 0.78860.092 0.8006 0.000 0.7736 0.123 0.79260.047 0.7876 0.062 0.5766 0.121

{1, 2, 3, 4, 5, 6, 7} 4-in-7 0.85460.030 0.9676 0.000 0.8336 0.041 0.90760.017 0.9006 0.020 0.8086 0.036

{1, 2, 3, 4, 8, 9, 10} 4-in-7 0.85060.045 0.9676 0.000 0.8276 0.060 0.90460.025 0.8976 0.030 0.8026 0.054

{5, 6, 7, 8, 9, 10} 4-in-6 0.90360.058 0.9006 0.000 0.9006 0.067 0.90160.029 0.9006 0.033 0.8016 0.066

{1, 2, 3, 4, 5, 6, 7, 8} 5-in-8 0.91860.025 0.9676 0.000 0.91360.030 0.94260.014 0.9406 0.015 0.8826 0.028

{1-10} 6-in-10 0.90860.045 0.9676 0.000 0.9006 0.053 0.93660.024 0.9336 0.026 0.8696 0.050

{1, 3, 5, 6, 8, 10} 4-in-6 0.92260.042 1.00060.000 0.9136 0.051 0.95960.023 0.95760.025 0.91860.046

Note: aEach term in this column refers to a single encoding-based model or an ensemble model of different single encoding-based models (e.g. 1. AAC means the model

trained with AAC encoding features, while {5, 6, 7} stands for the ensemble model of number 5, 6 and 7 classifiers).
bThe majority voting scheme was used for voting in ensemble models.
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sequences of interest. Bastion4 is freely accessible at http://bas

tion4.erc.monash.edu/. The Bastion4Web server was programmed

using the Perl CGI and J2EE framework, and configured on the

cloud computing facility provided by the Monash University

e-Research Centre. Users can submit multiple protein sequences

in raw or FASTA format to the online Web server. The computa-

tional time of the Bastion4 server to process a submitted sequence

depends not only on the length of the submitted sequence but

also considerably on the choice of the selected models.

Conclusion

Identifying effector proteins is necessary to understand host–

pathogen interactions and bacterial pathogenesis. Here, we have

systematically assessed the use and performance of different pro-

tein sequence and protein structure-related features and their

combinations along with various machine learning approaches

for T4SE prediction. Our main findings are (1) of the six machine

learning classifiers (NB, KNN, LR, RF, SVM and MLP), RF and SVM

Figure 10. The ROC curve of both single encoding-based models and ensemble models based on the independent test.

Table 4. The performance of various machine learning methods based on the independent tests

Methoda Votingb PRE SN SP F-value ACC MCC

a. RF – 0.9186 0.025 0.9676 0.000 0.91360.030 0.9426 0.014 0.94060.015 0.8826 0.028

b. SVM – 0.9406 0.014 0.9336 0.000 0.94060.015 0.9366 0.007 0.93760.007 0.8736 0.015

c. KNN – 0.8806 0.055 1.00060.000 0.86060.072 0.9356 0.031 0.93060.036 0.8706 0.064

d. NB – 0.8346 0.033 0.9336 0.000 0.81360.045 0.8816 0.019 0.87360.022 0.7536 0.041

e. LR – 0.8756 0.056 1.00060.000 0.85360.069 0.9326 0.031 0.92760.035 0.8646 0.063

f. MLP – 0.9066 0.004 0.9606 0.043 0.90060.000 0.9326 0.023 0.93060.022 0.8626 0.046

{a, b} 2-in-2 0.96660.024 0.9336 0.000 0.96760.024 0.9496 0.011 0.95060.012 0.9016 0.024

{a, b, c} 2-in-3 0.9186 0.025 0.9676 0.000 0.91360.030 0.9426 0.014 0.94060.015 0.8826 0.028

{a, b, c, d} 3-in-4 0.9186 0.025 0.9676 0.000 0.91360.030 0.9426 0.014 0.94060.015 0.8826 0.028

{a, b, c, d, e} 3-in-5 0.9076 0.028 0.9676 0.000 0.90060.033 0.9366 0.015 0.93360.017 0.8696 0.031

{a, b, c, d, e, f} 4-in-6 0.9426 0.025 0.9676 0.000 0.94060.028 0.95460.013 0.95360.014 0.90760.027

Note: aEach term in this column refers to a single method-based model or an ensemble model that integrates different single method-based models (e.g. ‘a. RF’ means

the model is trained based on the RF method, while ‘{a, b, c}’ stands for the ensemble model that integrates a, b and c models).
bThe majority voting scheme is used for voting in ensemble models.

Table 5. Performance comparison between Predictor_without_Coxiella, Predictor_without_Legionella and Predictor_with_Full_Dataset based on

the independent test

Classifier PRE SN SP F-value ACC MCC

Predictor_with_Full_Dataset 0.942 0.967 0.940 0.954 0.953 0.907

Predictor_without_Coxiella 1.000 0.733 1.000 0.846 0.867 0.761

Predictor_without_Legionella 0.841 0.691 0.869 0.758 0.780 0.569
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performed best according to the performance measures ACC, F-

value and MCC based on 5-fold cross-validation, while RF

achieved a good trade-off between the predictive performance

and computational time; (2) of the 10 different features, PSSM

achieved the highest performance values for all classifiers,

emphasizing the importance of global sequence encoding with

PSSMs; (3) ensemble models performed better than single-feature-

based models; (4) when applied to the predictions of an ensemble

model, the diversity in the selected features resulted in a more

stable and accurate classification performance. These findings led

to the development of Bastion4, a tool that reflects the state of the

art in effector prediction for T4SEs. Together with the compendium

of predicted tentative T4SEs of the three bacterial genomes, we

anticipate Bastion4 to be extensively used for T4SE prediction and,

in conjunction with comparative genomics of bacterial pathogens,

to improve our understanding of host–pathogen interactions.

Key Points

• In this work, we systematically train and compare six

commonly used machine learning models for accurate

and efficient identification of T4SEs using 10 different

types of selected features.
• Our study shows that (1) including different but com-

plementary features generally enhance the predictive

performance of T4SEs; (2) ensemble models obtained by

integrating individual single-feature models exhibit a

significantly improved predictive performance. The ma-

jority voting strategy enables the ensemble models to

achieve the most stable and accurate classification

performance.
• We propose and built a new ensemble model, Bastion4,

to further improve the performance in predicting effector

proteins of the T4SS. Independent tests demonstrate that

the ensemble models outperform all current predictors of

types IV secretion systems. We make Bastion4 publicly

accessible at http://bastion4.erc.monash.edu/.
• Genome-wide prediction of T4SEs provides important

insights into the distribution of T4SEs in three bacterial

pathogens. We provide a valuable compendium of

novel T4SEs that can be further validated by genetic

and biochemical experiments.

Figure 11. (A) Representation of the positive samples from Coxiella, Legionella and other T4SEs. The representation of each sample (which constituted a 400-dimensional

space generated by the PSSM encoding scheme) was reduced to two dimensions by using t-SNE. Samples were clustered into three groups using K-means algorithm,

and these three clusters were indicated by colors. (B–D) Detailed components of the three clusters. Each cluster contains samples from all three T4SE classes, namely,

Coxiella, Legionella and others. (E) Detailed numbers and proportions of original three classes of samples.

Table 6. Performance comparison between our ensemble classifier and other existing predictors based on the independent test

Classifier PRE SN SP F-value ACC MCC

Bastion4 0.94260.025 0.9676 0.000 0.9406 0.028 0.95460.013 0.95360.014 0.90760.027

T4Effpred 0.94060.020 0.8336 0.000 0.9476 0.018 0.8836 0.009 0.89060.009 0.7856 0.020

T4SEpred_bpbAac 0.95960.060 0.4336 0.000 0.9806 0.030 0.5976 0.012 0.70760.015 0.4956 0.046

T4SEpred_psAac 0.98360.037 0.3676 0.000 0.99360.015 0.5346 0.006 0.68060.007 0.4626 0.026

Table 7. Statistical analysis of the GþC contents between the puta-

tive T4SEs and non-T4SEs in the K. pneumoniae strain AJ218, B5055

and MGH 78578 genomes

Strain type Mean of GþC content (%) P-value by

Welch’s t-test
Putative T4SEs Non-T4SEs

AJ218 43.33 57.73 3.755e-16

B5055 44.99 57.55 3.51e-11

MGH 78578 45.45 57.99 4.314e-10

Note: For each species, the GþC content (%) of each sequence of putative T4SEs

was calculated to form a percentage set. Similarly, the GþC content (% of each

non-T4SE sequence was calculated to form another percentage set. Note that

the percentage set of non-T4SE sequences was significantly larger than that of

the putative T4SEs percentage set. Based on the two sets, the mean values of the

GþC content (%) of both putative T4SEs and non-T4SEs were calculated. The

Welch’s t-test was performed and P-value calculated to assess the statistical

significance.
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Supplementary data are available online at http://bib.ox-
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