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	19	

Abstract	20	

Soybean	 (Glycine	max	 [L.]	Merr.)	 is	 a	major	 crop	 in	animal	 feed	and	human	nutrition,	21	

mainly	for	its	rich	protein	and	oil	contents.	The	remarkable	rise	in	soybean	transcriptome	22	

studies	 over	 the	 past	 five	 years	 generated	 an	 enormous	 amount	 of	 RNA-seq	 data,	23	

encompassing	various	tissues,	developmental	conditions,	and	genotypes.	 In	this	study,	24	

we	 have	 collected	 data	 from	1,298	 publicly	 available	 soybean	 transcriptome	 samples,	25	

processed	 the	 raw	 sequencing	 reads,	 and	 mapped	 them	 to	 the	 soybean	 reference	26	

genome	 in	 a	 systematic	 fashion.	 We	 found	 that	 94%	 of	 the	 annotated	 genes	27	

(52,737/56,044)	 had	 detectable	 expression	 in	 at	 least	 one	 sample.	 Unsupervised	28	

clustering	 revealed	 three	major	groups,	 comprising	samples	 from	aerial,	underground,	29	

and	seed/seed-related	parts.	We	found	452	genes	with	uniform	and	constant	expression	30	

levels,	 supporting	 their	 roles	 as	housekeeping	 genes.	On	 the	other	hand,	 1,349	 genes	31	

showed	heavily	biased	expression	patterns	towards	particular	tissues.	A	transcript-level	32	

analysis	revealed	that	95%	(70,963/74,490)	of	the	known	transcripts	overlap	with	those	33	

reported	here,	whereas	3,256	assembled	transcripts	represent	potentially	novel	splicing	34	

isoforms.	The	dataset	compiled	here	constitute	a	new	resource	for	the	community,	which	35	

can	 be	 downloaded	 or	 accessed	 through	 a	 user-friendly	 web	 interface	 at	36	

http://venanciogroup.uenf.br/resources/.	 This	 comprehensive	 transcriptome	 atlas	 will	37	

likely	accelerate	research	on	soybean	genetics	and	genomics.	38	

	39	
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Introduction	40	

Soybean	(Glycine	max	[L.]	Merr.)	is	one	of	the	most	important	legume	crops	worldwide.	41	

It	 is	 critically	 important	 in	 human	 nutrition,	 animal	 feed,	 and	 biotechnological	42	

applications.	Global	climate	change	and	increased	food	demand	resulting	from	a	growing	43	

human	 population	 have	 been	 fueling	 the	 development	 and	 application	 of	44	

biotechnological	methods	to	generate	better	cultivars	(Iizumi	et	al.,	2014).	In	recent	years,	45	

various	omics	approaches	have	been	deployed	to	improve	productivity	of	several	crops,	46	

including	soybean.	An	important	achievement	in	soybean	omics-based	research	was	the	47	

availability	of	whole-genome	sequencing	data,	which	helped	identify	molecular	markers	48	

(e.g.	single	nucleotide	polymorphisms,	SNPs)	(Schmutz	et	al.,	2010;Deshmukh	et	al.,	2014)	49	

that	are	instrumental	in	the	identification	of	genes	associated	with	various	phenotypes	of	50	

interest.	Further,	the	soybean	whole-genome	sequencing	project	has	also	contributed	to	51	

the	substantial	rise	in	soybean	transcriptome	studies	(Libault	et	al.,	2010;Severin	et	al.,	52	

2010;Garg	 and	 Jain,	 2013;O’Rourke	 et	 al.,	 2017),	 initially	 dominated	 by	 microarray	53	

platforms	and	later	by	RNA-Seq	technologies.		54	

To	 date,	 several	 studies	 reported	 spatiotemporal	 changes	 occurring	 in	 various	55	

soybean	tissues	using	RNA-seq.	The	two	first	soybean	RNA-Seq	studies	were	published	by	56	

Libault	et	al.	 (Libault	et	al.,	2010)	and	Severin	et	al.	 (Severin	et	al.,	2010).	The	 former	57	

reported	 the	 sequencing	 of	 14	 (mainly	 root	 and	 nodule)	 tissues,	 whereas	 the	 latter	58	

evaluated	 several	 tissues	 and	 seed	 developmental	 stages.	 Dozens	 of	 other	 studies	59	

followed,	 such	 as	 those	 addressing	 different	 life	 cycle	 stages	 (Jones	 and	 Vodkin,	60	

2013;Bellieny-Rabelo	et	al.,	2016;Gazara	et	al.,	2019),	conditions	(Belamkar	et	al.,	2014),	61	

and	cultivars/lines	(Goettel	et	al.,	2014).	The	accumulation	of	plant	transcriptomic	data	in	62	

public	 repositories	 [e.g.	 Sequence	 Read	 Archive	 (SRA)	 at	 the	 National	 Center	 for	63	

Biotechnology	 Information	 (NCBI)]	 inspired	 the	 development	 of	 unified	 collections	 or	64	

atlases,	 such	 as	 those	 found	 for	 Arabidopsis	 thaliana	 (Fucile	 et	 al.,	 2011),	Medicago	65	

truncatula	(He	et	al.,	2009),	Gl.	max	(Supplementary	Table	S1),	as	well	as	multi-species	66	

atlases	(Dash	et	al.,	2012),	which	are	often	reused	by	the	scientific	community.	Specifically	67	

in	soybean,	Kim	et	al.	constructed	the	SoyNet		(www.inetbio.org/soynet)	database	using	68	

734	microarrays	and	290	RNA-seq	samples	(Kim	et	al.,	2017),	while	Wu	et	al.	uncovered	69	

a	 nodulation-related	 co-expression	 module	 by	 analyzing	 1,270	 microarray	 samples	70	

generated	with	Affymetrix	gene	chips	(Wu	et	al.,	2019).		71	

Despite	 the	 previous	 efforts	 to	 integrate	 soybean	 transcriptomes,	 there	 is	 a	72	

massive	amount	of	soybean	RNA-Seq	data	that	remain	largely	unexplored.	Here,	we	have	73	

collected	data	from	1,298	publicly	available	soybean	RNA-seq	samples	from	the	NCBI	SRA	74	

database.	We	 systematically	processed	and	mapped	 sequencing	 reads	 to	 the	 soybean	75	

reference	 genome.	 Transcriptional	 levels	were	 estimated	 to	 allow	 a	 systematic	 global	76	

gene	expression	analysis,	aiming	to	elucidate	the	dynamics	of	transcriptional	regulation	77	
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across	 this	 broad	 range	 of	 samples,	 tissues,	 and	 cultivars.	 Further,	 the	 collected	 and	78	

processed	data	are	 readily	available	 to	allow	both,	automatic	analysis	and	single-gene	79	

investigations	 using	 an	 easy-to-use	 interface	 at	 our	 lab	 website	80	

(http://venanciogroup.uenf.br/resources/).		81	

	82	

RESULTS	AND	DISCUSSION	83	

Data	gathering,	processing,	and	mapping	to	the	reference	genome	reveal	an	overall	high	84	

quality	of	the	publicly	available	soybean	RNA-Seq	data	85	

We	 performed	 an	 extensive	 literature	 mining	 process	 to	 gather	 as	 many	 as	 possible	86	

soybean	RNA-seq	datasets.	A	total	of	1,742	raw	read	sequencing	files	were	downloaded	87	

from	the	NCBI	SRA	database	(Supplementary	Table	S2).	Reads	obtained	from	the	same	88	

biological	sample	were	combined	 in	a	single	FASTQ	file	 (or	 in	 two	files,	 for	paired-end	89	

data;	*_1.fq	and	*_2.fq).	This	resulted	in	1,298	samples	(65%	single-end	and	35%	paired-90	

end)	from	84	BioProjects	comprising	sixteen	different	broad	tissue	categories	in	various	91	

developmental	stages	(Supplementary	Table	S3).	Approximately	35%	(458/1298)	of	the	92	

samples	lacked	cultivar/genotype	information	in	SRA.	Among	the	other	840	samples,	we	93	

found	 157	 different	 soybean	 cultivar	 names,	 although	 this	 is	 likely	 an	 overestimation	94	

because	of	authors	calling	the	same	cultivars	with	slightly	different	names	during	data	95	

submission.	The	cultivar	Williams	82,	which	had	the	genome	sequenced,	represented	23%	96	

(302/1,298)	of	 the	 total	 samples.	Leaves	were	 the	most	abundant	 tissue,	 representing	97	

46%	(603/1,298)	of	the	samples	(Figure	1).	Three	libraries	from	unknown	tissue	sources	98	

were	excluded.	We	have	also	found	that	76%	(986/1,295)	of	the	libraries	were	unstranded	99	

(Supplementary	Table	S3).		100	

Reads	 from	 each	 RNA-seq	 library	 were	 mapped	 to	 the	 reference	 genome,	101	

assembled,	 and	 used	 for	 estimating	 gene	 expression	 (Figure	 2).	 Whenever	 present,	102	

adapter	 sequences	 were	 trimmed.	 Reads	 with	 average	 quality	 lower	 than	 20	 were	103	

excluded.	An	average	of	32,210,805	million	reads	pairs	per	sample	with	paired-end	data	104	

and	 29,579,316	 million	 reads	 per	 sample	 with	 single-end	 data	 were	 used	 for	 read	105	

mapping.	Mapped	and	uniquely	mapped	reads	correspond	to	an	average	of	87.9%	and	106	

81%,	 respectively	 (Supplementary	 Table	 S4	 and	 Supplementary	 Figure	 1).	 Further,	we	107	

excluded	47	samples	for	which:	i)	50%	or	more	of	the	reads	failed	to	map	or;	ii)	40%	or	108	

more	of	the	reads	failed	to	uniquely	map.	After	these	exclusions,	1,248	samples	were	kept	109	

for	further	downstream	analysis.		110	

Several	methods	used	to	analyze	RNA-seq	data	(e.g.	differential	gene	expression)	111	

rely	on	read	count	normalization	strategies	(Robinson	and	Oshlack,	2010;Po-Yen	et	al.,	112	

2011),	such	as	Reads	Per	Kilobase	Million	(RPKM)	(Mortazavi	et	al.,	2008),	Fragments	Per	113	

Kilobase	Million	(FPKM),	and	Transcripts	Per	Million	(TPM)	(Wagner	et	al.,	2012),	out	of	114	

which	 the	 latter	 has	 been	proposed	 to	 be	more	 consistent	 across	 technical	 replicates	115	
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(Wagner	et	al.,	2012;Conesa	et	al.,	2016;Li	and	Li,	2018).	Here,	we	normalized	data	using	116	

TPM	 for	 most	 of	 the	 downstream	 analysis.	 Nevertheless,	 log2	 transformed	 raw	 read	117	

counts	are	more	commonly	used	for	quality	control	steps	such	as	unsupervised	sample	118	

clustering	(Jordan	et	al.,	2015).	In	addition,	many	popular	tools	used	for	differential	gene	119	

expression	analysis	(e.g.	DESeq2,	edgeR)	require	raw	read	counts	instead	of	normalized	120	

read	counts.	Therefore,	after	read	mapping,	we	estimated	transcript	abundances	in	the	121	

form	of	raw	read	counts	per	transcript	and	TPM.	Transcript-level	expression	values	were	122	

also	aggregated	to	estimate	expression	at	gene	level.	Gene	expression	values	across	1,248	123	

samples	were	then	used	in	further	downstream	analysis.	124	

	125	

Unsupervised	sample	clustering	reveals	three	major	clades	comprising	underground,	126	

aerial,	and	seed	tissues		127	

In	transcriptomics	studies,	gene	and	samples	are	often	clustered	to	identify	sub-groups	128	

with	similar	transcriptional	profiles	(Liu	and	Si,	2014;Marini	and	Binder,	2019).	While	gene	129	

clustering	helps	identify	co-expressed	genes,	sample	clustering	is	instrumental	to	detect	130	

broad	 transcriptional	 similarities	 between	 samples,	 as	 well	 as	 to	 identify	 potential	131	

technical	 artifacts	 and	 mislabeled	 samples.	 Among	 several	 methods,	 distance-based	132	

hierarchical	 clustering,	 K-means	 clustering,	 and	 dimensional-reduction-based	133	

visualization	 methods	 (e.g.	 principal	 component	 analysis,	 PCA)	 are	 commonly	 used.	134	

Recently,	 t-Distributed	 Stochastic	 Neighbor	 Embedding	 (t-SNE)	 has	 been	 shown	 to	135	

provide	a	better	global	structure	of	sample	sub-groups	than	several	other	methods	(Dey	136	

et	al.,	2017).	Here,	we	employed	three	sample	clustering	methods	to	identify	outliers	and	137	

overall	pairwise	sample	similarity.	We	used	a	gene	expression	matrix	as	input	to	perform	138	

hierarchical	clustering,	K-means	clustering,	and	t-SNE	analysis.	These	analyses	uncovered	139	

three	major	groups	comprising	samples	from	aerial,	underground,	and	developmental	or	140	

seed	 tissues	 (Figure	 3)	 (Severin	 et	 al.,	 2010).	 Interestingly,	 however,	 we	 found	 an	141	

additional	 cluster	 comprising	 samples	 from	 leaves	 and	 shoots	 from	 drought-stress-142	

related	and	leaf	senescence	samples.	Although	not	entirely	novel,	these	results	are	part	143	

of	an	important	step	to	check	for	technical	issues	or	biases	that	could,	for	example,	result	144	

in	 the	 clustering	of	 samples	 from	 the	 same	 sequencing	batch	or	 research	group.	 Four	145	

shoot	 samples	 and	 one	 root	 sample	 clustered	 with	 seed-embryo	 samples.	 After	146	

confirming	this	result	with	the	t-SNE	and	K-means	clustering,	we	excluded	these	samples.	147	

Overall,	sample	clustering	supports	a	high	quality	level	of	the	publicly	available	RNA-Seq	148	

samples	analyzed	here,	as	only	0.4%	 (5/1248)	of	 the	samples	were	excluded	after	 the	149	

clustering	analysis.		150	
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	151	

Systematic	analysis	of	hundreds	of	RNA-Seq	libraries	support	the	expression	of	the	152	

vast	majority	of	the	soybean	genes	153	

After	comparing	the	reference	transcript	annotations	(for	56,044	genes)	with	the	154	

merged	 consensus	 transcript	 assembly,	 we	 excluded	 1.3%	 (759/56,044)	 of	 the	 genes	155	

because	of	overlapping	gene	predictions.	Next,	we	applied	a	minimum	TPM	threshold	of	156	

1	 to	 define	 a	 gene	 as	 expressed	 and	 found	 that	 92.1%	 (51,644/56,044)	 of	 the	 known	157	

soybean	 protein-coding	 genes	 were	 expressed	 in	 at	 least	 one	 sample.	 The	 remaining	158	

genes	had	their	TPM	values	set	 to	zero	and	classified	as	not	expressed.	An	average	of	159	

31,063	 genes	 were	 expressed	 per	 sample.	 The	 tissues	 with	 the	 greatest	 numbers	 of	160	

expressed	genes	were	inflorescence	(37,108	genes)	and	flower	(average	of	36,051	genes)	161	

(Supplementary	Figure	2A),	whereas	nodules	had	the	lowest	number	of	expressed	genes	162	

(average	 of	 25,718	 genes).	 We	 also	 found	 16,916	 genes	 expressed	 in	 at	 least	 1,150	163	

samples	(Supplementary	Figure	2B),	including	1,758	genes	that	are	expressed	in	all	1,243	164	

samples.	On	the	other	hand,	6%	(3,233/56,044)	of	the	genes	were	not	expressed	(TPM	<	165	

1)	in	any	sample,	out	of	which	82%	had	coding	regions	comprising	less	than	500	codons	166	

(Supplementary	 Figure	 3).	 As	 a	 final	 data	 quality	 check,	 we	 analyzed	 the	 top	 1,000	167	

expressed	genes	from	each	tissue	category	using	MapMan	pathway	bins	(see	Methods).	168	

For	example,	contrasting	gene	expression	profiles	of	roots	and	leaves	uncovered	several	169	

expected	transcriptional	patterns	of	photosynthesis	genes	in	the	latter	(Supplementary	170	

Figure	4).	171	

	172	

Housekeeping	genes	173	

Given	 the	 wide	 coverage	 of	 tissues	 and	 conditions,	 we	 also	 sought	 to	 identify	174	

housekeeping	(HK)	genes	based	on	the	assumption	that	these	genes	are	constitutively	175	

and	robustly	expressed	across	broad	conditions	(Czechowski	et	al.,	2005;Hu	et	al.,	2009).	176	

Further,	 several	 of	 these	 genes	 have	 also	 been	 used	 as	 references	 in	 real-time	177	

quantitative	 polymerase	 chain	 reaction	 (RT-qPCR)	 assays	 (Supplementary	 Table	 S5).	178	

Hence,	by	using	a	large	collection	of	RNA-Seq	datasets	as	the	one	presented	here,	one	179	

can	not	only	evaluate	commonly	used	reference	genes,	but	also	propose	new	ones.	By	180	

employing	a	previously	developed	method	(Hoang	et	al.,	2017),	we	inferred	452	HK	genes	181	

(Supplementary	Table	S6).	We	evaluated	expression	levels	of	each	gene	in	tissues	with	at	182	

least	10	samples	and	found	that	HK	genes	had	very	low	expression	variation	(Figure	4A).	183	

To	identify	HK	genes,	we	used	a	score	that	consists	of	the	product	of	the	Coefficient	of	184	

Variation	and	ratio	of	the	maximum	to	the	minimum	expression	level	(see	methods	for	185	

details).	Genes	with	scores	within	the	1st	quartile	were	classified	as	HK	genes.	Further,	186	
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we	used	 a	 tissue-specificity	 index	Tau	 (τ)	 (Yanai	 et	 al.,	 2004;Kryuchkova-Mostacci	 and	187	

Robinson-Rechavi,	2017)	to	estimate	tissue	specificity	and	verify	whether	our	predicted	188	

HK	genes	were	broadly	expressed	or	not.	The	τ	values	scale	from	0	to	1,	where	low	and	189	

high	values	indicate	widely	expressed	and	more	tissue-specific	genes,	respectively.	The	τ	190	

scores	of	the	HK	genes	ranged	from	0.053	to	0.379,	supporting	their	stable	expression	191	

level	(Figure	6).	192	

According	 to	 their	 expression	 levels,	 HK	 genes	 were	 grouped	 in	 three	 broad	193	

clusters	(Figure	4B).	Importantly,	7	previously	proposed	HK	genes	(Yim	et	al.,	2015)	were	194	

present	in	our	list	(Figure	4),	out	of	which	four	(ACT11.C,	B-actin,	CYP.B	and,	ELF1α)	belong	195	

to	cluster	1	(highly	expressed,	Figure	4A),	confirming	that	high	expression	is	typically	an	196	

important	 factor	 in	 choosing	 reference	 genes.	 Conversely,	 given	 its	 expression	197	

fluctuations	 (Figure	 4),	 we	 do	 not	 recommend	 using	 UBQ10,	 which	 has	 also	 been	198	

proposed	as	a	reference	gene.		199	

Pathway	enrichment	analysis	of	 the	452	putative	HK	genes	revealed	that	 these	200	

genes	 are	 involved	 in	 various	 biological	 processes	 such	 as	 RNA	 degradation,	 mRNA	201	

surveillance,	 and	 TCA	 cycle	 (Figure	 4B).	 We	 found	 an	 enrichment	 of	 orthologs	 of	202	

Arabidopsis	essential	genes	(Meinke,	2019)	among	the	HK	genes	(Fisher’s	Exact	test;	p-203	

value	 =	 1.76e-2).	 Given	 their	 roles	 in	 basic	 biological	 processes,	 we	 also	 verified	 the	204	

conservation	 of	 the	 HK	 genes	 in	 other	 14	 species	 on	 Phytomine	 and	 found	 that	 85%	205	

(385/452)	of	them	have	orthologs	in	at	least	10	other	species	(Supplementary	Table	S6),	206	

as	opposed	to	an	average	of	181.6	(±	11.6)	in	5	random	lists	of	452	non-HK	genes.		207	

	208	

Tissue-specific	gene	expression	209	

We	compared	the	global	expression	patterns	between	tissues	to	identify	tissue-specific	210	

genes	(Figure	5).	We	selected	359	samples	that	belong	to	the	same	tissues	and	clustered	211	

together	 (Supplementary	 Table	 S7),	 which	 resulted	 in	 the	 exclusion	 of	 four	 tissue	212	

categories.	The	12	tissues	were	compared	with	each	other	(a	total	of	144	comparisons),	213	

resulting	in	a	total	of	1,349	genes	up-regulated	in	a	single	tissue	as	compared	to	all	the	214	

others	(Figure	7;	Supplementary	Table	S8).	Importantly,	96%	of	these	genes	(1,300/1,349)	215	

had	 τ	 indexes	 greater	 than	 0.8	 and	median	 τ	of	 0.9704	 (Figure	 6).	 Given	 their	 strong	216	

preferential	expression	in	particular	tissues,	we	called	these	genes	as	tissue-specific.		217	

	 The	 number	 of	 tissue-specific	 genes	 ranged	 from	4	 in	 pods	 to	 358	 in	 nodules.	218	

Collectively,	 nodule	 (26.5%)	 and	endosperm	 (301;	 22%)	 account	 for	 nearly	 half	 of	 the	219	

tissue-specific	genes.	The	lower	number	of	tissue-specific	genes	in	leaf,	shoot,	cotyledon,	220	

and	pod	 can	be	explained	by	 the	physiological	 or	developmental	 relatedness	of	 some	221	

samples	(e.g.	cotyledon	and	seed).	Notably,	39%	(520/1,349)	of	the	tissue-specific	genes	222	

identified	here	were	also	identified	by	Severin	et.	al	(Severin	et	al.,	2010)	using	a	much	223	
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smaller	 set	 of	 samples,	 supporting	 the	 general	 high	 quality	 and	 reproducibility	 of	 the	224	

publicly	 available	 soybean	 transcriptomes.	 Strikingly,	 nearly	 12%	 (168/1,349)	 of	 the	225	

tissue-specific	 genes	were	 transcription	 factors	 (TFs)	 (Table	 1),	 which	 is	 a	 remarkable	226	

enrichment	(Fisher´s	Exact	Test,	p-value	=	2.94e-11)	considering	the	overall	abundance	of	227	

TFs	in	the	soybean	genome	(Moharana	and	Venancio,	2019).	Among	the	tissue-specific	228	

TFs,	27,	21,	and	20	genes	belong	to	the	MYB,	C2H2,	and	ERF	families,	respectively.	Of	the	229	

27	MYB	TFs,	20	were	specific	to	flower	(n=8),	hypocotyl	(n=7),	and	endosperm	(n=5).	Of	230	

the	21	C2H2	genes,	12	were	specific	to	nodule	(n=6)	and	endosperm	(n=6).	Ten	out	of	20	231	

ERF	genes	and	six	out	of	10	WRKY	genes	were	specific	to	hypocotyl.	Finally,	8	of	9	MIKC	232	

type	 MADS	 TFs	 were	 flower-specific.	 Several	 interesting	 tissue-specific	 genes	 are	233	

discussed	in	the	sections	below.	234	

	235	

Nodule-specific	genes		236	

Symbiotic	N2	fixation	takes	place	in	root	nodules	of	several	Fabaceae	species.	Nodulation	237	

had	a	single	origin	in	the	common	ancestor	of	the	N2-fixing	clade,	followed	by	multiple	238	

independent	 losses	 (Griesmann	et	 al.,	 2018).	Among	 the	 genes	 lost	 in	 non-nodulating	239	

species,	 Nodule	 Inception	 (NIN)	 and	 Rhizobium-Directed	 Polar	 Growth	 (RPG)	 were	240	

reported	to	be	of	paramount	importance	for	the	origin	of	root	nodules	(Griesmann	et	al.,	241	

2018).	 As	mentioned	 above,	 nodule	 is	 the	 tissue	with	 the	 greatest	 number	 of	 tissue-242	

specific	genes	in	soybean,	a	trend	that	has	also	been	reported	in	other	legumes	(Benedito	243	

et	al.,	2008).	Soybean	nodules	have	been	shown	to	correlate	poorly	with	other	tissues	at	244	

the	transcriptional	level	(Severin	et	al.,	2010),	a	finding	that	we	corroborated	here.		245	

We	 found	 several	 nitrogen	 fixation	 genes	 as	 nodule-specific,	 including	 two	246	

leghemoglobin	 (Glyma.10G199000,	Glyma.20G191200)	 and	 ten	 nodulin	 genes.	 The	 TF	247	

families	mostly	represented	among	the	29	nodule-specific	TFs	were	NIN-like	(n=6)	and	248	

C2H2	(n=6).	A	higher	percentage	of	NIN-like	and	C2H2	nodule-specific	TFs	have	been	also	249	

described	previously	(Libault	et	al.,	2010;Severin	et	al.,	2010).	Importantly,	NIN-like	and	250	

C2H2	 TFs	 are	 important	 in	 nitrate	 signaling	 (Konishi	 and	 Yanagisawa,	 2013)	 and	251	

symbiosome	differentiation	during	nodule	development	(Sinharoy	et	al.,	2013).	We	also	252	

found	 three	 nodule-specific	 ERF	 TFs	 that	 are	 conserved	 in	 Phaseolus	 vulgaris	 and	253	

Medicago	 truncatula	 and	 are	 essential	 for	 nodule	 differentiation	 and	 development	254	

(Vernié	et	al.,	2008).		255	

We	found	12	soybean	nodule-specific	genes	within	the	experimentally	validated	256	

list	of		over	200	nodulins	described	previously	(Roy	et	al.,	2019).	These	12	genes	include	257	

the	above	mentioned	ERF	TFs,	NIN	(Glyma.04G000600),	C2H2	(Glyma.07G135800),	and	258	

GRAS	(Glyma.16G008200).	Next,	we	analyzed	the	28	genes	from	a	nodule-related	module	259	

identified	in	a	co-expression	network	derived	from	soybean	microarray	data	(Wu	et	al.,	260	
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2019).	Notably,	9	of	these	28	genes	were	identified	as	nodule-specific	in	our	analysis:	one	261	

leghemoglobin	 (Glyma.10G199000),	 two	 NIN-like	 TFs	 (Glyma.02G311000,	262	

Glyma.14G001600),	 two	 purine	 biosynthesis	 genes	 (Glyma.08G001000,	263	

Glyma.11G221100),	 one	 iron	 transporter	 (Glyma.05G121600),	 one	 zinc	 finger	 protein-264	

related	 (Glyma.08G044700),	one	sulfate	 transporter	 (Glyma.18G018900),	and	a	 formyl	265	

transferase	(Glyma.19G115900).	266	

		267	

Endosperm-specific	genes	268	

The	endosperm	plays	important	roles	during	seed	development.	Ar.	thaliana	endosperm-269	

specific	genes	are	associated	with	cell	cycle,	DNA	processing,	chromatin	assembly,	protein	270	

synthesis,	 cytoskeleton-	 and	 microtubule-related	 processes,	 and	 cell/organelle	271	

biogenesis	and	organization	(Day	et	al.,	2008).	Out	of	the	301	endosperm-specific	genes	272	

reported	 here,	 9	 (Glyma.19G040600,	 Glyma.09G194500,	 Glyma.01G147300,	273	

Glyma.19G058100,	 Glyma.19G044000,	 Glyma.04G187100,	 Glyma.03G219800,	274	

Glyma.02G255900,	and	Glyma.08G129200)	encode	chromatin	modifiers	such	as	histone	275	

acetyltransferases,	 histone-lysine	 n-methyltransferases,	 histone	 deacetylases,	 and	276	

histone	demethylases.	Further,	17	endosperm-specific	genes	encode	F-box	proteins	and	277	

8	 genes	 encode	 BTB-POZ	 and	 MATH	 domain	 proteins,	 which	 likely	 operate	 in	 the	278	

ubiquitin-proteasome	pathway	(Smalle	and	Vierstra,	2004;Figueroa,	2005).	We	also	found	279	

36	endosperm-specific	TFs,	including	6	and	5	C2H2	and	MYB	TFs,	respectively.	Together,	280	

these	 results	 clearly	 show	 a	 number	 of	 endosperm-specific	 genes	 as	 involved	 in	281	

transcriptional	and	post-transcriptional	regulatory	processes.		282	

	283	

Flower-specific	genes	284	

The	 genetic	 basis	 of	 floral	 development	 has	 been	 widely	 studied	 in	 several	 plants,	285	

including	Ar.	 thaliana	and	Antirrhinum	majus	 (Soltis	et	al.,	2007;Bowman	et	al.,	2012).	286	

According	to	the	ABCDE	model,	most	of	the	genes	involved	in	the	regulation	of	flower	287	

development	encode	MADS	and	AP2/ERF	TFs	(Chi	et	al.,	2017).	The	combinatory	action	288	

of	these	genes	regulates	the	development	of	various	distinct	floral	parts.	For	example,	Ar.	289	

thaliana	sepal	development	is	regulated	by	the	MADS-box	gene	APETALA1	(AP1)	together	290	

with	the	ERF	TF	APETALA2	 (AP2).	Similarly,	two	MADS-box	genes,	APETALA3	 (AP3)	and	291	

PISTILLATA	 (PI),	 regulate	 petal/stamen	 development,	 whereas	 the	 MADS-box	 gene	292	

AGAMOUS	 (AG)	 regulates	 carpel	 development.	 These	 basic	 regulators	 of	 flower	293	

development	are	also	conserved	in	other	angiosperms	(Becker,	2003;Zhao	et	al.,	2017).	294	

Further,	491	genes	have	been	suggested	to	be	involved	in	soybean	flower	development	295	

(Jung	et	al.,	2012).		296	

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 23, 2019. ; https://doi.org/10.1101/2019.12.23.886853doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.23.886853
http://creativecommons.org/licenses/by-nc-nd/4.0/


	

	 10	

Recently,	several	studies	reported	transcriptional	changes	during	flowering	time	297	

in	legumes	(Weller	and	Ortega,	2015).	We	found	182	flower-specific	genes,	including	at	298	

least	 20	 members	 of	 the	 plant	 invertase/pectin	 methylesterase	 inhibitor	 (PMEI)	299	

superfamily,	which	is	involved	in	cell	wall	modification	in	Ar.	thaliana	(Zhao	et	al.,	2015).	300	

Specific	PMEIs	are	highly	expressed	 in	 specific	wheat	 floral	parts,	 such	as	anthers	and	301	

pollen	tubes	(Rocchi	et	al.,	2012),	playing	a	significant	role	in	flower	development	(Wormit	302	

and	Usadel,	2018).	 In	addition,	we	 found	20	 flower-specific	TFs,	mostly	 from	the	MYB	303	

(40%,	8/20)	and	MIKC-type	MADS	(40%,	8/20)	families.	Finally,	out	of	8	these	MIKC	genes,	304	

two	 AGAMOUS-like	 (Glyma.03G019400,	 Glyma.07G081300)	 and	 three	 PISTILLATA	305	

(Glyma.06G117600,	Glyma.13G034100,	Glyma.14G155100)	were	among	the	36	flower-306	

specific	genes	reported	by	Jung	et	al.	(Jung	et	al.,	2012).	307	

	308	

Identification	of	novel	transcripts	309	

We	compared	the	genomic	coordinates	of	the	transcripts	assembled	in	our	atlas	310	

with	 those	available	 in	Phytozome	and	categorized	them	 in	nine	classes	 (Table	2).	We	311	

found	that	95%	(70,963/74,490)	of	the	transcripts	precisely	matched	known	transcripts	312	

(class	=).	We	also	investigated	class-J	and	class-U	categories,	which	account	for	3,256	and	313	

23	 transcripts,	 respectively.	 Class-J	 comprises	multi-exon	 transcripts	with	 at	 least	 one	314	

known	exon	junction,	while	class-U	encompasses	transcripts	located	in	intergenic	regions.	315	

While	class-J	 transcripts	 include	new	 isoforms	of	known	genes,	 those	 from	class-U	are	316	

useful	 to	 identify	potentially	new	genes.	We	 found	 that	30%	 (983/3256)	of	 the	class-J	317	

transcripts	 and	 17%	 (4/23)	 of	 the	 class-U	 transcripts	 had	 TPM	 ≥	 1	 in	 907	 and	 1,207	318	

samples,	 respectively.	 Only	 one	 of	 the	 four	 class-U	 expressed	 transcripts	 (TU4871,	319	

Chr02:12125821-12127123)	encode	a	protein	longer	than	50	aa,	which	contains	a	reverse	320	

transcriptase-like	 RNase_H	 (PF13456)	 domain,	 supporting	 that	 it	 is	 likely	 a	 mobile	321	

element.	 In	 two	of	 these	 expressed	 class-U	 transcripts	 (TU28093,	 TU56508),	 only	 one	322	

exon	showed	high	read	coverage	(Supplementary	Figure	5).			323	

All	the	3,256	class-J	transcripts	were	further	analyzed	for	alternate	splicing	(AS)	324	

events	 using	 ASprofile	 (Florea	 et	 al.,	 2013).	 AS	 events	were	 categorized	 in	 one	 of	 six	325	

categories:	(i)	exon-skipping;	(ii)	multiple	exon-skipping;	(iii)	alternative	transcription	start	326	

site	(TSS);	(iv)	alternative	transcription	termination	sites	(TTS);	(v)	intron	retention	and;	327	

(vi)	alternate	5’	and/or	3’	exon	ends.	We	detected	6,582	AS	events,	mostly	TSS	and	TTS	328	

(Table	 3).	 Several	 novel	 AS	 events	 were	 supported	 by	 hundreds	 of	 split	 reads	329	

(Supplementary	 Figure	 6-8).	 For	 example,	 TU62356	 from	 Glyma.17G195900	 (CASEIN	330	

KINASE	1-LIKE	PROTEIN	4)	is	a	novel	isoform	with	a	skipped	exon	(Supplementary	Figure	331	

6).	Interestingly,	we	found	no	support	for	this	alternative	isoform	in	other	tissues.	332	

		333	
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Data	availability	through	a	user-friendly	web	interface	334	

We	developed	a	simple	user-friendly	web	interface	to	allow	researchers	to	easily	explore	335	

1,243	soybean	transcriptome	samples.	Through	this	interface	(Figure	8),	one	can	explore	336	

the	expression	of	a	particular	gene	in	multiple	tissues,	with	the	aid	of	an	image	illustrating	337	

all	 the	 available	 tissues.	 Alternatively,	 users	 can	 also	 retrieve	 expression	 profiles	 of	338	

multiple	genes	in	batch,	with	multiple	filtering	options	(e.g.	by	tissue,	BioProject,	study).	339	

The	outputs	can	be	exported	as	plain	text	files.	We	strongly	believe	that	this	website	will	340	

optimize	data	reuse	and	help	research	groups	in	their	own	projects.	This	service	can	be	341	

freely	accessed	at	http://venanciogroup.uenf.br/resources/.		342	

	343	

Conclusions	344	

We	have	culled	a	 large	collection	of	publicly	available	RNA-seq	datasets	to	construct	a	345	

transcriptome	atlas	in	soybean.	We	implemented	a	pipeline	with	state-of-art	methods	to	346	

map	and	quantify	gene	expression	levels	in	16	different	broad	tissue	categories.	This	atlas	347	

allowed	us	to	identify	constitutive	and	tissue-specific	genes.	The	constitutively	expressed	348	

genes	might,	for	example,	be	used	as	reference	genes	in	RT-qPCR	experiments,	whereas	349	

tissue-specific	genes	might	help	scientists	test	hypotheses	 in	downstream	experiments	350	

and	 functional	genomics	studies.	To	optimize	data	reuse,	we	elaborated	a	simple	web	351	

interface	to	allow	the	community	to	quickly	access	and	browse	the	collected	data.	We	352	

believe	this	atlas	will	be	an	invaluable	resource	not	only	for	basic	research	projects,	but	353	

also	 in	 the	development	 of	 novel	 strategies	 to	 improve	 soybean	productivity	 to	meet	354	

increasing	global	food	demands.		355	

	356	

Methods	357	

Soybean	genome	and	annotation	data	358	

Soybean	 genomic	 sequences	 and	 gene	 annotation	 data	 (assembly	 version:	359	

Gmax_275_Wm82.a2.v1)	 were	 obtained	 from	 Phytozome	 (Schmutz	 et	 al.,	360	

2010;Goodstein	et	al.,	2012).	The	gene	annotation	file	contained	56,044	and	88,647	genes	361	

and	transcripts,	respectively.	The	gene	annotation	file	containing	exon-intron	boundaries	362	

(GFF3	 format)	 was	 used	 as	 a	 reference	 guide	 in	 read	 mapping.	 We	 excluded	 759	363	

overlapping	genes	from	the	analysis.	The	gene	description	file	was	used	to	obtain	various	364	

annotations	such	as	GO,	KEGG,	KOG,	and	Arabidopsis	ortholog	descriptions.	365	

		366	

Soybean	RNA-Seq	data	367	

To	 identify	 soybean	 transcriptome	 sequencing	 projects,	 we	 searched	 the	 NCBI	 SRA	368	

database	(https://www.ncbi.nlm.nih.gov/sra)	and	the	metadata	were	exported	by	using	369	
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Run	selector	 (https://trace.ncbi.nlm.nih.gov/Traces/study/).	We	also	searched	Soybean	370	

RNA-seq	 studies	 in	 the	 literature	 (up	 to	 May	 2018)	 to	 find	 additional	 datasets.	 We	371	

enriched	this	list	of	studies	with	various	other	details,	such	as	PubMed	ID	and	experiment	372	

details	obtained	by	using	NCBI	e-fetch.	Using	these	metadata,	we	excluded	miRNA/siRNA	373	

samples	and	a	few	other	samples	showing	technical	issues	such	as:	i)	empty	FASTQ	files;	374	

ii)	paired-end	samples	with	single-end	reads	and;	iii)	paired-end	reads	of	unequal	lengths.	375	

Collectively,	we	downloaded	a	total	of	1,742	 .sra	 files	(Supplementary	table	S2),	which	376	

were	decompressed	using	sra-toolkit	(v.2.5.7)	(Leinonen	et	al.,	2010).		377	

	378	

Preprocessing	and	quality	control	379	

Quality	 assessment	 of	 FASTQ	 files	 was	 performed	 using	 FASTQC	380	

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/).	 Datasets	 were	381	

processed	using	Trimmomatic	(v0.36)	(Bolger	et	al.,	2014)	to	remove	reads	with	average	382	

base	quality	 lower	than	20	or	containing	adapter	sequences.	Library	strandedness	was	383	

determined	with	the	infer_experiment.py	script	from	RSeQC	(Wang	et	al.,	2012)	using	a	384	

mapping	of	20%	of	the	reads	of	each	sample	to	the	soybean	genome	in	a	fast-forward	385	

manner	using	Bowtie2	(Langmead	and	Salzberg,	2012).		386	

	387	

Transcript	assembly	and	gene	expression	estimation	388	

We	 aligned	 the	 reads	 to	 the	Gl.	max	 reference	 genome	 (Gmax_275_Wm82.a2.v1)	 by	389	

using	STAR	(v.2.5.3a)	(Dobin	et	al.,	2013)	with	default	parameters,	along	with	the	soybean	390	

gene	annotation	file	containing	exon-intron	boundaries	(in	GFF3).	When	required,	STAR	391	

also	splits	reads	to	find	novel	exon-intron	boundaries	or	splice	sites.	The	log	files	were	392	

processed	to	obtain	read	mapping	statistics.	Next,	StringTie	(v.	1.3.4)	(Pertea	et	al.,	2015)	393	

was	 used	 to	 assemble	 transcripts	 and	 estimate	 normalized	 gene	 expression.	 We	394	

performed	transcriptome	assemblies	for	each	of	the	16	tissues	separately.	In	StringTie,	395	

we	set	the	following	parameters:	 i)	at	 least	5	reads	with	at	 least	25%	of	the	total	read	396	

length	covering	both	sides	of	an	exon	junction	boundary	(–j	5		–a		0.25*read_length);	ii)	397	

average	read	depth	for	a	transcript	of	at	 least	10	(–c	10)	and;	 iii)	 library	strandedness,	398	

when	 applicable.	 The	 resulting	 16	 assembled	 transcript	 annotations	 from	 each	 tissue	399	

were	 combined	 with	 TACO	 v0.7.3	 (Niknafs	 et	 al.,	 2017).	 GffCompare	 (v0.10.5)	400	

(https://ccb.jhu.edu/software/stringtie/gffcompare.shtml)	 was	 used	 to	 compare	401	

assembled	and	reference	transcripts.	Further,	featureCount	(subread-v1.6.2)	(Liao	et	al.,	402	

2014)	was	used	to	count	the	number	of	reads	per	feature	at	transcript	and	gene	levels,	403	

while	normalized	expression	was	estimated	in	TPM	using	StringTie	(–e	option).		404	

	405	
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Sample	clustering	406	

We	assessed	the	sample	clustering	patterns	by	submitting	41,011	genes	with	mean	log2	407	

(read	 count+1)	 ≥	 1	 to:	 i)	 hierarchical	 clustering;	 ii)	 t-SNE	 clustering	 and;	 iii)	 K-means	408	

clustering.	These	analyses	were	performed	using	R	functions	(www.r-project.org)	cor(),	409	

hclust(),	and	kmeans().	For	t-SNE	clustering,	we	used	the	t-SNE	R	package	(Krijthe,	2015)	410	

with	clustering	parameters	max_iter=	5000	and	perplexity=	50.	For	hierarchical	clustering,	411	

sample	 dissimilarity	 (1	 –	 Pearson	 Correlation	 Coefficients)	 values	 were	 used	 to	 infer	412	

pairwise	 sample	 distances.	 The	 resulting	 tree	 was	 inspected	 for	 unexpected	 sample	413	

clustering	patterns.	t-SNE	separated	samples	in	35	sub-clusters.	Thus,	we	ran	the	K-means	414	

clustering	analysis	to	find	35	centroids	(k=	35).		415	

	416	

Identification	of	novel	genes	and	splicing	isoforms		417	

To	 identify	 novel	 genes	 and	 isoforms,	 we	 analyzed	 the	 GffCompare	 output	 files.	418	

Transcripts	not	overlapping	with	any	known	reference	transcript	were	assigned	to	class-419	

U.	 The	 nucleotide	 sequences	 of	 the	 class	U	 transcripts	were	 extracted	 and	 translated	420	

using	TransDecoder	(v.	3.0.1).	Protein	domains	were	predicted	using	HMMER3	v.	3.1b2	421	

(all	 default	 parameters	 except	 domain	 e-value	 <	 0.01)	 (hmmer.org)	 and	 the	 Pfam	422	

database	(release	32.0)	(El-Gebali	et	al.,	2019).	Read	coverage	of	these	novel	genes	were	423	

visualized	 with	 Gbrowse,	 available	 on	 Soybase	424	

(https://soybase.org/gb2/gbrowse/gmax2.0).	 Class-J	 transcripts	 were	 classified	 as	425	

putative	 novel	 isoforms.	 Splice	 junctions	 of	 these	 transcripts	 in	 GTF	 format	 were	426	

compared	against	all	known	splice	junctions	using	ASprofile	v.b-1.0.4	(Florea	et	al.,	2013).	427	

The	number	of	reads	supporting	a	splice	 junction	was	visualized	as	sashimi	plots	using	428	

Integrated	Genome	Viewer	(v2.4.10)(Robinson	et	al.,	2011).		429	

	430	

Analysis	of	the	top	1000	highest	expressed	gene	lists	431	

The	top	1000	genes	with	the	greatest	average	TPM	in	each	tissue	category	were	analyzed	432	

using	 MapMan	 (v3.5.1R2)	 (Thimm	 et	 al.,	 2004).	 To	 assign	 pathway	 bins,	 amino	 acid	433	

sequences	of	these	gene	lists	were	compared	against	Arabidopsis	peptide	database	using	434	

Mercator4	(v.	2.0)	(Schwacke	et	al.,	2019).		435	

	436	

Identification	of	housekeeping	genes	437	

We	selected	11	tissues	with	at	least	10	samples,	which	resulted	in	a	total	of	1,225	samples.	438	

The	variability	 in	gene	expression	was	evaluated	as	previously	described	(Hoang	et	al.,	439	

2017).	The	following	criteria	were	applied	to	identify	HK	genes:	440	
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i. A	gene	with	TPM	<	1	in	a	given	sample	was	considered	as	not	expressed	(these	441	

TPM	values	were	set	to	0);	442	

ii. Genes	must	 be	 expressed	 in	 all	 1,225	 samples.	 This	 step	 resulted	 in	 1,809	443	

genes;	444	

iii. The	mean	TPM	of	each	gene	was	calculated	by	taking	the	average	of	the	gene	445	

expression	across	all	samples;	446	

iv. The	 Coefficient	 of	 Variation	 (CoV)	 was	 computed	 by	 taking	 the	 standard	447	

deviation	divided	by	the	mean	expression	of	a	gene;	448	

v. The	ratio	of	the	maximum	to	minimum	(MFC)	was	calculated	by	dividing	the	449	

largest	by	the	smallest	TPM	value.	A	product	score	(MFC-CoV)	was	calculated	450	

based	on	the	product	of	CoV	and	MFC	for	each	gene;	451	

vi. Genes	with	MFC-CoV	scores	within	the	1st	quartile	were	classified	as	HK	genes.	452	

	453	

HK	 genes	 were	 also	 analyzed	 using	 the	 tissue-specificity	 index	 τ	 (Yanai	 et	 al.,	454	

2004;Kryuchkova-Mostacci	 and	 Robinson-Rechavi,	 2017).	 The	 τ	 values	 ranged	 from	 0	455	

(broad	expression)	to	1	(exclusive	expression).	τ	for	each	gene	was	calculated	by	using	the	456	

formula:	457	

	458	

𝜏 =
(1 − 𝑥')

)
'*+

𝑛 − 1
;	𝑥' =

𝑥'

max
+2'2)

(𝑥')
	459	

where		460	

xi		=	expression  of  the  gene  in  tissue  i.	461	

n	=	number	of	tissues.	462	

	463	

Assessment	of	tissue-specific	expression	464	

We	used	the	log2	 transformed	TPM	values	for	this	analysis.	Each	of	the	12	tissues	was	465	

compared	 against	 each	 other	 (a	 total	 of	 144	 comparisons)	 to	 find	 significantly	 over-466	

expressed	genes	using	 limma	(Ritchie	et	al.,	2015).	We	used	log2	(fold-change)	≥	2	and	467	

adjusted	 p-value	 ≤	 0.05	 (moderated	 t-statistic)	 to	 identify	 significantly	 over-expressed	468	

genes.	If	a	gene	G	is	over-expressed	in	a	tissue	T	in	comparison	to	the	other	11	tissues,	G	469	

was	 considered	 as	 specifically	 expressed	 in	T.	We	also	used	 τ	 to	 assess	 tissue-specific	470	

expression	 by	 applying	 a	 minimum	 threshold	 of	 0.8,	 as	 previously	 recommended	471	

(Kryuchkova-Mostacci	and	Robinson-Rechavi,	2017).		472	

	473	

Gene	orthologs	and	enrichment	tests	474	

We	 obtained	 the	 gene	 descriptions	 from	 Phytomine	475	

(https://phytozome.jgi.doe.gov/phytomine/begin.do),	which	is	an	InterMine	(Lyne	et	al.,	476	
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2015)	 interface	 to	 genomic	 data	 from	 Phytozome	 (Goodstein	 et	 al.,	 2012).	 We	 used	477	

Phytomine	to	assess	the	conservation	of	HK	genes	in	14	different	species	(Ph.	vulgaris,	478	

Me.	 truncatula,	 Vigna	 unguiculata,	 Ar.	 thaliana,	 Oryza	 sativa,	 Gossypium	 raimondii,	479	

Carica	 papaya,	 Vitis	 vinifera,	 Sorghum	 bicolor,	 Zea	 mays,	 Amborella	 trichopoda,	480	

Selaginella	moellendorffii,	 Physcomitrella.	 Patens,	and	 Volvox	 carteri).	 To	estimate	 the	481	

conservation	of	non-HK	genes,	we	created	5	sets	of	452	randomly	selected	genes	from	482	

the	55,592	non-HK	genes.	Each	of	these	sets	were	searched	for	orthologs	in	the	above	483	

mentioned	14	species.	GO	enrichment	was	performed	on	Phytomine	(corrected	p-value	484	

<	 0.05).	 We	 performed	 Kyoto	 Encyclopedia	 of	 Genes	 and	 Genomes	 (KEGG)	 pathway	485	

enrichment	using	KOBAS	3.0	(Ai	and	Kong,	2018).	We	used	the	Fisher’s	Exact	test	to	assess	486	

the	 enrichment	 of	 essential	 genes	 and	 TFs	 in	 particular	 gene	 sets.	 The	 list	 of	 510	487	

Arabidopsis	 EMBRYO-DEFECTIVE	 (EMB)	 genes	 (Meinke,	 2019)	 were	 searched	 on	488	

Phytomine	and	 the	corresponding	1,010	soybean	orthologs	were	 retrieved.	The	 list	of	489	

soybean	 TFs	was	 obtained	 from	 a	 recently	 published	work	 (Moharana	 and	 Venancio,	490	

2019).		491	

	492	

Web	server	493	

The	TPM	and	read	count	values	for	54,877	genes	across	1243	samples	were	stored	in	a	494	

relational	database	implemented	in	MySQL	and	hosted	on	an	Apache	HTTP	web	server.	495	

The	 front-end	 to	 this	 database	 was	 developed	 using	 Python/html/CSS.	 Interactive	496	

visualizations	 were	 implemented	 using	 D3.js	 (https://d3js.org/)	 and	 Plotly.js	497	

(https://plot.ly/)	 javascript	 libraries.	 The	 online	 server	 is	 publicly	 available	 at	498	

http://venanciogroup.uenf.br/resources/.		499	
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Tables	735	

	736	

Table	1:	Tissue-specific	transcription	factors.	737	
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MYB	 	 5	 8	 7	 2	 	 1	 2	 1	 	 1	 27	
ERF	 	 1	 1	 10	 	 3	 	 3	 	 	 2	 20	
C2H2	 	 6	 	 1	 	 6	 2	 2	 	 	 4	 21	
NAC	 	 	 	 2	 	 1	 	 	 1	 	 4	 8	
bHLH	 2	 1	 	 2	 	 	 	 4	 	 	 	 9	
WRKY	 	 	 	 6	 	 	 	 2	 	 	 2	 10	
MYB_related	 	 2	 1	 1	 	 	 	 	 	 	 	 4	
LBD	 	 	 1	 	 	 	 	 1	 	 	 1	 3	
G2-like	 1	 1	 	 	 	 	 	 1	 	 	 	 3	
NF-YB	 	 1	 	 	 	 2	 	 	 	 	 	 3	
M-type	 	 2	 	 	 	 1	 	 	 	 	 	 3	
MIKC	 	 	 8	 	 	 	 	 1	 	 	 	 9	
HD-ZIP	 	 2	 	 	 	 	 	 	 	 	 2	 4	
GRAS	 	 	 	 1	 	 2	 	 	 	 	 	 3	
bZIP	 	 2	 	 	 	 4	 	 	 	 	 	 6	
B3	 	 2	 	 	 	 	 	 	 	 	 2	 4	
AP2	 	 	 	 	 	 2	 	 	 	 	 1	 3	
ZF-HD	 	 2	 	 	 	 	 	 	 	 	 	 2	
YABBY	 	 	 1	 	 	 	 	 	 	 	 	 1	
WOX	 	 	 	 	 	 	 	 	 	 	 3	 3	
SRS	 	 	 	 	 	 1	 	 	 	 	 	 1	
SBP	 	 	 	 	 	 	 	 	 	 1	 	 1	
NZZ/SPL	 	 2	 	 	 	 	 	 	 	 	 	 2	
Nin-like	 	 	 	 	 	 6	 	 	 	 	 	 6	
NF-YC	 	 3	 	 	 	 	 	 	 	 	 	 3	
NF-YA	 	 	 	 	 	 1	 	 	 	 	 	 1	
HSF	 	 	 	 1	 	 	 	 	 	 	 	 1	
GRF	 	 	 	 	 	 	 	 	 	 1	 	 1	
GATA	 1	 	 	 	 	 	 	 	 	 	 	 1	
Dof	 	 	 	 1	 	 	 	 	 	 	 	 1	
CPP	 	 1	 	 	 	 	 	 	 	 	 	 1	
C3H	 	 3	 	 	 	 	 	 	 	 	 	 3	

Total	 4	 36	 20	 32	 2	 29	 3	 16	 2	 2	 22	 168	
	738	
	 	739	
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Table	 2:	 Number	 of	 transcripts	 in	 each	 transcript-classification	 code	 defined	 by	740	

GffCompare.	741	

Class	code	 Description	 #	of	transfrags	

=	 Complete,	exact	match	of	intron	chain	 70,963	

j	 Multi-exon	with	at	least	one	exon	junction	match	 3256	

c	 Contained	in	reference	(intron	compactable)	 78	

e	 Single	exon	transfrag	partially	covering	intron,	possible	pre-mRNA	

fragment	

70	

k	 Containment	of	reference	(reverse	containment)	 69	

u	 Unknown,	intergenic	 23	

o	 Other	same	strand	overlap	with	reference	exon	 23	

x	 Exonic	overlap	on	opposite	strand	 4	

p	 Possible	polymerase	run-on	(no	actual	overlap)	 4	

	742	

	743	

Table	 3:	 Number	 of	 alternative	 splicing	 events	 (AS).	 The	 first	 column	 illustrates	 the	744	

possible	AS	isoforms.	The	boxes	represent	exons	and	lines	connect	adjacent	exons	in	the	745	

mature	transcript.		746	

	747	
	748	
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Figures	749	

	750	

	751	
	752	

Figure	1:	Number	of	samples	analyzed	in	this	study	and	a	graphical	representation	of	each	753	

tissue.		754	

 755	
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	756	
	757	

Figure	2:	Pipeline	used	to	create	the	soybean	RNA-Seq	atlas.		758	

	759	

	760	
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	761	
Figure	3:	Hierarchical	clustering	of	samples	using	their	transcriptional	profiles.	Per	gene	762	

raw	read	counts	were	used	to	perform	hierarchical	clustering	using	the	R	function	hclust()	763	

with	 default	 parameters.	 Samples	 were	 grouped	 into	 three	 major	 clades:	 aerial,	764	

underground,	and	seed-embryo	related.	A	minor	group	of	samples	containing	drought-765	

stress-related	 leaves	 and	 shoots	 was	 also	 identified.	 The	 upper-left	 panel	 shows	 the	766	

sample	 clustering	 using	 t-SNE.	 Five	 samples	 (four	 from	 shoot:	 SAMN04932642,	767	

SAMN04932648,	SAMN04932639,	SAMN04932645	and	one	from	root:	SAMN02197701),	768	

labeled	 in	 the	 inside	 plot,	 showed	 a	 very	 unexpected	 clustering	 patterns	 and	 were	769	

excluded	from	further	analysis.	An	interactive	3D	version	of	the	t-SNE	sample	clustering	770	

is	available	at	http://venanciogroup.uenf.br/resources/.		771	
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		772	

	773	
Figure	4:	Global	gene	expression	patterns	of	the	housekeeping	genes.	A.	Scatter	plot	of	774	

mean	vs	standard	deviation	showing	uniform	and	stable	expression	of	452	housekeeping	775	

(HK)	genes.	The	gray	dots	represent	all	the	non-HK	expressed	genes	(TPM≥	1	in	at	least	776	

one	sample).	The	word	cloud	represents	KEGG	pathways	enriched	in	HK	genes	(p-value	<	777	

0.05).	B.	Global	expression	patterns	of	HK	genes.	Three	main	clusters	were	found	with	K-778	

means	clustering,	which	were	then	hierarchically	clustered.	779	
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		780	

	781	

Figure	5:	Heatmap	showing	 the	number	of	up-regulated	genes	 in	 the	 tissues	 from	the	782	

rows	when	compared	with	those	from	the	columns.	Gene	up-regulation	was	determined	783	

by	 using	 a	 log2	 (fold-change)	 ≥	 2	 and	 adjusted	 p-value	 ≤	 0.05	 using	 the	moderated	 t-784	

statistic	in	the	limma	package.		785	
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	786	
Figure	6:	Violin	plot	showing	the	distribution	of	Tau	indexes	of	housekeeping,	tissue-specific,	and	787	

the	remaining	genes.	Tau	values	range	between	0	and	1,	with	low	values	indicating	a	stable	and	788	

constitutive	expression	and	higher	values	supporting	tissue-specificity.		789	
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	 	790	
Figure	7:	Global	transcriptional	patterns	of	tissue-specific	genes.	Expression	values	are	791	

represented	as	log2(TPM)	values	in	1243	samples.			792	
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	793	
Figure	8:	Web	 interface	 to	browse	and	download	 the	expression	data	analyzed	 in	 this	794	

study.	 A.	 Users	 can	 search,	 visualize	 and	 download	 average	 expression	 levels	 in	 each	795	

tissue	 or;	 B	 retrieve	 expression	 values	 in	 batch	 in	 particular	 samples,	 tissues,	 or	796	

BioProjects.	This	resource	is	available	at:	http://venanciogroup.uenf.br/resources/.		797	
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