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Abstract

Purpose
Lung squamous cell carcinoma (LUSC) has a poor prognosis and lacks appropriate diagnostic and
treatment strategies.Apoptosis dysregulation is associated with tumor occurrence and drug resistance,
but the prognostic value of apoptosis-related genes (ARGs) in LUSC remains unclear.

Methods
We constructed an ARGs model that can predict LUSC through univariate Cox regression, least absolute
shrinkage and selection operator (LASSO) regression, and multivariate Cox regression analysis based on
differentially expressed ARGs. We conducted correlation analysis of prognostic ARGs by combining the
dataset of normal lung tissue from the Genotype-Tissue Expression (GTEx) database. Then, we
constructed a risk model and the predictive ability of the model was evaluated by using ROC (Receiver
Operating Characteristic Curve) analysis. NSCLC single-cell RNA sequencing (scRNA-seq) data were
downloaded from the Gene Expression Omnibus (GEO) database. Cell subgroups were determined and
annotated by dimensionality reduction clustering, and the cell subgroups in disease development were
clari�ed by establishing pseudotime analysis using Monocle.

Results
We identi�ed four apoptosis prognostic genes and constructed a stable prognostic risk model. Kaplan-
Meier curve analysis showed that the high-risk group had a poorer prognosis (P < 0.05). Furthermore, the
ROC curve con�rmed that the model had good predictive value for LUSC patients. Through analysis of
single-cell sequencing data, apoptosis prognostic genes were found to be enriched in epithelial cells,
smooth muscle cells, and T cells. Pseudotime analysis was used to infer the differentiation process and
time sequence of cells.

Conclusions
This study identi�ed apoptosis-related genes that are associated with prognosis in LUSC, and
constructed a risk model based on these prognostic genes that accurately predicts the prognosis of
LUSC. Single-cell sequencing analysis provided new insights into the cellular-level development of
tumors. These �ndings provide more guidance for the diagnosis and treatment of LUSC patients.

1 INTRODUCTION
Lung cancer is the leading cause of cancer-related deaths, accounting for 19.4% of cancer-related deaths
annually (1). Non-small cell lung cancer (NSCLC) accounts for over 80% of all lung cancer cases and
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includes two main types: non-squamous cell carcinoma, including adenocarcinoma, large cell carcinoma,
and other cell types, and squamous cell carcinoma, which accounts for approximately 25–30% of NSCLC
cases (2). Squamous cell carcinoma of the lung often grows in the central part of the lung and has the
ability to grow to a large size (3). Compared to adenocarcinoma, patients with advanced non-small cell
lung cancer have a worse prognosis, due to some clinical features that are different from other non-small
cell lung cancer histologies, such as smoking history, comorbidities, age, and molecular characteristics.
Overall, these factors make LUSC a particularly challenging disease (4). Comparative results from
relevant clinical trials show that the median survival of patients with advanced squamous cell carcinoma
who receive �rst-line treatment is about 30% shorter than that of patients with other non-small cell lung
cancer subtypes(5). The TNM staging system is widely used for LUSC, but it has certain limitations
because patients with the same TNM stage can have different survival outcomes (6). Currently, there
have been signi�cant improvements in molecular targeted therapy and immunotherapy for non-small cell
lung cancer. However, the vast majority of advanced non-small cell lung cancer cases develop resistance
to current treatment methods (7). Therefore, it is necessary to identify new biomarkers that can provide
diagnostic and prognostic information for LUSC.

Cell apoptosis is an evolutionarily conserved, genetically regulated form of cell suicide that plays an
important role in the development and maintenance of tissue homeostasis in multicellular organisms (8).
Cell apoptosis plays a crucial role in eliminating cells that have undergone mutations or transformation in
the body. Therefore, cancer cells often evolve multiple e�cient and diverse mechanisms to evade cell
apoptosis (9). Cell apoptosis can be induced through both extrinsic and intrinsic pathways. The extrinsic
pathway is stimulated by death receptors, such as Fas, tumor necrosis factor receptors, and TRAIL, while
the intrinsic pathway is initiated by DNA damage, energy depletion, and hypoxia, which can lead to
dephosphorylation and cleavage of pro-apoptotic proteins (10). Genetic analysis of NSCLC has revealed
inherited and somatic mutations in the EGFR and P53 genes, as well as somatic mutations in the KRAS,
BRAF, ERBB2, MET, STK11, PIK3CA, and PARK2 genes. These gene mutations have led to the
development of new strategies targeting these targets (11). Exploring the targeted apoptosis mechanisms
in NSCLC represents another approach aimed at selectively killing cancer cells while preserving normal
cells. However, related studies have shown that there is no correlation between the response to apoptosis-
targeted drugs and the histological subtypes of NSCLC. The presence of apoptosis targets, such as TRAIL
receptors and DISC compounds, anti-apoptotic BCL-2 and IAP family members, is important, but cannot
predict the response to corresponding targeted therapies (12). Moreover, LUSC patients often have a poor
prognosis. Therefore, identifying key molecules, establishing stable and effective predictive models, and
implementing precision treatment are crucial for improving the prognosis of LUSC patients.

In recent years, single-cell RNA sequencing (scRNA-seq) has developed rapidly. Compared to conventional
RNA sequencing (RNA-seq) methods, although RNA-seq studies the entire transcriptome in detail and has
led to many important discoveries, RNA-seq is usually performed in "bulk", and the data represents the
average gene expression patterns of thousands to millions of cells, which may mask biological
differences between cells. In contrast, scRNA-seq captures the transcriptomes of individual cells and
generates sequencing libraries, where the transcripts are mapped to individual cells. scRNA-seq allows for
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unprecedented resolution to evaluate the fundamental biological properties of cell populations and
biological systems (13). By exploring the heterogeneity of cells and the tumor microenvironment at the
single-cell level, we can greatly improve our understanding of the transcriptional, genetic, metabolic, and
other characteristics of thousands of individual cells, thereby deepening our analysis of the cells involved
in tumor progression (14). Integrating clinical pathological information and single-cell sequencing data
can facilitate the identi�cation of novel diagnostic and prognostic biomarkers, as well as potential
treatment-related cell types or states (15). However, scRNA-seq is relatively expensive, and therefore the
available sample datasets are relatively limited. Nevertheless, the information obtained from scRNA-seq
is highly valuable for exploring the characteristics of each cell subpopulation in the sample and the
interactions of each cell in the tumor immune microenvironment (TIME) (16). In this study, we aimed to
construct an apoptosis prognostic model associated with LUSC survival. Through bioinformatics
analysis, we identi�ed four ARGs that were associated with LUSC prognosis. We constructed a risk score
based on these ARGs and developed a prognostic model that was associated with the risk score. The
model was validated in a test set, and we also investigated the potential role of the risk score in guiding
immunotherapy for LUSC patients. Finally, we further elucidated the role of the prognostic-related ARGs at
the cellular level in the occurrence and development of LUSC, improving the treatment outcomes and
prognosis of LUSC patients at the single-cell level.

2 Methods

2.1 Data source and pre-processing
RNA sequencing data and clinical information of LUSC patients were obtained from The Cancer Genome
Atlas (TCGA) database. overall survival (OS) and other clinical features, including age, gender, T stage, N
stage, M stage, and clinical stage, were extracted from the downloaded cases and missing clinical
information was removed. scRNA-seq data were downloaded from the GEO database (GSE200972), and
four tumor tissue samples were selected for analysis. The raw data contained 23,008 genes and 8,452
cells. The PercentageFeatureSet function was used to calculate the percentage of mitochondria and RNA,
and cells with gene expression greater than 300 and less than 7000 and mitochondrial content less than
30% were selected as the basis for subsequent analysis.

2.2 Differential expression analysis of apoptosis-related
genes
A series of bioinformatics analyses were performed using R programming language (version 4.2.1). The
“limma” R package was used to screen for differentially expressed ARGs between tumor and non-tumor
tissues in the TCGA cohort, with a false discovery rate (FDR) < 0.05 and |log2 (fold change)|> 1.

2.3 Development and validation of the prognostic model
In this study, an ARGs-related LUSC prognostic model was constructed to observe the OS of LUSC
patients. The TCGA-LUSC cohort was randomly divided into a training set and a testing set, and the
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prognostic features were constructed based on the training set, and then the predictive performance was
validated in the validation set. Univariate Cox regression analysis was used to determine the prognostic
ARGs in LUSC, and the results were visualized using a forest plot generated by the “forestplot” R package.
The Least Absolute Shrinkage and Selection Operator (LASSO) penalized Cox proportional hazards
regression (with R packages “glmnet”) was used to reduce the genes of the model and limit the
complexity of solving the problem of over�tting. Finally, four prognostic ARGs were determined by
multivariate Cox regression analysis, and a 4-gene signature was constructed. In the training and testing
sets, the risk score of each patient was calculated based on the regression coe�cient of the ARGs. The
risk score was calculated using the formula: risk score = expression level of Gene a × coe�cient a + 
expression level of Gene b × coe�cient b + expression level of Gene c × coe�cient c + …… + expression
level of Gene n × coe�cient n. LUSC patients were divided into high-risk and low-risk groups based on the
median risk value, and Kaplan-Meier survival curves were used to compare the survival between the low-
risk and high-risk groups, with P < 0.05 considered statistically signi�cant. Finally, time-dependent receiver
operating characteristic curves were established to re�ect the predictive performance of the prognostic
model.

2.4 Nomogram development and validation for prognostic
risk prediction
To provide a quantitative method for predicting the 3-year, 5-year, and 7-year survival probabilities of
LUAD patients for clinical doctors, we developed a nomogram integrating various clinical risk factors and
apoptosis prognostic models. Then, we evaluated the calibration curve of the nomogram by plotting the
predicted probability of the observed rate using the nomogram. Subsequently, 1000 repeated samplings
were used for cross-validation to construct a C-index index plot to show the predictive ability of the
model. The prognostic accuracy of the model was evaluated by sensitivity and speci�city using the
receiver operating characteristic (ROC) curve. Finally, a heatmap was constructed to evaluate the
correlation between prognostic features and clinical factors.

2.5 Functional Enrichment Analysis
Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were
performed using the DAVID (https://david.ncifcrf.gov/). Firstly, we obtained pathway enrichment
information by inputting ARGs into DAVID, and selected the top ten pathways with the smallest p-values
for enrichment analysis in both GO and KEGG. The enriched pathways were displayed using the “ggplot”
R package.

2.6 Gene Mutation Analysis
Tumor mutational burden (TMB) re�ects the number of mutations in cancer mutation. We downloaded
mutation data of LUSC patients from TCGA and performed gene mutation analysis using the “maftools”
R package. We calculated the tumor mutation burden (TMB) of each patient and compared the TMB
between the high-risk and low-risk groups. Survival analysis was performed based on the TMB score. The
somatic mutations of prognostic genes were displayed using the cBioPortal database.
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2.7 Relationship of Molecular Patterns With TME in LUSC
The ESTIMATE algorithm was used to evaluate whether the risk score of LUSC patients was associated
with immune and stromal components. The single-sample gene set enrichment analysis (ssGSEA) was
applied to quantify the in�ltration levels of 16 immune cells and 13 immune-related pathways between
the two risk groups using the “GSVA” package. Immune checkpoint genes with differential expression
(with P < 0.05 as the threshold) were selected, and the expression differences of immune checkpoint
genes between the high-risk and low-risk groups were studied.

2.8 Processing of single cell sequencing data
The scRNA-seq dataset GSE200972 of NSCLC was downloaded from the GEO database, containing 19
tissue samples from four MPLC patients (one squamous carcinoma and three adenocarcinomas). We
selected four tumor samples for subsequent analysis. The samples were integrated using the anchors
method in the R package "Seurat". Cells that detected genes in only three or fewer cells and cells that
detected fewer than 300 genes were excluded, while cells with gene numbers between 300 and 7000,
mitochondrial proportions less than 10%, blood cell proportions less than 1%, and total transcript
numbers less than 100,000 were retained. The FindVariableFeatures function was used to identify the top
3000 highly variable genes, and the top 10 genes were displayed. Principal component analysis (PCA)
was performed on single-cell samples, and the top 13 principal components (PC) were selected for
subsequent analysis. The samples were subjected to overall dimensionality reduction analysis using the
UMAP algorithm. Different cell clusters were manually annotated using the R package “singleR” package,
CellMarker database, and references as auxiliary annotations.

2.9 Construction of Pseudo-Temporal Analysis Trajectory
Pseudo-temporal analysis was performed using the Monocle 2 algorithm through branching trajectory
analysis. Gene expression levels and dispersion were �ltered and sorted to exclude noise and irrelevant
genes in the single-cell data. The orderCells function was used to sort cells and determine their position
on the trajectory. Trajectories were constructed for two clusters, and differentiation trajectories of cells in
different states were plotted. Subsequently, the expression of prognostic genes in the two clusters was
visualized and the pseudo-temporal trajectories of several prognostic genes in T cells were observed.

2.10 Statistical Analysis
All statistical analyses were performed using R software (Version 4.2.1). A p value < 0.05 was considered
statistically signi�cant. Univariate Cox analyses, LASSO regression analysis and multivariate Cox
analyses were used to select key ARGs associated with survival. Survival variations between different
groups were compared using Kaplan-Meier curves. The predictive ability of this model was tested using
ROC analysis.

3 Results
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3.1 Identi�cation of the differentially expressed genes in
LUSC
We obtained RNA sequencing data and clinical follow-up data from 502 LUSC samples and 51 normal
lung tissue samples from the TCGA dataset. Differential expression analysis was performed to determine
the expression levels of ARGs in tumor and normal samples, and 56 differentially expressed genes were
identi�ed (Supplementary Table S1), most of which were enriched in tumor samples(Figure 1A ,B).
Univariate Cox regression was used to screen ARGs, and 8 prognostic-related ARGs were identi�ed Figure
1C . LASSO Cox regression analysis and 10-fold cross-validation were used to determine the optimal
regularization parameter λ to obtain the best model performance(Fig. 1D, E). Finally, multivariate analysis
was performed to identify 4 ARGs (BMP2, GPX3, JUN, and AIFM3) that were most relevant to the
prognosis of LUSC patients. Kaplan-Meier analysis was used to analyze the impact of high and low
expression of these 4 genes on prognosis, and the 3 most signi�cant genes (BMP2, GPX3, and JUN) were
identi�ed (Figure S1A, B, C). We found that patients with high expression of BMP2, GPX3, and JUN had a
worse prognosis than those with low expression. Correlation analysis revealed a close relationship
between these genes (Figure S1D, E, F), suggesting a possible synergistic effect on prognosis. The high
expression of BMP2, GPX3, and JUN proteins in cancer cells was con�rmed through
immunohistochemistry (IHC) data obtained from the Human Protein Atlas (HPA) database (Figure S1G).

3.2 Construction of a riskscore based on prognostic ARGs
The TCGA cohort was randomly divided into a training set and a testing set, and based on the median
risk cutoff value of patients, they were further divided into high-risk and low-risk groups (Fig. 2A ,B). The
risk score was calculated as follows: risk score= (− 0.411× expression level of AIFM3)+( 0.084×
expression level of BMP2) + (0.0838× expression level of GPX3)+( 0.258× expression level of JUN). The
patients in the training and testing sets were sorted from left to right based on their increasing risk scores.
The results showed that as the risk score increased, the risk of death increased and the survival time
decreased. The trend of survival status and survival time in the testing set was consistent with that in the
training set, and the decrease in survival time was signi�cantly correlated with the increase in risk score
(Fig. 2C, D). Similarly, Kaplan-Meier survival curves showed that patients in the high-risk group had a
lower survival rate than those in the low-risk group (Fig. 2E,F). The predictive performance of the
prognostic risk score model was evaluated using time-dependent ROC curves and the area under the
curve (AUC) (Fig. 2G ,H). The results showed that the risk score model had good predictive performance
for LUSC patients, as con�rmed by mutual veri�cation between the training and testing sets.

3.3 Screening of independent prognostic factors and
construction of nomogram
To identify independent prognostic factors, univariate and multivariate Cox analyses were performed on
clinical features and risk scores. We found that RiskScore and tumor stage were independent prognostic
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factors for patients, and a nomogram model was constructed to improve its predictive ability (Fig. 3A). By
constructing calibration curves, it was found that the calibration curves of the 3-year, 5-year, and 7-year
calibration points were relatively well matched with the standard curves, indicating that the model had
good predictive performance (Fig. 3B). The time-dependent ROC curves and C-index indicated that the
nomogram based on the independent prognostic factors had better prognostic predictive performance for
LUSC compared to single clinical features (Fig. 3C ,D). Finally, we linked the risk score with clinical factors
such as tumor stage, and the results showed that patients with high risk scores had shorter survival times
(Fig. 3E). In conclusion, our study results indicate that the risk score of prognostic genes is of signi�cant
in predicting patient prognosis.

3.4 Functional analysis of differentially expressed ARGs
To explore the biological functions and important pathways of differentially expressed ARGs, we
performed GO enrichment analysis to enrich the functions and pathways related to BP, CC, and MF, and
selected the top 10 pathways with the smallest p-values for display. We found that regulation of
apoptotic process was signi�cantly enriched in BP (Fig. 4A), cytoplasmic components such as
mitochondrial outer membrane were signi�cantly enriched in CC (Fig. 4B), and protein complexes such as
cysteine-type endopeptidase were signi�cantly enriched in MF (Fig. 4C). Similarly, KEGG enrichment
analysis was performed using the same GO enrichment analysis method, and other pathways such as
the apoptosis pathway and cancer pathway were enriched (Fig. 4D). The detailed results of GO and KEGG
enrichment analysis can be found in (Supplementary Table S2).

3.5 Tumor mutation burden of prognostic biomarkers
associated with ARGs in LUSC samples
High TMB indicates that there are more mutations in tumor cells, which may make them more susceptible
to attack by the immune system, thereby increasing the effectiveness of immunotherapy. To investigate
the signi�cance of tumor mutations in LUSC, we downloaded LUSC somatic mutation data and
calculated TMB scores, comparing the genomic mutation differences between the high-risk and low-risk
groups. The mutation rates in TP53, TTN, CSMD3, MUC16, and RYR2 were higher than or equal to 35% in
LUSC patients in both risk groups. Interestingly, the likelihood of these gene mutations was greater in the
low-risk group compared to the high-risk group (Fig. 5A ,B). To investigate the impact of TMB status on
the prognosis of LUSC patients, survival analysis was performed on different TMB subgroups, and it was
found that the prognosis of high TMB patients was better than that of low TMB patients (Fig. 5C). Then,
we combined TMB with risk scores for survival analysis, and the results showed that patients with high
TMB and low risk scores had the best prognosis (Fig. 5D). Finally, we examined the mutation rates of the
four genes in the prognostic model and found that a segment of DNA sequence in the AIFM3 gene was
duplicated, leading to an increase in copy number, which may contribute to the occurrence and
development of tumors and an increase in the expression of other genes. However, the mutation rates of
these genes were all very low (Fig. 5E).
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3.6 Assessment of tumor immune in�ltration and immune
checkpoint
By analyzing the correlation between risk scores and tumor stromal and immune scores, the results
showed that as the risk score increased, the abundance of tumor stroma and immune in�ltration also
increased (Fig. 6A ,B). This indicates a positive correlation between risk scores and the degree of tumor
stromal and immune cell in�ltration. Therefore, an increase in risk score may lead to changes in the
tumor microenvironment and immune response, promoting tumor stromal and immune cell in�ltration. To
further understand the characteristics of the tumor microenvironment and its impact on tumor treatment,
samples were divided into high-risk and low-risk groups, and the differences in TME score and tumor
microenvironment evaluation indicators between different risk groups were compared. We found that
both the StromalScore and ImmuneScore in the high-risk group were higher than those in the low-risk
group (Fig. 6C). Previous studies have shown that the immune microenvironment has a signi�cant
impact on various aspects of tumor occurrence and development, treatment response, and the
identi�cation of new therapeutic targets (17, 18). Furthermore, our study showed that as the risk score
increased, the abundance of immune in�ltration also increased. We used the single-sample gene set
enrichment analysis (ssGSEA) algorithm to demonstrate the enrichment levels of different immune cells
in the tumor microenvironment of high- and low-risk groups, in order to understand the mechanisms of
tumor immune escape and potential targets for immunotherapy. We found that compared to the low-risk
group, the high-risk group had higher immune cell in�ltration and more immune-related functions and
pathways (Fig. 6D ,E). Next, we evaluated the expression differences of immune checkpoints between the
high- and low-risk groups (Fig. 6F). The results showed that there were differences in the expression of 35
immune checkpoints between the two risk subgroups, such as TNFRSF4, CTLA4, and CD200.

3.7 Quality control and �ltering of scRNA-seq data
Firstly, we �ltered out the unquali�ed cells and used the �ltered cells for subsequent analysis (Fig. 7A).
Then, we performed principal component analysis on the four single-cell samples and found that the four
non-small cell lung cancer samples had a high degree of aggregation (Fig. 7B), which may indicate that
the transcriptional differences between these four samples are relatively small. We then conducted a
correlation analysis of several quality control indicators and found that the proportion of mitochondria
and hemoglobin did not increase with the increase of RNA molecules, while the number of transcriptional
genes increased with the increase of RNA molecules (Fig. 7C), indicating that our quality control was
relatively good and removed low-quality cells. Subsequently, we used differential analysis to screen out
3000 highly variable genes (Fig. 7D).

3.8 Identi�cation and Localization of LUSC Cell Subtypes
We used the UMAP algorithm to divide the core cells into 16 independent cell clusters (Fig. 8A). In order to
explore the heterogeneity within the tumor, we calculated the proportion of each cell in the four samples
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separately (Fig. 8B,C). The results showed that the proportions of different cells were different in each
sample, indicating the presence of different cell subpopulations within the tumor, which is consistent with
the characteristics of tumor heterogeneity. We identi�ed marker genes using the “singleR” package,
CellMarker database, and references (19). We annotated the different clusters (Fig. 8D). Subsequently, we
displayed the upregulated, signi�cantly upregulated, downregulated, and signi�cantly downregulated
genes in the marker genes of the 16 clusters (Fig. 9A). We found differences in gene expression between
different clusters, which can be further explored for their roles in cellular and biological processes.
Similarly, we displayed the marker genes of the annotated eight cell types (Fig. 9B) to understand the
differences in their functions and characteristics. We located four apoptosis-related prognostic genes
associated with LUSC to individual cell subtypes to understand the biological characteristics and
functions of these cell subtypes. Furthermore, this localization can provide clues for further research,
such as exploring the interactions and regulatory mechanisms of these prognostic genes in different cell
subtypes and their relationships with other biological processes. This localization of cell subtypes can
help us better understand the mechanisms of LUSC occurrence and development. We observed the
distribution of several apoptosis-related prognostic genes in these eight cell clusters (Fig. 9C). It can be
seen that BMP2 is signi�cantly upregulated in epithelial cells, GPX3 is expressed at a higher level in
smooth muscle cells, and JUN is expressed in all cell subtypes, but relatively higher in T cells. To further
understand the speci�c expression of prognostic genes in the eight cell clusters, we displayed the gene
expression by drawing a heatmap (Fig. 9D).

3.9 Identifying lung cancer subpopulations through single-
cell trajectory analysis
Temporal analysis aims to model the time information of single cells, revealing the temporal trends and
expression pro�le differences of different cells, and exploring biological issues such as cell development,
differentiation, and function, helping us to gain a deeper understanding of single-cell data, discover new
biological knowledge and biomarkers. (20, 21). We selected two clusters for temporal analysis, and the
trajectory displayed the transcriptional states of cell development in the two clusters (Fig. 10A). We also
displayed the trajectory of the state of cluster cells (Fig. 10B) and determined the starting point of cell
differentiation (Fig. 10C), revealing changes related to tumor progression. Next, we studied the expression
changes of four prognostic genes in the temporal analysis (Fig. 10D). JUN was signi�cantly decreased
with cancer progression, while AIFM3, BMP2, and GPX3 did not show signi�cant changes. As we know
from the previous dimensionality reduction clustering, T cells account for a large proportion in the
sample, so we studied the expression changes of four prognostic genes in the temporal analysis of T
cells (Fig. 10E).

4 Discussion
Lung squamous cell carcinoma (LUSC) is a histological subtype of non-small cell lung cancer (NSCLC)
with poor prognosis, high treatment di�culty, and high mortality rate mainly due to the lack of effective
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treatment (22). Despite the available treatment methods for lung squamous cell carcinoma, including
chemotherapy, radiotherapy, and targeted therapy, the prognosis for patients with lung squamous cell
carcinoma remains unsatisfactory (23). Therefore, it is urgently needed to study new molecular
therapeutic targets and prognostic models for the diagnosis and treatment of LUSC. Previous studies
have shown that apoptosis plays a crucial role in maintaining the balance between cell death and
division, and evading apoptosis can lead to uncontrolled cell proliferation, resulting in various diseases
such as cancer (24). The mechanism of apoptosis is complex and involves many pathways. Any defect
in any of these pathways can lead to malignant transformation of affected cells, tumor metastasis, and
resistance to anticancer drugs. Currently, many new therapeutic strategies targeting apoptosis are
feasible (25, 26). Although there is a connection between apoptosis and LUSC, there has not been a
systematic study that uses apoptosis-related features as prognostic indicators to predict the prognosis of
LUSC patients.

Our study conducted a systematic analysis based on the TCGA-LUSC dataset and apoptosis-related
genes to identify differentially expressed ARGs in LUSC and non-tumor tissues. Through multifactor and
LASSO Cox regression analysis, we screened for prognostic-related genes and established a risk model to
predict the prognosis of LUSC. The genes in the model, including BMP2, GPX3, and JUN, were validated
to be associated with the prognosis of LUSC patients through survival analysis and the HPA database.

Bone morphogenetic proteins (BMPs) are multifunctional cytokines, belonging to members of the
transforming growth factor-βsuper-family(27). MP can trigger the occurrence and progression of tumors
through the signaling mediators of ligands and receptors. At the same time, BMP can promote cell
differentiation, including inhibiting the process of epithelial-mesenchymal transition, which can prevent
the malignant progression of cancer in the later stages (28). BMP can activate ERK, phosphoinositide 3-
kinase (PI3K), protein kinase A (PKA), PKC, and PKD. Through the initiation of these pathways, BMP can
induce its effects on cell survival, apoptosis, migration, and differentiation (29). SMAD is the classical
pathway mediated by BMP2. Studies have shown that BMP2 is highly overexpressed in human non-small
cell lung cancer and is associated with tumor grading and metastasis. Through mouse models, BMP2
has been shown to promote lung cancer metastasis. Depletion of BMP2 or its receptor BMPR2 greatly
reduces cell migration and invasiveness, and BMP2/BMPR2-mediated cell migration involves the
activation of the SMAD1/5/8 signaling pathway. Depletion of SMAD1/5/8 signi�cantly reduces cell
migration by inhibiting SMAD1/5/8 (30). Epigenetic silencing of glutathione peroxidase 3 (GPX3), a
member of the important antioxidant selenoprotein family (31), maintains genome integrity by
inactivating Reactive oxygen species (ROS) (32). Reactive oxygen species (ROS) are believed to play
various roles in cancer development. For example, when the gene expression of important molecules that
control cell proliferation, apoptosis, or the cell cycle is abnormal, oxidative stress can lead to persistent
DNA damage and may induce cancer (33). Research has shown that GPX3 is associated with ovarian
cancer metastasis and cancer progression. In this study, a stable OVCAR3 GPx3 knockdown cell line was
constructed using a lentiviral shRNA, and it was found that reducing GPx3 expression inhibited colony
formation and anchorage-independent cell survival (34). In a study on thyroid cancer, methylation-speci�c
PCR (MSP), immunohistochemistry staining, Transwell experiments, and siRNA knockdown were used to
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investigate the role of GPX3. It was found that GPX3 inhibits thyroid cancer metastasis by suppressing
the Wnt/β-catenin signaling pathway. Silencing GPX3 expression promotes human thyroid cancer
metastasis. (35). c-Jun has been found to be an oncogenic transcription factor in most cancers, and its
overexpression plays an important role in various biological functions such as cell apoptosis,
proliferation, invasion, and migration (36, 37). A study showed that enforced expression of c-Jun
increased anchorage-independent growth of human bronchial epithelial cell lines, and constitutive
expression of a signi�cant c-Jun-negative mutant suppressed anchorage-independent but not anchorage-
dependent growth of lung cancer cell lines (38). The activity of c-Jun is regulated by post-translational
modi�cations, which are mainly controlled by components of the mitogen-activated protein kinase
(MAPK) family of kinases, including c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase
(ERK), and p38 kinase (39). The signi�cant and unique function of JNK is as an activator of c-Jun.
Overexpression or activation of c-Jun has been shown to have anti-apoptotic effects in various cancer
cell lines, and its targeting may sensitize drug-resistant cancer cells to DNA-damaging agents (40).
Therefore, these key apoptotic prognostic-related genes are closely associated with LUSC and its
prognosis, demonstrating the validity of establishing a prognostic model based on apoptotic prognostic-
related genes in this study.

After modeling, we conducted validation by dividing LUSC patients into different risk groups based on the
median risk score. Patients in the high-risk group had signi�cantly worse prognosis. The results of ROC
curve analysis showed that the prognostic model had good predictive performance. Furthermore, through
analysis of the risk score of the model and other clinical features, the risk score of the model was found
to be an independent prognostic indicator, and C-index analysis showed that the risk score had better
predictive value than other traditional clinical parameters. Therefore, the good predictive value of the
model was con�rmed once again.

In addition, we conducted functional enrichment analysis on the apoptotic differentially expressed genes
that we screened, exploring the key pathways through which they play their functions. According to GO
and KEGG pathway analysis, we found that in cancer, cell apoptosis is mediated by changes in the
mitochondrial membrane, which is a multifactorial process involving BCL-2 family proteins, cysteine
proteases, and large molecular complexes. Studies have shown that in the pre-initiation stage of
mitochondria, different pro-apoptotic signal transduction or damage pathways are activated. When these
signals or pathways converge on the mitochondria, the permeability of the inner and outer membranes
increases, leading to the execution stage of the apoptosis process (41). The regulation of apoptotic
mitochondrial events is achieved through the Bcl-2 family of proteins. The Bcl-2 family consists of more
than 30 proteins and belongs to the Bcl-2 superfamily, which includes anti-apoptotic proteins, pro-
apoptotic proteins, and BH3-only proteins (42). In the presence of apoptotic stimuli, the expression of BH3
proteins increases, competitively binding to the anti-apoptotic protein Bcl-2 to release Bax/Bak from
inhibition. Free Bax and Bak form oligomers, causing cytochrome C to form a channel through the outer
membrane of the mitochondria, releasing it from the intermembrane space of the mitochondria into the
cytoplasm. The released cytochrome C activates the caspase cascade reaction to induce cell apoptosis
(43, 44). Therefore, mitochondria can be considered as the main integrator of the death pathway.
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Apoptosis depends on the activation of the above different signaling pathways, and these pathways are
often dysregulated in cancer, providing a direction for further research on the treatment of apoptosis in
lung squamous cell carcinoma.

Furthermore, in our multifaceted study of the immune microenvironment, we found signi�cant differences
in TMB and TP5 between high- and low-risk groups. Studies have shown that TMB in blood can be used
to evaluate the e�cacy of using camrelizumab in combination with chemotherapy in advanced lung
squamous cell carcinoma patients. During treatment, blood TMB levels are positively correlated with
patient e�cacy, indicating that higher TMB leads to better treatment e�cacy and longer overall survival
(OS) and progression-free survival (PFS) for patients. These �ndings are consistent with the results of our
study (45). In this study, we can see the differences in gene mutations between high and low-risk groups,
and the most common type of gene mutation, TP53, has signi�cant differences in mutation types
between high and low-risk groups. Previous studies have shown that TP53 is one of the most common
mutated genes in lung cancer, and its mutation is closely related to the occurrence and development of
lung cancer. The type of TP53 mutation is related to prognosis, and patients with nonsense mutations
have a poorer prognosis (46). This is consistent with our research results, where patients in the high-risk
group had a poorer prognosis.

Although previous studies have investigated the relationship between apoptosis and cancer, there have
been few studies on its relationship with tumor immunity. Stromal cells and immune cells are the main
elements of the TME, and an important aspect of our research is to explore the correlation between the
risk model of LUSC patients and tumor immunity. We used the ESTIMATE algorithm to calculate these
scores and found that the high-risk group had higher immune and stromal scores. This indicates that
changes in immune status can also affect the process of cell apoptosis. We found that NK cells and
macrophages were highly expressed in the high-risk group, and they have an inherent connection with cell
apoptosis. Studies have shown that the mitochondrial apoptosis (mtApoptosis) pathway is crucial for
e�cient NK killing, and NK cells can pre-activate cancer cells for mtApoptosis. Pre-activated NK cells bind
BH3 mimetics to NK cells, synergistically killing cancer cells in vitro and inhibiting tumor growth in vivo
(47). This study suggests that mtApoptosis can enhance NK-based immunotherapy. An interesting study
found that macrophages are a heterogeneous group of cells in the innate immune system that are crucial
for the initiation, progression, and resolution of in�ammation. They have signi�cant functional plasticity
and can respond to abnormalities and initiate programs to overcome them and restore normalcy (48, 49).
The cytokines and intracellular components released by apoptotic cells can activate macrophages,
causing them to shift from the M1 to M2 phenotype, thereby promoting tumor growth and metastasis. In
addition, apoptotic cells can also induce macrophages to produce growth factors and extracellular matrix
components, promoting tumor cell proliferation and invasion. If the interaction between apoptotic cells
and macrophages is not disrupted, surviving tumor cells may receive excessive support from the reaction
induced by local macrophages in apoptotic tumor cells, thereby enhancing tumor recurrence (50). Indeed,
this provides valuable ideas and strategies for researchers to further explore the anti-tumor potential of
cell apoptosis and tumor immunity.
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Tumor heterogeneity is a signi�cant challenge in cancer treatment, as different subpopulations of cells
may exhibit varying sensitivity and resistance to therapeutic drugs (51). Therefore, understanding tumor
heterogeneity is of great signi�cance for developing personalized treatment plans and predicting
treatment outcomes. Compared to traditional ‘bulk’ RNA-sequencing methods, which average potential
differences in cell-speci�c transcriptomes, single-cell RNA sequencing (scRNA-seq) analyzes the gene
expression patterns of each individual cell, providing a clear insight into the entire tumor ecosystem, such
as the mechanisms of intra- and inter-tumor heterogeneity (52). Through single-cell sequencing analysis,
this study ultimately divided cells into eight subgroups. To further understand the expression patterns
and functions of apoptosis-related prognostic genes in different cell subgroups, we compared the
expression of prognostic genes in different cell subgroups to determine their functions in different cell
subgroups. We found that BMP2 was highly expressed in epithelial cells, which may indicate that BMP2
has important biological functions in epithelial cells. In a study on breast cancer, elevated levels of BMP2
led to excessive activation of the BMPR1B signaling pathway, which is the receptor for BMP2. When
BMP2 binds to BMPR1B, it activates the BMPR1B signaling pathway, promoting the transformation of
epithelial cells. These transformed epithelial cells have increased proliferation and invasiveness, thereby
promoting tumor development (53). Similarly, in a study on lung injury, BMP2 was found to activate the
BMP signaling pathway, leading to increased BMP activity and ultimately resulting in the transformation
of epithelial cells and the disruption of epithelial barrier function. This study successfully inhibited the
increase in BMP activity and the disruption of epithelial barrier function by suppressing the expression of
BMP2, thereby avoiding lung injury (54). This provides a good explanation of the role of prognostic genes
in tumor development at the cellular level.

There are different subpopulations of cells within tumors, which have different gene expression pro�les,
leading to heterogeneity within the tumor. Sequencing multiple tumor regions can reveal the evolutionary
pattern of the tumor, where tumor cells have different gene mutations and expression pro�les at different
time and space points, forming a branched evolutionary tree structure (55). Pseudotime analysis is a
method for inferring trajectories from scRNA-seq data. It sorts cells along a trajectory based on the
similarity of their expression patterns and determines the lineage structure by identifying branching
events (56). In this study, we determined trajectories with different differentiation states based on scRNA-
seq data of non-small cell lung cancer, and located the selected prognostic genes on the cell
differentiation trajectories. We observed the changes of prognostic genes in different clusters and the
same cell types. Combining pseudotime analysis and the localization of cell types in different clusters
over time, we were able to intuitively witness the evolution of cells in non-small cell lung cancer. This
provides new insights into the mechanisms and driving factors of tumor evolution.

Although the prognostic model established in this study has good predictive performance and is a
positive prognostic indicator for LUSC patients, and provides more accurate information for the treatment
and prognosis evaluation of LUSC patients by combining single-cell sequencing analysis, there are still
some limitations that need to be considered. The analysis conducted in this study was based on
retrospective data from the TCGA and GEO databases, and due to the scarcity of scRNA-seq data in the
GEO database, we could not obtain complete single-cell sequencing results for LUSC samples. Our results
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need to be further functionally validated. Despite these limitations, the research in this paper can serve as
a valuable concept validation study, identifying biomarkers and targets for future research and providing
meaningful references for personalized treatment of LUSC patients.
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Figure 1

The differential expression of apoptosis-related genes in LUSC was analyzed, and genes that are
associated with the prognosis of LUSC were screened using regression algorithms. A Heat maps of 56
differentially expressed ARGs. B Boxplot of 56 differentially expressed ARGs in LUSC and normal lung
tissue. (C) Forest maps of 8 prognostic ARGs were obtained by univariate Cox analysis. (D) Ten-time
cross-validation for tuning parameter selection in the least absolute shrinkage and selection operator
(LASSO) model. E Distribution plot of gene coe�cients generated with log (λ) in the LASSO model.



Page 20/28

Figure 2

Construction of a risk model based on apoptosis-related genes associated with prognosis in lung
squamous cell carcinoma (LUSC). (A-B) The distribution of risk scores for patients in the training and
testing groups. (C-D) The survival status of patients in the training and testing groups. E-F Kaplan-Meier
analysis of the training and testing groups showing different overall survival (OS) between high and low-
risk groups. G-H TimeROC curve predicting overall survival rate for the training and testing groups.
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Figure 3

Establishment and validation of the nomogram prediction model.

(A) Nomogram combining risk score and other clinical factors to predict 3-year, 5-year, and 7-year overall
survival (OS) of TCGA-LUSC patients. B Calibration plot of the nomogram predicting 3-year, 5-year, and 7-
year survival probabilities. (C) TimeROC curve predicting 3-year, 5-year, and 7-year survival of LUSC
patients. (D) The C-index indicates that the predictive accuracy of the risk model is superior to other
clinical parameters. (E) Heatmap of 4 prognostic ARGs combined with different clinical features.
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Figure 4

Function analysis of differentially expressed ARGs.

A-C GO functional analysis of differentially expressed ARGs. (BP: biological processes, CC: cellular
components, MF: molecular function). (D) KEGG pathway analysis of differentially expressed ARGs.
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Figure 5

Waterfall plot of high-risk and low-risk groups and prognostic gene somatic mutations.

A-B Waterfall plot of somatic mutations in high-risk and low-risk groups. (C) Survival curves of high
TMB group and low TMB group. (D) Survival curves based on TMB and risk score. (E) Study of mutation
rates of 4 prognostic genes using the cBioPortal database.
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Figure 6

Analysis of TME and immune-related characteristics in high-risk and low-risk groups. A Correlation
between risk score and stromal score. (B) Correlation between risk score and immune score. (C)
Evaluation of tumor microenvironment using TME score. (D) Box plots showing the scores of various
immune-related functions in high-risk and low-risk groups. (E) Box plots showing the scores of multiple
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immune cells in high-risk and low-risk groups. (F)Expression of immune checkpoints in the high and low-
risk groups. (p < 0.05 *; p < 0.01 **; p < 0.001 ***).

Figure 7

Quality control and �ltering of scRNA-seq data. A The number of genes detected, sequencing depth,
mitochondrial gene content, and HB content in four non-small cell lung cancer samples. (B)PCA-based
preliminary dimensionality reduction of the data from four samples. (C) There is a negative correlation
(R= -0.04) between sequencing depth and mitochondrial gene content, a positive correlation (R=0.9)
between sequencing depth and the number of intracellular genes, and a negative correlation (R= -0.13)
between sequencing depth and intracellular Hb content in the four samples. (D) The volcano plot shows
the genes that are active in all samples, with the top 10 genes’ names given in the red-marked highly
variable genes.
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Figure 8

The proportion and annotation of cells in the samples. A Clustering of cells using uMAP. (B) The
proportion of cells in the four samples. (C) The distribution of cells in each of the four samples. (D) The
distribution and annotation of cell types.
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Figure 9

The classi�cation and expression of differential genes and prognostic genes in cell subpopulations. A
Volcano plot showing signi�cantly upregulated and downregulated genes in 16 clusters. (B) Heatmap
showing marker genes in 8 cell types. (C) The distribution of 4 prognostic genes (AIFM3, BMP2, GPX3,
JUN) in 8 cell types. (D) Heatmap showing the speci�c expression of AIFM3, BMP2, GPX3, JUN in each
cell type.
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Figure 10

Trajectory analysis of cell subpopulations and prognostic genes. A-C Trajectory analysis of clusters and
cell State. Different colored dots represent corresponding clusters or cell states, arranged along the
pseudo-temporal branch, and their pseudo-temporal curve. Dark blue denotes an earlier time. (D) The
pseudo-temporal changes of AIFM3, BMP2, GPX3, JUN in two clusters. (E) The pseudo-temporal changes
of AIFM3, BMP2, GPX3, JUN in T cells.
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