
Article

Systematic analysis of BRAFV600E melanomas

reveals a role for JNK/c-Jun pathway in adaptive

resistance to drug-induced apoptosis
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Abstract

Drugs that inhibit RAF/MEK signaling, such as vemurafenib, elicit

profound but often temporary anti-tumor responses in patients

with BRAFV600E melanoma. Adaptive responses to RAF/MEK inhibi-

tion occur on a timescale of hours to days, involve homeostatic

responses that reactivate MAP kinase signaling and compensatory

mitogenic pathways, and attenuate the anti-tumor effects of RAF/

MEK inhibitors. We profile adaptive responses across a panel of

melanoma cell lines using multiplex biochemical measurement,

single-cell assays, and statistical modeling and show that adapta-

tion involves at least six signaling cascades that act to reduce drug

potency (IC50) and maximal effect (i.e., Emax � 1). Among these

cascades, we identify a role for JNK/c-Jun signaling in vemurafenib

adaptation and show that RAF and JNK inhibitors synergize in cell

killing. This arises because JNK inhibition prevents a subset of cells

in a cycling population from becoming quiescent upon vemurafe-

nib treatment, thereby reducing drug Emax. Our findings demon-

strate the breadth and diversity of adaptive responses to RAF/MEK

inhibition and a means to identify which steps in a signaling

cascade are most predictive of phenotypic response.
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Introduction

Activation of BRAF via a V600E (or V600D) mutation is the most

prevalent genetic change in human melanoma, found in at least

50% of tumors. The BRAFV600E oncoprotein constitutively activates

pro-mitogenic RAF/MEK/ERK signaling (Davies et al, 2002; Fecher

et al, 2008), and therapy with RAF inhibitors such as vemurafenib

(Zelboraf�; PLX4032) causes tumor regression in many patients

(Bollag et al, 2010; Chapman et al, 2011; Flaherty et al, 2012;

Sosman et al, 2012). However, the duration of response is variable

and relapse to lethal drug-resistant disease is common (Flaherty

et al, 2010). Resistance usually involves the activation of pro-

growth/survival mechanisms that increase BRAFV600E activity (Shi

et al, 2012) or bypass the need for it altogether. Many mutations

involved in acquired resistance have been identified, including

NRASQ61K, MEK1F129L, MEK2Q60P, or AKT1Q79K (Nazarian et al,

2010; Wang et al, 2011; Shi et al, 2014a; Wagle et al, 2014), and

aberrant splicing of BRAFV600E (Poulikakos et al, 2011). Resistance

is also associated with elevated IGF1 receptor/PI3K signaling

(Villanueva et al, 2010), COT overexpression (Johannessen et al,

2010), and PDGFRb up-regulation (Nazarian et al, 2010).

Insensitivity to RAF inhibition in BRAFV600E melanomas

frequently arises from adaptive responses that reactivate ERK (Lito

et al, 2012) or up-regulate other pro-growth pathways such as the

PI3K/AKT cascade (Shi et al, 2014a; Sun et al, 2014). Adaptive

responses are thought to reflect feedback mechanisms involved in

signaling homeostasis (O’Reilly et al, 2006; Carver et al, 2011;

Chandarlapaty et al, 2011). Changes consistent with adaptation

have been observed not only in cell lines but also in clinical biopsies

(Chandarlapaty, 2012; Duncan et al, 2012; Lito et al, 2012; Muranen

et al, 2012; Shi et al, 2014a; Solit & Rosen, 2014), and it is thought

that the resulting “partial” response to RAF inhibition increases the

probability that genetic changes leading to acquired resistance will

arise (Lito et al, 2013; Shi et al, 2014a,b).

The study of adaptive responses provides a window into the

complex and still poorly understood networks involved in feedback

regulation of mitogenic signaling, and preventing adaptation is

likely to be key to durable therapy. However, systematic data

comparing BRAFV600E lines are generally lacking, and it is not

known whether adaptation to different MEK and RAF inhibitors is

fundamentally similar or whether multiple adaptive mechanisms are

active in a single cell line or tumor. It is also unclear whether the

key difference between sensitive and resistant cells involves drug
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potency (difference in IC50) or the fraction of cells that are

responsive (Emax). Variation in Emax and in the slope of the dose–

response curve can play a significant role in limiting the efficacy of

anti-cancer drugs (Fallahi-Sichani et al, 2013).

In this study, we profile the responses of human BRAFV600E/D

melanoma lines to RAF and MEK inhibitors to: (i) characterize vari-

ability in adaptation with time, dose, and genotype, (ii) discover

new adaptive mechanisms, and (iii) compare phenotypes of adapta-

tion at single-cell and population levels. We apply a three-step

approach involving measurement of multiple signaling proteins

across dose and time combined with population average and single-

cell measurement of cell state and phenotype followed by statistical

modeling. Our data comprise reverse-phase protein array (RPPA)

measurement of 17 signaling proteins and 4 cell state markers as

well as single-cell assays of apoptosis and cell viability in 10 lines

exposed to five drugs for 1–72 h at 7 doses spanning IC50. Statistical

modeling using partial least squares regression (PLSR) was then

used to determine which of the ~2 × 105 data points were predictive

of drug-induced changes in viability and apoptosis; follow-on exper-

iments tested these predictions. We find that adaptive responses to

RAF or MEK inhibition are diverse with time and genotype and

involve six or more signaling cascades (e.g., AKT/mTOR, NF-jB,

and AMPK), but are similar for different drugs, excluding known

differences in mechanism of action and polypharmacology. We find

that the JNK/c-Jun pathway was initially down-regulated by RAF/

MEK inhibitors in all cell lines but in half of the lines, it was then

significantly up-regulated. In 4 of 10 lines, JNK/c-Jun up-regulation

caused a subset of cells to become quiescent and apoptosis-resistant.

The addition of an irreversible JNK inhibitor (Zhang et al, 2012)

synergized with vemurafenib in cell killing, primarily by increasing

Emax. Thus, co-treatment of some melanomas with RAF and JNK

inhibitors may have clinical potential, analogous to RAF and PI3K/

AKT inhibitors (Jang & Atkins, 2014).

Results

Data-driven modeling of adaptive responses to RAF and

MEK inhibition

To profile adaptive responses in melanoma, we applied single-cell

phenotypic and multiplex biochemical assays to nine BRAFV600E and

one BRAFV600D lines exposed to four RAF inhibitors and one MEK

inhibitor at multiple doses and times (Fig 1A). Seven of the tested

cell lines have been genetically characterized through the Cancer

Genome Project (Garnett et al, 2012) (Supplementary Dataset S1).

Cell viability and induction of apoptosis were scored using auto-

mated fluorescence microscopy and two dyes: DEVD-NucView488

for effector caspases (Tang et al, 2013) and Hoechst 33342 for nuclei

(Supplementary Fig S1A). Phenotypic assays were performed 24,

48, and 72 h following exposure to four RAF inhibitors with differ-

ential selectivity for BRAFV600E, wild-type BRAF and CRAF, includ-

ing AZ628, vemurafenib, PLX4720 (a structural analogue of

vemurafenib), and SB590885 as well as the phase III MEK inhibitor

selumetinib (AZD6244). Variability was observed in IC50 and Emax

with drug and cell type (Fallahi-Sichani et al, 2013), implying that

fractional cell killing is common even among more sensitive cell

lines (Fig 1B and C and Supplementary Fig S1B).

Signaling proteins were assayed at seven drug doses between

3.2 nM and 3.2 lM and five time points between 1 and 48 h by

RPPA (Sevecka et al, 2011) using antibodies with good coverage of

cell growth, apoptosis, stress response, and energy homeostasis

pathways as well as 4 cell state markers (see Materials and Methods

for details). Four biological replicates yielded a dataset of ~180,000

measurements in which multiple signaling proteins were up- or

down-regulated depending on cell line and dose (Supplementary

Datasets S2 and S3, http://lincs.hms.harvard.edu/db/datasets/

20218/). Time was an important variable in these data since path-

ways down-regulated immediately after drug exposure were

frequently up-regulated at later times. To compute the relative

importance of each signaling protein for phenotypic responses, we

used PLSR (Geladi & Kowalski, 1986; Janes & Yaffe, 2006), generat-

ing one model for each cell line. For simplicity, a single “viability”

response variable was created by subtracting the number of apopto-

tic cells from total cell number followed by normalization to a

DMSO-treated control and averaging 48- and 72-h data (Supplemen-

tary Dataset S4, http://lincs.hms.harvard.edu/db/datasets/20217/).

Input vectors were constructed by normalizing RPPA data, treat-

ing dose, time, and drug as separate observations, and then reduced

by PLSR, so that each PLSR component (PC) maximally captured

variance in the data left unexplained by preceding components. The

process was iterated until additional PCs did not improve the

prediction relative to experimental noise. Models were evaluated

by computing the percent of variance predicted using tenfold cross-

validation (Q2) and the mean squared prediction error (MSPE;

Fig 1D; left panels) (see Materials and Methods for details). PLSR

models proved remarkably accurate with Q2 = 0.84 � 0.13 (for

PC1-3) and MSPE = 15–20%, close to the estimated error in the

array data. As described below, we also performed independent

experiments to verify key predictions.

Partial least squares regression models are most useful if they

substantially reduce the complexity of the data as evaluated by the

fraction of variance in output variables (phenotypes in this case)

captured by a small number of PCs (as assessed by R2). For

example, the C32 PLSR model captured 94% of variance in three

PCs and the WM115 model captured 91% (Fig 1D; middle panels)

implying that PLSR could provide meaningful insight into the

connection between drug-induced signaling and phenotype. This

was important because there is no a priori reason to believe that we

had selected the right proteins and time points to measure. The high

values obtained for R2 and Q2 demonstrate that RPPA measurements

successfully captured the fraction of variation in signaling across

lines, drugs, and times that is consequential for drug response. Data

on additional proteins will be needed, of course, to fully map

networks involved in adaptation at a molecular level.

In PLSR models, score vectors corresponding to variation in drug

doses projected negatively along PC1, visible in Fig 1D (right panels)

as a left to right progression from high doses (large markers) to low

doses (small markers). Data from different drugs projected largely

along PC2, as evidenced by changes in color (clearest in the case of

the WM115 model). Projecting loading vectors into PLSR component

space (Fig 1E) revealed the protein changes associated with pheno-

typic responses. For example, in PC2 which captures drug-dependent

differences, RAF but not MEK inhibitors reduced pMEK(Ser217/221)

levels at early time points. This arises because kinase inhibition

changes the modification state of the substrate rather than the
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Figure 1. Data-driven modeling reveals signaling correlates of BRAF-mutant melanoma cellular response to RAF/MEK inhibition.

A Overview of the systematic measurements using single-cell phenotypic and multiplex biochemical assays to profile signaling biochemistry and cell state in 10

BRAFV600E/D melanoma cell lines exposed to four RAF inhibitors and one MEK inhibitor at multiple doses and times. Multiplex single-cell immunofluorescence assays

were used in the follow-up experiments on selected cell lines for treatments with vemurafenib, JNK-IN-8, and their combination.

B Dose–response curves representing 72-h viability measurements for six selected BRAFV600E melanoma cell lines after treatment with vemurafenib. Ranges of

estimated IC50 and Emax for the selected lines are shown. Data are represented as mean � SD.

C Pairwise distribution and correlation of estimated IC50 and Emax values for responses (72-h viability) of 8 cell lines to four RAF inhibitors and one MEK inhibitor. Each

dot represents one drug/cell line combination. Sensitive cell lines are arbitrarily defined based on their IC50s (the most widely used metric for evaluation of drug

response; log10[IC50] < �6.5).

D Cell line-specific model calibration for two selected cell lines C32 and WM115. Left: R2, Q2, and MSPE for C32 and WM115 models built with increasing numbers of

PLSR components. Middle: Relative viability as measured experimentally (z-score-scaled) or as predicted by the three-component PLSR models using tenfold cross-

validation. R2 reports model fit, and Q2 reports model prediction accuracy. Right: PLSR score plots for the first two components of C32 and WM115 models. Shown

PLSR models were developed using RPPA data from Supplementary Dataset S3.

E PLSR loading plots for the first two components of C32 and WM115 models.

Source data are available online for this figure.
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kinase; in some cell lines, pMEK(Ser217/221) levels increased upon

selumetinib exposure, a manifestation of feedback regulation.

Phospho-p38(Thr180/Tyr182) levels also fell within 1 h of exposure to

vemurafenib, PLX4720, or AZ628; KINOMEscan binding data for

these drugs (Vin et al, 2013) suggest that they have off-target activity

on regulators of p38 such as ZAK kinases. We observed that

co-treatment of LOXIMVI cells with SB202190, a specific inhibitor of

p38 kinase, diminished the effectiveness of vemurafenib and AZ628

(Supplementary Fig S1C–E). Thus, off-target effects of RAF inhibitors

on the p38 pathways are likely to be undesirable from a therapeutic

perspective. Overall, we conclude that adaptive responses to RAF and

MEK inhibitors are diverse across cell lines but similar for different

drugs, excluding known off-target effects and differences in potency.

Partial least squares regression loadings were generally interpret-

able in molecular terms. For example, increasing drug dose corre-

lated with lower pERK(Thr202/Tyr204) levels and up-regulation of

PI3K/AKT signaling (Shi et al, 2014a). The correlation structure in

the loadings was also interpretable: PC1 showed a strong positive

correlation between growth/survival signals down-regulated by

drug (Fig 1E; pERK(Thr202/Tyr204), pS6(Ser235/236) in green and orange)

and markers of mitotic state (phospho-histone H3; pH3—dark blue)

and a negative correlation with the quiescence marker p27 (dark

pink) and the apoptosis inducer Bim (a Bcl2 family member—light

blue). We observed equally significant changes in other signaling

pathways, including those involved in stress/cytokine responses

(JNK, p38), energy homeostasis (AMPK), and cytokine signal trans-

duction (NF-jB). These data are consistent with a complex adaptive

response involving multiple signal transduction cascades in different

combinations in each cell line.

c-Jun activity up-regulation by RAF inhibitors causes resistance

to apoptosis

To identify adaptive changes that are predictive of drug response,

we calculated the “variable importance in the projection” (VIP) for

each of ten PLSR models. VIP scores report the sum (over all model

dimensions) of each variable x (an RPPA assay at a specific time

point), weighted by the change in response (cell viability) explained

by the same variable x (see Materials and Methods for mathematical

details) (Wold, 1994; Janes et al, 2008). We generated a VIP score

for each three-way cell line/signal/time point combination. Analyz-

ing these scores (Fig 2) shows which biochemical changes are

common or different across different cell lines and to what extent

they occur on similar or different timescales. We found that

phospho-protein signals varied markedly with respect to direction

(up or down) and timing (early or late; Fig 2A). Some cell lines up-

regulated a particular pathway, whereas others down-regulated it

(e.g., NF-jB and c-Jun). Because VIP scores are always positive, a

minus sign was assigned to scores anti-correlated with viability and

a significance threshold of |VIP| >1 was then imposed. Unsuper-

vised clustering of positive and negative VIP scores for each model

made it possible to visualize changes in signaling associated with

sensitivity to RAF/MEK inhibitors (Fig 2B; pMEK and pERK scores

are not shown because they are a direct consequence of drug action).

We focused on VIP scores that were significant in multiple cell

lines. These include measures of PI3K/AKT signaling, which is

known to be activated during vemurafenib adaptation, as well as

the levels of c-Jun and/or p-cJun(Ser63). Both rose in multiple cell

lines 24–48 h after exposure to RAF and MEK inhibitors. This was

unexpected since previous studies report that MEK/ERK signaling

regulates c-Jun expression in BRAFV600E melanomas and, thus, that

RAF and MEK inhibitors should down-regulate c-Jun (Lopez-

Bergami et al, 2007). This is what we observed 5–10 h after drug

exposure in all lines, but in 6 of 10 lines, p-cJun levels then increased

by 24–48 h (and in 4 of these, total levels of c-Jun also increased)

(Fig 3A). In some cell lines (e.g., WM115) RPPA data demonstrated

c-Jun up-regulation as early as t = 10 h, whereas in others (e.g., K2)

it occurred only after 48 h; these data were confirmed for PLX4720

using single-cell assays (Supplementary Fig S2A and B). Among the

cell lines that up-regulate p-cJun, there was a significant correlation

between the degree of MEK or RAF inhibition (as assayed by pERK

levels) and the magnitude of p-cJun up-regulation. For example,

AZ628 induced p-cJun up-regulation at lower doses as compared

with vemurafenib and was also a more potent inhibitor of the MAPK

pathway. This suggests a previously undescribed role for c-Jun in

adaptation of melanoma cells to RAF and MEK inhibition; we there-

fore focused on JNK/c-Jun in follow-up studies.

To determine whether the up-regulation of c-Jun impacted vemu-

rafenib-mediated cell killing, we co-treated cells with JNK-IN-8, a

kinase inhibitor that is specific for JNK relative to other MAP family

kinases (Zhang et al, 2012). In melanoma cells, JNK-IN-8 caused

dose-dependent inhibition of c-Jun S63/S73 phosphorylation, a

modification required for transcriptional activity, but did not

measurably alter the levels of pERK, pAKT(Ser473), pSTAT3(Tyr705),

the p38/MK2 substrate pHSP27(Ser82) or the nuclear translocation of

NF-jB (Supplementary Fig S2C–I). These modification states report

on potential off-target activities of JNK-IN-8, and the absence of

significant changes suggests that the drug acted in a JNK-specific

manner in melanoma cells at the doses we used. Exposure of cells

to JNK-IN-8 alone reduced p-cJun(Ser73) to background levels but

induced little if any apoptosis (Fig 3B). When cells were co-treated

with vemurafenib and JNK-IN-8, p-cJun(Ser73) was also reduced to

background levels (Supplementary Fig S2J) and the level of

apoptosis was increased, particularly in the three cell lines that were

among the most vemurafenib-resistant (WM115, WM1552C, and

LOXIMVI) as well as in relatively sensitive COLO858 cells (Fig 3B).

The EC50 for vemurafenib-mediated apoptosis fell by as much as

20-fold, and Emax increased by up to fivefold. Apoptosis was not

increased by JNK-IN-8 in RVH421 cells, but vemurafenib

induced little apoptosis in these cells even at the highest doses

(Supplementary Fig S2K); in K2 cells, the data were ambiguous

because clumping made it difficult to score single-cell phenotypes.

Bliss independence (Keith et al, 2005) is a better metric of drug

interaction than changes in IC50 values, and we observed that JNK-

IN-8 was synergistic with vemurafenib in all four lines tested based

on excess over Bliss independence (EOBI; Fig 3C). Significant but

quantitatively modest increases in apoptosis were also observed

upon co-treatment of cells with vemurafenib and SP600125, a

structurally distinct but less selective JNK inhibitor (Supplementary

Fig S2L). Moreover, depletion of JUN using siRNA significantly

potentiated apoptosis induced by vemurafenib or selumetinib in

WM115 and WM1552C lines (Fig 3D–F and Supplementary Fig

S2M–O) as compared to cells transfected with control siRNA. For 25

BRAFV600E melanoma lines in the Cancer Cell Line Encyclopedia

(Barretina et al, 2012), we also observed a statistically significant

correlation between JUN expression levels and PLX4720 sensitivity
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(Spearman’s q = 0.47, P = 0.02; see below; Supplementary Fig

S2P). We conclude that the combination of RAF and JNK inhibition

(or JUN depletion) increases apoptosis in some vemurafenib-

resistant cell lines to a level normally observed in sensitive cells,

implying that the up-regulation of JNK/c-Jun in melanoma cells

following vemurafenib exposure decreases cell killing and that the

combination of RAF and JNK inhibitors may have therapeutic

potential.

A network perspective on adaptive responses

Mapping VIP values onto a schematic of immediate-early signaling

(Fig 4A) reveals the diversity of adaptive responses to RAF and

MEK inhibition with respect to magnitude and timing (Fig 4A). In

nearly all cell lines, the quiescence marker p27 and apoptosis mark-

ers cPARP and Bim were up-regulated and mitotic marker pH3

down-regulated 24–48 h after drug exposure. Whereas exposure of
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Figure 2. Variability in the magnitude, direction, and timing of signaling changes in response to RAF/MEK inhibition.

A PLSR-derived variable importance in the projection (VIP) scores predicting viability for each of the ten studied cell lines. VIP scores are shown for each cell line-specific

model, each signal and measurement time point. The direction of the bars (left or right) shows whether the changes in signal correlated negatively or positively with

relative viability. VIP scores of larger than one indicate important variables (signals and time points) that predict the responses (viability).

B Unsupervised clustering of melanoma cell lines based on the VIP scores >1 from each individual cell line model (excluding pMEK and pERK). Prior to clustering, VIP

scores of between 0 and 1 were set to zero and a minus sign was added to VIP scores associated with signals that negatively correlated with viability. Average

relative resistance of the cell lines to the five tested RAF/MEK inhibitors (on the right) is computed based on area under the time–dose–response curve plotted for

non-apoptotic viability measured by single-cell imaging across seven doses and two time points (48 and 72 h) following treatment. The data for the cell line K2 are

not shown because clumping made it difficult to score single-cell phenotypes in this cell line after 72 h.

Source data are available online for this figure.
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Figure 3. c-Jun activity up-regulation by RAF inhibitors causes resistance to apoptosis.

A c-Jun and p-c-Jun(Ser63) changes as measured by RPPA in six melanoma cell lines in response to different doses of RAF and MEK inhibitors for 10 h (or 5 h in the

case of WM115 cell line) and 48 h.

B, C Synergistic apoptosis induction in four cell lines (WM115, WM1552C, LOXIMVI, and COLO858) treated for 72 h with combinations of vemurafenib and JNK-IN-8.

(B) Dose–response profiles for apoptosis induction with vemurafenib and JNK-IN-8 combination. (C) Excess over the predicted Bliss independence (EOBI) calculated

for different combined doses of vemurafenib and JNK-IN-8.

D c-Jun expression in WM115 cells transfected with JUN siRNA relative to no RNA and non-targeting controls quantified in triplicate 48 h after transfection.

E, F Apoptosis in WM115 cells with or without 48 h JUN knockdown after 96-h treatment with increasing doses of vemurafenib (E) and selumetinib (F).

Data information: Data are presented as mean � SD.

Source data are available online for this figure.
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C32 cells to PLX4720 led to early and significant increase in p27

and decrease in pH3, responses occurred later and were smaller

in WM115 cells. These changes are depicted in Fig 4B–D with levels

of one protein mapped onto a red to yellow color scale and the

other protein onto the vertical axis; the x–y axes represent time and

dose. The induction of AKT signaling is among the best described

and most common adaptations to RAF inhibition (Shi et al,

2014a). In our data, pAKT(Ser473) and/or pAKT(Thr308) rose in both

vemurafenib-sensitive lines such as C32 and vemurafenib-resistant

lines such as WM115 (Fig 4C). Proteins that integrate ERK and AKT

signaling such as p-p70S6K(Thr421/Ser424) kinase and pS6(Ser235/236),

known to be important in melanoma (Corcoran et al, 2013), were

down-regulated soon after exposure of some cell lines to drug

and only much later in others (compare pS6 levels in C32 and

WM115 cells exposed to PLX4720; Fig 4D). Finally, pNF-jB(Ser536),

pJNK(Thr183/Tyr185), c-Jun, and p-cJun(Ser63) were down-regulated soon
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Figure 4. A network perspective on adaptive responses.

A Left: A consolidated overview of PLSR-derived variable importance in the projection (VIP) scores mapped onto a simple schematic of immediate-early signaling,

indicating the fraction of 10 studied cell lines in which early (1–10 h) or late (24–48 h) up- or down-regulation of each of the cell state markers and phospho-

proteins is predictive of response to RAF/MEK inhibitors (72-h viability). Up-regulation or down-regulation of signals with VIP score >1 is shown. Right: Correlation

between up- and down-regulation of selected pathways in response to RAF/MEK inhibition across the 10 studied cell lines. Correlations between signaling changes

in response to RAF/MEK inhibition were evaluated based on pairwise Spearman’s correlation between VIP scores for selected phospho-proteins at 24 and 48 h

post-treatment across the 10 studied cell lines. P-values <0.05 were considered significant.

B–D Time–dose–response plots indicating changes in RPPA measurements for six selected signals, p27 versus p-histone H3 (B), pERK(Thr202/Tyr204) versus pAKT(Ser473) (C),

and pS6(Ser235/236) versus total c-Jun levels (D), for two selected cell lines (C32 and WM115) after exposure to PLX4720. Mean values of four biological replicates are

shown. Protein levels represent log2 fold change of each signal (at a specific dose and time) relative to a DMSO-treated control.
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(1–10 h) after drug exposure and then up-regulated subsequently

(24–48 h) in some lines (Fig 4A and D) but not in others. In most

cases, we were unable to identify statistically significant correlations

between different pathways across cell lines (Fig 4A; right panel),

implying independence of adaptive mechanisms.

High c-Jun activity causes resistance to apoptosis in quiescent

cells concomitant with incomplete pS6 suppression

Drug resistance in melanoma is often ascribed to incomplete respon-

siveness of tumor cells to RAF inhibitors (Lito et al, 2013; Shi et al,

2014a). In population-level measures of signaling proteins (e.g., RPPA

or Western blots of pERK levels), incomplete response gives rise to

partial inhibition of a signaling pathway, but at a single-cell level it

usually involves cell-to-cell variability. This is particularly true in the

case of apoptosis, which is an all-or-none change in cell fate (Flusberg

et al, 2013). Our data show that Emax < 1 for viability following

exposure of even the most sensitive BRAFV600E cells to RAF/MEK

inhibitors, implying high cell-to-cell variability. We therefore

used immunofluorescence microscopy to monitor the activity of the

JNK/c-Jun pathway in single cells and to relate activity to

quiescence/senescence (which we did not rigorously distinguish)

and apoptosis.

To score proliferation, we monitored phosphorylation of the reti-

noblastoma protein on Ser807/811, a modification that promotes cell

cycle progression and is present during the S/G2/M phases of the

cell cycle, and the levels of nuclear Ki-67, a marker of proliferation

that scores negative only in quiescent cells (Buchkovich et al, 1989;

Scholzen & Gerdes, 2000). Apoptosis was measured using the

DEVD-NucView488/Hoechst 33342 assay described above. To moni-

tor the effect of vemurafenib at the level of signaling, we measured

S6 phosphorylation (Ser235/236). pS6 is a marker of TORC1 activity

(Magnuson et al, 2012; Corcoran et al, 2013), a multiprotein

complex controlled by signaling cascades such as MAPK, PI3K/AKT,

and LKB1/AMPK (Roux et al, 2004; Shaw et al, 2004; Magnuson

et al, 2012) involved in adaptation to vemurafenib (a point we

return to below). pS6 levels have previously been proposed as a

particularly effective predictor of resistance of melanoma cells to

vemurafenib-induced apoptosis (Corcoran et al, 2013), and we

found pS6(Ser235/236) levels 24–48 h after drug treatment to be the

best single predictor of apoptosis across cell lines, drugs, and doses.

We asked whether JNK/c-Jun-mediated resistance to apoptosis was

correlated with pS6 levels. Such a correlation might also reflect a

role for c-Jun in controlling expression of proteins in the TORC1

pathway such as phosphoinositide-dependent kinase 1 (PDK1; an

activator of AGC kinase families such as AKT and S6 kinases),

PTEN, and EGFR (Johnson et al, 2000; Hettinger et al, 2007; Lopez-

Bergami et al, 2010). We therefore measured c-Jun, p-cJun(Ser73),

pRb(Ser807/811), Ki-67, and pS6(Ser235/236) levels in various combina-

tions in WM115, WM1552C, LOXIMVI, or COLO858 cells exposed to

vemurafenib, JNK-IN-8 or the two drugs in combination and also in

vemurafenib-treated cells depleted of JUN using siRNA.

WM1552C cells were highly proliferative and largely (~67%)

Ki-67High (Fig 5A, top left panel; see Supplementary Fig S3A for other

cell lines), but 24-h exposure to vemurafenib shifted them to a

predominantly Ki-67Low state (~62% at 0.8 lM vemurafenib). The

proportion of Ki-67Low/p-cJunHigh cells increased concomitantly (vis-

ible as broadening of the distribution of cells along the horizontal

axis of Fig 5A, bottom left panel). Similar data were obtained with

pRb: untreated WM1552C cells comprised ~54% cycling pRbHigh and

~46% interphase pRblow cells (Fig 5A, top right panel; Supplemen-

tary Fig S3B). Exposure to vemurafenib reduced the proportion of

pRbHigh/p-cJunHigh cells fourfold at 0.8 lM (from ~35% to ~9%) and

increased the proportion of pRbLow/p-cJunHigh cells twofold (from

~25% to ~48%) (Fig 5A). This shift was observed within ~24 h of

drug exposure in all four lines (Fig 5B) at a time when cell killing

was negligible. It thus reflects a change in the distribution of the

population from proliferation to quiescence rather than death of a

subset of cells. Among the four cell lines that exhibited synergistic

apoptotic responses to RAF and JNK inhibitors in combination, two

(WM115 and COLO858) had low basal p-cJunHigh fractions (i.e.,

~15% and ~3% p-cJunHigh, respectively), and vemurafenib increased

▸
Figure 5. c-Jun activity up-regulation causes resistance to apoptosis in quiescent cells because of incomplete pS6 suppression.

A Covariate single-cell analysis of Ki-67 (left) and pRb(Ser807/811) (right) versus p-cJun(Ser73) in WM1552C cells before and 24 h after exposure to 0.8 lM vemurafenib.

Density scatter plots were generated using signal intensities for individual cells as measured by immunofluorescence microscopy. The vertical lines were used to gate

p-cJunHigh versus p-cJunLow cells. The horizontal lines were used to gate Ki-67High versus Ki-67Low cells, and pRbHigh versus pRbLow cells.

B Analysis of drug dose-dependent changes in proportion of pRbLow/p-cJunHigh and pRbHigh/p-cJunHigh subpopulations in four melanoma cell lines (WM115, WM1552C,

LOXIMVI, COLO858) after exposure to vemurafenib for 24 h. These subpopulations were gated as shown in (A). Data are represented as mean � SD for two replicates.

C Covariate single-cell analysis of pRb(Ser807/811) versus pS6(Ser235/236) following 24-h treatment of WM1552C cells with different doses of vemurafenib alone (top) and

vemurafenib and JNK-IN-8 together (bottom). Drugs were added at a 1:1 ratio, each at indicated concentrations when used in combination. Density scatter plots

were generated using signal intensities for individual cells as measured by immunofluorescence microscopy. The horizontal and vertical lines were used to gate

pS6High versus pS6Low cells, and pRbHigh versus pRbLow cells, respectively.

D Selected immunofluorescence images of pS6(Ser235/236) and Hoechst staining in WM1552C cells in a DMSO-treated control and 24 h after exposure to 5 lM of

vemurafenib, JNK-IN-8, and their combination.

E Analysis of the changes in proportion of pS6High cell population in three melanoma cell lines (LOXIMVI, WM115 and WM1552C) as a function of drug concentration for

single-drug vemurafenib and JNK-IN-8 treatments and their combination treatment. Drugs were added at a 1:1 ratio, each at indicated concentrations when used in

combination. pS6High population of cells was gated as indicated in (C). Data are represented as mean � SD for two replicates. Data comparison between vemurafenib

treatment and vemurafenib/JNK-IN-8 combined treatment was made by using two-way analysis of variance (ANOVA).

F Fraction of c-JunHigh cells (as measured by single-cell immunofluorescence microscopy) after 48 h JUN knockdown followed by 24-h treatment with vemurafenib.

Fold changes are shown relative to control-treated cells. Data are presented as mean � SD.

G Single-cell pS6(Ser235/236) levels in the c-JunHigh and c-JunLow fractions of cells (as measured by single-cell multiplex immunofluorescence microscopy) after 48 h of JUN

knockdown and 24-h treatment with 0.32 lM vemurafenib. Single-cell pS6 data are presented as box-and-whisker plots with median signal intensities and

interquartile ranges; bars extending to 1.5× the interquartile range are shown for each condition as a measure of variance. P-values were calculated using a two-

sided nonparametric Mann–Whitney U-test.

Source data are available online for this figure.
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the p-cJunHigh fraction to ~40%, a 3- to 12-fold increase, representing

a clear case of JNK/c-Jun activation. In the other two lines

(WM1552C and LOXIMVI), 50–60% of cells were already in a

p-cJunHigh state under normal conditions, and they retained this

following exposure to vemurafenib. In all four lines, regardless of the

basal p-cJun levels, vemurafenib exposure resulted in a significant

increase in the proportion of quiescent p-cJunHigh state (Fig 5B). This

contrasts with C32, MMACSF, and MZ7MEL cells in which p-cJun

levels (and also the p-cJunHigh/pRbLow subpopulation) were reduced

following vemurafenib treatment (Supplementary Fig S3C). Thus,
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the JNK/c-Jun pathway is up-regulated or sustained in the presence

of vemurafenib in about half of the lines tested, and in these cells, it

is associated with a shift toward quiescence.

To determine the consequences of co-administering vemurafenib

and JNK-IN-8, we measured pS6 levels in combination with cell

cycle state. In normally growing WM1552C cells, pS6(Ser235/236)

levels were high in both cycling pRbHigh and interphase pRbLow cells

(Fig 5C, far left panels). Following exposure to 0.8 lM vemurafenib

for 24 h, three-quarters of cells were in interphase, but pS6 levels

remained high. At 2–5 lM vemurafenib, pS6 levels began to fall,

but up to 50% of the interphase pRbLow cells were still pS6High at

5 lM (Fig 5C; top far right panel). However, when cells were

exposed to vemurafenib and JNK-IN-8 together, the proportion of

pS6High cells fell to ~3% (Fig 5C–E) even though JNK-IN-8 alone

had little effect on pS6 levels (Fig 5E and Supplementary Fig S3D).

A similar reduction in pS6High cells was observed upon co-drugging

other vemurafenib-resistant cell lines (LOXIMVI and WM115;

Fig 5E). We conclude that in the presence of vemurafenib, almost

all cells in the population become non-proliferative, but pS6 levels

remain high in a significant subset. The addition of JNK-IN-8 largely

eliminates these pS6High cells concomitant with an increase in

apoptosis (Fig 3).

When we knocked down JUN in WM115 and WM1552C cells

by siRNA (for 48 h) and then treated cells with vemurafenib for

24 h, a significant fraction of cells died and a fraction of surviving

cells appeared to remain c-JunHigh (due to incomplete efficiency of

transfection). However, when we compared pS6 levels in c-JunHigh

and c-JunLow survivors, we observed significantly higher levels of

pS6 in the former (Fig 5F and G). This further demonstrates a

correlation between high pS6 and c-Jun levels among surviving

cells. We hypothesize that high activity of the JNK/c-Jun pathway

prevents complete pS6 inhibition and protects cells from apoptosis,

partly explaining the submaximal cell killing (Emax � 1) by vemu-

rafenib. This finding is in agreement with previous data showing a

strong correlation between pS6 suppression and apoptosis in

BRAFV600E melanoma cells exposed to RAF and MEK inhibitors.

Estimating the magnitude of adaptive responses to RAF

inhibitors and identifying biomarkers

To develop an overall metric of adaptive response in RAF and

MEK inhibitor-treated melanoma cells, we correlated target inhibi-

tion (as measured by pERK(Thr202/Tyr204) levels) 1 h after drug

exposure with viability at 72 h across different cell lines represent-

ing diverse adaptive response signatures. As expected, a statisti-

cally significant correlation was observed (P = 0.006), but with

scatter around the regression line (Spearman’s correlation coeffi-

cient q = 0.44; Fig 6A); the difference between q = 0.44 and

q = 1.0 represents variability in phenotype not explained by inhibi-

tion of the primary target (leaving aside experimental error).

Outliers in the regression analysis represent examples of strong

and weak correlation between target inhibition and phenotypic

effect. SB590885, for example, was on average significantly more

effective at lowering pERK levels (P = 0.002) than PLX4720

(Fig 6B) but without a commensurate effect on cell viability

(Fig 6C). pERK fell in response to RAF/MEK inhibitors to similar

degrees in C32 and WM1552C lines, but cell killing was signifi-

cantly greater in the former (P = 0.002; Fig 6D and E). The

involvement of adaptive responses in these phenomena is demon-

strated by the fact that if we exclude cell lines in which

p-cJun(Ser63/73) up-regulation strongly attenuates vemurafenib

response (COLO858, WM115, WM1552C, and LOXIMVI), the corre-

lation between pERK levels and phenotype improves significantly

(q = 0.69, P = 1.4 × 10�4). The difference between q = 0.44 and

q = 0.69 is one measure of the impact of the c-Jun-mediated

adaptation to vemurafenib. More generally, the difference in the

predictivity of PLSR models (that encompass multiple signaling

pathways) and measures of target inhibition alone is a metric for

off-pathway, adaptive, and paradoxical drug responses.

We can also use VIP scores and their correlation with pheno-

type to evaluate potential biomarkers of drug response (Fig 2A).

pS6(Ser235/236) levels 24 h after treatment were the best single

predictor of drug-induced cell killing in our data (q = 0.62,

P = 2 × 10�6) (Fig 6F), reflecting the role of S6 kinases in inte-

grating the activities of multiple signaling pathways. In the

specific case of PLX4720, p-cJun(Ser73) levels 24 h after drug

exposure were also a good predictor of cell killing in 8/10

lines (q = 0.76, P = 0.03) (Fig 6G). We observed a significant

difference in the partial correlation coefficient between viability

and pS6 inhibition (controlling for pERK levels; Spearman’s

qpartial = 0.58; P = 1.7 × 10�4) and the partial correlation between

viability and pERK inhibition (controlling for pS6 levels; qpartial =

0.34; P = 0.04). Thus, only a small fraction of the difference in

cell killing by structurally distinct MEK and RAF inhibitors is

explained by differences in the extent of target inhibition (pERK

levels at 1 h) independent of pS6 changes. For example, the fact

that SB590885 was no more effective than PLX4720 in killing

melanoma cells despite more efficient pERK inhibition can be

explained by insignificant differences in pS6 inhibition (Fig 6H).

Conversely, more efficient killing of C32 cells relative to WM1552C

cells by PLX4720 (despite equivalent reductions in pERK) can be

explained by significantly more effective suppression of pS6

(Fig 6I). It has been proposed that pS6 levels better predict the

responsiveness of melanoma patients to RAF inhibition than pERK

levels (Corcoran et al, 2013), and our data are in agreement with

this finding. Our data also suggest that pS6 is effective as a biomar-

ker because it reports on the activities of pathways such as JNK/c-

Jun involved in adaptive drug response. In principle, it should be

possible to use regression and partial correlation in combination

with mass spectrometry to identify additional and possibly better

markers of drug response than pS6.

Discussion

In this study, we apply a systematic approach to analyzing adap-

tive drug responses in BRAFV600E melanoma, a tumor type for

which adaptation to RAF and MEK inhibition has been well estab-

lished. We quantify trends and variability across 10 genotypes and

five drugs and identify new adaptive mechanisms. The complexity

of adaptive responses challenges traditional approaches for study-

ing signal transduction, and we therefore combined multiplex

biochemical assays and single-cell phenotypic measurement with

statistical modeling to identify those biochemical changes with the

greatest power to predict drug-induced changes in cell viability.

We find that cellular responses to RAF or MEK inhibition are
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remarkably diverse across cell lines—even those carrying the same

BRAFV600E driver—and involve multiple cell signaling kinases that

can be up- or down-regulated over time, often in different direc-

tions in different cell lines. Pathways involved in adaptation

extend well beyond the RAS/MEK/ERK and PI3K/AKT cascades

previously shown to influence responsiveness to RAF and MEK

inhibitors in melanoma cells. The plasticity of adaptive signaling,

the different ways in which signaling kinases are coupled to
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Figure 6. A multifactorial adaptive response, rather than initial target inhibition, determines melanoma response to RAF inhibitors.

A Pairwise Spearman’s correlation between the 1-h changes in pERK(Thr202/Tyr204) levels as measured by immunofluorescence microscopy and 72-h relative viability both

represented by the z-score-scaled AUC of the seven dose–response curves for four RAF inhibitors and one MEK inhibitor across 8/10 cell lines investigated in this study.

B Comparison of the level of 1-h pERK inhibition for 8 cell lines treated with SB590885 versus PLX4720.

C Comparison of the 72-h measured relative viability AUC for 8/10 cell lines treated with SB590885 versus PLX4720.

D Comparison of the level of 1-h pERK inhibition between two cell lines (C32 and WM1552C) treated with four RAF inhibitors and one MEK inhibitor.

E Comparison of the 72-h measured relative viability AUC between two cell lines (C32 and WM1552C) treated with four RAF inhibitors and one MEK inhibitor.

F Pairwise Spearman’s correlation between the 24-h changes in pS6(Ser235/236) levels as measured by immunofluorescence microscopy and 72-h relative viability both

represented by the z-score-scaled AUC of the dose–response curves for four RAF inhibitors and one MEK inhibitor across 8/10 cell lines investigated in this study.

G Pairwise Spearman’s correlation between the 24-h p-cJun levels as measured by immunofluorescence microscopy and 72-h relative viability after treatment with

PLX4720 for 8 cell lines. p-cJun levels are averaged over five doses (0.1–5 lM), and viability is represented by the AUC of the dose–response curves.

H Comparison of the level of 24-h pS6 inhibition for 8 cell lines treated with SB590885 versus PLX4720.

I Comparison of the level of 24-h pS6 inhibition between two cell lines (C32 and WM1552C) treated with four RAF inhibitors and one MEK inhibitor.

Data information: P-values in (B–E, H, I) were calculated using one-tailed paired Student’s t-test.

Source data are available online for this figure.
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cell state and phenotype, and the fact that we did not observe

strong positive and negative correlations between different path-

ways raise the question of whether every cell line (or patient

tumor) adapts differently to the anti-mitogenic effects of MEK or

BRAFV600E inhibition.

We also find that the JNK/c-Jun pathway, a primary mediator of

cytokine and stress responses, is important in adaptive responses to

vemurafenib. c-Jun is up-regulated in a subset of melanoma lines

and co-treating cells with RAF and JNK kinase inhibitors results in a

synergistic induction of apoptosis, an observation of potential thera-

peutic significance. The primary effect of JNK inhibition is to

prevent a vemurafenib-induced shift from cycling to quiescence

with a concomitant reduction in the level of apoptosis. We propose

that drug-induced changes in cell cycle distribution increase cell-to-

cell variability and help explain why Emax is relatively low for many

MEK/RAF inhibitors even in cell lines scored as sensitive based on

IC50. Thus, changes in the levels and activities of proteins involved

in drug adaptation must be interpreted not only in light of the

connectivity of the underlying pathways, but also the distribution of

cell states before and after drug exposure.

Measuring and modeling adaptive responses

In the current work, we analyzed sentinel proteins in multiple

signaling cascades across time and dose for 10 cell lines. The data

strongly supported this systematic design since adaptive responses

altered signaling broadly and changes were often time-dependent,

with the levels of some phospho-proteins falling at early times and

rising at later ones and others changing monotonically. Because

many samples can be assayed inexpensively in parallel, RPPA repre-

sents a good match to our experimental systems. RPPA is limited,

however, to assaying proteins for which good antibodies exist and

the signal-noise level is relatively poor. Future improvements to the

approach include the use of alternative multiplexing methods

including mass spectrometry to perform a deeper analysis of signal-

ing under selected conditions (Fedorenko et al, 2015). Analysis of

patient-derived cell cultures is another obvious extension, and we

have previously shown that RPPA can be used to perform multiplex

analysis of signaling in tumor lysates (Gujral et al, 2013).

Single-cell assays also proved to be important in understanding

the effects of RAF inhibitors. We have found single-cell assays of

apoptosis and cell number to more effectively discriminate between

cytostasis and cell killing than well-average assays. We also

followed up PLSR models with immunofluorescence assays as a

means to correlate drug-induced changes in signaling with cell cycle

state. In principle, it may be advantageous to use high-multiplicity

single-cell imaging for primary data collection (Bendall et al, 2011;

Gerdes et al, 2013). Live-cell imaging is also an obvious next step to

determine the order and potential causality of signaling and

phenotypic changes.

Partial least squares regression modeling proved remarkably

effective in analyzing drug response data with models consistently

predicting 90–95% of variance in response using three PLSR compo-

nents (even after removing obvious cell state markers, pH3, cPARP

and p27, from the analysis). The difference between this degree of

predictivity and that of pERK (44% of variance explained) is a

measure of the strength of adaptive responses and a figure of metric

for a drug: the best drugs (or drug combinations) are those in which

this difference, and thus the magnitude of adaptation, is relatively

small. Another use of PLSR and related modeling methods is to eval-

uate potential biomarkers. pS6 has been proposed as a clinical

biomarker for assessing the effectiveness of targeted therapy in

BRAFV600E tumors (Corcoran et al, 2013), and our data add the

insight that c-Jun up-regulation can also be estimated by measuring

pS6 levels. pS6 levels are a significantly better measure of vemurafe-

nib-induced apoptosis than pERK inhibition (q = 0.62 versus 0.44),

but neither is as good as a three-component PLSR model. This

suggests that better biomarkers of vemurafenib-induced apoptosis

can be identified, although these may involve multiple proteins.

By filtering signaling based on VIP scores (from PLSR models), we

found that responses in melanomas are striking in their breadth (with

six or more “pathways” exhibiting significant changes in activity)

and diversity: the same set of kinases can rise in some cell lines and

fall in others, and many responses are non-monotonic with time and

dose. However, the drugs we tested had very similar effects on adap-

tive responses within a given cell line with the exception of known

differences in mechanism, potency, and off-target binding. This is

consistent with the view that adaptation is a fundamental property of

a tumor cell that can be elicited by structurally distinct small mole-

cules. However, to construct mechanistic models of these adaptive

mechanisms, it will be necessary to expand the number of proteins

measured and the number of perturbations introduced with siRNA or

other drugs. Different network inference methods such as logical or

Bayesian network modeling in combination with literature-based

prior knowledge may be helpful next steps (Sachs et al, 2002, 2005;

Morris et al, 2011; Saez-Rodriguez et al, 2011). A key question for

such studies will be to determine how the diverse drug-induced

changes schematized in Fig 4 arise and whether they are all mani-

festations of a simpler phenomenon common to all cell lines.

The JNK/c-Jun pathway as an adaptive mechanism inhibiting

drug-induced apoptosis

The function of JNK in cancer is complex and context-dependent

and has been linked to differential functions of the three isoforms

(JNK1–JNK3) (Liu & Lin, 2005), complicating the development of

JNK inhibitors as anti-cancer drugs. In some cases, inhibition of

JNK signaling is clearly counter-indicated; in cutaneous squamous

cell carcinoma (cSCC), the inhibition of JNK protects cells from

UV-induced cell death (Vin et al, 2013). However, we find that the

JNK/c-Jun pathway, hitherto little studied in melanoma (Lopez-

Bergami et al, 2007), plays an important role in adaptive resistance

to RAF and MEK kinase inhibitors in about half of cell lines tested.

Exposing cells to vemurafenib and JNK inhibitors in combination

results in synergistic cell killing. Single-cell analysis suggests that

p-cJun up-regulation contributes to the resistance of a subset of the

population to vemurafenib by decoupling the inhibition of prolifera-

tion from induction of apoptosis. c-Jun has well-recognized roles in

regulating both proliferation and apoptosis (Wisdom et al, 1999),

but in melanoma it is thought to function downstream of ERK by

promoting transcription of cyclin D1, a positive regulator of the

G1-S cell cycle transition (Lopez-Bergami et al, 2007). This link is

evident in the first few hours after cells are exposed to RAF or MEK

inhibitors when phospho-cJun levels fall dramatically. Subse-

quently, however, c-Jun phosphorylation is decoupled from ERK

activity via processes that remain to be determined, but it is known
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that c-Jun activity can be elicited by growth factors, inflammatory

cytokines, cAMP-dependent pathways, cellular stress, and cell cycle

regulators such as Rb and cyclin-dependent kinases (de Groot &

Sassone-Corsi, 1992; Nead et al, 1998; Wisdom et al, 1999; Vanden

Bush & Bishop, 2011; Sun et al, 2014). It has also been reported that

JNK activity promotes growth and survival of melanoma cells under

unstressed conditions (Lopez-Bergami et al, 2007; Alexaki et al,

2008; Gurzov et al, 2008). Overall, our data suggest that pan-JNK

inhibitors such as JNK-IN-8 are potentially useful in promoting

vemurafenib-induced apoptosis in a subset of melanomas. Studies

in animal models are needed to see whether a sufficient therapeutic

window can be achieved to warrant further development of the

concept.

The role of fractional killing (Emax < 1) in response to

RAF inhibitors

Incomplete suppression of S6 phosphorylation (pS6(Ser235/236)) has

been reported to be a good predictor of weak responsiveness to

RAF inhibition in cell lines and patient-derived biopsies (Corcoran

et al, 2013; Yuan et al, 2013) reflecting the role of S6 in integrating

MAPK and adaptive signaling. Our studies reveal that incomplete

suppression at a population level is likely to represent a bimodal

response in single-cells (Fig 7). In vemurafenib-resistant cell lines

such as WM1552C, pS6(Ser235/236) is inhibited in only ~50% of cells

even at high drug concentrations (5 lM) and remaining cells

exhibit both high pS6(Ser235/236) and high p-cJun levels. Virtually

all cells are in interphase/quiescence under these conditions, and

apoptosis appears to be inefficiently induced. We conclude that

these cell-to-cell differences are one of the major causes of

fractional cell killing (Emax < 1) and that JNK inhibition works by

pushing cells into apoptosis, which increases maximal effect

(Emax). These data suggest that it will be important to use

single-cell methods to study the phenotypes induced by BRAFV600E

inhibitors and to consider the impact of cell cycle distribution on

drug IC50 and Emax.

Materials and Methods

Cell lines and reagents

All melanoma cell lines were obtained from the Massachusetts

General Hospital Cancer Center. C32, K2, MMACSF, SKMEL28,

and WM115 cell lines were grown in DMEM/F12 (Invitrogen)

supplemented with 5% fetal bovine serum (FBS) and 1% sodium

pyruvate (Invitrogen). COLO858, LOXIMVI, MZ7MEL, RVH421, and

WM1552C cell lines were grown in RMPI 1640 (VWR) supple-

mented with 5% fetal bovine serum (FBS) and 1% sodium pyruvate

(Invitrogen). We added penicillin (50 U/ml) and streptomycin

(50 lg/ml) to all growth media.

Chemical inhibitors from the following sources were dissolved in

dimethyl sulfoxide (DMSO) as 10 mM stock solutions for in vitro

studies: vemurafenib (PLX4032), PLX4720, SB590885, selumetinib

(AZD6244) and AZ628 (all from MedChem Express), JNK-IN-8

(EMD Millipore), SP600125, doramapimod (BIRB796), and

SB202190, GDC0941, tofacitinib (CP-690550), and IKK16 (all from

Selleck Chemicals).
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Figure 7. A schematic example representing c-Jun-mediated adaptive resistance to vemurafenib-induced apoptosis.

In the sensitive cell line (e.g., MMACSF), vemurafenib shifts the majority of the cell population toward quiescence (represented as pRbLow cells) and fully inhibits pERK,

p-cJun, and pS6 in these cells, leading to high levels of apoptosis. In the relatively resistant cell line with p-cJun up-regulation (e.g., WM1552C), vemurafenib significantly

inhibits pERK and induces quiescence in the majority of cell population, but high levels of p-cJun lead to incomplete suppression of pS6 and protect cells from apoptosis.

Combination of a selective JNK inhibitor, JNK-IN-8, with vemurafenib inhibits p-cJun and pS6 in quiescent cells and increases the fraction of apoptotic cells.
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Cell seeding and treatment

For the viability/ apoptosis assays, cells were seeded at the follow-

ing densities in 96-well plates (Corning) in full-growth media for

24 h: C32, MMACSF and WM115 (5,000 cells per well), MZ7MEL,

RVH421, WM1552C, SKMEL28 and K2 (3,500 cells per well), and

COLO858 and LOXIMVI (2,500 cells per well). Cells were then

treated in 4 replicates using Hewlett-Packard (HP) D300 Digital

Dispenser with either seven or nine doses (in 1:3.16 or 1:2.5 dilution

ratios, respectively) of each compound for 24, 48, and 72 h. For

reverse-phase protein array (RPPA) assays, all cells were plated in 4

replicates at 20,000 (or 15,000) cells per well in 96-well plates, and

treated with different doses of each compound for 1, 5, 10, 24, and

48 h. Plates for RPPA assays were treated with drugs using previ-

ously prepared 384-well dilution plates and a Seiko pin transfer

robot system. For 24-h immunofluorescence microscopy assays, we

plated cells in two replicates, at the following densities in 96-well

plates: C32, MMACSF and WM115 (10,000 cells per well), MZ7MEL,

RVH421, WM1552C, SKMEL28 and K2 (7,000 cells per well), and

COLO858 and LOXIMVI (5,000 cells per well).

Cell viability and apoptosis assays

To score viability and apoptosis, we used a dye-based imaging

assay; the cell-permeable DNA dye, Hoechst 33342, was used to

mark nuclei and DEVD-NucView488 caspase-3 substrate was used

to mark apoptosis (Tang et al, 2013). A total of 60 ll of a cocktail

of reagents, including 4 lg/ml Hoechst 33342 (Invitrogen) and

2 lM DEVD-NucView488 caspase-3 substrate (Biotium) in phos-

phate-buffered saline (PBS), was dispensed into each well contain-

ing 180 ll of medium, so that the final concentrations of Hoechst

33342 and NucView488 were 1 lg/ml and 500 nM, respectively.

The plates were incubated in a tissue culture incubator (37°C, 5%

CO2) for 1.5 h. To make plate reading less time-sensitive, cells

were fixed after staining, but they were not washed before imag-

ing. A total of 26.6 ll of pre-warmed 10% paraformaldehyde in

PBS was added to each well (final concentration of 1%). Plates

were spun briefly at 1,000 rpm, while cells were being fixed for a

total of 20 min at room temperature. Plates were then sealed using

Microseal aluminum foil (Bio-Rad) and were imaged with a

10× objective on an Operetta scanner (PerkinElmer). A total of 9

to 11 sites were imaged in each well. Image segmentation and

analysis were performed using Acapella software (PerkinElmer).

Nuclear segmentation using Hoechst 33342 was used to identify

individual nuclei and score relative viability. To score apoptotic

cells, bright spots were detected by dividing NucView488 channel

nuclear intensity by the nucleus area and spots brighter than a

separating threshold were scored as apoptotic. Data were analyzed

using MATLAB software.

Reverse-phase protein array (RPPA), quantitation, and analysis

We collected lysates at the designated time points after drug treat-

ment. To generate reverse-phase arrays, lysates were printed on

nitrocellulose-coated glass slides (Grace Biolabs #305177) on a 2470

Arrayer (Aushon Biosystems). Staining and analysis of RPPA data

using validated antibodies were performed as previously described

(Sevecka et al, 2011). RPPA slides were imaged initially on an

Odyssey scanner (LI-COR) and subsequently on an InnoScan 710-IR

scanner (Innopsys). The array images were analyzed using

MicroVigene software (VigeneTech) for slides scanned on the

Odyssey and Mapix software (Innopsys) for scans on the InnoScan

710-IR.

Primary antibodies used for reverse-phase protein array experi-

ments are as follows: rabbit p-MEK(Ser217/221) (Cell Signaling Tech-

nology Cat# 9154S, RRID:AB_2138017), rabbit p-ERK(Thr202/Tyr204)

(Cell Signaling Technology Cat# 4370, RRID:AB_2315112), rabbit

p-p90RSK(Ser380) (Cell Signaling Technology Cat# 9341S, RRID:

AB_330753), rabbit p-p90RSK(Thr573) (Cell Signaling Technology

Cat# 9346S, RRID:AB_330795), rabbit p-AKT(Thr308) (Cell Signaling

Technology Cat# 9275L, RRID:AB_329829), rabbit p-AKT(Ser473)

(Cell Signaling Technology Cat# 9271L, RRID:AB_329826), rabbit

p-mTOR(Ser2448) (Cell Signaling Technology Cat# 2971L, RRID:

AB_330971), rabbit p-p70S6K(Thr421/Ser424) (Cell Signaling Technology

Cat# 9204S, RRID:AB_2265916), rabbit p-p70S6K(Thr389) (Cell

Signaling Technology Cat# 9205S, RRID:AB_330944), rabbit

p-S6(Ser235/236) (Cell Signaling Technology Cat# 4858S, RRID:

AB_916156), rabbit p-AMPK(Thr172) (Cell Signaling Technology Cat#

2535S, RRID:AB_331250), rabbit p-JNK(Thr183/Tyr185) (Cell Signaling

Technology Cat# 9251L, RRID:AB_2140557), rabbit c-Jun (Cell

Signaling Technology Cat# 9165, RRID:AB_2130165), rabbit

p-P38(Thr180/Tyr182) (Cell Signaling Technology Cat# 4511S, RRID:

AB_2139682), rabbit p-HSP27(Ser82) (Cell Signaling Technology Cat#

9709P, RRID:AB_11217429), rabbit p-NF-jB p65(Ser536) (Cell Signal-

ing Technology Cat# 3033L, RRID:AB_331285), rabbit c-PARP (Cell

Signaling Technology Cat# 9541L, RRID:AB_331427), rabbit

p-H3(Ser10) (Cell Signaling Technology Cat# 3377S, RRID:

AB_1549592), rabbit p27 (Cell Signaling Technology Cat# 3686S,

RRID:AB_2077850), rabbit p-c-Jun(Ser63) (Epitomics Cat# 1527-1,

RRID:AB_562088), rabbit Bim (Epitomics Cat# 1036-1, RRID:

AB_347632), and mouse b-actin antibody (Sigma Cat# A1978).

Secondary antibodies are as follows: goat anti-mouse IgG conju-

gated to DyLight 680 (Thermo Pierce Cat# 35518, RRID:AB_614942)

and goat anti-rabbit IgG conjugated to DyLight 800 (Thermo Pierce

Cat# 35571, RRID:AB_614947).

RPPA data points that were out of the 1.5 × the interquartile

range for the total 4 × 2 replicates (4 biological, 2 technical) were

removed from the analysis. Antibodies with a Pearson correlation

coefficient of <0.5 between biological replicates for each cell line

were removed from the analysis. We took the median of all

replicates for each condition, log2-normalized to untreated control

for further analysis.

Immunofluorescence microscopy, quantitation, and analysis

Cells were seeded and treated for the indicated times. Cells were

fixed in 2% paraformaldehyde for 10 min at room temperature and

washed with PBS with 0.1% Tween-20 (Sigma-Aldrich) (PBS-T),

permeabilized in methanol for 10 min at room temperature,

rewashed with PBS-T, and blocked in Odyssey Blocking Buffer for

1 h at room temperature. Cells were incubated overnight at 4°C with

primary antibodies in Odyssey Blocking Buffer. The following

primary antibodies with specified animal sources and catalog

numbers were purchased and used in specified dilution ratios:

rabbit p-S6(Ser235/236) (Cell Signaling Technology Cat# 4858S, RRID:

AB_916156), 1:800; rabbit p-ERK(Thr202/Tyr204) (Cell Signaling Tech-
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nology Cat# 4370, RRID:AB_2315112), 1:800; rabbit c-Jun (Cell

Signaling Technology Cat# 9165, RRID:AB_2130165), 1:800; rabbit

p-c-Jun(Ser63) (Cell Signaling Technology Cat# 9261L, RRID:

AB_2130159), 1:200; rabbit p-c-Jun(Ser73) (Cell Signaling Technology

Cat# 3270P, RRID:AB_2129575), 1:800; rabbit p-4EBP1(Thr37/46) (Cell

Signaling Technology Cat# 2855S, RRID:AB_560835), 1:200; mouse

Ki-67 (Cell Signaling Technology Cat# 9449S), 1:400; mouse c-Jun

(Cell Signaling Technology Cat# 2315, RRID:AB_490780), 1:200;

rabbit p-AKT(Ser473) (Cell Signaling Technology Cat# 4060, RRID:

AB_2341228), 1:400; rabbit p-HSP27(Ser82) (Cell Signaling Technol-

ogy Cat# 9709P, RRID:AB_11217429), 1:800; rabbit p-STAT3(Tyr705)

(Cell Signaling Cat# 9145, RRID:AB_2491009), 1:200; goat

p-Rb(Ser807/Ser811) (Santa Cruz Biotechnology Cat# sc-16670, RRID:

AB_655250), 1:400; and a mouse NF-jB p65 (Santa Cruz Biotech-

nology Cat# sc-8008, RRID:AB_628017), 1:400. Following treatment

with primary antibodies, cells were stained with rabbit, mouse, or

goat secondary antibodies labeled with Alexa Fluor 647 (Molecular

Probes (Invitrogen) Cat# A31573, RRID:AB_162544), Alexa Fluor

488 (Molecular Probes (Invitrogen) Cat# A21202, RRID:

AB_141607), and Alexa Fluor 568 (Molecular Probes (Invitrogen)

Cat# A11057, RRID:AB_142581). Cells were washed once in PBS-T

and once in PBS and were then incubated in 250 ng/ml Hoechst

33342 and 1:800 Whole Cell Stain (blue; Thermo Scientific) solu-

tions. Cells were then washed twice with PBS and imaged with a

10× objective on an Operetta scanner. Nine sites were imaged in

each well. Image segmentation, analysis, and signal intensity

quantification were performed using Acapella software. Population

average and single-cell data were analyzed using MATLAB

software.

siRNA transfection

siRNA against JUN and a non-targeting control were from Dharma-

con. WM1552C and WM115 cells were transfected using transfec-

tion reagents DharmaFECT 2 and 3 (Dharmacon), respectively, for

48 h and then treated with drugs as indicated.

Data-driven computational modeling

We used partial least squares regression (PLSR) modeling (Geladi &

Kowalski, 1986; Janes & Yaffe, 2006) to identify statistically significant

covariation between molecular signals (input data; measured by

RPPA) and corresponding cellular responses (output data; relative

viability and apoptotic fractions) for each cell line. In our study, the

dimensions of the input data matrix for each cell line were 35 × 105

(5 drugs × 7 doses; 21 signals × 5 time points). The initial dimensions

for the cellular response measurements were 35 × 6 (5 drugs ×

7 doses; viability and apoptotic fraction at three time points). We

combined the two cellular response measurements (viability and

apoptosis) at different time points to generate a new variable, “non-

apoptotic viability”, by subtracting the number of apoptotic cells from

the total number of cells at each condition followed by normalization

to a DMSO-treated control. We then averaged the 48 and 72 h non-

apoptotic viability data to generate one output variable for each of the

35 conditions in the PLSR model. The reason for this averaging is that

we observe a substantial variability in the timing of responses for

different cell lines exposed to different drugs. For example, both C32

and MMACSF cell lines respond with high levels of apoptosis

(60–80%) to 72-h treatment with PLX4720 at doses ≥1 lM, but C32

responds more quickly (with ~60% of apoptosis happening in the

first 48 h) as compared with MMACSF (showing <20% apoptosis in

the first 48 h) (see Supplementary Fig S1B). Thus, by averaging the

cellular responses across the two time points, we account for the rate

at which different cell lines respond to treatment (we did not use the

24 h cellular response data for PLSR modeling, as most of the cell

lines do not begin to respond to treatments in the first 24 h).

Accounting for averaging, the dimensions of the output data used in

the PLSR models were 35 × 1. In the case of one cell line (K2),

cellular response data at 72 h were unavailable and we used the

48 h data for PLSR modeling. All data were mean-centered and unit

variance-scaled (z-score-scaled) across all conditions and time

points. PLSR analysis was performed using MATLAB R2012b and

“plsregress” function.

To evaluate the predictability of the linear relationship between

the input and output variables in our model, we used tenfold cross-

validation in which the original sample was randomly partitioned

into ten subsamples. Of the ten subsamples, a single subsample

was retained as the validation data for testing the model, and the

remaining nine subsamples were used as training data. The cross-

validation process was then repeated ten times with each of the ten

subsamples used exactly once as the validation data. We computed

and reported the percent of variance predicted using tenfold cross-

validation. Model fitness was calculated using R2, Q2, and mean

squared prediction error (MSPE) which were calculated as previ-

ously described (Gaudet et al, 2005). For the assessment of relative

variable importance in each PLSR model, the information content of

each variable (representing a signal measurement at a specific time

point) was assessed by its variable importance in the projection

(VIP) (Wold, 1994; Janes et al, 2008):

VIPk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K
P

N

n¼1

w2
nkSSn

P

N

n¼1

SSn

v

u

u

u

u

u

u

t

where K is the total number of signaling variables (K = 21 ×

5 = 105), wnk is the weight of the k
th variable for the n

th PLSR compo-

nent, N is the total number of PLSR components, and SSn is the sum

of squares explained by the n
th PLSR component.

As described above, RPPA slides were scanned and analyzed

twice using two different scanners and two different image analy-

sis programs. The two RPPA datasets were then used indepen-

dently to generate data-driven models for each cell line. The

signal/time point measurements that did not show consistent

up- or down-regulation between the two analyses were removed.

Overall, ~75% of the VIP data were consistent between the two

analyses. Most (~57%) of the inconsistent VIP scores (i.e., scores

that had different signs between the two analyses) were insig-

nificant (|VIP| < 1) in both analyses, and ~37% of them were

insignificant in at least one of the analyses. Only 6% of the

significant VIP scores from the two analyses were not consistent.

Nevertheless, we removed all of the inconsistent data from further

analysis. Model-derived VIP scores for the remaining data

were averaged between the two datasets and used for further

analysis.
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Hierarchical clustering

Unsupervised hierarchical clustering of melanoma cell lines based

on the VIP scores >1 was carried out using MATLAB and the Euclid-

ean distance as the metric. Prior to clustering, a negative sign was

added to VIP scores associated with signals that negatively corre-

lated with viability. VIP scores of between 0 and 1 were set to zero.

Calculating excess over Bliss independence

The Bliss independence model predicts the expected combined

activity IX–Y for two different compounds (X and Y), assuming that

both single compounds act on targets interacting through indepen-

dent probability events: IX–Y = IX + IY – IX.IY, where IX and IY are

the single-agent activity levels at concentrations CX and CY. Accord-

ing to this model, the excess above the predicted Bliss independence

represents the synergistic effect of the combination treatment (Keith

et al, 2005).

Statistical analyses

A one-tailed paired Student’s t-test was used for comparing data

from Fig 6B–E, H, and I for which statistical significance was estab-

lished for P < 0.05. Data comparison between single and combined

drug treatments presented in Fig 5E was made by using two-way

analysis of variance (ANOVA). We evaluated differences in single-

cell data in Fig 5G by using a nonparametric Mann–Whitney U-test.

Additional online resources

All data for Supplementary Datasets S2, S3 and S4 (RPPA and viabil-

ity/ apoptosis measurements) and immunofluorescence microscopy

experiments (including raw images) are available in a machine-

readable format to facilitate re-analysis by others at http://lincs.

hms.harvard.edu/db/datasets/20218/, http://lincs.hms.harvard.edu/

db/datasets/20217/, and http://lincs.hms.harvard.edu/db/datasets/

20219/, respectively. Further resources for exploring the data

also can be found at http://lincs.hms.harvard.edu/fallahi-sichani-

molsystbiol-2015/.

Supplementary information for this article is available online:

http://msb.embopress.org
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