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Abstract: The largest solid organ in humans, the liver, performs a variety of functions to sustain life.
When damaged, cells in the liver can regenerate themselves to maintain normal liver physiology.
However, some damage is beyond repair, which necessitates liver transplantation. Increasing rates of
obesity, Western diets (i.e., rich in processed carbohydrates and saturated fats), and cardiometabolic
diseases are interlinked to liver diseases, including non-alcoholic fatty liver disease (NAFLD), which
is a collective term to describe the excess accumulation of fat in the liver of people who drink little to
no alcohol. Alarmingly, the prevalence of NAFLD extends to 25% of the world population, which
calls for the urgent need to understand the disease mechanism of NAFLD. Here, we performed
secondary analyses of published RNA sequencing (RNA-seq) data of NAFLD patients compared to
healthy and obese individuals to identify long non-coding RNAs (lncRNAs) that may underly the
disease mechanism of NAFLD. Similar to protein-coding genes, many lncRNAs are dysregulated
in NAFLD patients compared to healthy and obese individuals, suggesting that understanding the
functions of dysregulated lncRNAs may shed light on the pathology of NAFLD. To demonstrate the
functional importance of lncRNAs in the liver, loss-of-function experiments were performed for one
NAFLD-related lncRNA, LINC01639, which showed that it is involved in the regulation of genes
related to apoptosis, TNF/TGF, cytokine signaling, and growth factors as well as genes upregulated
in NAFLD. Since there is no lncRNA database focused on the liver, especially NAFLD, we built a
web database, LiverDB, to further facilitate functional and mechanistic studies of hepatic lncRNAs.

Keywords: gene expression; liver; lncRNA; NAFLD; NASH; RNA-seq

1. Introduction

The liver is the largest solid organ in the human body, which performs over
500 essential functions related to digestion, immunity, and metabolism [1]. Liver dys-
function leads to a multitude of health risks and diseases, including liver cancer, cirrhotic
liver disease, non-alcoholic fatty liver disease, and acute liver failure [2,3]. Unlike most
other organs (e.g., brain, heart), the liver possesses a regenerative capacity [4]. However,
upon prolonged insults (e.g., excessive consumption of alcohol, drugs), the damage to the
liver becomes irreparable, necessitating liver transplantation [5]. Globally, approximately
two million deaths result from liver diseases annually [6]. Thus, intensive research is
conducted in identifying the causes of liver diseases.

It is now well recognized that most of the mammalian genome is transcribed as
RNA, yet only a few percentages of these transcripts encode for exons of protein-coding
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genes [7]. All of those that do not code for proteins are collectively called non-coding RNAs
(ncRNAs), which include ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), microRNAs
(miRNAs), and long non-coding RNAs (lncRNAs) [8]. Among these ncRNAs, lncRNAs
are of particular interest to researchers in different fields because lncRNAs are regarded as
missing links for understanding many cellular activities and signaling pathways. Because
of their broad definition–any ncRNAs longer than 200 nucleotides–it is speculated that the
number of lncRNAs well surpasses that of protein-coding genes [7,9]. Indeed, more and
more lncRNAs are being discovered from next-generation sequencing (NGS), especially
RNA sequencing (RNA-seq), although only limited numbers of lncRNAs are functionally
studied. The amount of RNA-seq data deposited in public databases [e.g., ArrayExpress,
Gene Expression Omnibus (GEO), Sequence Read Archive (SRA)] is increasing rapidly [10].
However, most of these RNA-seq data are analyzed only for protein-coding genes and
not for lncRNAs. Although this is especially true for the hepatology field, recent studies
indicate that the dysregulation of lncRNAs in the liver contribute to liver diseases [11,12].

Among different types of liver diseases, the incidence of non-alcoholic fatty liver
disease (NAFLD) is increasing rapidly due to lack of exercise and obesity (which are
two major causes of type 2 diabetes, another risk factor for NAFLD) [13,14]. NAFLD
(also called “metabolic associated fatty liver disease” (MAFLD) [15]) is a collective term
to describe the excess accumulation of fat in the liver of people who drink little to no
alcohol [16]. It is divided into two subtypes: simple steatosis, non-alcoholic fatty liver
(NAFL); and a more aggressive form, nonalcoholic steatohepatitis (NASH) [17,18]. Sadly,
NAFLD occurs in about 25% of the world population [19], which highlights the urgent need
to understand the mechanism of this life-threatening disease. To uncover the underlying
disease mechanism of NAFLD, high-throughput methods (e.g., microarrays and RNA-
seq) have been employed [20–32]. However, these prior studies are mainly focused on
protein-coding genes. Given that lncRNAs are increasingly implicated in a variety of
diseases, including liver disease and NAFLD (e.g., GAS5 [33], HOTAIR [34], LINC01260 [35],
PVT1 [36]), a secondary analysis of published high-throughput data may reveal novel
insights into NAFLD. For this purpose, RNA-seq data of previous studies investigating
dysregulated protein-coding genes in NAFLD patients compared to healthy donors are
of great interest as unlike microarrays, RNA-seq data contain expression information
about lncRNAs.

To address the above point, we conducted secondary analyses of published RNA-seq
data of NAFLD patients to provide a comprehensive overview of lncRNA dysregulation
in this disease context. Since protein-coding genes were already analyzed and further
experimentally confirmed in the original studies, here, we omitted the detailed analysis of
protein-coding genes (e.g., gene ontology and pathway analyses). Instead, our analyses
focus on the expression profiling of lncRNAs, which were not provided in the original
studies. By performing a systematic analysis of RNA-seq data for lncRNAs using the
latest gene annotation, we uncover the differential regulation of lncRNAs in various
patient samples. To confirm the findings, we conducted loss-of-function experiments
of dysregulated lncRNA to supplement the lack of knowledge regarding lncRNAs in the
pathogenesis of NAFLD.

2. Results
2.1. Expression Profiling of LncRNAs in NAFLD Patients Compared to Healthy Donors

The primary causes of NAFLD are dyslipidemia (abnormally high amount of lipids
in the blood), insulin resistance, obesity, and type 2 diabetes [37]. All these primary
causes are intertwined and are linked to other metabolic diseases (e.g., cardiovascular
disease, stroke). Not surprisingly, both microarrays and RNA-seq techniques have been
employed to profile transcriptomic changes in NAFLD patients compared to healthy
patients, including obese individuals without NAFLD [20–32]. Although these studies
uncovered important dysregulated signaling pathways in NAFLD patients, there is an
overall lack of detailed profiling of lncRNAs in these studies. To address this lack of
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information, we first reanalyzed the RNA-seq data from a study which profiled protein-
coding genes in patients with either subtype of NAFLD [NAFL (n = 15) or NASH (n = 16)]
compared with healthy normal weight (n = 14) and obese individuals (n = 12) using liver
biopsy samples [32]. The major findings in this original study are: (1) many differentially
expressed protein-coding genes are identified when NAFLD patients are compared to both
healthy normal weight and obese individuals; (2) these differentially expressed protein-
coding genes are enriched in signaling pathways involved in lipid metabolism, immunity,
extracellular matrix, and cell cycle control; and (3) there is a large overlap of differentially
expressed protein-coding genes in both subtypes of NAFLD compared to healthy normal
weight and obese individuals [32].

When a secondary analysis of this dataset (GEO accession number, GSE126848) was
performed with a threshold of 2-fold change and false discovery rate (FDR)-adjusted
p-value < 0.05, it was observed that over 1000 genes are differentially expressed in both
subtypes of NAFLD compared to the control (i.e., both healthy normal weight and obese
individuals) (Figure 1A), whereas there are few genes that are differentially expressed
between NAFL and NASH as well as between healthy normal weight and obese individuals,
as reported previously [32] (Figure 1B; Supplementary Tables S1–S6). Compared to protein-
coding genes, the numbers of differentially expressed lncRNAs are generally lower in
all conditions. As stated earlier, the original study [32] provided a detailed analysis of
protein-coding genes but not for lncRNAs. Thus, we focused on lncRNAs here. When the
differentially expressed lncRNAs are compared between NAFLD patients and the control
individuals, 163 up- and 12 down-regulated lncRNAs are shared among all comparisons
(Figure 1C; Supplementary Tables S7 and S8), suggesting that some differentially expressed
lncRNAs are common between two subtypes of NAFLD, as is the case for protein-coding
genes [32].

2.2. Dysregulated LncRNAs during the Progression of NASH

More recently, an RNA-seq experiment using a large cohort of European NAFLD pa-
tients was conducted [21]. In this original study, the liver biopsy samples from 206 NAFLD
patients with different fibrosis stages were compared to those from 10 healthy obese con-
trols (GEO accession number, GSE135251). The NAFLD patients were divided into two
groups based on the progression of steatohepatitis (i.e., NASH), which are denoted as
early (n = 138) and moderate (n = 68). Using this new data set, we attempted to further
narrow down the list of differentially expressed lncRNAs identified in the previous data
set of NAFLD patients compared to healthy donors. When the same threshold (2-fold and
FDR-adjusted p-value < 0.05) was applied to this new dataset, we observed that several
hundred protein-coding and lncRNA genes are up- and down-regulated in NAFLD pa-
tients compared to the controls (healthy obese individuals), even in the case of early and
moderate NASH patients, where more lncRNAs are down-regulated than up-regulated
compared to protein-coding genes (Figure 2A; Supplementary Tables S9–S11). When the
previously identified differentially expressed lncRNAs (i.e., 163 up- and 12 down-regulated
lncRNAs) were compared within this new dataset, surprisingly, only very few lncRNAs
were noted as having the same trend of up- or down-regulation (Figure 2B). This results
likely reflects the difficulty of comparing RNA-seq data from different studies and possibly
reflects the heterogeneity of biopsy samples [38,39]. To check whether such difficulty also
exists in protein-coding genes, the same set of analyses as for lncRNAs was performed,
which resulted in an analogous discrepancy of differentially expressed genes between the
two studies (Supplementary Figure S1).
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Figure 1. Gene expression profiling of NAFL and NASH patients compared to healthy normal
weight and obese individuals. (A) Volcano plots comparing different conditions. The numbers of
samples are NAFL (n = 15), NASH (n = 16), healthy normal weight (n = 14), and obese individuals
(n = 12). Up-regulated genes are colored in red, and down-regulated genes are in green. (B) Tables of
differentially expressed genes. The Others category includes any genes other than protein-coding or
lncRNAs based on the biotypes provided by the Ensembl database. (C) Venn diagrams of up- and
down-regulated lncRNAs.
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Figure 2. Gene expression changes in different stages of NASH compared to obese individuals.
(A) Tables of differentially expressed genes. The Others category includes any genes other than
protein-coding or lncRNAs based on the biotypes provided by the Ensembl database. (B) Volcano plot
of early (n = 138) and moderate NASH patients (n = 68) compared to the control (obese individuals;
n = 10). Only 163 up- and 12 down-regulated lncRNAs identified in the previous dataset (GEO
accession number, GSE126848) are shown in each volcano plot, as indicated in the figure. Up-
regulated genes are colored in red, and down-regulated genes are in green.
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Although the overlaps among different studies and conditions are not big, those differ-
entially expressed genes that displayed the same trend (i.e., up-regulation in all conditions
and data) should represent the most likely candidates to be validated in other labora-
tories and studies, regardless of experimental biases. Indeed, among 24 commonly up-
and 14 down-regulated protein-coding genes, well-known markers of advanced NAFLD
[e.g., aldo-keto reductase family 1 member B10 (AKR1B10) [40,41], cell death inducing
DFFA like effector c (CIDEC) [42–44], lipoprotein lipase (LPL) [45,46], platelet derived
growth factor subunit A (PDGFA) [47], triggering receptor expressed on myeloid cells 2
(TREM2) [48–51], and thymidylate synthetase (TYMS) [52] are consistently up-regulated.
In the case of lncRNAs, there are four commonly up- and two down-regulated lncRNAs
in all conditions and data above (Figure 3). The up-regulated lncRNAs are AJ009632.2
(Ensembl Gene ID, ENSG00000229425), long intergenic non-protein coding RNA 1639
(LINC01639; ENSG00000236117), MIRLET7B host gene (MIRLET7BHG; ENSG00000197182),
and SNAP25 antisense RNA 1 (SNAP25-AS1; ENSG00000227906). The down-regulated
lncRNAs are AC110995.1 (ENSG00000236120) and mitotically associated long non-coding
RNA (MANCR; ENSG00000231298).

Among the six differentially expressed lncRNAs, SNAP25-AS1 is shown to be up-
regulated in lung cancer [53], whereas the expression of MANCR is up-regulated in
breast [54,55], gastric [56], and thyroid cancers [57]. Functionally, MANCR downregulates
miR-122a in hepatocellular carcinoma [58], and a recent study shows that bromodomain
protein 4 (BRD4), a member of the bromodomain and extra-terminal domain (BET) family
of nuclear proteins, binds the super-enhancer region of MANCR locus, which in turn,
influences the migration and invasion of prostate cancer cell line PC3 [59]. Mechanistically,
MANCR acts as a miRNA sponge to sequester miR-218, which targets RUNX2, in mantle cell
lymphoma [60]. In addition, MIRLET7BHG is shown to act as a miRNA sponge to sequester
miR-330-5p, which targets the key signal transducer of the hedgehog signaling pathway,
smoothened (Smo), in the exosomes of activated hepatic stellate cells [61]. However, none
of these differentially expressed lncRNAs are studied in detail within the NAFLD context,
which indicates the novelty in this topic.

2.3. Loss-of-Function Experiments to Uncover the Roles of Differentially Expressed LncRNAs

Since only a handful of lncRNAs are functionally characterized in the liver, especially
related to NAFLD, we conducted loss-of-function experiments for one commonly up-
regulated lncRNA, LINC01639. This lncRNA was chosen for further analysis because of its
high expression levels in the human hepatocyte-derived carcinoma cell line, Huh-7, and
the presence of only one transcript (thus, no isoforms for this lncRNA gene), according to
the latest annotation provided by the Ensembl database.

When silenced in Huh-7 cells by siRNAs (Figure 4A), a differential expression of
several genes was observed in LINC01639 silenced cells compared to the control (cells
treated with siRNA against scrambled sequence), including significant downregulation in
the expression of NAFLD-linked (TYMS, DUSP2, SRF) TNF/TGF, and cytokine signaling
(CXCL3, TNFRSF10D) and apoptosis-related genes (BAD), as well as growth factors FGF21
and IGF1 (Figure 4B).

To further understand the impact of silencing LINC01639, we developed a cellular
model for NAFLD by treating Huh-7 cells with a mixture of fatty acids (FA) consisting of
oleic and palmitic acids (Figure 4C). Interestingly, compared to the control, up-regulation of
the cytokine signaling genes CCL2 and IL-6, as well as the Rho GTPase RAC2, was recorded
in LINC01639 silenced cells (Figure 4D), suggesting that LINC01639 might function in
cytokine signaling.
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Figure 3. Expression profiles of commonly up- or down-regulated lncRNAs. Violin plots show counts
per million (CPM) values of each sample group for each dataset, as indicated in the figure. The
number of samples for each category is indicated in the figure.
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Figure 4. Role of LINC01639 in regulation of gene expression in hepatocytes. (A) Silencing of
LINC01639 in Huh-7 cells, Error bars represent mean ± S.E.M. *** p < 0.001. (B) Gene expression
profile after silencing of LINC01639 in Huh-7 cells. n = three biological replicates. * p < 0.05; ** p < 0.01.
(C) NAFLD cellular model. Huh-7 cells treated with a mixture of fatty acids (FA) consisting of 2 mM
oleic acid and 2 mM palmitic acid at the ratio of 1:1. The schematic experimental timeline for NAFLD
cellular model generation is presented. (D) Gene expression profile of NAFLD cellular model upon
silencing of LINC01639 n = three biological replicates. * p < 0.05; ** p < 0.01. nd = not detected.
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2.4. A Web Database, LiverDB, for Exploration of NAFLD-Related Genes

To facilitate further understanding of lncRNAs in the liver and NAFLD, we built
a web database, LiverDB, to catalog NAFLD-related genes (Figure 5A). LiverDB is an
easy-to-use web database that displays expression changes of protein-coding and lncRNA
genes in counts per million (CPM), reads per kilobase of transcript per million mapped
reads (RPKM), and transcripts per kilobase million (TPM) (Figure 5B). Each study is linked
to the data information provided by the GEO [62], and the hyperlink to GeneCards [63] is
provided for each gene to obtain the known information related to the target gene. To enable
exploration of differentially expressed genes, in the Explore tab of LiverDB, a volcano plot
was generated (Figure 5C). In this volcano plot, the gene of interest selected from the
Results Table on the left of the screen can be dynamically highlighted to visually inspect
the ratio and FDR values of the target gene. These differentially expressed genes can be
visually examined further by heatmaps (Figure 5D) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment (Figure 5E). The displayed information should help
to understand the genes and signaling pathways being affected by the two conditions being
compared. Moreover, UpSet plots can be generated to display the numbers of differentially
expressed genes (DEGs) that are found across study/contrast pairs in the Comparison tab
(Figure 5F). Compared to a Venn diagram, an Upset plot provides a more efficient way of
visualizing the intersections of all comparisons of the dataset, including in LiverDB. To
allow further analysis, all data included in LiverDB can be downloaded as text files from
the Download Table. In addition, the commands and nextflow [64] pipelines used for the
content of LiverDB are available via the GitHub repository to allow for a further analysis of
similar RNA-seq data.
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Figure 5. LiverDB. (A) The top page of LiverDB. (B) An interactive box plot showing the distribution
of gene expression values across samples within each biological condition in the selected study.
(C) A volcano plot of selected comparative conditions. (D) A heatmap of differentially expressed
genes. (E) A pathway enrichment plot displaying the top results from KEGG pathway analysis as a
heatmap. (F) An UpSet plot showing the number of differentially expressed genes that are found
across study/contrast pairs.

3. Discussion

The salient findings of this study are: (1) many genes (both protein-coding and lncRNA
genes) are differentially expressed in both subtypes of NAFLD patients compared to the
healthy normal weight and obese individuals; (2) the overlap of differentially expressed
genes between two independent studies are low, possibly due to the heterogeneity of
affected cells in biopsy samples used for RNA-seq experiments; (3) the NAFLD-related
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lncRNA, LINC01639, is involved in the regulation of genes related to apoptosis, TNF/TGF
and cytokine signaling, growth factors, as well as genes upregulated in NAFLD.

In this study, a large number of RNA-seq data were analyzed to interrogate NAFLD-
related lncRNAs. Yet, there are several limitations to our study. First, all the RNA-seq data
are from the strand-specific mRNA sequencing using the Illumina NextSeq 500 machine.
Thus, lncRNAs without poly A tails were not detected in this study, which underestimates
the impact of lncRNAs without poly A tails on the pathogenesis of NAFLD. Second, the
RNA-seq data analysis pipeline used the annotation provided by the Ensembl database as
a GTF file. Thus, only known and registered lncRNAs were analyzed in this study, which
omits the novel lncRNAs. Third, all the RNA-seq data used in this study were generated
from biopsy samples. Thus, the data variability might be high due to the heterogeneity of
NALFD-affected livers [38,39]. To overcome this problem, single-cell RNA-seq (scRNA-
seq) might be a solution; yet, only highly expressed lncRNAs without poly A tails can be
recorded by the current method of scRNA-seq [65,66]. Fourth, only a molecular analysis
of NAFLD-related lncRNA, LINC01639, was provided in this study. Thus, functional
and mechanistic studies are needed to understand the contribution of LINC01639 to the
pathogenesis of NAFLD.

4. Materials and Methods
4.1. RNA-Seq Data Analysis

The following two datasets were used in this study: (1) GSE126848 [32] and
(2) GSE135251 [21]. RNA-Seq data preprocessing pipeline was managed via Nextflow [64]
(Version 21.10.6.5660). The raw data from the Sequence Read Archive (SRA) database
was downloaded using the prefetch command within the SRA Toolkit (https://trace.ncbi.
nlm.nih.gov/Traces/sra/sra.cgi?view=software (accessed on 17 February 2022) (Version
2.10.0). The raw data was then preprocessed by the fastq-dump command within the
SRA Toolkit to generate fastq files. The fastq files were then preprocessed by fastp [67]
(Version 0.23.2) to generate trimmed fastq files. The trimmed fastq files were aligned by
STAR [68] (Version 2.7.10a) to align reads to the reference genome GRCh38.103 in order to
generate raw read counts. From the raw read counts, the R packages, edgeR [69] (Version
3.38.1) and GenomicFeatures (Version 1.48.1) [70] were used to generate read count metrics
(CPM, RPKM, TPM) and differentially expressed genes with fold change in the logarithmic
of base two scale and FDR-adjusted p-values. Pathway analysis on select differentially
expressed genes was conducted via Enrichr [71]. All codes are available at the LiverDB
GitHub repository (https://github.com/Bishop-Laboratory/LiverDB (accessed on 23 June
2022) in the “preprocess” directory.

4.2. Data analysis and Visualization

Volcano plots were generated using the R-package ggplot2 [72]. Venn diagrams were
plotted via http://bioinformatics.psb.ugent.be/webtools/Venn/ (accessed on 2 April 2022).
To generate heat maps, MultiExperiment Viewer (MeV) [73] was used. The gene ontol-
ogy terms were analyzed via the Database for Annotation, Visualization and Integrated
Discovery (DAVID) v6.8 [74,75].

4.3. Interactive Web Database, LiverDB

The interactive web database LiverDB was built with R Shiny [76] (Version 1.7.1) and
is hosted via shinyapps.io. The R packages used for plotting are ggplot2 [72] (Version 3.3.6)
and ComplexHeatmap [77] (Version 2.12.0). For the displayed gene names, Ensembl IDs
were mapped to the HUGO Gene Nomenclature Committee (HGNC) gene symbols via the
R package biomaRt [78] (Version 2.52.0).

4.4. Cell Culture

Huh-7 cells were cultured in Minimum Essential Medium Eagle (Sigma-Aldrich,
St. Louis, MO, USA, #M2279) supplemented with 10% fetal bovine serum (Sigma-Aldrich,

https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=software
https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=software
https://github.com/Bishop-Laboratory/LiverDB
http://bioinformatics.psb.ugent.be/webtools/Venn/
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#F4135), 1% MEM Non-essential Amino Acid Solution (Sigma-Aldrich, #M7145), 1% L-
Glutamine solution (Sigma-Aldrich, #G7513), and 1% Penicillin-Streptomycin (Sigma-
Aldrich, #P4333) at 37 ◦C with 5% CO2.

4.5. Transfection with siRNA and Treatment with Fatty Acids (FA)

The cells at 80% confluence were transfected with 50 nM of siRNA against LINC01639
(sense: CAGACAUAGCAGGAUUUAA[dT][dT]/antisense: UUAAAUCCUGCUAUGU-
CUG[dT][dT]) using Lipofectamine RNAiMAX transfection reagent (Invitrogen, Waltham,
MA, USA) according to the manufacturer’s protocol. Mission siRNA Universal Negative
control #2 (Merck, Kenilworth, NJ, USA, SIC002) served as a control. The samples for RNA
purification were collected 48 h after transfection. For development of NAFLD model, 24 h
after the transfection, the growth media was exchanged to a starvation media (growth
media without FBS) for another 24 h. Then, cells were treated with a mixture of fatty acids
(FA) consisting of 2 mM oleic acid (OA; oleic acid-albumin from bovine serum, Merck
O3008) and palmitic acid (PA; Sigma) conjugated to Bovine Serum Albumin (BSA) Fraction
V, fatty acid free (Millipore, Burlington, MA, USA) in starvation media containing 10%
BSA. Cells grown in starvation media containing 10% BSA served as a control. 48 h after
treatment with FA cells were harvest for RNA isolation.

4.6. Lipid Accumulation Assay

Cells were seeded at density 1 × 104 in a 96-well plate and grown overnight. After
24 h starvation, cells were treated with an FA mixture (2 mM OA, 2 mM PA, in 10% BSA
media) or grown in 10% BSA media alone for 48 h. Wells without cells served as blank con-
trols. Each treatment was performed in triplicates. The lipid accumulation was measured
using Hepatic lipid accumulation/Steatosis assay kit (Abcam, Cambridge, UK, ab133131)
according to the manufacturer’s protocol. Briefly, cells were fixed for 15 min, washed, and
stained with Oil Red O solution for 20 min. The quantification of lipid accumulation was
performed after dye extraction for 30 min and absorbance read at 490–520 nm.

4.7. Isolation of Total RNA and RT-PCR

RNeasy Mini Kit (Qiagen, Hilden, Germany, #74104) was used to isolate total RNA
from cells and purified following the manufacturer’s protocol. SuperScript IV VILO Master
Mix with ezDNase™ Enzyme (Thermo Fisher Scientific, Waltham, MA, USA, #11766500)
was used to digest the genomic DNA and reverse transcribe one µg of total RNA for
each sample to synthesize the first-strand complementary DNA (cDNA). After reverse
transcription, the first-strand cDNA was diluted with DNase/RNase-free water to the
concentration of 1 ng/µL. Quantitative reverse transcription polymerase chain reaction
(qRT-PCR) reaction was performed with 1 ng of cDNA template per reaction using PowerUp
SYBR Green Master Mix (Thermo Fisher Scientific, #A25777) via QuantStudio 6 Flex Real-
Time PCR System (Thermo Fisher Scientific) with the annealing temperature at 60 ◦C.
Relative fold expression was calculated by 2-DDCt using ribosomal protein lateral stalk
subunit P0 (PRLP0) as an internal control. The primer pairs were designed using Primer3
(http://bioinfo.ut.ee/primer3-0.4.0/ (accessed on 21 March 2022) [79] and in silico val-
idated with the UCSC In-Silico PCR tool (https://genome.ucsc.edu/cgi-bin/hgPcr (ac-
cessed on 21 March 2022) before extensive testing by conventional RT-PCR reaction followed
by running the PCR product on an agarose gel to examine for a single band of the expected
size for each primer pair. The primer sequences are provided in Supplementary Table S12.

4.8. Statistics

Data are presented as mean ± S.E.M. unless otherwise indicated. Two-sample, two-tail,
heteroscedastic Student’s t-test was performed to calculate a p-value via Microsoft Excel.

http://bioinfo.ut.ee/primer3-0.4.0/
https://genome.ucsc.edu/cgi-bin/hgPcr
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Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/ncrna8040056/s1, Supplementary Table S1: List of differentially expressed
genes in obese individuals compared to healthy normal weight individuals; Supplementary Table S2:
List of differentially expressed genes in NAFL patients compared to healthy normal weight individu-
als; Supplementary Table S3: List of differentially expressed genes in NASH patients compared to
healthy normal weight individuals; Supplementary Table S4: List of differentially expressed genes
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