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Spatially periodic vegetation patterns are observed in many semiarid regions. They are
classified according to their symmetry as vegetation stripes on hillsides or spotted patterns
on flat ground. We propose a simple model based on the interactions among water, soil and
vegetation, which gives a systematic description of the variety of vegetation patterns. First,
it describes most characteristics of vegetation stripes investigated in field observations and
agrees with the hypothesized origin of vegetation stripes deduced from field observations,
the spatially heterogeneous infiltration rate of surface water into soil. Moreover, it indicates
that spotted patterns emerge from the same dynamics. Second, the pattern selection de-
rived from the model is consistent with that found in real phenomena, i.e. predominantly
bare ground with spotted vegetation in the most severe environments, banded patterns in
intermediate environments and nearly continuous vegetation with spotted bare ground in
the most favorable environments.

§1. Introduction

In 1950, Macfadyen discovered a spatially periodic vegetation pattern in a semi-
arid region of British Somaliland. 1) A great deal of similar phenomena have been
reported since then, observed in semi-arid regions of Africa, America and Australia. 2)

Spatially periodic vegetation patterns are classified as vegetation stripes (Fig. 1)
and spotted bush (Fig. 2), according to their symmetry. Vegetation stripes, in which
dense bands are separated by nearly bare ground, extend to tens of square kilometers.
Their wavelength varies from tens to hundreds of meters. Vegetation consisting of
spots separated by bare ground is called ‘spotted bush’. There are few studies of
spotted bush, because it has been considered random patches, due to its irregularity.
By contrast, there are many studies of vegetation stripes. In these studies, the
emergence and maintenance of vegetation stripes was thought to originate in the
inherent nature of the semi-arid ecosystem. 3) - 8)

Many phenomena in which regularity is organized in an open system have been
observed in various disciplines of natural sciences: physics, chemistry and biology. 9)

The framework of dissipative structures provide a theory to describe them, spatio-
temporal periodic phenomena in particular. 10) Lefever and Lejeune 11) developed
the first model of vegetation patterns on the basis of the framework of dissipative
structures. Though their model is successful in providing an integrated description
of vegetation stripes and spotted bush, it employs rather abstract terminology from
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706 T. Okayasu and Y. Aizawa

the biological viewpoint. In this paper, we propose a model based on dissipative
structures that gives a systematic description of vegetation patterns, with compo-
nents that are clearly defined in biology.

Field observations

Most vegetation stripes form in regions categorized as semi-arid, where the mean
annual rainfall is about 200mm, 4), 5) while some stripes exist in more arid regions
(with annual rainfall from 50 mm to 100 mm) 12) and sub-humid regions (400 mm
to 700 mm). 3) The period of such patterns is from tens to hundreds of meters.
White 12) reported that the width of the bands and lanes (bare ground) is 40m and
150m, respectively. Other surveys have found 20m and 50m, 3) and 90 to 180m and
45m. 5) The territory in which vegetation stripes are dominant extends to tens of
square kilometers. 5), 12)

In general, rainfall occurs intermittently in arid regions. Sometimes the amount
of rainfall in a day is more than the mean annual rainfall, and rainfall is always
too intense to infiltrate into soil immediately. Thus in general, “sheet wash” sweeps
the entire region. Sheet wash is observed in regions where vegetation stripes ex-
ist. 13), 6), 12), 4) Sheet wash is defined as water flow that covers the surface of a vast
region and does not run inside particular lanes.

Vegetation stripes are observed in various regions. Most of them are in parts
of Africa, such as Niger, 3) Burkina Faso, 14) Somalia, 1), 5), 7) and Ethiopia, 5) as
well as in Mexico. 4) Stripes have also been reported to form on various types of soil:
silt, 12), 13) mud, 12) gravel, 3) clay, 15) sand 13) and crust. 5) Therefore, the origin
of vegetation stripes apparently does not depend on the soil type. Moreover, specific

Fig. 1. Example of vegetation stripes in So-

maliland. 13) The black regions represent

vegetation, and the white regions represent

bare ground.

Fig. 2. Example of spotted bush in north west

Burkina Faso. 17) The black regions repre-

sent vegetation, and the white regions rep-

resent bare ground.
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Systematic Analysis of the Periodic Vegetation Patterns 707

plant species are not necessary to form vegetation stripes. Thus stripes formation
seems to be a universal phenomenon in semi-arid ecosystems.

Vegetation stripes have some interesting properties. First, the stripes are ori-
ented parallel to the contour line. 4), 6), 12) Second, stripes slowly move uphill.4), 6), 7), 16)

Third, the plants located on the upward side of a band thrive, while those on the
downward side of a band tend to die out. 4) The resulting upward migration provides
evidence that the origin of vegetation stripes is an inherent phenomenon, because
the autonomous migration of the external environment is much less realistic. The
comparisons of the properties of vegetation patterns in various regions have been
summarized by Lejeune et al. 18)

As mentioned above, spotted bush has not been studied extensively, and it is
usually recognized as random patches. 3), 19) However, Couteron et al. 14) verified
through Fourier analysis that patterns of “random patches” possess hexagonal peri-
odicity.

Hypothesized origin of stripes from field observations

Field investigation suggests that the higher infiltration rate of surface water into
soil in bands than in bare ground results in vegetation stripes. 3) - 8) In such a situa-
tion, rainfall infiltrates bare ground only very little, and runs away into downward
bands, where most of the water is absorbed into the soil. Due to the shortage of
water in the bare grounds, vegetation decreases, and as a result, the infiltration rate
into bare ground becomes even smaller. Contrastingly, a positive feedback exists in
bands. This circulation maintains the spatially heterogeneous infiltration rate. The
dynamics of upward migration of bands and the heterogeneity of vegetation in a
band support this hypothesis.

At positions several centimeters above the upside boundary of a band in bare
ground, a great deal of germination phenomena are observed. This suggests that
large amounts of water are available there. By contrast, in the downside of a band,

low infiltration

high infiltration

Rainfall

Sheet Runoff

vegetation

Fig. 3. A schematic representation of the mechanism by which the vegetation areas receive abun-

dant water. Because of a low infiltration rate in bare areas, most of the water falling on these

areas flows into vegetation areas, where much water infiltrates into the soil.
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708 T. Okayasu and Y. Aizawa

many plants die, because water is insufficient there. This results in the upward mi-
gration of bands. These dynamics are depicted in Fig. 3.

Model development for vegetation stripes

Mauchamp 20) carried out detailed numerical simulations that take such a pos-
itive feedback system into account. The results exhibit the spatial heterogeneity of
vegetation. However, his one-dimensional model could not account for stripes (which
are two dimensional) nor migration phenomena, because the location of the upside
boundary of a band is fixed at the origin of the simulation space.

The first quantitative analysis of the formation of stripes based on a heteroge-
neous infiltration rate was proposed by Klausmeier. 21) That model consists of a
two-dimensional coupled partial differential equations describing water and biomass.
Stripes and their upward migration were observed in numerical simulations, while no
spatial patterns appeared in the spatially isotropic case. He concluded that micro-
relief is the cause of irregular patterns, which correspond to random patches in real
phenomena.

Lefever’s mean-field propagator-inhibitor model

To this time, no study has been successful in showing intrinsic patterns with-
out exogenous spatial heterogeneity, except Lefever’s mean-field propagator-inhibitor
model. 11) That model yields spatial patterns caused by an intrinsic mechanism
without exogenous spatial anisotropy. He claimed that the hexagonal pattern in the
isotropic case corresponds to the pattern on flat ground in a real field. His model may
be capable of providing an integrated description of vegetation stripes and spotted
bush with the same origin.

Though his research is significant from the viewpoint of integration, pattern
formation in his model requires that the ratio of the area of cooperative interaction
to that of competitive interaction be much smaller than 1. This condition has no
relation to the origin hypothesized by field researchers nor the positive feedback
structure. Moreover, the concept of cooperation and competition is too abstract to
compare with the real phenomena.

§2. Model

The model we use to describe such systems should consist of only measurable
components, such as water, soil, plants and their interactions, to facilitate compar-
ison with field observations. In addition, the spatial scales of vegetation patterns
are much greater than those of individual plants. For this reason, partial differential
equations are adopted.

Water balance and transport

Transport of water plays an essential role in determining the large-scale structure
of vegetation patterns, whose dynamical mechanisms have been studied by Klaus-
meier 21) and Mauchamp 20) in detail. However, their studies have been limited
only to the formation of vegetation stripes. In our opinion, a variety of vegetation
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Systematic Analysis of the Periodic Vegetation Patterns 709

patterns should be systematically explained from the unified viewpoint of dynamical
modeling, taking the role of water transport into account.

In our investigations, the water content of the ground surface and in the soil are
treated separately, and the balance equations are given by

∂w(�r, t)

∂t
= P −E − I + F +Dw, (2.1)

∂s(�r, t)

∂t
= I − U +Ds, (2.2)

where w represents the amount of water on the ground surface, s the amount of water
in the soil, P the water input, E the evaporation, I the surface water infiltration
into soil, F the surface water flow, Dw the surface water diffusion, U the root water
uptake, and Ds the soil water diffusion.

For each factor, we adopt the simplest form that does not qualitatively contradict
field observations. Rainfall is assumed to occur constantly, i.e. P = a, where a

represents rainfall amount [kg/year]. Evaporation is assumed to be proportional to
the amount of surface water w(�r, t), i.e. E = lw(�r, t), where l is the evaporation
rate [year−1]. As plants grow, soil is formed through the deposition of dead plant
matter. Thus, surface water infiltration increases as biomass increases. Naturally,
since the field capacity is not infinite, the amount of soil water has an upper limit,
which increases as the biomass increases.

We assume that the field capacity is proportional to the biomass, because the
long term accumulation of deposited plant matter can be ignored, due to intensive
sheet wash. Therefore, the field capacity is assumed to take the form n(�r, t)f here,
where n(�r, t) is the biomass and f is field capacity per unit biomass. Thus, infiltration
can be written

I = kn(�r, t)w(�r, t)

(

1− s(�r, t)

n(�r, t)f

)

,

where k is the infiltration rate.

Surface Water Content

Water Input Evapolation

Infiltration

Uptake & Carbon Fixation

Soil Water Conent

Biomass
feedback

Fig. 4. The feedback mechanism between water infiltration and biomass.
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710 T. Okayasu and Y. Aizawa

Plants absorb water stored in soil, and the amount of absorbed water increases
as the biomass increases and the amount of water increases. Thus we have U =
pn(�r, t)s(�r, t), where p is the water intake rate.

When surface water exists on sloping ground, water flows downward. The di-
rection of maximal slope is taken to be x, without loss of generality, so it can be ex-

pressed as F = Ar
∂w(�r,t)

∂x , where Ar is the slope constant. Even if the field is flat, wa-
ter naturally tends to diffuse. This impliesDw = Dw∇2w(�r, t) andDs = Ds∇2s(�r, t),
where Dw is the diffusion rate of surface water and Ds that for soil water.

Plant growth and reproduction

We assume that the amount of water is the only limiting factor. Thus the
equation for biomass in this model should not contain saturation term. The simplest
growth model consists of the following well-known equation (for example, see Ref.
22)):

∂n(�r, t)

∂t
= G−M +Dn∇2n(�r, t). (2.3)

Here n is the biomass [kg], G the plant growth [kg/year], and M the mortality
[kg/year]. As expressed in this equation, plant propagation is represented as diffusion
with diffusion rate Dn. Competition for water is contained here in the growth term
G. Because the amount of carbon fixation is proportional to that of root water
uptake, pn(�r, t)s(�r, t), it is simply expressed as qpn(�r, t)s(�r, t). Plant mortality is
assumed to have a constant rate m with M = mn(�r, t). The structure of the model
is summarized in Fig. 4.

§3. Uniform steady state distribution

For simplicity, we use dimensionless quantities, defined as

{x′, y′, t′} =
{

√

l

Dn
x,

√

l

Dn
y, lt

}

,

{w′, s′, n′} =
{

l

a
w,

l

a
s,
k

l
n

}

,

{D1, D2, A
′
r} =

{

Dw

Dn
,
Ds

Dn
, (lDn)

− 1
2Ar

}

,

{f ′, p′, q′,m′} =
{

l2

ak
f,
p

k
,
qka

l2
,
m

l

}

.

Omitting the primes on the dimensionless quantities, the whole model is given by

∂w(�r, t)

∂t
= 1− w(�r, t)− n(�r, t)w(�r, t)

(

1− s(�r, t)

n(�r, t)f

)

+Ar
∂w(�r, t)

∂x
+D1∇2w(�r, t),

∂s(�r, t)

∂t
= n(�r, t)w(�r, t)

(

1− s(�r, t)

n(�r, t)f

)

− pn(�r, t)s(�r, t) +D2∇2s(�r, t),
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Systematic Analysis of the Periodic Vegetation Patterns 711

∂n(�r, t)

∂t
= qpn(�r, t)s(�r, t)−mn(�r, t) +∇2n(�r, t), (3.1)

where the exogenous parameters are f , p, q, m, Ar, D1 and D2.

First, spatially homogeneous solutions are given. With these, all terms that
include spatial differentiation disappear. In this case, it is easy to solve the equation,
and we find three branches:











w0 = 1,
s0 = 0,
n0 = 0,











w1± = − 1
2fpq2 (m

2 − fmpq − fpq2 ±
√

−4fm2pq2 + (m2 − fmpq + fpq2)2),

s1 = m
pq ,

n1∓ = − 1
2fmpq (−m2 + fmpq − fpq2 ∓

√

−4fm2pq2 + (m2 − fmpq + fpq2)2).

(3.2)
The first branch, w0, s0, n0, represents the situation in which there is no veg-

etation. As found by linear stability analysis, this branch is stable in the entire
parameter space. The second branch, w1+, s1, n1−, corresponds to the situation in
which vegetation exists. Negative values of this branch are not realized in the case
that the initial values of w, s and n are positive. The third branch, w1−, s1, n1+,
can be ignored because it is unstable for any set of parameter values. Positive and
stable sets of w, s and n are depicted in Fig. 5.

There exists a stability condition for the second branch,

−4fm2pq2 + (m2 − fmpq + fpq2)2 > 0. (3.3)

0.025 0.0275 0.03 0.0325 0.035 0.0375 0.04

2

4

6

8 w

s

n

q

Fig. 5. Positive and stable uniform steady state solutions of the model (f = 0.625, p = 0.05,

m = 0.0036).
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712 T. Okayasu and Y. Aizawa

Solving this for q, we find the bifurcation point shown in Fig. 5,

q+c =
m

2



1 +
2√
fp

+

√

4 +
√
fp

(fp)1/4



 . (3.4)

An increase of q corresponds to a more favorable external environment for plant
growth. More precipitation is a typical example. From this point of view, when
the environment is too severe, vegetation cannot exist. Then, above some threshold
value of q, plants can grow. It is interesting that the no vegetation branch is stable
even when parameter values are above this threshold. In a real field, even if there
existed stable vegetation in the past, it can be lost through soil degradation, in which
case it is difficult to recover. Such a situation can be interpreted as corresponding
to the no vegetation branch.

§4. Linear stability analysis

In the previous section, spatially homogeneous solutions were discussed. In this
section, we investigate the characteristics of spatial patterns, because the model
can exhibit Turing-like patterns (which appear due to the instability of a particular
positive wavenumber when the set of parameters is beyond a specific threshold, 23)

as shown below).
First, the dispersion relation of the no-vegetation branch, w0, s0, n0, is found:

0.025 0.027 0.029 0.031 0.033 0.035

0.0029

0.0031

0.0033

0.0035

0.0037

0.0039

q

m

no vegetation

uniform vegetation

240

260

280

Fig. 6. Behavior of the model as determined by the paramaters q and m for f = 0.625, p = 0.05,

q = 0.0326, m = 0.0036, D1 = 10000, D2 = 10 and Ar = 0. The contours represent the

dimensional stripe wavelength as determined by the most unstable mode found through a linear

stability analysis.
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Systematic Analysis of the Periodic Vegetation Patterns 713

-0.04 -0.02 0 0.02 0.04

-0.04

-0.02

0

0.02

0.04

-0.04 -0.02 0 0.02 0.04

-0.04

-0.02

0

0.02

0.04(a) (b)

k

k k

k

x

y

x

y

-0.04 -0.02 0 0.02 0.04
-0.04

-0.02

0

0.02

0.04
ky

kx

(c)

Fig. 7. The behavior of the real part of ω�k
in (a) the isotropic case (Ar = 0) and (b) the anisotropic

case (Ar = 500). The other parameters are the same (f = 0.625, p = 0.05, q = 0.0326,

m = 0.0036, D1 = 10000, D2 = 10). In (c), the behavior of the imaginary part of ω�k
with

the same parameters as in (b) is shown. The white regions in the figures correspond to the

domain in which the maximum eigenvalue is negative. The maximum eigenvalue for (a) is

around 1.15× 10−4, while that for (b) is around 1× 10−3.











ω0 = −1 + iArkx−D1|k|2,
ω1 = −1

2(1 +D2|k|2),
ω2 = −|k|2 −m.

(4.1)

All of these eigenvalues are negative for any set of parameter values. Thus the only
solution is spatially homogeneous. Then, the dispersion relation of the second branch
is a root of

−w1A
s1w1

f −n1w1
(

n1 − s1
f

)

−s1
f (D2fk

2 + w1) + ω + pn1 n1(w1 − ps1)

0 pqn1s1 −n1B

= 0, (4.2)

where A = (1 +D1k
2 + n1 + ω − ikxAr)f − s1

f and B = k2 +m− pqs1 + ω.
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714 T. Okayasu and Y. Aizawa

0.025 0.027 0.029 0.031 0.033 0.035

0.0029

0.0031

0.0033

0.0035

0.0037

0.0039

320

340

360

380

400

no vegetation

uniform
vegetation

q

m

Fig. 8. The behavior of the model as deter-

mined by the parameters q and m in the

anisotropic case (f = 0.625, p = 0.05,

q = 0.0326, m = 0.0036, D1 = 10000,

D2 = 10, Ar=500). The contours represent

the dimensional stripe wavelengths in me-

ters, as determined by the most unstable

mode, found by the linear stability analy-

sis.

100 200 300 400 500 600

300

350

400

0

0

wave length

Ar

Fig. 9. The behavior of the wavelength for the

maximum eigenvalue as a function of Ar

(f = 0.625, p = 0.05, q = 0.032, m =

0.0036, D1 = 10000, D2 = 10).

The explicit forms of the eigenvalues are too complicated to be written here,
because the eigenvalues are the roots of a third degree equation. First, we inves-
tigate the isotropic case (Ar = 0). Here, two of the three eigenvalues always have
negative values. The other, ω0(k), can have a positive value, or it can be unsta-
ble inside a particular range of parameter values. The quantity ω0(k) satisfies the
condition that it has a negative value at k = 0 and for k → ∞. Thus, there can
exist stable spatially periodic patterns. There exist marginal points, at which both

ω0(kc) = 0 and ∂ω0(k)
∂k

∣

∣

∣

k=kc

= 0 are satisfied, and the critical wavenumber kc be-

comes unstable. There also exists a parameter range within which the eigenvalues
of a finite range of wavenumbers between k1 and k2 have positive values. In the case
that multiple wavenumbers become unstable simultaneously, the wavenumber that
has the maximum eigenvalue is realized globally. 22) Therefore we investigate such
a wavenumber to estimate the periodicity of realized spatial patterns (Fig. 6). As
shown in the figure, the wavenumber of the spatial pattern becomes smaller as the
external environment becomes more favorable. This result is consistent with field
observations.

Next, we investigate the case in which exogenous anisotropy exists (Ar �= 0). The
maximum real parts of the eigenvalues for both the isotropic case and the anisotropic
case are shown in Figs. 7(a) and (b). In the isotropic case, the unstable wavevectors
are symmetric with respect to the origin, while the maxima are located at (k±0, 0)
in the anisotropic case. Therefore, the direction of the wavevector is parallel to the
x axis. As shown in Fig. 7(c), in which the imaginary part of the wavenumber where
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Systematic Analysis of the Periodic Vegetation Patterns 715

the eigenvalue has maximal real part is drawn, the imaginary part is non-zero where
the real part is non-zero. This results in a typical Hopf bifurcation, followed by
spatio-temporal periodicity.

The phase portrait of the maximum eigenvalue in the anisotropic case is shown
in Fig. 8. In this case also, the wavenumber decreases as the external environment
becomes favorable.

Finally, the slope dependence of the maximum eigenvalue on the slope constant
is shown in Fig. 9 and compared with field observations, where the wavenumber
decreases as the slope increases.

§5. Numerical simulation

Isotropic case

We studied the model equation numerically inside a 2-dimensional square region
with periodic boundary conditions. The initial values were w = 1, s = 1 and n = 10,
with small amplitude random noise.

In the isotropic case, in the beginning, the solution immediately converges to
the spatially homogeneous steady state with weak noise. In the case that the set
of parameter values is inside the unstable range, a spatially periodic pattern grad-
ually appears. Typical patterns realized are striped, π-hexagonal and 0-hexagonal
(Fig. 10). The π-hexagonal pattern is similar to the spotted bush in Burkina Faso
(Fig. 2).

Pattern selection depends on parameter values. When the parameters corre-
spond to a favorable environment, a spatially homogeneous steady state is realized.
This seems to correspond to vegetation in a humid region, though in a real field,
it is disturbed to form random patches. As the environment becomes worse, a spa-
tially periodic steady state appears. This corresponds to spatially heterogeneous
vegetation in an arid ecosystem. When the environment becomes more severe than
a particular threshold, no vegetation is allowed. The last case corresponds to a

Fig. 10. Three examples of spatial patterns obtained for the isotropic case. Darker colors indicate

higher vegetation densities: (a) 0-hexagonal (f = 0.625, p = 0.05, q = 0.0798, m = 0.0096,

D1 = 10000, D2 = 10, Ar = 0); (b) stripe (f = 0.625, p = 0.05, q = 0.09004, m = 0.0096,

D1 = 10000, D2 = 10, Ar = 0); and (c) π-hexagonal (f = 0.625, p = 0.05, q = 0.09516,

m = 0.0096, D1 = 10000, D2 = 10, Ar = 0).
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Fig. 11. Pattern selection obtained by numerical simulation for different sets of parameter values

in the isotropic case (f = 0.625, p = 0.05, D1 = 10000, D2 = 10, Ar = 0). A 0-hexagonal

pattern appears where the environment is severe, i.e., q is small and m is large. A striped

pattern appears for intermediate environments, and a π-hexagonal pattern appears where the

environment is relatively favorable.

hyper-arid region. Furthermore, the parameter values affect the pattern selection
among the three periodic patterns. A π-hexagonal pattern is selected in a relatively
favorable environment. By contrast, the parameter region for a 0-hexagonal pattern
is located on the lower boundary with the no-vegetation region. Stripes form in an
intermediate environment (Fig. 11).

Anisotropic case

When there is anisotropy, at first the solution converges to the homogeneous
steady state immediately, and then, gradually, a one-dimensional striped pattern
(Fig. 12) appears in the case that the parameters are in the unstable region. The
wavevector of the stripes is directed along the x axis, and the stripes move toward
the negative x direction (Fig. 13). Our numerical simulation results show that the
final states are either spatially homogeneous or consist of such stripes. Thus we
find that it is sufficient to treat the system as one dimensional. If we ignore the y
direction, the equations become

∂w(�r, t)

∂t
= 1− w(�r, t)− n(�r, t)w(�r, t)

(

1− s(�r, t)

n(�r, t)f

)

+Ar
∂w(�r, t)

∂x
+D1

∂2w(�r, t)

∂x2
,

∂s(�r, t)

∂t
= n(�r, t)w(�r, t)

(

1− s(�r, t)

n(�r, t)f

)

− pn(�r, t)s(�r, t) +D2
∂2s(�r, t)

∂x2
,
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Systematic Analysis of the Periodic Vegetation Patterns 717

Fig. 12. Stripes moving in the direction from

which water runs off for the anisotropic

case (f = 0.022727, p = 0.1, m = 0.036,

q = 0.88, D1 = 10000, D2 = 10, Ar = 500).

Darker color indicates higher vegetation

density.

Fig. 13. Stripe movement in the negative x di-

rection for the anisotropic case (f = 0.625,

p = 0.05, m = 0.0036, q = 0.032, D1 =

10000, D2 = 10, Ar = 300).

∂n(�r, t)

∂t
= qpn(�r, t)s(�r, t)−mn(�r, t) +

∂2n(�r, t)

∂x2
. (5.1)

The direction −x is opposite to the water flow. A large vegetation density is
observed on the −x side of a band, while a small vegetation density and gentle
change of the vegetation density is observed on the lower side of a band in the
solution. These characteristics agree with field observations.

§6. Discussion

In this paper, we have proposed a model that can systematically describe the
dynamics of vegetation stripes and spotted bush, in which both patterns originate
from the same structure, that is, a positive feedback mechanism among water, soil
and plants.

Studies based on field investigations explain the reason that vegetation stripes
are maintained as follows. In bare ground, water does not infiltrate and flows into
downward bands due to a lack of soil. More water can accommodate more vegetation,
and vice versa. Then, more vegetation provides more dead plant matter to form more
soil. In such a system, the heterogeneity of soil water is maintained, and it directly
affects that of vegetation. It can be determined whether such dynamics appear in
the model from a snapshot of the amount of surface water, the amount of soil water
and the vegetation density (Fig. 14). Where plants are prosperous, the amount
of soil water is large. Contrastingly, the amount of surface water there is small.
This state corresponds to the situation just after precipitation in the real world.
Spatial patterns of the amount of infiltration are shown in Fig. 15. Clearly, large
infiltration occurs where vegetation is dense. We thus see that the heterogeneity
of the infiltration rate agrees with field observations. From the above findings, we
conclude the following. (1) In the anisotropic case, the origin of vegetation stripes,
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718 T. Okayasu and Y. Aizawa

Fig. 14. Spatial patterns of (a) surface water, (b) soil water and (c) vegetation with f = 0.625,

p = 0.05, q = 0.10804, m = 0.0112, D1 = 10000, D2 = 10 and Ar = 300. Darker colors indicate

higher vegetation densities.

Fig. 15. Spatial patterns of (a) vegetation and (b) the amount of infiltration. Darker colors indicate

higher vegetation densities.

or the heterogeneity of the infiltration rate agrees with that in the real world. (2)
In the isotropic case, no field observations are available for hypothesizing its origin.
However, the model indicates that it has the same origin as vegetation stripes.

Next, we discuss pattern selection behavior in the model. Couteron 14) carried
out a diachronic comparison at a particular site between 1955, when the climate
conditions were relatively humid, and 1984, after a severe drought. He pointed out
that the pattern in 1955 was more or less spotted, and it was transformed into a
banded pattern in 1984. This result can be interpreted as implying that a stripe
pattern is formed when it is drier than the conditions for which a π-spotted pattern
appears. Aguiar 24) indicated that the deteoriration of the external environment
might cause the shift of patterns from striped to “leopard vegetation”, which is sim-
ilar to the 0-hexagonal pattern. These two results suggest that the pattern selected
in the worst conditions is the 0-hexagonal pattern, the stripe pattern is formed in
the intermediate situation, and the π-hexagonal pattern forms in good climate. The
results of our model agree with these observations (see Fig. 11).

The result of our numerical simulations agrees with field observations in various
respects: (a) stripes form where the external environment is relatively severe; (b)
the direction of stripes is parallel to the contour lines; (c) the wavenumber of peri-
odic patterns decreases as the external environment becomes worse; (d) the stripes
migrate upward in the anisotropic case; (e) there is a large vegetation density on the
upper side of a band, while there is a small vegetation density and gentle ecotone on
the lower side.
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Systematic Analysis of the Periodic Vegetation Patterns 719

Prospects

In this paper, the origin of vegetation patterns that we considered was restricted
to the nature of the water in the system, for the purpose of simplification. Real
phenomena are more complex and naturally contain many other factors, for exam-
ple, wind and the behavior of animals. 24) Their effects should also be considered
comprehensively. In addition, we assumed the further simplification of constant pre-
cipitation, though in arid regions, rainfall actually occurs intermittently. Because of
such a simplification, several parameters, the evaporation rate, infiltration rate and
water transportation in particular, cannot be compared with the values observed in a
real field. Inclusion of the effect of intermittent precipitation is essential for compar-
ing the model behavior to real phenomena, although most of the models developed
in the past do not take this into account. In addition, it would be interesting to
consider more detailed patterns in a band, like the heterogeneous pattern discovered
by Boaler et al. 5)
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