
Systematic Analysis of Randomization-based

Protected Cache Architectures

Antoon Purnal*, Lukas Giner†, Daniel Gruss†, and Ingrid Verbauwhede*

*imec-COSIC, KU Leuven †Graz University of Technology

Abstract—Recent secure cache designs aim to mitigate side-
channel attacks by randomizing the mapping from memory
addresses to cache sets. As vendors investigate deployment of
these caches, it is crucial to understand their actual security.

In this paper, we consolidate existing randomization-based se-
cure caches into a generic cache model. We then comprehensively
analyze the security of existing designs, including CEASER-S
and SCATTERCACHE, by mapping them to instances of this
model. We tailor cache attacks for randomized caches using a
novel PRIME+PRUNE+PROBE technique, and optimize it using
burst accesses, bootstrapping, and multi-step profiling. PRIME+
PRUNE+PROBE constructs probabilistic but reliable eviction
sets, enabling attacks previously assumed to be computationally
infeasible. We also simulate an end-to-end attack, leaking secrets
from a vulnerable AES implementation. Finally, a case study of
CEASER-S reveals that cryptographic weaknesses in the random-
ization algorithm can lead to a complete security subversion.

Our systematic analysis yields more realistic and comparable
security levels for randomized caches. As we quantify how
design parameters influence the security level, our work leads to
important conclusions for future work on secure cache designs.

I. INTRODUCTION

Caches reduce the latency for memory accesses with high

locality. This is crucial for performance but also an inherent

side channel that has been exploited in many microarchitectural

attacks, e.g., on cryptographic implementations [3], [35], [56],

[15], user input [41], [34], [13], [33], system secrets [14], [17],

[10], covert channels [28], [12], [31], and transient-execution

attacks like Spectre [20], [6], [4] and Meltdown [24], [49].

Due to the limited size of the cache, some addresses are

bound to be allocated to the same cache set, i.e., they are

congruent and contend for the same resources. While some

attacks are enabled by the attacker’s capability to flush cache

lines, others work purely with this cache contention. The basic

building block for measuring cache contention is the eviction

set, a set of congruent addresses. Accessing the addresses in

this eviction set brings the cache into a known state. Measuring

how long this takes, tells the attacker whether some process

worked on congruent addresses since the last eviction.

To mitigate contention-based attacks, cache hardware can

be augmented to so-called protected cache architectures. Some

designs reduce interference through better isolation [42], [18],

[52], [57], [58], [25], [19], [43], partial isolation (e.g., locking

cache lines) [53], [9], or fully associative subcaches [8]. An-

other promising line of work is randomized cache architectures

[53], [54], [22], [26], [27], [47], [39], [40], [55], which random-

ize the otherwise predictable mapping of memory addresses to

Randomized
mapping

Ideal-case
security

Real-world
security

Rekeying condition
Section V-VI Section VII

Section VIII

Fig. 1: Security argument for randomized caches.

cache sets. Several recently proposed randomized caches [47],

[39], [40], [55] evaluate a dedicated hardware mapping to

perform the randomization on the fly. Consequently, these

designs only slightly change the interface to the outside, and

can maintain efficient and scalable sharing of caches. However,

even if the mapping is (cryptographically) unpredictable, there

are cache collisions due to the limited size of the cache. Hence,

existing proposals incorporate some notion of rekeying, i.e.,

renewing randomization at runtime. This limits the temporal

window in which eviction sets can be used for an attack.

While randomized cache architectures show promise to

thwart eviction-based cache attacks with reasonable overhead,

supporting them with quantified security claims (a default for

cryptographic algorithms) is challenging. Figure 1 depicts the

established security argument. The randomized mapping is used

as a trust anchor for security in ideal attack conditions, yielding

a (conservative) estimate for the rekeying condition. Currently,

the security transfer from the randomization mapping to ideal-

case security is not well-understood, which we highlight by

improving state-of-the-art attacks by orders of magnitude.

Assuming that system activity increases the attack complexity,

ideal-case security implies real-world security. However, it is

unclear to which extent the rekeying condition can be relaxed.

The high interest in these novel cache designs and their

seeming relevance to mitigate a growing list of attacks motivates

the following fundamental questions of this paper:

Can we accurately compare security levels for randomized

caches? How realistic are security levels reported for secure

randomized caches? Do secure randomized caches provide

substantially higher security levels than regular caches?

In this paper, we systematically cover the attack surface of

randomization-based protected caches. We consolidate existing

proposals into a generic randomized cache model, and identify

attacker objectives in such caches. We then analyze this model,

resulting in a comprehensive and parametrized analysis, serving

as a baseline for future secure caches and their analysis.

We present PRIME+PRUNE+PROBE (PPP), a technique to

find probabilistic but reliable eviction sets in randomized caches.

Improving the approach by Werner et al. [55], PPP dramatically

outperforms traditional eviction, turning infeasible attacks (e.g.,

>1030 accesses) into feasible ones (e.g.,<107 accesses).

We also analyze security under complicating system effects,

e.g., noise and multiple victim accesses, culminating with

successful key recovery from a vulnerable AES implementation.

Latency constraints associated with the cache hierarchy have

inspired designers to invent new [39], [47] or repurpose exist-

ing [47] low-latency structures for the randomization mapping.

Security arguments then rely on their alleged unpredictability.

We falsify this assumption for CEASER-S, and propose that

future designs use mappings that resist extensive cryptanalysis.

Contributions. In summary, our main contributions are:

• We consolidate existing proposals into a generic randomized

cache architecture model.

• We derive a comprehensive and parametrized analysis of

all computation-based randomized cache architectures. We

improve noise-free attacks by several orders of magnitude.

• We analyze non-ideal effects in profiling on randomized

caches, and demonstrate the first end-to-end attack.

• We study the security requirements of the core randomized

mapping and show that the security of CEASER-S can be

completely subverted, even with frequent rekeying.

Outline. Section II provides background. Section III presents

our generalized cache model. Section IV generalizes contention-

based attacks for randomized caches. Section V presents

ideal-case eviction set construction, Section VI describes

optimizations, and Section VII considers aggravating system

effects. Section VIII shows how exploiting internals can

completely subvert security guarantees. Section IX discusses

results and compares existing proposals. Section X concludes.

II. BACKGROUND

A. Caches and Cache Hierarchies

CPUs hide memory latency using caches to buffer data

expected to be used in the near future. Caches are organized in

cache lines. In a directly mapped cache, each memory address

can be cached by exactly one of the cache lines, determined

by a fixed address-based mapping. If a memory address can be

cached in any cache line, the cache is called fully-associative.

If a memory address can only be cached in a (fixed) subset

of cache lines, the cache is called set-associative. Addresses

mapping to the same set are called congruent. Upon a cache

line fill request, a replacement policy determines which cache

line in the set is replaced. The so-called cache line tag uniquely

identifies a cached address. CPU caches can be virtually or

physically indexed and tagged, i.e., cache (set) index and the

cache line tag are derived from the virtual or physical address.

CPUs have multiple cache levels, with the lower levels being

faster and smaller than the higher levels. If all cache lines from

a cache A are required to be also present in a cache B, cache

B is called inclusive with respect to cache A. If a cache line

can only reside in one of two cache levels at the same time, the

caches are called exclusive. If the cache is neither inclusive nor

exclusive, it is called non-inclusive. The last-level cache (LLC)

is often inclusive to lower-level caches and shared across cores

to enhance the performance upon transitioning threads between

cores and to simplify cache coherency and lookups.

The L1 cache is often considered the lowest level cache. It is

usually virtually indexed and physically tagged. All higher-level

caches are usually physically indexed and physically tagged.

Again for performance, the last-level cache today is typically

composed of multiple independent slices, e.g., one slice per

physical or logical core. Each (physical) address maps to one

of the slices. After selecting the slice, the cache (set) index

is selected as described before. The slices are interconnected,

e.g., by a ring bus, allowing all cores to access all last-level

cache lines. The mapping from physical addresses to slices has

been reverse-engineered for certain microarchitectures [29]. In

this work, we focus on the complete mapping function which

combines the mapping from addresses to slices, sets, and lines.

B. Cache Attacks

Caches reduce the latency of memory accesses with temporal

or spatial locality, e.g., recent memory accesses. An attacker can

observe the latency and make deductions, e.g., on other recent

memory accesses. The first cache attacks deduced cryptographic

secrets by observing the execution time [21], [36], [48], [3]. The

best techniques today are FLUSH+RELOAD [56] and PRIME+

PROBE [35]. FLUSH+RELOAD flushes an address, then waits,

and by reloading determines whether the victim accessed it

in the meantime. While FLUSH+RELOAD requires a flush

instruction to remove a cache line from all cache levels, EVICT+

RELOAD [13] uses cache contention. Both FLUSH+RELOAD

and EVICT+RELOAD only work on (read-only) memory shared

between attacker and victim. PRIME+PROBE [35] overcomes

this limitation. PRIME+PROBE measures cache contention

instead of memory latency. The attacker fills (primes) a subset

of the cache (e.g., a slice, a set, a line) and measures (probes)

how long it takes. The time to fill the subset is higher if a

victim replaces an attacker cache line with a congruent address.

Mounting PRIME+PROBE requires information about how

addresses map to cache lines, which can be gained implicitly

in certain scenarios. This is trivial for the L1 cache and, hence,

the first PRIME+PROBE attacks targeted the L1 cache [37],

[35]. More recently, PRIME+PROBE attacks were mounted on

last-level caches [28], [34], [30], [23], [31].

Cache attacks based on cache contention generally consist of

two phases. In the profiling phase, the attacker finds a so-called

eviction set, a set of addresses with a high degree of contention

in a subset of the cache. In the exploitation phase, the attacker

accesses this eviction set to bring the cache into a known state.

For EVICT+RELOAD, the attacker uses it to evict an entire

cache set (including a target address) and to later on reload the

target address to determine whether it has been accessed in the

meantime. PRIME+PROBE works similarly, except that it does

not reload the target address but accesses the eviction set again

to measure contention caused by victim memory accesses.

Early approaches for finding eviction sets were based on

knowing addresses and their congruence, and simply collected a

set of such addresses. With address information unavailable, the

attacker instead starts with a set of addresses, large enough to

be a superset of an eviction set with high probability. Elements

are removed from this set until it has minimal size. Recently,

this eviction set reduction has been improved from quadratic

to linear complexity in the size of the initial set [51], [40].

C. Randomized Cache Architectures

State-of-the-art randomized cache architectures replace pre-

dictable address-to-index mappings with deterministic but

random-looking mappings. The original proposals consider

a software-managed look-up table, whereas newer designs

compute the randomized mapping on-the-fly in hardware.

1) Table-based architectures: RPCache [53] uses a permu-

tation table to randomize the mapping from memory addresses

to cache lines. Occasionally updating the permutation aims to

mitigate statistical attacks. Random-fill cache [26] issues cache

fill requests to random addresses in spatial proximity instead

of the accessed ones. Table-based architectures face scalability

issues, which are especially prohibitive for last-level caches.

2) Computation-based architectures: Recent designs (TIME-

SECURE CACHE [47], CEASER [39], [40], SCATTER-

CACHE [55]) cope with this scalability problem by computing

the mapping in hardware instead of storing it. This computation

should have very low latency. Given their flexibility and

scalability, computation-based designs are proposed for last-

level caches, which have the largest latency budget and are

important to protect as they are usually shared across cores.

3) Cache partitions: Algorithmic advances in eviction set

construction [51], [40] have shown that only randomizing the

memory address is insufficient to protect against contention-

based cache attacks. As a key insight, CEASER-S and SCAT-

TERCACHE partition the cache and use the randomized mapping

to derive a different cache-set index in each of these partitions.

Not only does this significantly raise the bar for finding eviction

sets, but it also hinders using them in the exploitation phase.

4) Rekeying: Even if the mapping from address to cache set

in each partition is unpredictable, the attacker can, over time,

still identify sets of addresses contending in the cache. Thus,

randomized caches rely on rekeying, i.e., sampling a new key

to refresh the randomization. Selecting an appropriate rekeying

condition marks an important security-performance trade-off.

5) Security analysis: Computation-based randomized caches

show promise to mitigate cache-based side-channel attacks.

Although all proposals come with first-party security analyses,

they currently lack a systematic and complete analysis (that

we rely on and know, e.g., for cryptographic schemes).

III. GENERIC RANDOMIZED CACHE MODEL

In this section, we present a generic randomized cache model

that covers all proposed computation-based randomized caches

to this date. We use it to cover the attack surface of randomized

caches systematically. In later sections, we will quantify the

influence of each parameter on the residual attack complexity.

A. Randomization-based Protected Cache Model

Although some protected cache designs fix the cache

configuration, we consider a generic nw-way set-associative

cache with 2b sets (i.e., b index bits). Then, let N = nw · 2
b

denote the number of cache lines. As with traditional caches,

Fig. 2: Computation-based randomized cache model

the atomic unit of the mapping from addresses to cache sets is

the cache line, for which we assume a generic size of 2o bytes

(i.e., o line offset bits). The model makes abstraction of the

line offset bits, as they do not contribute to the randomization.

In accordance with traditional caches, processes cannot

monitor the data in the cache directly, nor can they infer

to which cache way a certain memory address is allocated.

The only interface available is the access latency when reading

specific addresses, i.e., it is low in case of a cache hit and high

in case of a miss. In some practical cases, an attacker might

also have access to flush semantics. However, our attacks do not

rely on it and we thus assume it to be disabled architecturally.

1) Generic model: Figure 2 depicts our generic computation-

based randomized cache, featuring the following components:

1 The memory address a is the primary input to the

randomization design. a is either a physical or virtual address,

impacting the degree of control an attacker has over a.

2 The key K captures the design’s entropy (unpredictability).

3 The security domain separator s optionally differentiates

the randomization for processes in different threat domains.

4 The randomized mapping RK(a, s) is the core of the

architecture. It is a pseudorandom mapping, i.e., deterministic

but random-looking, for which the algorithmic description is

publicly known, but the key K is not (Kerckhoff’s principle).

The LLC slicing function can be encapsulated in R (i.e., one

randomized cache), or not (i.e., per-slice randomized caches).

5 The randomized cache is divided into P partitions, where

1 ≤ P ≤ nw. An input address a has, in general, a different

index in each of these partitions. To accommodate this, R has

to supply P · b pseudorandom bits. We assume P divides nw.

6 When caching a, one of the partitions is truly randomly

selected, and the corresponding cache-set index in this partition

is determined based on the pseudorandom output of R. Then,

one of the cache lines in this set is replaced by a, adhering to the

replacement policy within the partition. We consider random

replacement (RAND) and least-recently used (LRU). Under

attack, several stateful policies can degenerate to LRU [11].

7 The rekeying period T denotes the condition for entropy

renewal. It should be strict enough to maintain high security,

and loose enough to maintain high performance.

2) Instantiating Caches: Table I shows how existing designs

instantiate this model. The key K can be a cryptographic key

(CEASER-S, SCATTERCACHE), a set of cryptographic keys, or

selection of a random permutation (TIME-SECURE CACHE).

TIME-SECURE CACHE (TSC) implements domain separation

TABLE I: Instantiating the generic model for existing cache designs.

Design K s P R

Unprotected ∅ ∅ 1 slice + bits
TSC [47] keys / select RKs

(a) 1 HashRP / RM
CEASER [39] key ∅ 1 LLBC

CEASER-S [40] key ? 2-4 LLBC

SCATTERCACHE [55] key RK(a, s) nw QARMA [1]

with a per-process key, SCATTERCACHE via additional input

to the mapping, and CEASER-S mentions it without implemen-

tation details. Traditional unprotected caches, CEASER, and

TSC all have one single partition. In SCATTERCACHE, P =nw

(the maximum), whereas CEASER-S recommends 2≤P ≤4.

The rekeying condition T can use, e.g., the wall-clock time,

the number of accesses to the cache, or more complex policies.

3) Software Simulator: We implement our model as a C++

randomized LLC simulator, which we parametrize and use to

obtain all experimental results in this work. For simulation

purposes, many well-analyzed cryptographic primitives can be

used for RK . We use AES because of its hardware support.

B. Attacker Models

We now systematically cover the attack surface of random-

ized caches and define relevant attacker models in such caches.

Leveraging a provable security methodology from cryptog-

raphy, we propose to analyze the randomized mapping R (4)

separately from how it is used. On the one hand, we consider

black-box attacks, which assume that R behaves ideally. In this

case, processes cannot efficiently recover K, find inputs to RK

that produce output collisions, or infer any information about

cache set indices in one partition based on observations in

another. On the other hand, we also consider shortcut attacks

that exploit R directly. Physical side-channel attacks on R (e.g.,

using power consumption) are out of scope for this work but

can be addressed orthogonally with established approaches [7].

We further assume full attacker control over input address

a (1) as the mapping R should dissolve any attacker control

regardless of the input. The key K (2) is considered full

entropy (e.g., generated by a TRNG). If security domains (3)

are supported, we assume that an attacker cannot obtain the

same identifier s as the victim. The attacker cannot observe the

output of R (5) directly, but only gather metadata about it by

measuring cache contention. Finally, the attacker cannot modify

the rekeying condition (7) (e.g., it is enforced in hardware).

In line with Figure 1, we consider the following three attacks:

Aideal In an ideal black-box attack, the mapping R is consid-

ered to behave ideally, and the system is completely noise-free.

The victim performs only a single memory access, exactly the

one the attacker wants to observe later (cf. Sections V and VI).

Anonid In a non-ideal black-box attack, Aideal is extended

with aggravating system assumptions, and serves to study the

increase in attack complexity with respect to Aideal, e.g., noise

and multiple victim accesses (cf. Section VII).

Ashort In a shortcut attack, internals of the mapping R are

exploited to find eviction sets much faster than in the black-box

case, i.e., a shortcut is found (cf. Section VIII).

Existing analyses [40], [55] study attacker Aideal, as it

describes the transfer of security properties from the mapping

Fig. 3: Generalized eviction sets are based on partial congruence
(nw=6, P =3, b=log2 8=3)

RK to the cache architecture (cf. Figure 1). It allows selecting

a conservative rekeying condition for a specific design. Besides

its general applicability, it also covers some practical settings.

For instance, trusted execution environments like Intel SGX

are subject to precise control over victim execution [32], i.e.,

precisely stepping to a single instruction (e.g., a memory access)

and even repeating it an arbitrary number of times [50], [44].

IV. EXPLOITING CONTENTION ON RANDOMIZED CACHES

This section introduces generalized eviction to overcome

the challenges introduced by randomized caches. Next, it

generalizes traditional attacker objectives to randomized caches.

A. Generalizing Eviction

1) Full congruence: In an eviction set for a traditional cache,

every address ai in this set is fully congruent with x. Hence,

if x is currently cached, each ai has the potential to evict it.

In a randomized cache, an attacker can theoretically still

find a set of addresses that collide with the target address x
in every partition. However, the probability for a randomly

selected address to be fully congruent with x is 2−bP , i.e., it

plummets exponentially with P . Already for P ≥ 2, relying on

full congruence to construct eviction sets is highly impractical.

2) Partial congruence: To overcome the full congruence

problem, one can also try to evict a target address x based

on partial congruence. This approach, introduced by Werner

et al. [55] for special case P = nw, constructs an eviction set

using addresses congruent with the target in one partition only.

To understand eviction with partial congruence in general,

consider Figure 3, where the attacker wants to evict a target x
in a toy randomized cache with 6 ways (nw=6), 8 sets (b=3)

and 3 partitions (P =3). Assume the attacker has found sets of

addresses G1, G2, G3, satisfying that all elements in Gi are

congruent with x in partition i but not in the other partitions.

Eviction based on partial congruence is probabilistic. If

x is allocated to partition i, it could be evicted by Gi. An

element in Gi can only contribute to evicting x when it is

also assigned to partition i; this assignment is truly random

(i.e., not pseudorandom). In what follows, we let a generalized

eviction set G for a target address x denote the superset of

addresses that collide with x in one partition: G =
⋃P

i=1 Gi.

TABLE II: Generalized eviction set size for several instances.

RP
pe nw=4 nw=8 nw=16
[%] P =2 P =4 P =2 P =4 P =8 P =2 P =4 P =16

RAND

50 6 12 12 24 48 22 44 176
90 18 36 36 72 144 72 144 576
95 22 44 46 92 184 94 188 752

LRU

50 6 12 14 28 48 30 60 176
90 14 36 24 60 144 42 100 576
95 16 44 26 72 184 46 116 752

3) Eviction probability: Given a target x to evict, we now

derive the eviction probability pe as a function of the size |G |
of the generalized eviction set G . We assume that G contains

an equal share for every partition, i.e., |Gi | =
|G|
P

, (1 ≤ i ≤ P).

This assumption holds probabilistically in practice, and we will

show how it can be met deterministically in Section VI-B.

For replacement policy RAND, the eviction probability

generalizes the expression by Werner et al. [55]. Regardless

of the partition in which x resides,
|G|
P

addresses in G could

evict it, each with probability n−1
w . Consequently, we have:

pe,RAND (|G|) = 1 −

(

1 −
1

nw

)
|G|
P

For LRU, evicting x requires the attacker to evict the full set

in the partition in which x currently resides. This corresponds

to the event that at least nw

P
out of the

|G|
P

addresses for the

designated partition are actually mapped to this partition. It is

described by the complement of the cumulative binomial with
|G|
p

trials, nw

P
−1 successes and success probability 1

P
:

pe,LRU (|G|) = 1 − binom

(

|G|

P
,
nw

P
−1,

1

P

)

= 1 −

nw
P

−1
∑

i=0

(

|G|
P

i

)

(

1

P

)i

·

(

1 −
1

P

)
|G|
P

−i

Conversely, selecting the eviction probability pe fixes |G |,
presented in Table II for different cache configurations and pe.

B. Generalizing Attacker Objectives

We now generalize eviction set objectives from traditional

to randomized caches and evaluate their utility.

A targeted eviction set for an address x is a set of addresses

that, when accessed, evicts x from the cache with high

probability. The complexity and utility of this objective depends

on the capability of the attacker to access the target address x.

The attacker can access x if it is an in-process address

or resides in memory shared between attacker and victim. By

accessing x directly, the attacker can measure its access latency.

This objective is useful even in randomized caches, e.g., for

EVICT+RELOAD side- and covert channels or to trigger direct

DRAM accesses for eviction-based Rowhammer [2], [11].

In the other case, the attacker does not learn the access

latency of x, and victim accesses to x are needed for construct-

ing eviction sets. It is the primary attack vector for randomized

caches, as it represents the general scenario where x is not

accessible by the attacker (unshared memory), or accessible to

the attacker but decoupled in the cache for different security

domains. In addition to the previous objectives, generalized

eviction sets in this setting are useful, e.g., for PRIME+PROBE

side- and covert channels, or to extend transient execution

windows by evicting branch condition values from the cache.

An arbitrary eviction set (normally the easiest to con-

struct [51]) is a set of memory addresses that, when accessed,

has a high probability that at least one of its elements is

evicted from the cache. Although this objective has proven to

be useful in traditional caches, e.g., for covert channels [31], its

generalization to randomized caches with P > 1 and security

domains does not seem to map to any known adversarial goals.

Takeaway: Generalize eviction to avoid full congruence.

Rely on partially congruent addresses to efficiently (but

probabilistically) measure contention in randomized caches.

V. CONSTRUCTING GENERALIZED EVICTION SETS

The generalized eviction set G is the primitive at hand for

attacking randomized caches. Once G has been constructed,

contention-based attacks like PRIME+PROBE are also possible

in randomized caches, although with a larger set and lower

success probability (cf. Section IV-A). The major hurdle is the

profiling attack stage, i.e., constructing G itself. Purnal and

Verbauwhede [38] performed an initial study of this problem.

This section is concerned with the construction of G for a

target address x, using the capabilities of the black-box attack

Aideal (cf. Section III-B). We focus on the general case of a

target x that is not attacker-accessible (cf. Section IV-B), as the

security domain separator s lifts most attack objectives from

the accessible to the non-accessible case. We will later show the

optimizations that can be applied should they be accessible. Our

novel profiling approach is generically applicable and efficient,

improving state-of-the-art methods by orders of magnitude.

Conventionally, eviction sets are constructed by reducing

a large set of addresses to a smaller set while maintaining a

high eviction rate. This traditional top-down approach is highly

effective for P = 1, but both the size of its initial set and its

reduction step are strongly hindered by partitioning the cache

(P > 1). We cope with the sheer infeasibility of reducing the

initial set by adopting a new bottom-up approach: The attacker

starts from an empty set and incrementally adds addresses for

which cache contention with the target address was observed.

When measuring contention with a target x that is not

attacker-accessible, the only available procedure is to prepare

the cache state, wait for victim execution, and observe changes

in the cache state. Finding a generalized eviction set G then

comprises several iterations of this procedure. A successful

iteration is one that catches an access to x, and the success

probability of an iteration is the catching probability pc.

Takeaway: Adopt a bottom-up strategy to construct G .

In partitioned randomized caches, detecting contention is

much more efficient than detecting absence of contention.

A. Generic Prime+Prune+Probe

To maximize the probability of catching a victim access to x
in a given iteration, we develop a specialized PRIME+PROBE,

tailored for finding eviction sets in randomized caches.

TABLE III: Catching probability pc as a function of cache and attack
instance, and whether the target address is cached or not.

RP
Catching probability

pc,n (not cached) pc,c (cached)

RAND
k′

N

nw
∑

i=1

(

nw

i

) i2·k′i·(N−k′)nw−i

n2
w·Nnw

LRU ≈ 1−binom(k, nw

P
−1, 1

P ·2b
) ≈ pc,n ·

pc,n(P−1)+1

P

1) Prime+Prune+Probe: An iteration begins with a prime

step, where the attacker accesses a set of k addresses, loading

them into the cache. For k > 1, there can be cache contention

within this set. Thus, as a key step to eliminate false positives,

the prune step iteratively re-accesses the set. This forces

all self-evicted addresses to be cached again, at a potentially

different location than before. The prune step terminates as

soon as no more self-evictions occur when accessing the set.

If there are still self-evictions after a few iterations, pruning

becomes more aggressive and additionally discards all addresses

with high access latency (i.e., those evicted by another attacker

address). Upon termination of the prune step, the attacker has

a set of k′ ≤ k known addresses guaranteed to reside in the

cache. Let mpr denote the total number of pruning iterations.

Now, the attacker triggers the victim to perform the access of

interest (i.e., access x, as in conventional PRIME+PROBE). This

memory access evicts one attacker address with probability

pc, which depends both on the attack parameter k and the

randomized cache parameters (cf. Section V-B). In the probe

step, the attacker accesses the set of k′ addresses again, adding

addresses with high latency to G (i.e., victim evicted them).

In PRIME+PRUNE+PROBE (PPP), the prune step is crucial

and noise-absorbing. Without it, the attacker cannot distinguish

evictions due to victim accesses from those by the priming set.

By pruning, the attacker completely removes these false posi-

tives. Appendix A experimentally relates pruning parameters

k, k′ and mpr for different cache configurations.

The PRIME+PRUNE+PROBE procedure is repeated until

enough accesses are caught and added to G . This constitutes

the bottom-up approach; G is not the result of shrinking a

large initial set. Instead, it is built from the ground up.

2) Penalty for being cached: In case the target address x is

already cached, a single PPP iteration must both evict x and

catch the access to x when it is reloaded into the cache.

The attacker can either (1) first evict x probabilistically, by

accessing many different addresses or other techniques; (2)

apply PPP as-is, tolerating a suboptimal catching probability

pc. These strategies trade off the success probability of one

iteration (pc) with its execution time (number of accesses). In

what follows, we consider both a cached and uncached x. Any

profiling strategy then has higher pc than when the target is

always cached, and lower pc than when it is never cached.

B. Catching Probability pc

The catching probability pc is the success rate of one PRIME+

PRUNE+PROBE iteration and depends on the randomized cache

(nw, b, P , policy RP) and attack parameter k′. Table III estab-

lishes pc for several configurations. We distinguish whether x
is cached (denoted pc,c), vs. not cached (denoted pc,n).

1) Target is not cached (pc,n): After prime and prune,

the victim access to x caches it in a random partition, and RK

pseudorandomly determines the cache set within this partition.

For RAND, x evicts an attacker address with probability equal

to the coverage of the cache after pruning (i.e., pc,n = k′/N).

For LRU, x evicts an attacker address if there are at least
nw

P
addresses in the attacker set that were mapped to the same

cache partition and set of x during prime and prune.

It can be approximated (and lower-bounded) by the com-

plement of the cumulative binomial with k trials, nw

P
− 1

successes and binomial success probability (P · 2b)−1, i.e.,

pc,n = 1− binom(k, nw

P
−1, 1

P ·2b
). In practice, due to self-

evictions during pruning, the actual number of binomial trials

is slightly higher than k, resulting in increased pc,n.

2) Target is cached (pc,c): Catching an access to a cached

target x requires both evicting x and detecting its reintroduction

in the cache, resulting in a penalty on pc. The probabilities

pc,c (exact for RAND, approximate for LRU) are derived in

Appendix B and collected in Table III. The penalty is maximal

for k′=1, being nw (RAND) or P (LRU), and decreases with k′

as prime/prune implicitly evict an increasing cache portion.

Appendix C complements the theoretical analysis with

empirical validation. It also explores the relation between pc
and k′, and the penalty on pc for a cached target.

Takeaway: Add pruning to PRIME+PROBE profiling.

Pruning enables testing more than one guess per iteration.

It improves profiling for RAND and is essential for LRU.

VI. OPTIMIZATIONS FOR PRIME+PRUNE+PROBE

This section describes optimizations of PRIME+PRUNE+

PROBE for (A) total cache accesses and (B) victim invocations.

We then evaluate PPP strategies on a range of cache instances.

A. Optimizing for total cache accesses

1) Burst Accesses: As derived, the catching probability pc,c
(target already cached) holds at the start of constructing the

generalized eviction set G . As the elements of G have explicitly

been observed to collide with x, they can be accessed in burst

before the PPP iteration, essentially implementing a targeted

eviction of x. As profiling progresses and G grows, the burst

becomes more successful, and the penalty for a cached target

shrinks, hence pc,c → pc,n asymptotically. The burst access

optimization thus hides the caching penalty. It applies to both

RAND and LRU, but the latter can be accelerated even more.

2) Bootstrapping: A PPP iteration for LRU succeeds if

prime/prune fill the full set for x in the designated partition.

As G contends with x, we add G as bootstrapping elements

to the PPP set. Thus, filling the full set becomes more likely.

However, if a victim access to x evicts a bootstrapping

element instead of a PPP guess, the iteration is wasted: G was

already known to contend with x. This issue can be resolved by

relying on LRU statefulness. Adding G at the end of the PPP

set ensures that PPP evictions precede bootstrapping evictions.

Bootstrapping implicitly implements burst accesses, and

works very well for LRU. However, it is unattractive for RAND.

Takeaway: Use elements in G to accelerate finding more.

Burst accesses hide caching penalty effectively as G grows.

Bootstrapping increases pc by helping to fill the LRU set.

B. Optimizing for victim invocations

We now explicitly minimize the required victim accesses

Av. This is relevant, e.g., for long victim programs or cases

where victim runs are limited. We decouple it as Av = c
pc

,

relating it to accesses c needed to be caught (i.e., successful

iterations), and to pc (i.e., success probability of one iteration).

Section V already maximized denominator pc with PRIME+

PRUNE+PROBE. We now independently minimize numerator c,

forming a flexible profiling framework to globally optimize Av .

It first preselects candidate addresses that have higher catching

probabilities. The framework comprises three steps:

Step 1. Use PRIME+PRUNE+PROBE to find, for every

partition i, one address ai that collides with x in that partition.

Step 2. For each ai, construct a candidate pool with

addresses that collide with it in at least one partition.

Step 3. Resume PRIME+PRUNE+PROBE with the obtained

candidate pools instead of randomly selected addresses.

The first step simply constructs a smaller G with PPP.

Assume it needs to continue until G contains at least one

element for every partition. The expected accesses to catch is

then given by the coupon collector problem in statistics, with

one set of P coupons: E[c] = P (1 + 1/2 + · · ·+ 1/P).
The second step finds addresses that contend with the ai

obtained in Step 1, instead of profiling x directly. As the ai
are attacker-accessible, their access latency can be measured,

and no victim accesses are required. Addresses that contend

with ai also contend with x with probability ≥ P−1, which is

much more likely than a randomly selected address (≈ 2−b).

The third step resumes PPP for target x with candidate pools

for the ai. Every iteration accesses the pools, prunes, triggers

access to x, and probes. For sufficiently large candidate pools,

pc≈1, significantly reducing Av as compared to Step 1.

Conceptually, the first and third step are similar in nature.

They can also be independently accelerated, as in Section VI-A.

We now explore the complexity and acceleration opportuni-

ties of Step 2. As the access latency of the targets ai can

be measured, catching probabilities can increase, and there is

no penalty if the ai are already cached. We again distinguish

between replacement policies, and measure the complexity in

attacker accesses Aa (as there are no victim accesses).

1) Optimizing Step 2 for RAND: We propose to construct

the candidate pool through reverse PRIME+PRUNE+PROBE.

Let S = {a1, a2, . . . , ac} be the starting set obtained in Step

1. The elements of S are now the targets instead of the victim

address x. Every iteration tries one random address guess g.

PRIME+PRUNE+PROBE (PPP) primes the cache with k
guesses and observes eviction by the target. REVERSE PPP

instead primes the cache with the targets S, prunes, accesses

the guess g, then probes S. If accessing an element of S is

slow, say ak, we add g to the candidate pool for ak. Every

iteration has pc=
c
N

, and there are ≈ c+ 1 attacker accesses

per iteration, (i.e., very little pruning, and probe overlaps with

the next prime). The expected number of attacker accesses to

obtain one element for the candidate pool hence is E[Aa]≈N .

2) Optimizing Step 2 for LRU: For LRU, reverse PPP is

even more effective. Again, let S = {a1, a2, . . . , ac} be the set

from Step 1, and let g denote a random address guess.

Assume the attacker primes the cache with S, prunes it, and

observes self-evictions. For LRU, this implies that S filled

a full cache set (nw

P
lines). In this case, the attacker does

reverse PRIME+PRUNE+PROBE, where one iteration consists

of prime and prune with S, accessing g, and probe with

S. If accessing an element of S is slow in the probe step, say

ak, we add g to the candidate pool for ak. This approach has

pc =
1

P ·2b
, and there are ≈ c+1 accesses per iteration, resulting

in expected number of attacker accesses E[Aa] ≈ (c+1)·P ·2b.

Importantly, as g collides with multiple ak in S, it very

likely collides with x and can directly be added to S. Thus,

it immediately grows eviction set G without accesses by the

victim, bypassing Step 3. However, it can only be started

if priming S has observed self-evictions. Interleaving it with

Step 1 implicitly generates new attempts at this precondition.

3) Flexibility of the Framework: The three-step framework

flexibly instantiates randomized caches and attack scenarios.

If the victim program is tiny and executes continuously, all

profiling time is spent in Step 1. The shares of Step 2 and

Step 3 grow as soon as the victim program becomes the bot-

tleneck in any way. Finally, if x is attacker-accessible, reverse

PPP from Step 2 is used immediately. The framework also

enables splitting G based on the partition of contention with

x, making the eviction probabilities (Section IV-A) exact.

Takeaway: Use elements in G to reduce victim accesses.

Filtering candidate addresses based on contention with G

allows to (partially) refrain from victim invocations.

C. Evaluation of profiling strategies

Figure 4 depicts victim and total cache accesses for the

presented profiling strategies, obtained from simulated pro-

filing runs (cf. Section III-A3). We observe a mostly linear

progression in constructing G . One exception is reverse PPP,

where the construction of the candidate pools does not grow G

immediately (jump), but accelerates the profiling that follows.

Optimizations like burst accesses and bootstrapping improve

both total and victim accesses. In contrast, probabilistic full

cache evictions and three-step profiling incur a trade-off

between total accesses and victim invocations. Of course, one

can freely interpolate between these extreme strategies.

D. Influence of randomized cache instance

1) Sets, ways and partitions: Both profiling and exploitation

in randomized caches are influenced by the parameters of the

instance. We investigate the effectiveness of PPP on several

Fig. 4: Effort of profiling strategies for RAND (top) and LRU (bottom), measured as total (left) and victim (right) cache accesses, averaged for 104 simulated

profiling runs. Cache instances are denoted RP(nw, b,P). k is fixed to N
2

(RAND) and 3N
4

(LRU) to isolate the influence of the strategy. Pruning becomes
aggressive from the sixth iteration, if not already terminated. Full evictions between PPP iterations, if performed, use 2N addresses for LRU and 3N for RAND.

instances for RAND and LRU. Figure 5 captures our findings,

again based on simulation (cf. Section III-A3).

Larger caches resist better against PPP. Increasing cache

ways (nw) seems to compare favorably to increasing sets (2b).

While the latter only proportionally prolongs profiling and

does not affect exploitation, the former inhibits both profiling

and exploitation. In particular, |G | increases for the same

exploitation pe, and profiling is prolonged as |G | increases

while the accesses per element of G stay roughly the same.

Similarly, for the same cache dimensions (nw, b), both PPP

profiling and exploitation suffer from increased partitioning P .

Especially for RAND, there is no indication from our ideal-case

analysis why one should not opt for maximal partitioning.

In general, we find that PPP can be hindered by tuning

cache sets, ways, and partitions, but not to the point where it

becomes infeasible. What really works is limiting the cache

access budget for the attacker (i.e., a strict rekeying condition).

2) Rekeying period: The difference between the profiling

state of the art and rekeying period T is the design’s security

margin. Although tempting, setting T just low enough to thwart

known techniques does not account for potential improvements.

As an example to obtain (very) conservative rekeying periods,

we now leverage the security of RK to derive minimal

complexities to construct generalized eviction sets of certain

quality, i.e., with a lower bound on eviction probability pe
(e.g., pe ≥ 90%). We use the following central assumptions:

A RK is indistinguishable from a random function.

B Victim addresses of interest are not attacker-accessible.

C The eviction probability pe for G is lower-bounded.

As the target is not accessible to the attacker (B), she can

only infer accesses with PPP (cf. Section V-A1): bring cache

in known state, wait for victim execution, and probe.

To achieve an eviction rate pe (C), the profiling needs

TABLE IV: Rekeying periods T to ensure that the success rate to construct G
with pe≥95% is upper-bounded by 1/2{8,12,16,24,32}. The cache instance
is RAND(16, 13,16) and all accesses are counted as cache hits (e.g., 10 ns)

T for profiling T/2 for profiling
Success Rate T time T time

2−8 40N ≈ 10 sec 80N ≈ 20 sec

2−12 29N ≈ 2.5 min 58N ≈ 5 min

2−16 22N ≈ 30 min 44N ≈ 60 min

2−32 9N ≈ 2 years 18N ≈ 4 years

to catch at the very least m ≥ peP victim accesses to

different partitions. Indeed, an attack with pe>
m
P

has inferred

information about partitions for which no memory access has

been caught. By contradiction with A , it cannot exist.

Beyond Aideal, we further contrive the setting in favor of the

attacker. We consider strongly idealized pruning (i.e., k′=k and

mpr=1), and a permanently uncached target (i.e., pc = pc,n).

Furthermore, we scope the algorithm as catching a single access

in m partitions, neglecting the necessary expansion to full G .

A perfectly ideal PRIME+PRUNE+PROBE iteration then

requires k accesses for prime, k for prune, 1 for the victim

access, and k to probe. Assuming the attacker somehow

manages to combine probe of one iteration with prime of

the next, we use 2k+1 accesses per iteration as lower bound.

We outline the idea for a randomized cache with random

replacement. The only degree of freedom in the idealized PPP

is the number of addresses k in the prime step. Indeed, their

order or frequency does not impact the cache coverage k
N

.

Given a rekeying period of T cache accesses, the probability

of observing at least one access in at least m distinct partitions

is (using a generalization of the birthday problem in statistics):

max
k







T
2k+1
∑

i=m

(T
2k+1

i

)ki(N − k)
T

2k+1
−i

N
T

2k+1

P
∑

l=m

(P

l

)

l
∑

r=0

(−1)
r
(l

r

)

(
l − r

P
)
i







Fig. 5: Influence of randomized cache parameters, for RAND (left) and LRU (right). To isolate the influence of the instance, profiling strategies are fixed to

burst accesses and k = N
2

for RAND, and bootstrapping and k = 3N
4

for LRU. Instances are indicated as (nw, b,P), and positioned for mean profiling effort

(y-axis, log scale), and eviction set size for exploitation (x-axis, log scale). Vertical lines span the 5-95th percentiles (ranges indicated) over 103 simulated runs.

Conversely, Table IV captures rekeying periods T that upper

bound the fraction of successful rekeying periods. Pessimisti-

cally assuming that every memory access is a cache hit, it

gives an expected continuous profiling time of having one

successful construction of G within the rekeying period. As

the obtained G is only useful for one period, Table IV also

includes the case where half of it is used for exploitation. Note

that these minimal efforts strongly depend on m, and hence

on the quality of G that can be tolerated for exploitation (C).

VII. LIFTING IDEALIZING ASSUMPTIONS

In this section, we explore for the first time the more

challenging attack Anonid with complicating system activity

(cf. Section IV), as opposed to the commonly assumed Aideal.

We start with a victim program performing more memory ac-

cesses than of interest to the attacker and present an end-to-end

attack on a vulnerable AES implementation. We then quantify

the influence of random noise on PRIME+PRUNE+PROBE.

The central assumption is that the attacker wants to profile

specific addresses of the victim and that the access probability

of said addresses can be changed via inputs to the victim.

A. Multiple Victim Accesses

In the profiling phase, the attacker identifies addresses of

interest in a victim program and distinguishes between them if

there are multiple, requiring disjoint eviction sets for each target.

From this perspective, we model the execution of victim code

as a set of static and dynamic memory accesses. Static accesses

are performed regardless of the attacker’s input, i.e., code and

data accesses performed in all victim executions. Dynamic

accesses do not always occur, e.g., state- or input-dependent

code or data accesses.

The attack targets are one or more addresses that are accessed

upon a certain event the attacker wants to spy on [13]. Like

Gruss et al. [13], we cannot distinguish addresses in the static

set, as the cause-effect relationship is the same for all of them.

Hence, for our attack, all targets are in the dynamic set.

To profile the cache addresses of interest, we propose a

two-phase approach. First, we collect a superset of addresses

containing colliding addresses for all static and dynamic cache

lines. Second, we obtain disjoint sets of addresses from the

superset, each with colliding addresses for one target.

The attacker distinguishes static and dynamic accesses by the

property that dynamic accesses are statistically performed less

often than static accesses, which are always performed. With

the assumption from the beginning of this section, we consider

a scenario where an attacker controls, e.g., via input, which

dynamic accesses the victim performs in any given execution.

This control can be exerted positively (i.e., a dynamic access is

always performed for a specific input) as well as negatively (i.e.,

a dynamic access is never performed for a specific input). The

latter scenario repeatedly calls the victim with inputs that cause

it to access all but one address. Thus, it can be separated from

the superset, as all other addresses in it are accessed eventually.

In general, any manipulation of access probabilities in the

victim can be observed. This approach describes a stronger

attacker, as targeted addresses can be distinguished from others

in both the dynamic and static set in the same step.

1) Implementation: In the following, we focus on maximum

partitioning P =nw, as non-random replacement policies like

LRU generally require special treatment but behave predictably.

We employ catching with intermediate full eviction. The

analysis of Section V-B1 applies. To generate distinct and

large eviction sets for our ntarget target addresses, we slightly

modify the three-step approach described in Section VI-B. All

experiments are obtained in simulation (cf. Section III-A3).

To find sets of addresses ai, in Step 1, we first

construct the previously described superset using

PRIME+PRUNE+PROBE (Section VI-B). Instead of only one

victim memory access, all nstat static and ndyn dynamic

victim accesses are now observed by the attacker. To identify

a enough colliding addresses for all targets, we construct a

superset of at least nw ·(nstat+ndyn) addresses. The expected

amount of memory required to find a collision in a specific

0 0.1 0.2 0.3 0.4 0.5
0

1 · 107

2 · 107

Noise Level ν

C
ac

h
e

M
is

se
s victim cache lines

1

5

10

20

Fig. 6: Cache misses for creating a superset with 3 · nw addresses per victim
cache line, as a function of noise ν for different numbers of total victim cache
lines, k=1000 (avg. over 100 runs). Instance is RAND(8, 9,8)

way is cachesize
nw

, though higher confidence requires more. We

can apply the coupon collector’s problem (cf. Section VI-B)

for an estimated factor of
coupon(nw)

nw
, but as more addresses

need to be profiled, the probability to catch enough addresses

for all targets decreases. Consequently, this step requires a

number of repetitions, depending on the prime parameter k.

Next, we separate unwanted addresses from target addresses

within the superset. To this end, we call the victim with

inputs that exclude exactly one of the ntarget cache lines.

By repeatedly evicting the cache, calling the victim with the

required parameters, and measuring accesses in the superset,

we generate a histogram for all target addresses. After a certain

number of repetitions, addresses that are never evicted by the

victim are very likely to collide with the targeted address.

Repeating this process ntarget times, we get disjoint sets of

addresses for each target cache line. Step 2 and Step 3

can be applied to these sets of addresses (ai) to construct the

final generalized eviction sets like in the single-access case.

From our experiments (cf. Figure 6), we estimate that the

number of cache misses (the largest factor of the execution

time) increases sub-linearly with the total amount of accesses

by the victim (nstat+ndyn). This is because the catching

probability pc increases with ntarget. The superset’s separation

depends linearly on ntarget and the overall size of the superset.

2) End-to-end Attack on AES T-Tables: We choose the 10

round T-tables implementation of AES in OpenSSL 1.1.0g as

an example, as it is a well-known target for cache attacks [3],

[35], [45], [13]. We perform the One-Round Attack, described

by Osvik et al. [35], and thus recover 64 bits in the 16 upper

nibbles of the 16-byte key (see Appendix D).

The parameters for this attack are nstat=27 and ndyn=65.

With ntarget=64, the 4 T-tables are a difficult attack target,

as the profiling time scales linearly with ntarget.

For profiling, we require AES runs that access all but

the target address, for each target. We can prepare 64 such

key/plaintext pairs offline. All AES runs are recorded as

memory access traces with the Intel PIN Tool [16] and injected

into the simulator (cf. Section III-A3) at the appropriate

times. Lacking more efficient eviction methods, we rely on

probabilistic full cache eviction. In total, eviction accounts for

≈ 90% of all accesses during the attack, which in turn makes

the superset-splitting step of the profiling the largest contributor

to the overall runtime. Because we assume no restriction on

the number of encryptions, we do not perform Step 2 for

this attack, as pruning the generated candidate pools would

TABLE V: End-to-end attack on T-table AES for different configurations
(means over 100 runs). nslices = 8, b = 11. Where not shown, standard
deviations are < 0.5% of the mean.

nw P policy misses [109] hits [109] #AES ∅ collisions/addr. correct nibbles est. t [min]

8 8 n/a 12.03 3.59 56663 20.47± 3.61 15.90± 0.33 1.58
8 2 RAND 2.78 2.25 23682 15.52± 3.37 16.00± 0.00 0.63
8 2 LRU 3.21 1.75 26060 17.74± 7.53 15.94± 0.28 0.78
16 16 n/a 46.27 9.25 157072 37.91± 5.65 15.77± 0.45 6.89
16 2 RAND 4.69 3.91 39192 26.62± 5.85 15.93± 0.26 1.32
16 2 LRU 7.85 2.63 66640 26.99± 11.66 15.75± 0.51 2.60

also require the costly splitting phase. Instead, we see that

using fewer colliding addresses for each target (cf. Table V)

still performs well. We can compensate for the lower detection

probability by increasing the number of encryptions during the

exploitation phase.

We use cache parameters from modern Intel processors: 8

slices (with a slicing function [29]) of 1 MB each, so each

slice is a randomized cache with nw =8/16 and b=11. We

run the same attack for P = nw = 8/16 and P = 2, with

replacement policies random and LRU. As seen in Table V,

the attack is generic enough for all configurations, without

special considerations for LRU. The variance in the number

of addresses found per target increases for P =2, especially

for LRU, but since this specific attack sums over the hits on

different addresses, this effect is mitigated for the end result (see

Appendix D). For P =2, we speed up the attack by reducing

the cache lines used for full cache eviction from 2N to 1.5N ,

as well as reducing the superset size (cf. Section VI-D1).

This end-to-end implementation is not optimal, as there are

many parameters that could be optimized. Nonetheless, we can

see that cache attacks can still be executed in a reasonable

time frame. If we model the attack as a mixture of sequential

accesses for full cache evictions and timed random accesses

for the sets, we can calculate the average attack times shown

in Table V. For this rough estimate, we use access times

measured on a real system with the same miss rates (i7-8700K

@ 3.60GHz, sequential access:≈11.4c, timed (rdtsc) random

miss:≈235c, hit:≈222c).

Takeaway: Unpredictability requires key agility.

Frequent rekeying is essential to maintain the benefits of

randomization, even in non-ideal conditions.

B. Influence of Noise

In the ideal case (Aideal), there is no noise from memory

accesses by the attacker process itself, nor the victim, or any

other process in the system (including the operating system).

Section VII-A already implicitly includes noise generated by

the victim’s code execution. We now additionally consider noise

introduced by other system activity. We make the simplifying

assumption that noise accesses are random and occur at a rate

of ν random accesses for every attacker access.

Multiple steps of the (unmodified) profiling algorithm from

Section VI-B are affected by noise. Spurious memory accesses

during the prune step increase the number of pruning

iterations mpr significantly and reduce the size k′ of the

0 0.1 0.2 0.3 0.4 0.5
0

1,000

2,000

Noise Level ν

k
’

k′, k=
100
1000

nw · 2b−1

0

50

100

m
p
r

mpr , k=
100
1000

nw · 2b−1

Fig. 7: Pruning mpr and k′ as a function of noise ν, for various k (average
over 100 runs). Instance is RAND(8, 9,8)

0 0.1 0.2 0.3 0.4 0.5

40

60

80

Noise Level ν

V
ic

ti
m

C
o
ll

is
io

n
s

[%
]

k
100
1000

nw · 2b−1

Fig. 8: Percentage of caught addresses in the superset that genuinely collide
with victim addresses in exactly one way, as a function of ν for various k
(avg. over 100 runs). Instance is RAND(8, 9,8)

resulting set. The probe step samples noise in addition to the

collisions with the targeted victim cache line.

Figure 7 and Figure 8 show both effects. Though the

unmodified prune step terminates, the resulting set size k′

can be seen to decrease quickly with ν, while the number

of pruning iterations mpr increases. Hence, with noise, the

attacker could explore the PPP parameter space in favor of

a smaller k. Figure 8 also shows a faster decrease in correct

collisions for higher k, while the cost of pruning grows.

Alternatively, the attacker can consider early-aborting prun-

ing, i.e., terminating prune before it is entirely free of misses.

Indeed, a large part of the pruning iterations are no longer due

to self-evictions, but due to sampling noise. The false positives

introduced by the early-abort are then removed in a later stage.

The separation phase from Section VII-A is effective at

filtering false positives caused by noise during PPP, since static

victim accesses, dynamic victim accesses, and false positives

exhibit different behavior in the separation phase. In contrast to

static or dynamic accesses, false positives occur only in some

runs, leading to multiple runs with 0 accesses. Hence, they

appear in more than one set in the end and can be removed.

Figure 6 shows the total number of cache misses for the

generation of supersets for victims of different total sizes

(nstat+ndyn). These supersets contain exactly 3 · nw · (nstat+
ndyn) addresses that collide with victim cache lines in exactly

one way. They additionally contain non-colliding addresses

introduced by noise and self-eviction in the proportion shown

in Figure 8, which is removed during separation. We can see

that the number of cache misses (and by extension, the runtime)

for this step grows approximately linearly with noise.

C. Infrequent victim events

In the case where an event in the victim happens only once

or a limited number of times (e.g., user input), the probe set

G needs to be large enough to achieve a very high detection

probability, which places more weight on accurate profiling

compared to VII-A2. On the other hand, when events trigger

Fig. 9: Differential propagation through CEASER’s LLBC. For brevity, we
introduce f [j◦i](·) as shorthand for f [j](f [i](·)).

accesses to multiple cache lines, all of them can be used for

detection. Attacks will mostly need to be asynchronous, which

necessitates some form of continuous monitoring. We leave an

investigation of practical implementations for future work.

VIII. SHORTCUT ATTACKS

In this section, we consider attack Ashort and draw attention

to the soundness of the randomized mapping by achieving

shortcuts during a case study on CEASER and CEASER-S.

In particular, we demonstrate how weaknesses in their

common randomized mapping allow us to reliably construct

eviction sets without any memory accesses. We first describe

Low-Latency Block Cipher (LLBC), the CEASER-specific

implementation of the mapping RK . Drawing inspiration from

differential cryptanalysis, we show how input differences

propagate through the LLBC, and we derive an expression

for precomputing address differences that systematically yield

cache set collisions, independent of key, partition, and address.

We describe the attack first for CEASER [39] before tackling

the generalized and improved CEASER-S [40].

A. Low-Latency Block Cipher in CEASER(-S)

CEASER instantiates RK by encrypting the input address

a with a custom LLBC with 40-bit blocks and 80-bit key. In

particular, it divides the input address in two equally sized (left-

right) chunks a = (L || R) and produces an output encrypted

address RK(a) = (L’|| R’). From this output, the lowermost

b bits determine the cache set index: s = ⌊RK(a)⌋b = ⌊R’⌋b.

The encryption proceeds as a keyed four-stage Feistel

network (depicted in Figure 9). Each stage instantiates a round

function F (X,K), taking 40-bit input (20 bit X and 20 bit

K) and producing 20-bit output (Y). In each round function,

20 intermediary bits Wi are first computed as Wi = Si(X,K),
where Si defines exclusive or (xor) of 20 input bits (out of

40). The Wi are shifted with a bit-permutation P to obtain Y .

In CEASER, the round functions are randomly sampled,

fixed at design time, and explicitly different in every stage.

Let F [r] denote the round function for stage r, and K [r] the

20-bit subkey for this stage. Describe the bit-permutation with

i ← P (i), i.e., a bit at position P (i) moves to position i.
Next, let Xi and Ki denote the indices from resp. X and K [r]

that are xored to obtain intermediary bit Wi = Si(X,K).
The round function output is Y = (Y0||Y1||...||Y19) =
(WP (0)||WP (1)||...||WP (19)). The round function F [r] thus

comprises 20 functions F
[r]
i (X,K [r]) each computing one Yi:

Yi = F
[r]
i

(X,K
[r]

) =
∑

j∈XP (i)

Xj +
∑

k∈KP (i)

K
[r]
k

(1)

Observing the linearity in the entire cipher (particularly in the

SBoxes Si, supposed to be non-linear), we draw inspiration

from differential cryptanalysis to bypass RK altogether.

B. Constructing and Using the Shortcut

The outcome of the shortcut is a set of addresses ai that

collides in the cache with a target address a, i.e., RK(ai) =
RK(a). The attacker could attempt this shortcut by recovering

the mapping key K, granting the shortcut for the lifetime of

the key. Our approach, in contrast, is fully key-independent.

It is a restricted take on chosen-plaintext attacks, where the

restriction stems from being embedded in a cache. Specifically,

the adversary can choose a set of plaintexts to RK (i.e., input

addresses ai), but does not observe any cryptographic output.

We rephrase the shortcut as a differential problem, i.e., to

finding a set of ∆a satisfying RK(a+∆a) = RK(a). Matching

with the Feistel topology, we denote the input difference ∆a =
(∆L||∆R) and the output difference (∆L′ ||∆R′). Achieving

the shortcut is then equivalent to finding pairs ∆L and ∆R, not

both zero, that result in the same set index bits: ⌊∆R′⌋b = 0b.

1) ∆−Propagation: We derive the propagation first through

the round function F [r], then the full LLBC. Let+denote GF (2)
addition (bitwise xor). As a well-known cryptanalytic fact,

differences propagate unaffected through addition. Let ∆X and

∆Y denote differences at the input and output of F [r]. Stated

differently, if Y =F [r](X,K [r]) and Y ′=F [r](X+∆X ,K [r]),
then ∆Y =Y ′+Y . Now compute the i-th output bit ∆Y,i:

∆Y,i = Y
′
i + Yi = F

[r]
i

(X + ∆X , K
[r]

) + F
[r]
i

(X,K
[r]

)

=
∑

j∈XP (i)

(Xj + ∆X,j + Xj) +
∑

k∈KP (i)

(K
[r]
k

+ K
[r]
k

)

=
∑

j∈XP (i)

∆X,j = f
[r]
i

(∆X)

If we let ∆Y = f [r](∆X), then f [r] captures the effect of

round function F [r] on an input difference ∆X . Similar to F [r]

before, f [r] is an umbrella for 20 functions:
∆Y = f

[r]
(∆X) = (f

[r]
0 (∆X) || f

[r]
1 (∆X) || ... || f

[r]
19 (∆X))

Note that f [r] only depends on the input difference ∆X .

Crucially, it is independent of both X itself and the key K.

2) Shortcut Equation: Armed with the ∆-propagation

through round functions F [r], Figure 9 shows our probability

1 differential trail through CEASER’s full LLBC, yielding an

expression for output difference ∆′
R. This expression, which we

dub the SHORTCUT EQUATION, describes ∆a=(∆L||∆R) sat-

isfying output collision: ⌊∆′
R⌋b=0b ⇒ RK(a)=RK(a+∆a).

A straightforward way to find solutions to this equation

fixes (say) ∆L and tests variable ∆R for equality. The

expected offline complexity for each ∆a = (∆L,∆R) is 2b−1

evaluations of the shortcut equation. Since very often b<20, the

naı̈ve computation is very practical. As the shortcut equation

describes twenty linear equations over GF (2), one could also

algebraically determine a compact expression for ∆L and ∆R.

3) Implications: The shortcut does not require knowledge of

key K, and is even completely independent of K. Furthermore,

it is also independent of the input a. Although in general

RK(a) 6= RK′(a), eviction sets constructed for key K ′ and

input a′ are still eviction sets for any other (K, a) pair:
RK(a) = RK(a + ∆a) ⇒ RK′ (a

′
+ ∆a) = RK′ (a

′
) (2)

This follows from the key-independence of the SHORTCUT

EQUATION. Hence, rekeying does not invalidate eviction

sets constructed using the shortcut. This has the devastating

consequence that, as soon as the ∆a have been precomputed

offline, the attacker can construct arbitrary eviction sets for any

target a with zero cache accesses, completely bypassing RK .

4) Extension to CEASER-S: CEASER-S implements parti-

tions with P parallel LLBC instances with different keys. By

Equation (2), collision in one partition implies collision in

all partitions. Thus, our shortcut equally impacts CEASER-S,

allowing easy construction of fully congruent eviction sets.

5) Mitigation: At the very least, the LLBC rounds should

incorporate non-linear SBox layers. This spot mitigation thwarts

the presented shortcut, but more subtle attacks could remain.

Takeaway: Do not overestimate the mapping’s security.

Shortcut attacks can be fundamentally eliminated by a

randomization mapping that resists formal cryptanalysis.

IX. DISCUSSION

In this section, we relate and compare the contributions in

this paper to the most closely related work, as well as provide

specific recommendations and directions for future work.

A. Prime+Prune+Probe on specific designs

Our generic model for computation-based randomized caches

permits to instantiate existing designs, extend their security

analysis, and compare them in terms of profiling effort.

We consider an 8 MB cache with 16 ways (nw) and 13
index bits (b) (i.e., N=131 072). We assume a non-accessible

target address (e.g., by enabling security domain separation s).

Although we consider Aideal (cf. Section III-B), i.e., we are able

to pinpoint one target access of interest, victim execution time

cannot be neglected. Therefore, we assume a modestly-sized

victim program, performing 1 000 accesses per invocation.

Figure 10 shows total cache accesses to profile a generalized

eviction set G with pe = 90%. For each instance we use

PRIME+PRUNE+PROBE and optimize for total cache accesses.

1) Single-partition caches: Randomized caches with P =1
(CEASER, TSC) can be treated as traditional caches without

adversary control over physical addresses. They require ex-

tremely frequent rekeying as fully congruent eviction sets can

be obtained with the efficient top-down approach [51], [40].

2) CEASER-S: First-party CEASER-S analysis [40] only

considers fully congruent eviction. As fully congruent addresses

are extremely scarce, it is completely infeasible for larger P .

We instantiate the model to CEASER-S2 (resp. CEASER-

S4) by setting P = 2 (resp. P = 4) and replacement policy

LRU. While CEASER-S could accomodate several policies (e.g.,

Fig. 10: Complexity (Aideal) to construct a fully congruent or generalized
(pe=90% or pe=50%) eviction set. Randomized caches are monolithic 8 MB
(nw =16, b=13, N =131 072 lines). Cost metric is total cache accesses;
victim runtime is modeled with 1 000 accesses. Fully congruent eviction
assumes initial set (before reduction) of 2N . PPP uses the best-performing

strategy (cf. Section VI-C), with k= N
2

(RAND) or k= 3N
4

(LRU).

LRU, RRIP, . . .) [40], we believe LRU leads to an accurate

security assessment. Indeed, many stateful replacement policies

can be degraded to LRU with some repeated accesses [11].

In what follows, we assume the problems from Section VIII

to be fixed. There are three proposed CEASER-S instances,

with rekeying periods resp. 100N , 200N and 1000N . We

observe that PRIME+PRUNE+PROBE consistently obtains high-

quality generalized eviction sets within the rekeying period of

the 1000N -instance. While prior profiling techniques succeed

on average once every 68 years [40], PPP on CEASER-S2

has average complexity of ≈ 320N , leaving on average 68%
of every rekeying period available for exploitation. The more

conservative designs (100N, 200N) resist PPP for the majority

of rekeying periods, though with considerably reduced security

margin. We observe an extreme gap between PPP and previous

idealized estimates, easily exceeding 20 orders of magnitude

for P =4 and 50 orders of magnitude for P =8 (not displayed).

3) SCATTERCACHE: First-party analysis [55] already con-

siders generalized eviction. Their approach can be seen as a

corner case of PPP, i.e., using k=1 (cf. Section V).

We instantiate SCATTERCACHE by setting P = nw = 16,

implicitly with replacement RAND. Optimized for total accesses,

PPP improves profiling with three orders of magnitude for the

considered configuration. The main contribution of PPP is that

it requires much fewer victim invocations, as it permits to test

many addresses in parallel (k ≫ 1). While SCATTERCACHE

does not specify a rekeying frequency, our results indicate that

it should be determined more conservatively than expected.

4) Shortcuts: With a case study on CEASER-S, we show

with devastating consequences that the security of the ran-

domization should not be taken for granted, even if its output

is not directly observable. A similar study was conducted

in concurrent work [5]. Instantiating a sound cryptographic

algorithm thwarts all shortcuts but affects performance. Though

not investigated, TSC risks shortcuts due to absence of

cryptographic structure. Shortcuts in SCATTERCACHE are only

possible by significant cryptanalytic advances for QARMA [1].

B. Future Work

Our work provides a baseline to compare future secure caches

and their analysis. Future work should investigate how our

techniques can be applied to concurrent work [46]. This paper

also shows the importance of cryptanalytic resistance of the core

randomization mapping. Stringent latency constraints could

inspire new designs in the space of low-latency cryptography.

The rekeying period may be varied for different security lev-

els. This can be transparently implemented through frequently

and unpredictably updating s for high-security processes (e.g.,

enclaves), while refreshing K in larger intervals for regular

processes. We also propose heuristic-based rekeying, invalidat-

ing eviction sets upon observation of certain microarchitectural

events (e.g., many LLC cache misses or PPP signatures). It

should be noted that rapid rekeying only mitigates attacks in

scope for randomized caches, i.e., potential cache-contention

channels that do not target set contention might remain.

The gap between our conservative rekeying periods (Sec-

tion VI-D2) and PPP profiling in practice is quite large. Future

work could explore closing this gap by improving profiling,

relaxing theoretical bounds, or a combination of both.

X. CONCLUSION

Analyzing the residual attack surface of randomized cache

architectures is a complex undertaking. In this work, we have

established a generic framework to jointly analyze all existing

computation-based randomized caches. We showed that, similar

to cryptanalysis, randomized cache designs must be subjected

to systematic analysis to gain confidence in their security. In

this effort, we have contributed on three main fronts.

First, we have advanced the profiling state of the art for

randomization-based secure caches. We developed novel attack

techniques for such caches, including PRIME+PRUNE+PROBE

and optimizations like bootstrapping and multi-step profiling.

Second, we have started bridging the gap between the usually

assumed ideal attack and complicating effects like noise and

multiple victim accesses. We have simulated an end-to-end

attack, leaking AES keys from a vulnerable implementation.

Finally, we have falsified the implicit assumption that any

randomized mapping successfully results in a secure cache.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers and our

shepherd, David Kohlbrenner, for their valuable feedback.

This work was supported in part by the European Research

Council (ERC) under the EU Horizon 2020 research and

innovation programme (grant agreements No 681402 and No

695305). It was also supported by the CyberSecurity Research

Flanders VR20192203 and the Research Council KU Leuven

C16/15/058. Antoon Purnal is funded by an FWO fellowship.

Additional funding was provided by a generous gift from Intel.

Any opinions, findings, and conclusions or recommendations

expressed in this paper are those of the authors and do not

necessarily reflect the views of the funding parties.

REFERENCES

[1] R. Avanzi, “The QARMA block cipher family,” in IACR ToSC, 2017.

[2] Z. B. Aweke, S. F. Yitbarek, R. Qiao, R. Das, M. Hicks, Y. Oren, and
T. Austin, “ANVIL: Software-based protection against next-generation
Rowhammer attacks,” ACM SIGPLAN Notices, 2016.

[3] D. J. Bernstein, “Cache-timing attacks on AES,” 2005.

[4] A. Bhattacharyya, A. Sandulescu, M. Neugschwandtner, A. Sorniotti,
B. Falsafi, M. Payer, and A. Kurmus, “SMoTherSpectre: exploiting
speculative execution through port contention,” in CCS, 2019.

[5] R. Bodduna, V. Ganesan, P. SLPSK, K. Veezhinathan, and C. Rebeiro,
“Brutus: Refuting the security claims of the cache timing randomization
countermeasure proposed in CEASER,” in IEEE CA Letters, 2020.

[6] C. Canella, J. Van Bulck, M. Schwarz, M. Lipp, B. Von Berg, P. Ortner,
F. Piessens, D. Evtyushkin, and D. Gruss, “A Systematic Evaluation
of Transient Execution Attacks and Defenses,” in USENIX Security

Symposium, 2019.

[7] S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi, “Towards sound
approaches to counteract power-analysis attacks,” in CRYPTO, 1999.

[8] G. Dessouky, T. Frassetto, and A.-R. Sadeghi, “HybCache: Hybrid
Side-Channel-Resilient Caches for Trusted Execution Environments,”
in USENIX Security Symposium, 2020.

[9] M. Green, L. Rodrigues-Lima, A. Zankl, G. Irazoqui, J. Heyszl, and
T. Eisenbarth, “AutoLock: Why Cache Attacks on ARM Are Harder
Than You Think,” in USENIX Security Symposium, 2017.

[10] D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard, “Prefetch
Side-Channel Attacks: Bypassing SMAP and Kernel ASLR,” in CCS,
2016.

[11] D. Gruss, C. Maurice, and S. Mangard, “Rowhammer.js: A Remote
Software-Induced Fault Attack in JavaScript,” in DIMVA, 2016.

[12] D. Gruss, C. Maurice, K. Wagner, and S. Mangard, “Flush+Flush: A
Fast and Stealthy Cache Attack,” in DIMVA, 2016.

[13] D. Gruss, R. Spreitzer, and S. Mangard, “Cache Template Attacks:
Automating Attacks on Inclusive Last-level Caches,” in USENIX Security

Symposium, 2015.

[14] R. Hund, C. Willems, and T. Holz, “Practical Timing Side Channel
Attacks against Kernel Space ASLR,” in S&P, 2013.

[15] M. S. Inci, B. Gulmezoglu, G. Irazoqui, T. Eisenbarth, and B. Sunar,
“Cache Attacks Enable Bulk Key Recovery on the Cloud,” in CHES,
2016.

[16] Intel Corporation, “Pin - A Dynamic Binary Instru-
mentation Tool,” https://software.intel.com/en-us/articles/
pin-a-dynamic-binary-instrumentation-tool.

[17] Y. Jang, S. Lee, and T. Kim, “Breaking Kernel Address Space Layout
Randomization with Intel TSX,” in CCS, 2016.

[18] T. Kim, M. Peinado, and G. Mainar-Ruiz, “StealthMem: system-level
protection against cache-based side channel attacks in the cloud,” in
USENIX Security Symposium, 2012.

[19] V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas, and J. Emer,
“DAWG: A Defense Against Cache Timing Attacks in Speculative
Execution Processors,” MICRO, 2018.

[20] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg,
M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre
Attacks: Exploiting Speculative Execution,” in S&P, 2019.

[21] P. C. Kocher, “Timing Attacks on Implementations of Diffe-Hellman,
RSA, DSS, and Other Systems,” in CRYPTO, 1996.

[22] J. Kong, O. Acıiçmez, J.-P. Seifert, and H. Zhou, “Hardware-software
integrated approaches to defend against software cache-based side channel
attacks,” in HPCA, 2009.

[23] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard, “AR-
Mageddon: Cache Attacks on Mobile Devices,” in USENIX Security

Symposium, 2016.

[24] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg,
“Meltdown: Reading Kernel Memory from User Space,” in USENIX

Security Symposium, 2018.

[25] F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser, and R. B.
Lee, “Catalyst: Defeating last-level cache side channel attacks in cloud
computing,” in HPCA, 2016.

[26] F. Liu and R. B. Lee, “Random Fill Cache Architecture,” in MICRO,
2014.

[27] F. Liu, H. Wu, K. Mai, and R. B. Lee, “Newcache: Secure cache
architecture thwarting cache side-channel attacks,” IEEE Micro, vol. 36,
no. 5, pp. 8–16, Sep. 2016.

[28] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-Level Cache
Side-Channel Attacks Are Practical,” in S&P, 2015.

[29] C. Maurice, N. Le Scouarnec, C. Neumann, O. Heen, and A. Francillon,
“Reverse Engineering Intel Complex Addressing Using Performance
Counters,” in RAID, 2015.

[30] C. Maurice, C. Neumann, O. Heen, and A. Francillon, “C5: Cross-Cores
Cache Covert Channel,” in DIMVA, 2015.

[31] C. Maurice, M. Weber, M. Schwarz, L. Giner, D. Gruss, C. A. Boano,
S. Mangard, and K. Römer, “Hello from the Other Side: SSH over
Robust Cache Covert Channels in the Cloud,” in NDSS, 2017.

[32] A. Moghimi, G. Irazoqui, and T. Eisenbarth, “Cachezoom: How SGX
amplifies the power of cache attacks,” in CHES, 2017.

[33] J. Monaco, “SoK: Keylogging Side Channels,” in S&P, 2018.

[34] Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D. Keromytis, “The
Spy in the Sandbox: Practical Cache Attacks in JavaScript and Their
Implications,” in CCS, 2015.

[35] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and countermea-
sures: The case of aes,” in CT-RSA, 2006.

[36] D. Page, “Theoretical use of cache memory as a cryptanalytic side-
channel,” Cryptology ePrint Archive, Report 2002/169, 2002.

[37] C. Percival, “Cache missing for fun and profit,” in BSDCan, 2005.

[38] A. Purnal and I. Verbauwhede, “Advanced Profiling for Probabilistic
Prime+Probe Attacks and Covert Channels in ScatterCache,” in arXiv

1908.03383, 2019.

[39] M. K. Qureshi, “CEASER: Mitigating Conflict-based Cache Attacks via
Encrypted-address and Remapping,” in MICRO, 2018.

[40] ——, “New Attacks and Defense for Encrypted-address Cache,” in ISCA,
2019.

[41] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, You, Get off
of My Cloud: Exploring Information Leakage in Third-party Compute
Clouds,” in CCS, 2009.

[42] D. Sanchez and C. Kozyrakis, “Vantage: scalable and efficient fine-grain
cache partitioning,” in ISCA, 2011.

[43] S. Sari, O. Demir, and G. Kucuk, “FairSDP: Fair and secure dynamic
cache partitioning,” in International Conference on Computer Science

and Engineering (UBMK), 2019.

[44] D. Skarlatos, M. Yan, B. Gopireddy, R. Sprabery, J. Torrellas, and C. W.
Fletcher, “MicroScope: Enabling Microarchitectural Replay Attacks,” in
ISCA, 2019.

[45] R. Spreitzer and T. Plos, “Cache-access pattern attack on disaligned aes
t-tables,” in COSADE, 2013.

[46] Q. Tan, Z. Zeng, K. Bu, and K. Ren, “PhantomCache: Obfuscating Cache
Conflicts with Localized Randomization,” in NDSS, 2020.

[47] D. Trilla, C. Hernandez, J. Abella, and F. J. Cazorla, “Cache Side-channel
Attacks and Time-predictability in High-performance Critical Real-time
Systems,” in DAC, 2018.

[48] Y. Tsunoo, T. Saito, and T. Suzaki, “Cryptanalysis of DES implemented
on computers with cache,” in CHES, 2003.

[49] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx, “Foreshadow:
Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-
order Execution,” in USENIX Security Symposium, 2018.

[50] J. Van Bulck, F. Piessens, and R. Strackx, “SGX-Step: A Practical Attack
Framework for Precise Enclave Execution Control,” in SysTEX, 2017.

[51] P. Vila, B. Köpf, and J. F. Morales, “Theory and Practice of Finding
Eviction Sets,” in S&P, 2019.

[52] R. Wang and L. Chen, “Futility scaling: High-associativity cache
partitioning,” in MICRO, 2014.

[53] Z. Wang and R. B. Lee, “New cache designs for thwarting software
cache-based side channel attacks,” in ISCA, 2007.

[54] ——, “A novel cache architecture with enhanced performance and
security,” in MICRO, 2008.

[55] M. Werner, T. Unterluggauer, L. Giner, M. Schwarz, D. Gruss, and
S. Mangard, “SCATTERCACHE: Thwarting Cache Attacks via Cache
Set Randomization,” in USENIX Security Symposium, 2019.

[56] Y. Yarom and K. Falkner, “FLUSH+RELOAD: A High Resolution, Low
Noise, L3 Cache Side-channel Attack,” in USENIX Security Symposium,
2014.

[57] D. Zhang, Y. Wang, G. E. Suh, and A. C. Myers, “A hardware design
language for timing-sensitive information-flow security,” ACM Sigplan

Notices, vol. 50, no. 4, pp. 503–516, 2015.

[58] Z. Zhou, M. K. Reiter, and Y. Zhang, “A software approach to defeating
side channels in last-level caches,” in CCS, 2016.

https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool

Fig. 11: Empirical k′ and mpr (means over 105 runs) for different k. Cache
instances are denoted RP(nw, b, P). The prune step becomes aggressive
from the sixth iteration, if not already terminated.

APPENDIX

A. Relation between k. k′ and mpr

Figure 11 experimentally (cf. Section III-A3) relates pruning

parameters k, k′ and mpr for different cache instances.

It shows that the prune step does not shrink the initial set

that much (k′ ≈ k), unless k is very large.

We also observe that instances with stateful replacement

policy (LRU) require fewer pruning iterations mpr than those

with random replacement. Furthermore, they generally end up

with a larger set after pruning (k′).

B. Penalty for a cached target

We now derive the catching probability for a target address

x that is already cached. Recall that, to detect an access to x,

the attacker must first evict it from the cache, and detect its

reintroduction in the cache. Let E denote the event that the

PRIME+PRUNE+PROBE iteration successfully evicts x from

the cache, and D the event that probe detects an access to x
when it is reloaded. Given that P [D, Ẽ] = 0 we have that

pc,c = P [D] = P [D,E] = P [D|E] · P [E]

1) Random replacement: We have that P [E] = pc,n(k
′).

Recall that for RAND, the target x has nw potential cache lines

to which it can be mapped. Let I denote the number of those

locations that the PRIME+PRUNE+PROBE iteration occupies.

P [D|E] =

nw∑

i=0

P [D, I = i|E] (law of total probability)

=

nw∑

i=0

P [D|E, I = i] · P [I = i|E]) (conditional)

=

nw∑

i=0

i

nw

·
P [E|I = i] · P [I = i]

P [E]
(Bayes’ rule)

=

nw∑

i=0

i

nw

·
i

nw
·
(
nw

i

)
k′i(N−k′)nw−i

Nnw

P [E]
(binomial pmf)

Consequently, we obtain the expression from Table III:

pc,c = P [D] =

nw∑

i=1

(
nw

i

)
i2 · k′i · (N − k′)nw−i

n2
w ·N

nw

2) Least recently used (LRU): For LRU, we derive an

approximation for pc,c. We have that P [E] = pc,n. Assume

that x is cached in partition Pl, and let PR be the random

variable denoting the partition to which x is reloaded.

P [D|E] =

nw∑

i=1

P [D,PR = Pi|E] (law of total probability)

= P [D,PR = Pl|E] +
∑

i 6=l

P [D,PR = Pi|E]

= P [D|PR = Pl, E] · P [Pl|E] +
∑

i 6=l

P [D|PR = Pi, E] · P [PR = Pi|E] (conditional)

≈ 1 ·
1

P
+
∑

i 6=l

pc,n ·
1

P

Consequently, we obtain the expression from Table III:

pc,c = P [D] ≈ pc,n ·
pc,n(P − 1) + 1

P

C. Theoretical vs. experimental catching probabilities

Figure 12 presents experimental and visual support for the

analysis in Section V-B. Since the attacker cannot directly

set k′, we choose k as the independent variable in Figure 12.

However, recall that in Table III, the catching probabilities pc
are described in terms of k′ for RAND, i.e., after pruning, and

in terms of k for LRU, i.e., before pruning. The reason is that

the prune step does not allow concise statistical modeling.

Hence, for RAND, we approximate k′ with k, noting that the

exact pc in terms of k′ becomes an upper bound in terms of k.

We observe theory to match practice very well for k ≤ 0.6N , as

k ≈ k′ (cf. Appendix A). The upper bound becomes noticeable

for very large k, exactly because k′ and k diverge.

For LRU, the theoretical expressions were derived as a lower

bound (cf. Section V-B1). It is a good approximation for low

k. For larger k, although prune does not eliminate a lot

of elements (cf. Appendix A), it increases pc significantly

because addresses that were evicted and reintroduced have

another attempt at hitting the correct cache set and partition.

In principle, one can also choose k > N to increase pc
beyond those depicted in Figure 12, all the way to pc ≈ 1.

However, for such a configuration, the prune step becomes

excessive, both for RAND and LRU. It will require a large

number of non-aggressive iterations to avoid shrinking k′ too

fast (cf. Appendix A), followed by many aggressive iterations

until there are no more self-evictions. As a result, the cache

accesses needed to terminate the prune step are significant.

D. Known-Plaintext AES T-Tables Attack

We implement the ”One-Round Attack” proposed by Osvik

et al. [35]. Because their work already describes the attack

in detail, we only add a high-level overview here and discuss

implications for our cache model.

In the T-tables implementation of 128-bit AES, each of the

first 9 rounds accesses all 4 T-tables 4 times each. Per round,

one access is made for each key byte and plaintext byte pair

(a) RAND (P = 16)

(b) LRU (P = 2)

(c) LRU (P = 4)

Fig. 12: Catching probabilities for cached and uncached targets in theory and
practice. Experimental results obtained from simulating a standalone 8MB
randomized cache (nw =16, b=13), averaged over 105 runs. The prune

step becomes aggressive from the sixth iteration, if not already terminated.

pi ⊕ ki to table Tj , j ≡ i mod 4, i ∈ [0..15]. T-tables consist

of 256 entries of 4 bytes each, but as cache lines are typically

64 bytes in size, we can consider them arrays of 16 entries

each, addressed by the upper nibble of pi ⊕ ki. Thus entries

Tj [⌈pi⊕ ki⌉4] will always be accessed in round 1, while other

entries may be accessed in later rounds. This produces the

statistical difference we exploit.

We construct a matrix M of 16× 16 bins, where columns

represent the key byte position i, and rows the upper key nibble

candidate ⌈ki⌉4. Because of the table association mentioned

before, table Tj produces columns M∗,i. We now measure

accesses to our probe sets Aj,l, l ∈ [0..15] for all 16 addresses

of each table, and simply add the resulting amount of misses

key byte ki

k
ey

n
ib

b
le

ca
n

d
id

at
e

Fig. 13: Result of the AES T-tables attack. Columns normed to the highest
value. The partial key can be read from left to right by the darkest field in
each column. Pictured: Key=0x00102030405060708090a0b0c0d0e0f0

from each probe set to a bin for each plaintext byte: M [l ⊕
pi, i] += misses(Aj,l). The key nibbles are now the highest

value in each column. Depending on the size and quality of

the probe sets, this takes several thousand random plaintexts.

Figure 13 shows the matrix for a successful attack.

The noteworthy part for our attack is that, for uniformly

distributed random plaintexts, each table address contributes

equally to each bin in the appropriate columns of M . For this

reason, this attack absorbs differences in probe set sizes.

	Introduction
	Background
	Caches and Cache Hierarchies
	Cache Attacks
	Randomized Cache Architectures
	Table-based architectures
	Computation-based architectures
	Cache partitions
	Rekeying
	Security analysis

	Generic Randomized Cache Model
	Randomization-based Protected Cache Model
	Generic model
	Instantiating Caches
	Software Simulator

	Attacker Models

	Exploiting Contention on Randomized Caches
	Generalizing Eviction
	Full congruence
	Partial congruence
	Eviction probability

	Generalizing Attacker Objectives

	Constructing Generalized Eviction Sets
	Generic Prime+Prune+Probe
	Prime+Prune+Probe
	Penalty for being cached

	Catching Probability pc
	Target is not cached (pc,n)
	Target is cached (pc,c)

	Optimizations for Prime+Prune+Probe
	Optimizing for total cache accesses
	Burst Accesses
	Bootstrapping

	Optimizing for victim invocations
	Optimizing Step 2 for RAND
	Optimizing Step 2 for LRU
	Flexibility of the Framework

	Evaluation of profiling strategies
	Influence of randomized cache instance
	Sets, ways and partitions
	Rekeying period

	Lifting Idealizing Assumptions
	Multiple Victim Accesses
	Implementation
	End-to-end Attack on AES T-Tables

	Influence of Noise
	Infrequent victim events

	Shortcut Attacks
	Low-Latency Block Cipher in Ceaser(-S)
	Constructing and Using the Shortcut
	-Propagation
	Shortcut Equation
	Implications
	Extension to Ceaser-S
	Mitigation

	Discussion
	Prime+Prune+Probe on specific designs
	Single-partition caches
	Ceaser-S
	ScatterCache
	Shortcuts

	Future Work

	Conclusion
	References
	Appendix
	Relation between k. k' and mpr
	Penalty for a cached target
	Random replacement
	Least recently used (LRU)

	Theoretical vs. experimental catching probabilities
	Known-Plaintext AES T-Tables Attack

