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ABSTRACT 

In digital holography, holograms are recorded by a CCD-array, and the complex amplitude of the object wave is 
numerically reconstructed via computer. For different recording conditions and different properties of objects, different 
reconstruction algorithms are required. The conventional reconstruction algorithms were conceived directly by replacing 
the diffraction integral with summation. Each method has its limitation in the valid range for correctly calculating the 
diffraction integral. The Single Fourier Transform method is valid for far Fresnel zone hologram, whereas the 
convolution method is appropriate for near Fresnel holograms. Here, we present a general reconstruction model from 
the perspective of “Generalized sampling theory”. Given that the function space in which the unknown complex 
amplitude lies, an approximation of the continuous complex amplitude at the CCD can be synthesized from a set of 
basis functions with the recorded samples as weights. Back-propagation of the approximated complex amplitude to the 
original object plane yields an expression relating the continuous complex amplitude of the object with the recorded 
samples. By adopting different basis functions and different formulas for describing the diffraction process, an optimal 
reconstruction algorithm can be developed for various recording conditions and different diffraction characteristics of 
the object. Contrary to the conventional algorithms where values are available only at specific grid, complex amplitude 
at any position of the object can be obtained using this model. In addition, the effect due to the non-zero fill factor of the 
CCD can also be incorporated into the reconstruction algorithm to be further compensated by over-weighting the high 
frequency components. Two basis functions: Dirac delta- and Sinc-, are studied in detail. 
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1. INTRODUCTION 

In digital holography, the reconstruction algorithm plays a core role. After the first demonstration of the reconstruction 
of hologram via computer, many works on the design of reconstruction algorithm have been reported [1, 2]. Although 
these algorithms are useful, they have limitation in valid range for correctly reconstructing image. The Single Fourier 
transform algorithm [1] is valid for far Fresnel zone holograms, whereas, the convolution method [2] is appropriate for 
near Fresnel zone holograms. In principle, the performance of reconstruction algorithm depends on the specifications of 
image acquisition device, the diffraction characteristics of the object under investigation, and the geometry of recording 
setup (esp. the distance of object to the CCD). When the object is far away from the CCD, then what is recorded is more 
or less the spectrum of the complex amplitude of the object. In contrast, if the object is close to the CCD, then the 
acquisition is nearly done on the complex amplitude of object itself. If digital holography is thought of as an imaging 
technique, it exhibits, with different recording distance, the evolution process from transformed domain imaging to 
direct imaging. In the recording process, the continuous optical signal is digitalized by the CCD. According to the 
sampling theory, the reconstruction of the original signal from the recorded samples is accompanied by a reconstruction 
basis function. In the case of band-limited object complex amplitude, the reconstruction basis function can be a sinc 
function. Generally, in order to give the best representation of the optical signal, different basis function is required. 
However, the conventional reconstruction algorithms are developed metaphysically whose reconstruction basis function 
implicitly adopted is a Delta function as shown in Section 4. The constant Delta reconstruction basis function is not 
adaptable to practical situations and this can partially account for the limited performance of the existing algorithms. In 
this paper, we aim at presenting a general model for the design of reconstruction algorithm.  
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2. MODEL FOR NUMERICAL RECONSTRUCTION 

As a prerequisite of accurate reconstruction of digital holograms, we need a model that faithfully describes the recording 
process. For the sake of brevity, we limit ourselves to the 1-D case. The extension to 2-D is straightforward.  

Let Uo(xo) be the complex amplitude of an object wavefront, h(x,xo) be the impulse response of free space propagation 
from the object plane to the hologram plane, then the complex amplitude in the hologram plane U(x) can be written as 

∫
∞

∞−
= oooo dxxxhxUxU ),()()( .      (2.1) 

Denote the complex amplitude of reference beam by UR(x), and then the incident wavefront on the CCD is  

)()()( xUxUxU Rtotal += .     (2.2) 

Here we assume that the difference of light path between the object and the reference is within the coherence length of 
the laser used, and the reference and the object beams have the same polarization direction. The readouts of CCD are the 
integrated intensity of light over each pixel. Denote the pixel aperture of CCD as ϕ(x). The integrated intensities are 
given by 
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with  

)()()()( * xxUxUxU RAV ϕ⊗= .     (2.4) 

Symbols ⊗  and ∗  stand for convolution and complex conjugation operations. The convolution leads to a high signal to 
noise ratio for low spatial frequency fringes since the phase of diffracted object field are nearly the same over one pixel. 
However, the phase change within a pixel aperture cannot be ignored for high spatial frequency fringes. The integration 
will average out the detail information of the object diffracted field. This kind of low-pass filtering effect will be 
discussed in detail in Section 3.2. The hologram discretization process is described as 

)(][ xmImI ∆= , with m=0, 1… N - 1.    (2.5) 

where I[m] is the recorded hologram samples, N is the number of pixels of CCD, and ∆x is the CCD pixel pitch. By use 
of the phase-shifting algorithm, we can derive complex amplitude from intensities [3]. Given four holograms, for 
example, we have 

4/])}[][(][][{][ 2/32/0 mImIimImImUAV πππ −+−=    (2.6) 

where 

)(][ xmUmU AVAV ∆=       (2.7) 

are samples of the averaged wavefront. In order to reconstruct the wavefront of object, it is necessary to represent the 
continuous diffracted field with the derived N samples UAV[m]. According to the generalized sampling theory, a 
reconstruction of the continuous wavefront can be expressed as  
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where ψ(x) is a reconstruction basis function. For band-limited complex amplitude, it should be the sinc function. 
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Generally, the selection of the basis function is based on some pre-knowledge about the object complex amplitude. It is 
important to notice that, for a given reconstruction basis function, the signal that can be described by the finite 
samplings are limited, many signals are undistinguishable. Denote  

)()()(ˆ * xUxUxU R=      (2.9) 

then its reconstruction can be written as  
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where ϕr(x) is a deconvolution kernel for compensating for the blurring due to ϕ(x). If it fulfills the following equation 
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the effect due to the non-zero fill factor of CCD is completely compensated. Where δ(x) is the Dirac delta function. 
Finally, the reconstructed object wavefront is expressed as 

 

∫ ∫∑

∫
∞

∞−

∞

∞−

−

=

∞

∞−

−−=

=

dxduuxmxuxUxXgmU

dxxUxXgxUXU

r

R

N

m
AV

R

r

I

)()/()(/),(][

)(/),()(ˆ)(

*
1

0

*

ϕ∆ψ
  (2.12) 

where g(X, x) is the impulse response of back propagation from the hologram plane to the image plane. In order to get a 
focused image, it should fulfill the relationship 
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Equation (2.12) is the general formula for the design of reconstruction algorithm. Based on the generalized development, 
we study some practical cases. 

3. FOURIER HOLOGRAM 

In digital holography, Fourier holograms are usually recorded in a lensless setup [4]. In this setup, a reference point light 
source is put at a location with the same distance to the CCD as the object. Therefore, we have 
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where zo is the recording distance. Let 
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to fulfill (2.13).  
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3.1  Neglecting the effect due to CCD pixel aperture 

Assume that the CCD has a negligible fill factor. Then, the pixel aperture can be represented as a Dirac impulse function 
mathematically. Accordingly, the deconvolution kernel is also a Dirac impulse function.  

)()()( xxx r δϕϕ ==       (3.4) 

A. ψ(x) takes the form of δ(x)  

First, we assume that the reconstruction basis function is a Dirac function.  

)()( xx δψ =       (3.5) 

Substitution of equations (3.1- 3.5) into (2.12) yields 
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If the reconstruction distance differs from the recording distance, the chirp term in the last expression of (3.6) will 
change the phase of diffracted object field. The formula can be used to evaluate the influence of defocusing on the 
reconstruction. When zr=zo, Eq. (3.6) reduces to 
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Assume that the pixel spacing in the reconstruction is given by 
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z
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we arrive at the conventional Fourier transform formula that is used in the literature for the reconstruction of Fourier 
Hologram [4]. 
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Generally, if values at a different grid are of interest, one can implement the summation in (3.7) through convolution. 
Denote the coordinate of reconstruction samples as n∆X, where ∆X is the desired reconstruction pixel spacing, and 
introduce another variable α=∆X∆x/(λzr) for conciseness, then Eq. (3.7) can be rewritten as 
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where a nonsignificant constant has been dropped. The last expression in (3.10) is a linear convolution of a chirp 
sequence with the product of the measured samples and another chirp sequence. The linear convolution can be 
calculated via FFT [5].  

B. ψ(x) takes the form of Sinc(x)  

Under the previous assumptions, an explicit expression for UAV(x) is given by 
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hence UAV(x) and the product Uo(x)exp[-iπx2/(λzo)] constitute a Fourier transform pair. In practice, the object has a finite 
extent. Therefore, wavefront UAV(x) is a band-limited signal. According to Shannon sampling theory, if we choose  

xxxx ππψ /)sin()sinc()( == ,    (3.12) 

the continuous wavefront UAV(x) can be reconstructed from its samples without aliasing distortion. Now, (2.12) becomes 
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and when the reconstruction is in focus, we have  
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where rect(⋅) stands for a rectangle function defined as  
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Equation (3.14) explicitly shows that the reconstructed image is confined within a closed range. When the pixel spacing 
of reconstruction is set as (3.8), the N reconstructed samples just fill this range. For other selections of the reconstruction 
pixel spacing, only samples within the range are valid. As far as we know, this point has not been clearly pointed out in 
literature. 

3.2  Rectangular pixel aperture of CCD 

In the previous discussion, we assume that the CCD has a negligible fill factor of its pixel aperture. In practice, however, 
most CCD has a large pixel size in order to achieve high sensitivity. For example, the CCD camera used in our 
experiment (Hammamatsu ORCA-ER) has a fill factor nearly equal to 100%. Here we assume a rectangular CCD pixel 
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aperture which agrees with typical specification of actual devices.  

 








∆
=

x

x
x

τ
ϕ rect)(       (3.16) 

where τ, 0 ≤ τ ≤ 1, is a fill factor. Then  
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As we have mentioned above, the integration term in (3.17) has band-limited spectrum. According to the convolution 
theorem, the wavefront UAV(x) has also a band-limited spectrum. Therefore, the optimal reconstruction basis function 
should be the sinc function. Thus, (2.12) becomes 

dudx
x

xmux

z

Xx
i

zz

zzx
iumU

z

X
i

dxduum
x

ux

z

x
i

z

xX
imUXU

ror

ro
N

m

r
AV

r

N

m

r

or
AVI

∫∑ ∫

∑ ∫ ∫
∞

∞−

−

=

∞

∞−

−

=

∞

∞−

∞

∞−










∆
∆−−









−







 −








=








 −
∆
−









−







 −=

sinc
2

exp
)(

exp)(][exp

)(sincexp
)(

exp][)(

21

0

2

1

0

22

λ
π

λ
πϕ

λ
π

ϕ
λ
π

λ
π

  (3.18) 

At the focused plane, Eq. (3.18) reduces to  
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with  
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Taking consideration of (2.11) and (3.16), (3.20) is expressed explicitly as  
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Thus, the effect due to non-zero fill factor of CCD can 
be compensated by dividing a sinc function after 
reconstruction. The numerical calculation of (3.19) 
can follow the same procedure as used in the 
derivation obtaining (3.9) and (3.10). In comparison 
with conventional algorithm, Eq. (3.19) is a more 
accurate reconstruction formula for the Fourier digital 
hologram. For the typical values τ = 1, ∆x = 6.45 µm, 
λ = 632.8 nm, and zr = 150 mm, function Φ(X) is 
shown in Fig. 1. 

 
 
 

Fig.1. Plot of correction function Φ(X).        

4. FRESNEL HOLOGRAM 
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In Section 3, we addressed the reconstruction of Fourier holograms. The derived formula (3.19) gives a more accurate 
reconstruction. In practice, however, more frequently, a plane wave normally incident onto the CCD is used as reference 
beam, which results in the so-called Fresnel hologram. In this section, we discuss the reconstruction of Fresnel 
hologram. The formulae for h(x, xo) and g(X, x) are still the same as (3.1) and (3.3). Assume that the CCD performs 
ideal point sampling. Thus, the aperture of CCD may be represented as a Dirac delta function. According to (2.11), the 
deconvolution kernel also has the same form. 

)()()( xxx r δϕϕ ==       (4.1) 

4.1  ψ(x) takes the form of δ(x)  

Assume that the reconstruction basis function is a Dirac delta function  
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Carrying out all substitutions and derivations as before, (2.12) reduces to 
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Equation (4.3) is similar to the conventional discrete form of Fresnel integral except that the variable X can take 
continuous values. If the pixel spacing ∆X equals to the CCD pitch ∆x, (4.3) becomes 
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where β=∆x/(λzr)
1/2. Equation (4.4) is a linear convolution with respect to m and n, and can be calculated through 

circular convolution that is then implemented via FFT. Assume that the number of reconstructed samples is M, then the 
computational complexity is 2(M+N-1)log(M+N-1). The artifacts arising from the truncation of hologram can be 
handled more flexibly. For example, mirror extension of holograms usually gives better results. Since M can be larger 
than N, we can reconstruct object even larger than CCDs. If the pixel spacing is equal to 
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By calculating the linear convolution of length rN by means of FFT, and then picking up elements per r samples from 
the results, we can obtain the complex amplitude of object at a lattice with spacing r∆x. When the pixel spacing has 
value 
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Eq. (4.3) becomes 
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When M=N, equation (4.9) is exactly the Single Fourier transform algorithm. If M > N, in order to utilize the FFT 
algorithm, we need to pad UAV[m] to M elements with zeros. This operation will lead to an interpolated reconstruction. 

4.2 ψ(x) takes the form of sinc function. 

For the same reason as pointed out in Section 3, the assumption ψ(x)=δ(x) is too ideal and impractical. Referring to the 
Fresnel integral, the Fourier spectrum of the diffracted filed is the convolution between the object complex amplitude 
Uo(xo) and a chirp function (see Eq. (3.11)). In practice, the object has a finite extent. The convolution also has a 
concentrated power spectrum when the object is located at far Fresnel zone. Therefore, it is reasonable to assume that 
U(x) is a band-limited signal although it may not be exactly accurate. Therefore, we have  
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with a kernel DR(x) that is represented by 
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where, C1 is a constant factor. S(x) and C(x) are Fresnel integral functions defined as 
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If we choose the pixel spacing in reconstruction the same as the pixel pitch of CCD, then  
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with 
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where, some nonsignificant constant has been dropped. Equation (4.15) is also linear discrete convolution. Figure 2 
gives the plots of DR[n]. The values of β are in accordance with the experimental conditions: the pixel pitch of CCD 
6.45 µm, the wavelength 0.6328 µm and the reconstruction distances 15 mm. 
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Fig. 2 (a) amplitude and (b) phase of DR[n] with β2=6.452/(0.6328*15e3). 

From Fig. 2, one can see that DR[n] has a dominant value for a closed range of n. The range can be estimated as [-1/β2, 
1/β2]=[-λz/∆x2, λz/∆x2]. The differences between (4.15) and (4.4) are: (a) impact of boundary effects. In (4.4) the length 
of kernel sequence is always the same as the number of CCD pixels, however, it depends on the recordings parameters 
in (4.15); (b) the phase of kernel DR[n] may lead to a more accurate reconstructed phase map. Figure 3 shows the 
reconstruction results of holograms recorded at a distance 59 mm. Other experiment conditions are the same as before. 
For comparison, we also show the reconstruction by the conventional convolution algorithm in Fig 4. 

 

Fig.3. Reconstruction based on the general model with a sinc 
basis function and Fresnel diffraction formula. 

 

Fig.4. Reconstruction with convolution algorithm.

It is obvious that Fig. 3 have a better image quality than Fig. 4 in which aliasing effect is observable.  

5. CONCLUSIOIN 

In this paper, we have proposed a general model for the design of reconstruction algorithm. This model finds its 
foundation in the broad sense sampling theory. By adopting a basis function that provides the best match with the 
diffraction performance of the object and a proper formula for describing the diffraction process, optimal reconstruction 
algorithm can be developed for a certain system. Furthermore, compensation methods for the averaging effect due to 
non-zero fill factor of an image acquisition device can be integrated into this model as well. Several cases of the basis 
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function are given. When a Dirac delta function is taken as the basis function, the model leads to an algorithm similar to 
the conventional algorithms, but now it is applicable to objects larger than the image acquisition device and can obtain 
reconstruction at arbitrary lattice. The reconstruction from real hologram data shows that results obtained based on this 
model are better than previous methods. Finally, we believe that the general unifying view of reconstruction is 
beneficial because it offers a common framework for understanding different imaging techniques: direct imaging and 
transformed imaging. [6] 
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