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ABSTRACT

In digital holography, holograms are recorded by a CCD-array, and the complex amplitude of the object wave is
numerically reconstructed via computer. For different recording conditions and different properties of objects, different
reconstruction algorithms are required. The conventional reconstruction algorithms were conceived directly by replacing
the diffraction integral with summation. Each method has its limitation in the valid range for correctly calculating the
diffraction integral. The Single Fourier Transform method is valid for far Fresnd zone hologram, whereas the
convolution method is appropriate for near Fresnel holograms. Here, we present a general reconstruction model from
the perspective of “Generalized sampling theory”. Given that the function space in which the unknown complex
amplitude lies, an approximation of the continuous complex amplitude at the CCD can be synthesized from a set of
basis functions with the recorded samples as weights. Back-propagation of the approximated complex amplitude to the
original object plane yields an expression rdating the continuous complex amplitude of the object with the recorded
samples. By adopting different basis functions and different formulas for describing the diffraction process, an optimal
reconstruction algorithm can be developed for various recording conditions and different diffraction characteristics of
the object. Contrary to the conventional algorithms where values are available only at specific grid, complex amplitude
at any position of the object can be obtained using this model. In addition, the effect due to the non-zero fill factor of the
CCD can aso be incorporated into the reconstruction algorithm to be further compensated by over-weighting the high
frequency components. Two basis functions: Dirac delta- and Sinc-, are studied in detail.
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1. INTRODUCTION

In digital holography, the reconstruction algorithm plays a core role. After the first demonstration of the reconstruction
of hologram via computer, many works on the design of reconstruction algorithm have been reported [1, 2]. Although
these algorithms are useful, they have limitation in valid range for correctly reconstructing image. The Single Fourier
transform algorithm [1] is valid for far Fresnel zone holograms, whereas, the convolution method [2] is appropriate for
near Fresnel zone holograms. In principle, the performance of reconstruction algorithm depends on the specifications of
image acquisition device, the diffraction characteristics of the object under investigation, and the geometry of recording
setup (esp. the distance of object to the CCD). When the object is far away from the CCD, then what isrecorded is more
or less the spectrum of the complex amplitude of the object. In contrast, if the object is close to the CCD, then the
acquisition is nearly done on the complex amplitude of object itself. If digital holography is thought of as an imaging
technique, it exhibits, with different recording distance, the evolution process from transformed domain imaging to
direct imaging. In the recording process, the continuous optical signa is digitalized by the CCD. According to the
sampling theory, the reconstruction of the original signal from the recorded samplesis accompanied by a reconstruction
basis function. In the case of band-limited object complex amplitude, the reconstruction basis function can be a sinc
function. Generally, in order to give the best representation of the optical signa, different basis function is required.
However, the conventional reconstruction agorithms are devel oped metaphysically whose reconstruction basis function
implicitly adopted is a Delta function as shown in Section 4. The constant Delta reconstruction basis function is not
adaptable to practical situations and this can partially account for the limited performance of the existing agorithms. In
this paper, we aim at presenting ageneral model for the design of reconstruction a gorithm.
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2. MODEL FOR NUMERICAL RECONSTRUCTION

Asa prerequisite of accurate reconstruction of digita holograms, we need amode that faithfully describes the recording
process. For the sake of brevity, we limit ourselves to the 1-D case. The extenson to 2-D is straightforward.

Let Uy(X,) be the complex amplitude of an object wavefront, h(x,x,) be the impulse response of free space propagation
from the object planeto the hologram plane, then the complex amplitude in the hologram plane U(x) can be written as

U (x) = [ U, (x,)h(xx,)dx, - (21)
Denote the complex amplitude of reference beam by Ug(x), and then the incident wavefront on the CCD is

U, (X)=U(x)+U.(X)- (2.2
Here we assume that the difference of light path between the object and the reference is within the coherence length of
the laser used, and the reference and the object beams have the same polarization direction. The readouts of CCD are the

integrated intensity of light over each pixel. Denote the pixel aperture of CCD as ¢(X). The integrated intensities are
given by

2 2 2 R
(%) = Uy (9 009 = U +UF [0 90 +U o (04U, (9, 23)
with

U, (0 =U0U, () 04X (2.4)
Symbols O and Ostand for convolution and complex conjugation operations. The convolution leads to a high signa to
noiseratio for low spatial frequency fringes since the phase of diffracted object field are nearly the same over one pixel.
However, the phase change within a pixd aperture cannot be ignored for high spatia frequency fringes. The integration
will average out the detail information of the object diffracted field. This kind of low-pass filtering effect will be

discussed in detail in Section 3.2. The hologram discretization process is described as
[[m] =1 (mAX), with m=0, 1... N - 1. (2.5)
where I[m] is the recorded hologram samples, N isthe number of pixels of CCD, and Ax isthe CCD pixel pitch. By use

of the phase-shifting agorithm, we can derive complex amplitude from intensities [3]. Given four holograms, for
example, we have

U, I ={1[ml =1 [ +i(1, (] -1, [}/ 4 6
where
U, [m=U, (mdx) 2.7)

are samples of the averaged wavefront. In order to reconstruct the wavefront of object, it is necessary to represent the
continuous diffracted field with the derived N samples Ua[m]. According to the generalized sampling theory, a
reconstruction of the continuous wavefront can be expressed as

U'w (X)=3 U [mlg(x/ p, -m). (28)

where ¢(X) is a reconstruction basis function. For band-limited complex amplitude, it should be the sinc function.
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Generally, the selection of the basis function is based on some pre-knowledge about the object complex amplitude. It is
important to notice that, for a given reconstruction basis function, the signa that can be described by the finite
samplings are limited, many signals are undistinguishable. Denote

U(x)=U XU, () (2.9)
then its reconstruction can be written as
U9 = [ U (U)g" (x—u)du = fu wIM[ @l py = m)g" (x-u)du, (2.10)

where ¢/ (x) is a deconvolution kernel for compensating for the blurring due to ¢(x). If it fulfillsthe following equation
[ #(x-u)g' (u)du = (x), 2.11)

the effect due to the non-zero fill factor of CCD is completely compensated. Where ) is the Dirac delta function.
Finally, the reconstructed object wavefront is expressed as

U, (X)=[ U (0)g(X,%) /U, (x)dx

= NZ_:lU Av[rn]_‘._m:,o g(X,X)/U R*(X)J._Zl//(U/AX— [’n)¢r (X—u)dudx

(2.12)

where g(X, x) isthe impulse response of back propagation from the hologram plane to the image plane. In order to get a
focused image, it should fulfill therelationship

[ a(X, [ U, (x,)h(x, x,)dx,dx =U,(X). (2.13)

Equation (2.12) isthe general formula for the design of reconstruction algorithm. Based on the generalized development,
we study some practical cases.

3. FOURIER HOLOGRAM

In digital holography, Fourier holograms are usually recorded in alendess setup [4]. In this setup, areference point light
source is put a alocation with the same distance to the CCD as the object. Therefore, we have

h(x,x,) = exp[— [ ”(x—xo)]’ (3.1
Az,
and
U.(x) = exp[— i 775(] (3.2)
Az,
where z, isthe recording distance. Let
g(X,x) = exp[i n(X—X)] (3.3
Az,

to fulfill (2.13).
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3.1 Neglecting the effect due to CCD pixel aperture

Assume that the CCD has a negligible fill factor. Then, the pixel aperture can be represented as a Dirac impul se function
mathematically. Accordingly, the deconvolution kernel is also a Dirac impulse function.

P(x)=¢"(x)=9(%) (3.4)
A. WUX) takesthe form of Qx)

First, we assume that the reconstruction basis function is a Dirac function.

P(x)=93(x) (3.5)

Substitution of equations (3.1- 3.5) into (2.12) yields

U,(X)= :zZU Av[m]fw@(p[i ﬂ“;;()zjexp[— i ;75(22]]2 o(u/ Ax — m)o(x — u)dudx

2 — 2 (3.6)
_ XS - : . 27XX K (2,-Z)
= exp[m/]l ];U LMl O(x/ Ax—m) exp[ |Tzr ]exp[l Tz ]dx

_ . X\ N XAx . m(mAx)*(z, - z,)
—Axexp[lﬂ/]z ];U L] exp[ i2rm iz ]exp[l M2z ]

If the recongtruction distance differs from the recording distance, the chirp term in the last expression of (3.6) will
change the phase of diffracted object field. The formula can be used to evaluate the influence of defocusing on the
reconstruction. When z=z,, Eq. (3.6) reducesto

D GRLE . XAx
U, (X) = xexp im=— YU, [mexp —i27m==|- (3.7)
((X) p{ /]ZJ; LMl p{ /]ZJ
Assume that the pixel spacing in the reconstruction is given by
AX:Ai- (3.8
NAx

we arrive at the conventional Fourier transform formula that is used in the literature for the reconstruction of Fourier
Hologram [4].

B B ., Az & . 2m
U,[n] =U, (nAX) —exp{nn (NAx)ijZ:oUAV[m]eXp( i

”], n=01.N-1. (39
Generally, if values at a different grid are of interest, one can implement the summation in (3.7) through convolution.
Denote the coordinate of reconstruction samples as n4X, where AX is the desired reconstruction pixel spacing, and
introduce another variable a=AXAx/(Az) for conciseness, then Eq. (3.7) can berewritten as

U,[n]= exp(i ﬂ(nﬁX)Z ]Nfu avLMlexp(—i 27mna)

T m=0

- exp(i n(”ﬁi)z ]Nzlu - [mlexp{i 78l (m—-n)? —m? - n?]} (310)

v

Az

T m=0

= exp(i HM] exp(-i nanZ)NZ_:lU A [M]exp(—i r/am?) exp[i 7a(n—m)?]
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where a nonsignificant constant has been dropped. The last expression in (3.10) is a linear convolution of a chirp
sequence with the product of the measured samples and another chirp sequence. The linear convolution can be
calculated via FFT [5].

B. WUX) takesthe form of Sinc(x)

Under the previous assumptions, an explicit expression for Ua/(X) is given by

(X=%,)°
U,y U (XU —|u -
() =U(XUj () = ap[m Zojj (xo)e«p[ e jxo

, (3.11)
_ X% o XX
_LUO(XO)@(p[ IIT—/] j@(p[lZ/T/1 jdxo.

hence Ua(X) and the product Uo(X)exp[-i 7&%(Az,)] constitute a Fourier transform pair. In practice, the object has afinite
extent. Therefore, wavefront Ua/(X) isa band-limited signal. According to Shannon sampling theory, if we choose

Y (x) =sinc(x) =sin(7x) / 7K, (312
the continuous wavefront Uay(X) can be reconstructed from its samples without aliasing distortion. Now, (2.12) becomes

(X =%’
Az,

U, (X) = YU, j_"‘;ap[in

_ i X (2, - 7,) _ 2mXx
_e(p{lﬂ)lermonAV[m]j sinc(x/ Ax - m)e(p{ oz je(p( = de

T

Je(p{— i mzjr sinc(u/Ax — m)d(x — u)dudx
Az, )= (3.13)

and when the reconstruction isin focus, we have

U (X)= exp[|nX2]§U [m]j sinc(x/ Ax — m)exp[—lzzo(]dx

T

5 (3.19)
X = mx4x) 27Xu
_e><p[|ﬂ/];]ZUAv[m]e>(p[—|2ﬂA;]j smc(u/Ax)exp[—l i ]du

i . X? XX\t o mMXAX)
—Axap[lﬂ)la]rect[)z]mguw[m]@(p[ |2777)IZ ]

T

where rect(D)] stands for a rectangle function defined as

1
Z_X_Z

1
rect(x) = 3.15
) {0 otherwise (319

Equation (3.14) explicitly shows that the reconstructed image is confined within a closed range. When the pixel spacing
of reconstruction is set as (3.8), the N reconstructed samples just fill thisrange. For other selections of the reconstruction
pixel spacing, only samples within the range are valid. As far as we know, this point has not been clearly pointed out in
literature.

3.2 Rectangular pixel aperture of CCD
In the previous discussion, we assume that the CCD has a negligible fill factor of its pixel aperture. In practice, however,

most CCD has a large pixel size in order to achieve high sengitivity. For example, the CCD camera used in our
experiment (Hammamatsu ORCA-ER) has a fill factor nearly equal to 100%. Here we assume a rectangular CCD pixel
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aperture which agrees with typical specification of actua devices.

_ X
P(x) = rect[Ej (3.16)

where 7, 0< 7< 1, isafill factor. Then

U (0 ={U (U (0} 0 #(x) =(x) O juo(xo)exp[ i ]exp[

0

]d)(0 (3.17)

0

As we have mentioned above, the integration term in (3.17) has band-limited spectrum. According to the convolution
theorem, the wavefront Ua/(X) has aso a band-limited spectrum. Therefore, the optimal reconstruction basis function
should be the sinc function. Thus, (2.12) becomes

Nt o (. (X=%)? N A r
U, (X) = ;}u W[ exp[l n(X)J exp[— i ”"J j_wsnc[u - mj¢ (u)dudx a18)
—exp[ln JZUA\,[m]J‘ ¢ (u)J‘ exp[ (rzoz)jexp[—i Zz(xjsinc[x_uA;mxjdxdu

m=0 r

At thefocused plane, Eg. (3.18) reducesto

0,00 =eef i S0, ] ¢ e 1225 and X~ o

T m=0 (3.19)
X? XAx 27XmAX
=eX — |Rect D(X) > U, [mexp -
o i ] 22000310, e -1 25|

with

®(X) = j ¢ (u)e(p(—ldeu (3.20)
Taking congderation of (2.11) and (3.16), (3.20) isexpressed explicitly as

-1
®(X) = r P(u)exp| —i 270014 = | maxsind 22X x (3.21)
o Az, Az,
Thus, the effect due to non-zero fill factor of CCD can >
be compensated by dividing a sinc function after
reconstruction. The numerical caculaion of (3.19) at
can follow the same procedure as used in the AZ IAX
derivation obtaining (3.9) and (3.10). In comparison . ' ~ AZ /A
with conventional agorithm, Eg. (3.19) is a more X 3
accurate reconstruction formula for the Fourier digital ¥
hologram. For the typical values 7= 1, Ax = 6.45 um,
A= 6328 nm, and z = 150 mm, function @&(X) is 21
shown in Fig. 1.
bo 10 0 10 20

Object size X (mm)
Fig.1. Plot of correction function @(X).

4. FRESNEL HOLOGRAM
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In Section 3, we addressed the reconstruction of Fourier holograms. The derived formula (3.19) gives a more accurate
reconstruction. In practice, however, more frequently, a plane wave normaly incident onto the CCD is used asreference
beam, which results in the so-called Fresnel hologram. In this section, we discuss the reconstruction of Fresne
hologram. The formulae for h(x, X,) and g(X, x) are still the same as (3.1) and (3.3). Assume that the CCD performs
ideal point sampling. Thus, the aperture of CCD may be represented as a Dirac delta function. According to (2.11), the
deconvolution kernel aso has the same form.

$() =¢"(x) =3(x) (4.1)
4.1 WUX) takesthe form of Qx)

Assume that the reconstruction basis function is a Dirac delta function

@(x) =9d(x) (4.2)
Carrying out al substitutions and derivations as before, (2.12) reducesto
N-1 _ 2
U, (X) :ZuAv[m]a(p@n(xAZMJ (4.3)
m=0 r

Equation (4.3) is similar to the conventiona discrete form of Fresnd integra except that the variable X can take
continuous values. If the pixel spacing AX equalsto the CCD pitch 4x, (4.3) becomes

u,[n] = Nz_luAv[m]exp[mﬁf(n—m)Z] = S0 Imlexp(i 7 (n-m)?} (4.4)

where B=Ax/(Az)". Equation (4.4) is a linear convolution with respect to m and n, and can be calculated through
circular convolution that is then implemented via FFT. Assume that the number of reconstructed samplesis M, then the
computational complexity is 2(M+N-1)log(M+N-1). The artifacts arising from the truncation of hologram can be
handled more flexibly. For example, mirror extenson of holograms usually gives better results. Since M can be larger
than N, we can reconstruct object even larger than CCDs. If the pixe spacing isequal to

AX =rAx, (rOZ%), (4.5)
(4.3) becomes
N-1 AXZ rN-1 AXZ
U,[n] =Y U, [mlexplim——(rn-m)® | = Y U a[mlexp| i7=—(rn-m)? |, (4.6)
m=0 AZF m=0 AZF
where discrete sequence USy[m] is defined as
U,/ [n m=rn
USAV[m] - AV[ ] . ’ (47)
0 otherwise

By calculating the linear convolution of length rN by means of FFT, and then picking up elements per r samples from
the results, we can obtain the complex amplitude of object at a lattice with spacing r4x. When the pixel spacing has
value

ax =% MmN, (4.8)
MAX

Eq. (4.3) becomes

o . _[nAz, I(MAX) — mAX]?
Ul[n]_;)UAv[m]eXp[lﬂ 2 ]

. Az & DX ._mn
= eXPKIH(MAx)Z nzjggu ALl exp(m/]z mZ]exp[— 2i ZTM].

T

(4.9)
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When M=N, equation (4.9) is exactly the Single Fourier transform algorithm. If M > N, in order to utilize the FFT
algorithm, we need to pad Ua,[m] to M elements with zeros. This operation will lead to an interpolated reconstruction.

4.2 YUX) takesthe form of sinc function.

For the same reason as pointed out in Section 3, the assumption ¢(X)=dx) istoo ideal and impractica. Referring to the
Fresnd integral, the Fourier spectrum of the diffracted filed is the convolution between the object complex amplitude
Uo(Xo) and a chirp function (see Eg. (3.11)). In practice, the object has a finite extent. The convolution also has a
concentrated power spectrum when the object is located at far Fresnd zone. Therefore, it is reasonable to assume that
U(x) isa band-limited signal although it may not be exactly accurate. Therefore, we have

() = sinc(x) (4.10)
and then Eq. (2.12) gives
U, (X)= NZ_lu,w[m] jsnc[:x - mjexp[i n(x/]_;)zjdu = Nz_lu [MDR(X - mAx) (4.12)

with akernel DR(x) that isrepresented by

DR(X) = [ sinc(u/ &%) @(p{i (X_u)zjdu
e Az

v

= le rect( fAXx) exp(—i 7z, f %) exp(2i 7xf )df

—c L exp irrx—2 I(i_ﬁ)m expl —i Zu? du (4.12)
t 2z Az, [N 2

o oo el el
gl G

where, C, isaconstant factor. S(x) and C(X) are Fresnel integral functions defined as

S(x) = joxs: n(Zt%)dt (4.13)
and

C(x) = joxcos(gtz)dt. (4.14)
If we choose the pixel spacing in reconstruction the same as the pixel pitch of CCD, then

U, (n) :Nz_luAv[m]DR[n—m]. (4.15)

m=0

with

DR{n] = exp{i 75" H{C (N 2/ f=+/2n) -C(-V2/ -2 )}
-iexp{i mFn*H{S(21 B-2pn) - S(—V21 B-2p)},
where, some nonsignificant constant has been dropped. Equation (4.15) is also linear discrete convolution. Figure 2

gives the plots of DR[n]. The values of £ are in accordance with the experimenta conditions: the pixel pitch of CCD
6.45 1m, the wavel ength 0.6328 1m and the reconstruction distances 15 mm.

(4.16)
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Fig. 2 (a) amplitude and (b) phase of DR[N] with £°=6.45%/(0.6328* 15€3).

From Fig. 2, one can see that DR[| has a dominant value for a closed range of n. The range can be estimated as [-1/4,
VF)=[-A2dDC, AZ K. The differences between (4.15) and (4.4) are: (a) impact of boundary effects. In (4.4) the length
of kernel sequence is always the same as the number of CCD pixels, however, it depends on the recordings parameters
in (4.15); (b) the phase of kernel DR[N] may lead to a more accurate reconstructed phase map. Figure 3 shows the
reconstruction results of holograms recorded at a distance 59 mm. Other experiment conditions are the same as before.
For comparison, we a so show the reconstruction by the conventiona convolution agorithmin Fig 4.

Fig.3. Reconstruction based on the general model with asinc Fig.4. Reconstruction with convol ution algorithm.
basis function and Fresnel diffraction formula.

Itis obviousthat Fig. 3 have a better image qudity than Fig. 4 in which aiasing effect is observable.
5. CONCLUSIOIN

In this paper, we have proposed a genera model for the design of reconstruction algorithm. This moded finds its
foundation in the broad sense sampling theory. By adopting a basis function that provides the best match with the
diffraction performance of the object and a proper formula for describing the diffraction process, optimal reconstruction
algorithm can be developed for a certain system. Furthermore, compensation methods for the averaging effect due to
non-zero fill factor of an image acquisition device can be integrated into this model as well. Several cases of the basis
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function are given. When a Dirac delta function istaken asthe basis function, the model leads to an agorithm similar to
the conventional agorithms, but now it is applicable to objects larger than the image acquisition device and can obtain
reconstruction at arbitrary lattice. The reconstruction from real hologram data shows that results obtained based on this
model are better than previous methods. Finally, we believe that the genera unifying view of reconstruction is
beneficial because it offers a common framework for understanding different imaging techniques: direct imaging and
transformed imaging. [6]
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