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ABSTRACT  
 

The prediction of air pollution levels is critical to enable proper precautions to be taken before and during certain events. 
In this paper a rigorous method of preparing air quality data is proposed to achieve more accurate air pollution prediction 
models based on an artificial neural network (ANN). The models consider the prediction of daily concentrations of various 
ground-level air pollutants, namely CO, PM10, NO, NO2, NOx, SO2, H2S, and O3, which were measured by an ambient air 
quality monitoring station in Ghadafan village, located 700 m downwind of the emissions of Sohar Industrial Port on the 
Al-Batinah coast of Oman. The training of the models is based on the multi-layer perceptron (MLP) method with the 
Back-Propagation (BP) algorithm. The results show very good agreement between the actual and predicted concentrations, 
as the values of the coefficient of multiple determinations (R2) for all ANN models exceeded 0.70. The results also show 
the importance of temperature in the daily variations of O3, SO2, and NOx, whilst the wind speed and wind direction play 
significant roles in the daily variations of NO, CO, NO2, and H2S. PM10 concentrations are influenced by almost all the 
measured meteorological parameters. 
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INTROUDCTION 
 

Atmospheric pollution sourced by industrial activities is 
of a principal concern worldwide. Primary and secondary 
pollutants can be of a main concern to degrade the ambient 
air quality in areas adjacent to the industrial sites and put 
people at risk of daily exposure to them (Baawain et al., 
2007). Such impacts dedicate the importance of ground-
level air pollution forecasting as an effective alarming system 
that would allow time to generate a particular response in the 
case of severe episodes (Bishop, 1995). Moreover, developing 
a satisfactory alarming system is vital to supply the local 
environmental agencies with inputs into decisions regarding 
abatement measures and air quality management.  

Even so, predicting air quality or developing an alarming 
system is not a very simple task due to the fact that 
incomplete or lack of reliable environmental data often come 
across in environmental research. This situation may be a 
result of insufficient sampling, mistakes in measurements 
and obvious mistakes in data acquisition (Junninen et al., 
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2004). Whatever the case, discontinuities in data represent 
an important obstacle for time series proposition schemes 
that are usually need relentless data as a status for satisfactory 
effectiveness (Sahin et al., 2011).  

Therefore, a general modeling approach that can deal 
with discontinuous and noise in data as well as capturing the 
complex interactions within data with satisfactory efficiency 
is necessary for obtaining reliable forecasting outcomes. 
Artificial Neural Network (ANN) models seem to be a 
good choice for the reason that they have been found to 
perform remarkably well in capturing complex interactions 
within the given input parameters (Baawain et al., 2007).  

A review of the available literature illustrated that ANNs 
have been applied successfully to predict the ground-level 
air pollution. Chan and Jian (2013), de Gennaro et al. 
(2013), Cheng et al. (2012), Gobakisa et al. (2011), Kurt 
and Oktay (2010) have shown that neural networks are 
promising tools for air quality prediction in comparison 
with other statistical models like regression-based models. 
Moreover, ANNs, in particular the multilayer perceptron  
(MLP), perform better when dealing with highly non-
linear systems such as the pollution-weather phenomenon 
(Gardner and Dorling, 1998; Abdul-Wahab and Al-Alawi, 
2008). ANNs are capable of predicting pollution episodes 
reasonably well (Gardner and Dorling, 1999; Dutot et al., 
2007; Moustris et al., 2010). In addition, it has been 
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demonstrated that tests using previous lagged concentrations 
as inputs to the model make better ANN predictions when 
compared with models based on no previous lagged 
concentrations (Gardner and Dorling, 1999; Ballester et 
al., 2002; Tecer, 2007; Cai et al., 2009). Furthermore, 
ANN models are glimpsed as promising tools for middle 
long-term forecasts in time scales of days, despite the fact 
that expanding the forecasting period reduces the prediction 
correctness of the models (Moustris et al., 2010).  

However, the successful performance of ANNs is 
immensely affected by the quality of the input data which 
consequently influence the success of the forecasting. 
Considering this, the present study conceived the possibility 
that a more rigorous approach in preparing the data and 
systematic methodology focused on dealing with limitations 
like missing data and noise would provide a better air 
quality prediction using ANN. 

An opportunity arose to test this approach using data 
from a single ambient air quality monitoring point within a 
regional community adjacent to a main new industrial 
complex at Sohar Industrial Port (SIP) on Al-Batinah coast 
of Oman. The study will employ the proposed systematic 
methodology to develop ANN prediction models for daily 
concentration of ground-level pollutants, including CO, 
PM10, NO, NO2, NOx, SO2, H2S, and O3 measured in the 
area adjacent to Sohar Industrial Port.  
 
Artificial Neural Networks  

Artificial Neural Networks are computing systems, 
motivated by biological models, and made up of a number 
of easy and highly interconnected processing components, 
which process information by its dynamic state response to 
external inputs (Nelson and Illingworth, 1991). The 
processing components called neurons are organized into 
inter-connected layers (Nelson and Illingworth, 1991; 
Fausett, 1994; Haykin, 1998). The number of layers in the 
neural network can vary from a single layer to multiple 
layers. The layer that obtains the inputs from the external 
environment is called the input layer. It typically presents 
no function other than the buffering of the input level. The 
network outputs are generated from the output layer. 
Hidden layers, on the other hand are sometimes linked to a 
“black box” within which the input data are mapped into 
outputs utilizing suitable activation function(s).  
 
METHODS  
 
Area Description  

The ambient air quality data used in the study were 

collected by the Ministry for Environment and Climate 
Affairs (MECA) from a typical urban and industrial area 
adjacent to the Port of Sohar. Sohar (24°22′N, 56°45′E) is 
among one of the most rapidly growing cities in Oman 
outside the capital city of Muscat and is located 220 km to 
the North West. The Sohar Industrial Port (SIP) is some 35 
km to the north of the city of Sohar and covers a total area 
of 13.87 km2. The SIP features three major industrial 
clusters namely petrochemicals, base metal processing and 
cargo handling. A cooling water and waste water processing 
and logistic elements have also been built into the port. Most 
of these industries are involved in emitting a variety of air 
pollutants in the surrounding atmosphere like CO, PM10, 
NO, NO2, NOx, SO2, H2S, VOC, HxCx or O3. The area 
around the boundaries of SIP is featured by the follow:  
• Residential areas of more than 4,000 people (2003 census, 

Ministry of National Economy) occur in proximity to the 
south, southeastern and northwestern boundaries of SIP. 
Most of these settlements are located within a distance of 
500 meters from the boundaries of Sohar Industrial Port. 

• Agricultural areas which are confined to a narrow strip 
of 61,500 ha on either sides of the Batinah highway. 
Generally, the agricultural zones do not extend to the 
coastline because of saline water intrusion. Additionally, 
a strip of farm lands approximately 300 meters wide has 
been purchased as a buffer for the industrial area beyond 
which are active farmlands and villages.  

• Seven schools are distributed to the south, southeastern 
and northwestern boundaries of the SIP. A total of 4,600 
students and staff (2010/2011 academic year census) are 
at risk of daily exposure to industrial emissions from 
Sohar Industrial Port.  

• A mangrove system exists approximately 2.5 km to 
northwest of the SIP. It covers an area of 35.2 ha. 
According to Omani Ministry of Environment and Climate 
Affairs (2010), this system is ranked as the twelfth 
largest mangrove system in Oman and one of only four 
notable mangrove sites along the Batinah coast. 

 
Data Collection  

Hourly records of air quality parameters along with 
meteorological parameters were acquired from the Ministry 
of the Environment and Climate Affairs. The data were 
obtained from the Mobile Air Quality Monitoring Station 
(MAQMS) located in Ghadafan village (refer to Fig. 1); 
about 700 m western of the Sohar Industrial Port. The 
Ministry of the Environment and Climate Affairs chose 
that particular sampling site to assess the air quality of the 
nearest residential area located downwind to the emissions

 

 
Fig. 1. Location of ambient air quality monitoring station in relation to Sohar Industrial Port. 
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of the Industrial Port. 
The mobile station was fitted with chemical monitors 

and meteorological sensors. All the sensors were operating 
automatically. Acquired measurements covered a period of 
four years (2006 to 2009), based on hourly averages. 
Pollutants measured include PM10, O3, CO, SO2, H2S, NO, 
NOx, and NO2. Meteorological parameters monitored 
simultaneously including wind direction, wind speed, relative 
humidity and air temperature.  

The hourly data were then processed into daily format 
and used to construct a data series presented as a two-
dimensional table. The columns represent 13 variables 
consisting of date, PM10, O3, CO, SO2, H2S, NO, NOx, 
NO2, wind speed, wind direction, air temperature, and 
relative humidity. The rows of the table refer to observation 
date, which is represented by a day-month-year (DD-MM-
YY) format. The entire table consists of 1363 rows, or 
1363 days of observation.  
 
ANN Model Developments  

This particular study design illustrated the development 
of ANN models into two stages: data preparation and 
model development. The data preparation phase included 
data inspection, selection, and normalization while the 
ANN-model development stage included data division, 
network design, and model validation (see Fig. 2). 
 
Data Preparation  

Preparing data for the neural network data analysis is an 
important and critical step that has an immense impact on 
the success and performance of the neural network results 
(Yu et al., 2006). This study data preparation was started 
by firstly inspecting the data set for missing data and data 
noise (or outliers). The entire data set covered a period 
from 01/01/2006 to 31/12/2009. Data inspection resulted 
in the omission of the period from January–March 2006 
due to instrument malfunction. Additionally, some data 

were missed due to instrument calibrations or malfunctions. 
Rows where errors and/or incomplete information were 
apparent were also entirely removed. The check of missing 
data resulted in a removal of 25.17% of available data. As a 
result, 1020 rows or days of measured observations remained 
to be included in the neural network models. Moreover, data 
inspection included the removal of discrepancies in codes or 
names which left small gaps within the data set. These 
gaps were filled by the linear interpolation method of Gupta 
(1999). Finally, extreme values (outliers or noisy data) were 
removed using the Standardized Score Method, within SPSS 
(Hisham, 2008). These gaps refilled by the linear interpolation 
method as well. Reader is encouraged to use imputation 
methods of missing values in air quality data sets addressed 
by Junninen et al. (2004) and Niska et al. (2004).  

Data inspection was followed by determination of input 
variables for modeling. Since a separate model was to be 
developed for each pollutant, the selection of input variables 
varied from one model to another. The selection of predictor 
variables was based on a comprehensive review of the 
theoretically addressed chemical and weather processes that 
influence the formation and concentration of atmospheric 
pollutants, as described by Seinfeld and Pandis (1998), 
Wayne (1985) and USEPA (2003). Table 1 lists common 
predictor variables that influence the concentrations of 
each modeled pollutant. 

Eventually, and in order to support the neural network to 
deal effectively with the data, all the input data were 
normalized to the range of << 0, 1 >> by linear scaling. 
Thus, the new data encountered later by the network module 
would be successfully scaled if the new data are outside 
the given range. 

 
Model Development  

The ANN models in this study were developed using the 
NeuroShell2 (NS2) software from Ward Systems Group Inc. 
NeuroShell2 is a software program that mimics the human
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Fig. 2. Two stage development procedures for the Artificial Neural Network Modeling undertaken in this study. 
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Table 1. Common predictor variables proposed for each 
model. 

Model Inputs Model Output 
CO, NO, NO2, NOx, WS, WD, T, H O3

WS, WD, T, H PM10

H2S, WS, WD, H, T SO2

WS, WD, H, T H2S 
CO, NO, NO2, WS, WD, T, H NOx 

CO, O3, NO, NOx, WS,WD,T, H NO2

CO, NOx, NO2, WS, WD, H, T NO 
WS, WD, H, T CO 

 

brain’s ability to classify patterns or to make predictions or 
decisions based upon past experience. NS2 is designed to 
assist developers who have a minimum of the specialized 
knowledge required to build Neural Network Models. NS2 
is able to learn patterns from training data and make its 
own predictions (or decisions) when presented with new 
unseen data.  

Before running ANN models, the previously prepared data 
set was split into two subsets for neural network learning. 
Because, there is no universal rule to determine the size of 
subsets, the data set for this project was randomly divided into 
a ratio of 3:1 between training and testing sets, respectively. 
The definition of these sets used in this study will be as 
follows:  
• Training set: is the largest group of all subsets and used 

to educate/train the network, through adjusting the weights 
of links and changing the number of hidden neurons, to 
come up with the best fit between the actual and predicted 
output. 

• Testing set: is the group of data given to the network 
still in the training phase which will be used later by the 
network to test the accuracy of the results by evaluating 
the minimum error. The testing set prevents overtraining 
networks so they will generalize well when provided 
with new data.  

• The feed-forward back-propagation (BP) multi-layer 
preceptor (MLP) neural network architecture was selected 
for the air quality modeling undertaken here. Fig. 3 
depicts the basic elements of the MLP-BP standard 
networks as used in the current study, in which the basic 
building block of standard nets is the simulated neurons 

which are interconnected into a network of neurons that 
are eventually arranged into three layers such as input, 
hidden and output layer. Each link between two neurons 
from different consecutive layers in the MLP-BP is 
assigned a weight that defines the nature of the relationship 
between the neurons. The neuron’s output is multiplied 
by the weight before being used as input to the neuron in 
the following layer. Each neuron in the hidden and output 
layers sums all of the received inputs to be used as an 
output value according to a predefined transfer function. 
The input data, during the training of a network, are 
propagated in a feed-forward manner to produce output 
data according to the weights and transfer function. The 
prediction error is then determined from the difference 
between the produced output and the actual output. The 
weights of the links are adjusted to minimize the prediction 
errors according to the training algorithm being used. 
The network is considered well trained when the sum of 
all the errors in the network reaches a global minimum 
(Baawain et al., 2005). 
The main objective of this study was to build up ANN 

simulations of typical air pollutant concentrations as 
measured by MECA from 2006 to 2009. Thus, separate 
neural network model was developed for each pollutant 
(PM10, O3, CO, SO2, H2S, NO, NOx, and NO2). For each 
model chosen types of pollutants as well as meteorological 
parameters were selected as input parameters as already 
summarized in Table 1. The models used the previous 
conditions of all input parameters in order to predict the 
concentration of each pollutant on the next day. As an 
example, Fig. 4 shows the network structure used to build 
up the O3 model.  

ANN models were run in a supervised manner based on 
trial and error technique by which several alternative 
adjustments were incorporated to improve the model 
performance. Those adjustments included alternative use 
of different weight update patterns, different number of 
neurons in the hidden layer, different numbers of learning 
events (epochs), as well as employment of different activation 
functions. The training of the network continued until 
achieved the highest correlation between the genuine and 
predicted output which is expressed by coefficient of multiple 
determinations (R2) and normalized root means square 
error (NRMSE). Accordingly, a perfect fit would outcome in

 

 
Fig. 3. Basic elements of MLP standard network. 
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Fig. 4. Network structure used to build up O3 model. 

 

an R squared value of 1, a very good fit beside 1 and a very 
poor fit less than 0. On the other side, the smaller the value 
of NRMSE, the better is the performance of the model. 

To validate the models, hidden test set of data were used 
for each model to evaluate the efficiency of the trained 
ANN models in generalizing the problem when dealing 
with new unseen data. The predicted results were then 
compared with the actual values and that was expressed by 
calculating R2.  
 
RESULTS AND DISCUSSION 
 
ANN Models Performance 

The MLP-BP architectures that yielded the best ANN 
models are summarized in Table 2. Generally, the best 
performing ANN models involved the use of a logistic 
activation function in the hidden layer, the exception being 
SO2 which worked best with a Gaussian function. 
Additionally, most trained networks worked best using the 
Turbo-Prop weight update with rotation pattern. The results 
showed excellent performance for the developed networks 
of SO2, H2S, and CO according to values of R2 (0.94, 0.93, 
and 0.90, respectively) and NRMSE (3.2%, 8.7% and 
12.1%, respectively). Very good results were obtained for 
O3, PM10 and NO2 networks with R2 of 0.88, 0.82, and 
0.84, respectively, and NRMSE of 13.9%, 17.4% and 16.7%, 
respectively. The performance of the networks developed 
for NOx and NO were relatively lower than the other 
models as evident from the values of R2 (0.73, and 0.73, 
respectively) and NRMSE (19.2% and 24.3%, respectively). 
Table 3 shows the sensitivity of network to training cycles 
(epochs) when keeping the hidden neurons and activation 
function as shown in Table 2. It can be seen that all 
developed networks are relatively stable for a range of 
± 20% of training cycles as evident from the obtained R2 
values. Figs. 5 to 12 provide visual presentation of the 
obtained training and testing results for all developed 
networks. 

The MLP-BP ANN architecture that yielded best results 
for O3 prediction (1-day ahead) consisted of one hidden layer 

with 39 hidden neurons using logistic activation function. 
This network was trained with 1045 epochs with Turbo-
Prop weight updates and rotation pattern selection. The 
performance of ANN model for O3 prediction (1-day ahead) 
was very good as the Coefficient of Multiple Determination 
(R2) was 0.94 for the training set and 0.88 for the testing 
set (see Fig. 5). This result indicates that approximately 
94% and 88% of the variability in the ozone concentrations, 
for both training and testing data, could be explained by 
the selected input variables used for the model development, 
namely: CO, NO, NO2, NOx, wind speed, wind direction, 
temperature, and humidity. The best performance for O3 is 
probably due to the mechanism of O3 production. Fig. 13 
shows the significant contribution of ambient air temperature 
and humidity which are directly related to the solar radiation 
and are, therefore, highly important for ozone production 
(Wallace and Hobbs, 1977; Seinfeld and Pandis, 1998). Yet, 
this performance can be reasonably improved by introducing 
the measures of precursor emissions, like VOCs, necessary 
for O3 formation in the troposphere (Wallace and Hobbs 
1977; Goody 1995; Seinfeld and Pandis 1998; USEPA 2003).  

ANN models aiming to predict PM10 concentrations (1-
day ahead) consisted of one hidden layer with 47 hidden 
neurons using logistic activation function. This network was 
trained with 1200 epochs with Turbo-Prop weight updates 
and rotation pattern selection. Fig. 6 shows the obtained 
R2, 0.77 for the training set and 0.82 for testing data, which 
explains the importance of selected input variables including 
wind speed; wind direction, temperature and humidity.  

The best ANN results for SO2 prediction (1-day ahead) 
consisted of one hidden layer with 31 hidden neurons using 
Gaussian activation function. This network was trained 
with 8707 epochs with Turbo-Prop weight updates and 
rotation pattern selection. The ANN performance for SO2 
prediction (1-day ahead) was excellent with R2 values 
of1.00 and 0.94 for training and testing sets, respectively 
(Fig. 7). The selected input variables for SO2 prediction, 
including H2S, wind speed, wind direction, temperature, and 
humidity, played a major role in influencing the variability 
of SO2 levels. The good performance of SO2 prediction is
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Table 2. Best architectures for ANN models. 

Model Hidden Neurons No. Activation Function Epochs R2 Testing NRMSE Testing 
O3 39 Logistic 1045 0.88 13.9% 

PM10 47 Logistic 54 0.82 17.4% 
SO2 31 Gaussian 8707 0.94 3.2% 
H2S 34 Logistic 98955 0.93 8.7% 
NOx 49 Logistic 12758 0.73 19.2% 
NO2 50 Logistic 2281 0.84 16.7% 
NO 33 Logistic 171740 0.73 24.3% 
CO 49 Logistic 2884 0.90 12.1% 

 

Table 3. Sensitivity analysis of the networks to training cycles. 

Model Epochs 
R2 

Epochs 
R2 

Epochs 
R2 

Testing Testing Testing 
O3 850 0.83 1045 0.88 1250 0.86 

PM10 40 0.79 54 0.82 70 0.81 
SO2 7000 0.89 8707 0.94 10500 0.91 
H2S 8000 0.86 98955 0.93 120000 0.89 
NOx 10200 0.70 12758 0.73 15300 0.69 
NO2 1800 0.82 2281 0.84 2700 0.83 
NO 137000 0.69 171740 0.73 206000 0.72 
CO 2300 0.88 2884 0.9 3500 0.89 
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Fig. 5. ANN predicted versus observation values for O3. 

 

possibly due to the strong influence of the selected input 
variables, especially H2S which has a high probability in 
the formation of SO2 (Wayne, 1985; Goody, 1995).  

The MLP-BP ANN architecture that yielded best results 
for H2S prediction (1-day ahead) consisted of one hidden 
layer with 34 hidden neurons using the logistic activation 
function. This network was trained with 98955 epochs 
with Turbo-Prop weight updates and rotation pattern 
selection. The ANN model performed very well for H2S 
prediction (1-day ahead). The R2 ranged from 0.91 for the 
training set to 0.93 for testing set (see Fig. 8), is presumably 
reflective of a high dependence of H2S concentrations on 
the meteorological conditions, namely: wind speed, wind 

direction, temperature, and humidity, selected as inputs for 
H2S modeling.  

The best MLP-BP ANN used to predict NOx 
concentrations (1-day ahead) consisted of one hidden layer 
with 49 hidden neurons using the logistic activation function. 
This network was trained with 12,758 epochs with Turbo-
Prop weight updates and rotation pattern selection. The 
ANN satisfactorily predicted values of NOx concentrations 
resulted from complex relationships between CO, NO, 
NO2 concentrations and meteorological conditions such as 
wind speed wind direction, temperature, and humidity, 
with the R2 ranging from 0.76 to 0.73 (Fig. 9).  

The highest performance for NO2 prediction (1-day ahead) 
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was obtained using one hidden layer with 50 hidden neurons 
applying the logistic activation function. This network was 

trained with 2281 epochs with Turbo-Prop weight updates 
and rotation pattern selection. The performance of ANN
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Fig. 6. ANN predicted versus observation values for PM10. 
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Fig. 7. ANN predicted versus observation values for SO2. 
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Fig. 8. ANN predicted versus observation values for H2S. 



 
 
 

Baawain and Al-Serihi, Aerosol and Air Quality Research, 14: 124–134, 2014 

 

131

0

20

40

60

80

100

0 20 40 60 80 100

NOx, Observations (ppb)

N
O

x,
 A

N
N

 p
re

d
ic

ti
o

n
s

 (
p

p
b

)

Training set 

R2 = 0.764 

+30% 

-30% 

            

0

20

40

60

80

100

0 20 40 60 80 100

NOx, Observations (ppb)

N
O

x,
 A

N
N

 p
re

d
ic

ti
o

n
s

 (
p

p
b

)

Testing set 

R2 = 0.732

+30% 

-30% 

 
Fig. 9. ANN predicted versus observation values for NOx. 

 

for NO2 prediction was good as R2 values were between 
0.88 and 0.84 for the training and testing sets, respectively. 
Fig. 10 illustrates the high performance of the developed 
NO2 model through the good agreement shown between 
measured and ANN predicted values in both training and 
testing data sets.  

Similarly, the best MLP-BP ANN architecture for NO 
prediction (1-day ahead) consisted of one hidden layer 
with 33 hidden neurons using the logistic activation 
function. This network was trained with 171,746 epochs 
with Vanilla weight updates and random pattern selection. 
The ANN prediction of NO concentrations was in the 
range of 0.72 and 0.73 for the training and testing sets in 
terms of R2 performance (Fig. 11). Although these are small 
values, yet, they are still acceptable to explain the complex 
relationships between CO, NOx, and NO2 concentrations 
and meteorological conditions (most importantly: wind speed, 
wind direction, temperature, and humidity) that influence 
the formation of NO. 

The MLP-BP ANN architecture that yielded best results 
for CO prediction (1-day ahead) consisted of one hidden 
layer with 49 hidden neurons using logistic activation 

function. This network was trained with 2884 epochs with 
Momentum weight updates and random pattern selection. 
ANN model performed very well in predicting the CO 
concentrations (1-day ahead) as a function of meteorological 
conditions, chiefly, wind speed, wind direction, temperature, 
and humidity (see Fig. 12). The R2 ranged from 0.86 to 
0.88 and reflects the influence of meteorological conditions 
in regulating the variability in CO concentrations. 

 
RELATIVE CONTRIBUTION OF INPUTS ON 
DEVELOPED NETWORKS 
 

The contribution of inputs on modeled parameters was 
derived from the analysis of the weights of the trained 
neural networks. Fig. 13 shows the relative contributions of 
the inputs (chemical factors and meteorological conditions) 
for each modeled parameter. It can be seen that the 
metrological conditions have stronger influence on the 
concentrations of air pollutants at the studied location. It 
should be noted that the location for prediction of the 
modeled parameters is about 700 m from the industrial 
area. Therefore, the meteorological conditions might have

 

0

20

40

60

0 20 40 60

NO2, Observations (ppb)

N
O

2,
 A

N
N

 p
re

d
ic

ti
o

n
s

 (
p

p
b

)

Training set 

R2 = 0.884 

+30% 

-30%

                    

0

20

40

60

0 20 40 60

NO2, Observations (ppb)

N
O

2,
 A

N
N

 p
re

d
ic

ti
o

n
s

 (
p

p
b

)

Testing set 

R2 = 0.837

+30% 

-30%

 
Fig. 10. ANN predicted versus observation values for NO2. 
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Fig. 11. ANN predicted versus observation values for NO. 
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Fig. 12. ANN predicted versus observation values for CO. 

 

 
Fig. 13. Relative contribution of inputs on modeled parameters. 

 

higher influence on the dispersion of the air pollutants 
from their sources to the location of interest compared to 
the chemical factors in this case. 

CONCLUSIONS  
 

This study has investigated the potential use of a 
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systematic approach to develop Artificial Neural Network 
(ANN) predicting models for the ground-level air pollution, 
one day in advance, at a specific receptor area nearby 
Sohar Industrial Port. The goal was to determine the 
concentration of pollutants, including O3, PM10, SO2, H2S, 
NOx, NO2, NO, and CO, in the atmosphere according to 
their relationship with the previous day air quality data and 
meteorological conditions.  

Each pollutant was separately modeled. Each ANN model 
was trained using previous day conditions in order to predict 
the next day concentrations. The ANN models were trained 
by historical daily time series of air quality measurement 
as well as meteorological measurements. The models were 
developed using feed forward multi-layer preceptron (MLP) 
technique based on the back-propagation algorithm (BP).  

This study has found that generally air pollution 
concentrations using the Sohar data set have been well 
predicted, using ANN models as the coefficient of multiple 
determinations (R2) was found to exceed 0.7 for both 
training and testing data sets. The findings of this study 
provide a system of air pollution forecasting (1-day ahead) 
for Ghadafan village located nearby Sohar Industrial Port. 
This would be of great benefit for environmentalists and 
stakeholders to create an early alert of air quality for the 
public so that they can take the necessary precautions.  
 
FUTURE PROJECTIONS  
 

The predictions of the developed models were based on 
the limited history of air quality and were restricted for one 
sampling location. However, the benefit of ANN model 
prediction can be improved by incorporating the following 
aspects:  
• Routinely update the current ANN models due to the 

expansion of the industrial activities in the port.  
• Periodic maintenance of monitoring stations in order to 

get more consistent data and more accurate models.  
• Investigation of the validity of ANN models for different 

areas around Sohar Industrial Port and many other areas 
in Oman.  

• Use emission data and episode levels definition as inputs 
data along with ambient air quality data for further 
validation of ANN predictions.  

• Improve the outputs of current ANN models into indices 
using the Air Quality Index in order to aid the general 
public with simple understanding of air quality information.  

• Explore the capability of ANN models in predicting air 
quality 2-days or 3-days in advance. 
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