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Abstract

Background: The human gut microbiome performs important functions in human health and disease. A classic

example for host-gut microbial co-metabolism is host biosynthesis of primary bile acids and their subsequent

deconjugation and transformation by the gut microbiome. To understand these system-level host-microbe

interactions, a mechanistic, multi-scale computational systems biology approach that integrates the different types

of omic data is needed. Here, we use a systematic workflow to computationally model bile acid metabolism in gut

microbes and microbial communities.

Results: Therefore, we first performed a comparative genomic analysis of bile acid deconjugation and biotransformation

pathways in 693 human gut microbial genomes and expanded 232 curated genome-scale microbial metabolic

reconstructions with the corresponding reactions (available at https://vmh.life). We then predicted the bile acid

biotransformation potential of each microbe and in combination with other microbes. We found that each microbe

could produce maximally six of the 13 secondary bile acids in silico, while microbial pairs could produce up to 12 bile

acids, suggesting bile acid biotransformation being a microbial community task. To investigate the metabolic potential of

a given microbiome, publicly available metagenomics data from healthy Western individuals, as well as inflammatory

bowel disease patients and healthy controls, were mapped onto the genomes of the reconstructed strains. We

constructed for each individual a large-scale personalized microbial community model that takes into account strain-level

abundances. Using flux balance analysis, we found considerable variation in the potential to deconjugate and transform

primary bile acids between the gut microbiomes of healthy individuals. Moreover, the microbiomes of pediatric

inflammatory bowel disease patients were significantly depleted in their bile acid production potential compared with

that of controls. The contributions of each strain to overall bile acid production potential across individuals were found to

be distinct between inflammatory bowel disease patients and controls. Finally, bottlenecks limiting secondary bile acid

production potential were identified in each microbiome model.

Conclusions: This large-scale modeling approach provides a novel way of analyzing metagenomics data to accelerate

our understanding of the metabolic interactions between the host and gut microbiomes in health and diseases states.

Our models and tools are freely available to the scientific community.
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Introduction
The human gut microbiome performs essential functions

for human health and is directly implicated in the patho-

genesis of complex diseases, such as inflammatory bowel

disease, obesity, and type II diabetes [1]. Since the eti-

ology of these diseases is multifactorial, they can be seen

as having a malfunctioning network rather than a single

cause [1]. To understand the interplay between the fac-

tors underlying the disease network, such as genome,

microbiome, and diet, computational systems biology

approaches are necessary to integrate the different

-omes, such as metagenome and metabolome, and to

identify key interactions in an unbiased manner [1].

Such data-driven systems biology approaches could also

identify drug-network interactions [1] and predict indi-

vidual treatment responses in patients [1, 2].

One important function carried out by the human gut

microbiome is the deconjugation of human primary bile

acids and their subsequent biotransformation to second-

ary bile acids with implications for human health [3].

Briefly, the human liver synthesizes the primary bile

acids cholate (CA) and chenodeoxycholate (CDCA),

which are each conjugated with either taurine or glycine

[4]. Conjugated bile acids are stored in the gall bladder

and released into the small intestine after a meal [4]. In

the intestine, they are subject to extensive metabolism

by gut microbes, namely deconjugation of glycine or tau-

rine, and biotransformation of the unconjugated primary

bile acids to secondary bile acids [4]. Primary and

secondary bile acids have endocrine functions and

modulate host metabolism [3]; thus, their composition

has important implications for human health. A link

between microbial bile acid metabolism and inflamma-

tory bowel disease (IBD), i.e., ulcerative colitis and

Crohn’s Disease, has been repeatedly demonstrated [5].

In IBD patients, fecal conjugated bile acid levels are

higher while secondary bile acid levels are lower and the

deconjugation and transformation abilities of IBD-asso-

ciated microbiomes are impaired [5]. Other diseases that

have been associated with alterations of the intestinal

bile acids pool include liver cirrhosis, liver cancer, irrit-

able bowel syndrome, short bowel syndrome, and obesity

[3, 6]; however, a mechanistic understanding of these

bile acid-microbiome-disease associations is lacking.

Thus, the role of bile acid composition and its relation-

ship with the gut microbiome in these diseases needs to

be elucidated and to be considered for therapeutic op-

tions [6].

A well-established computational approach for model-

ing human and microbial metabolism is Constraint-

based Reconstruction and Analysis (COBRA) [7]. The

COBRA approach relies on having genome-scale recon-

struction of a target organism, which assembled based

on the organism’s genome sequence and manually

curated against the available genomic data and literature

following established protocols [8]. A genome-scale re-

construction can readily be converted into a mathemat-

ical model, in which reactions and metabolites are

represented as a stochiometric matrix, and interrogated

using established methods such as flux balance analysis

(FBA) [9]. Briefly, FBA relies on physicochemical (e.g.,

mass-charge balance) and environmental (e.g., nutrient

uptake) constraints that limit the flow of metabolites

through the network resulting in a solution space of

feasible flux distributions [9]. Generally, FBA relies on

the definition of an objective function, such as the bio-

mass reaction, which sums all known precursors

required to form a new cell. The objective function is

then minimized or maximized, and the optimal solution,

aka flux distribution, under the given condition-specific

constraints is computed [9]. FBA operates under the

steady-state assumption and as such does not require

kinetic parameters to compute an optimal solution [9].

Through implementation of condition-specific con-

straints, e.g., a certain dietary regime, COBRA simula-

tions have provided further insight into the metabolic

capabilities of, e.g., human intestinal microbes [10–14],

for which a comprehensive collection of reconstructions

(AGORA) has been published [15, 16]. An advantage of

the COBRA approach for microbial community model-

ing is that the underlying genome-scale metabolic net-

works enable mechanistic predictions of metabolic

fluxes in each individual species while taking into

account biological features, such as substrate availability

or species-species boundaries [17, 18]. Previous studies

have already demonstrated the use of constraint-based

multi-species models for the prediction of host-microbe

interactions [12, 19] and gut microbial community inter-

actions [13, 20]. COBRA models can also be contextual-

ized through omics data, e.g., metagenomic data [2, 14].

More importantly, by mapping metagenomic data of an

individual, the metabolic microbial community model is

personalized to this individual enabling the prediction of

personalized metabolic profiles, which can be used to

ultimately stratify disease and control groups [2, 14].

Results

To investigate the microbiome-level bile-acid production

potential of healthy individuals and IBD patients, we de-

rived a systematic, reproducible workflow (Fig. 1). First,

we expanded bile acid metabolism pathways captured in

232 gut microbial reconstructions using state-of-the-art

comparative genomics methods. We then joined these

reconstructions into pairwise microbial models and pre-

dicted their potential to cooperatively produce secondary

bile acids. While each microbe could only produce up to

six of the 13 secondary bile acids in silico, microbial
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pairs could produce up to 12 of the 13 bile acids,

highlighting bile acid biotransformation as a microbial

community task. Subsequently, we constructed func-

tional and personalized gut microbiome models using

metagenomics data from healthy and IBD individuals to

predict an individual’s bile acid biosynthesis potential.

We found inter-individual variation in the production

capability of bile acids in healthy individuals as well as

significant differences between healthy and IBD micro-

biomes. Moreover, we were able to compute the contri-

bution of each strain to bile acid deconjugation and

transformation while taking the metabolic network of

the whole microbiome community and the applied con-

straints (e.g., dietary uptake) into account. Finally, we

identified bottlenecks limiting the biotransformation

potential into secondary bile acids. This mechanistic,

microbiome-wide modeling approach can be readily

applied to the personalized computation of other health-

relevant human-microbial co-metabolites.

Distribution of microbial bile acid deconjugation and

biotransformation pathways across taxa

To determine how widely genes encoding for bile acid

pathways are spread in human gut microbes, we per-

formed a systematic comparative genomic analysis of the

bile acid deconjugation and transformation pathway

(Fig. 2), starting with previously characterized enzymes

for primary bile acid deconjugation [21] and transform-

ation into secondary bile acids [22–25]. Of the currently

818 microbial AGORA reconstructions, which include

46 newly reconstructed gut microbes (see the “Materials

and methods” for details), only 670 genomes were avail-

able at the PubSEED database [26, 27]. We additionally

analyzed 23 further microbial genomes, yielding a total

of 693 considered genomes (Fig. 1a). We found the bile

salt hydrolase (bsh) gene, which encodes the deconjuga-

tion of conjugated primary bile acids, in 204 of the 693

(29%) genomes, including two archaeal genomes, Metha-

nobrevibacter smithii ATCC 35061 and Methanosphaera

Fig. 1 Schematic overview of the workflow in this study. a Comparative genomic and metabolic reconstruction approach used to expand the

AGORA [15] resource with a bile acid (BA) deconjugation and biotransformation subsystem. The comparative genomic approach was performed

in the PubSEED [26, 27] platform. Quality controland quality assurance (QC/QA) during reaction and metabolite formulation and addition to the

AGORA reconstructions were ensured by using the reconstruction tool rBioNet [74]. b Computational pipeline used to predict the sample-specific

bile acid deconjugation and biotransformation by human gut microbiomes. First, publicly available metagenomic data was retrieved from HMP

[35], and the COMBO/PLEASE [36, 37] cohort. Next, the strain-level abundances were mapped onto the reference set of AGORA genomes.

Microbial community models were constructed using the illustrated workflow, as implemented in the Microbiome Modeling Toolbox [33], and

they account for the strain-level composition of each individual microbiome. Finally, each personalized community model was constrained with

an “Average European” diet supplemented with conjugated primary bile acids and its individual-specific, primary bile acid deconjugation and

biotransformation potential was computed using flux balance analysis [9, 76].
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stadtmanae DSM 3091 (Additional file 1: Table S1). The

distribution of the bsh gene in Actinobacteria, Bacteroi-

detes, Firmicutes, as well as the two archaea (Fig. 2,

Additional file 2: Figure S1) was in line with previously

reported results [21]. Additionally, the bsh gene was

found in 22 Proteobacteria genomes (Additional file 1:

Table S1). Among all analyzed hydroxysteroid dehydro-

genases (HSDHs), 7α-HSDH was the most widespread

enzyme as it was found in 46 of the 693 (7%) genomes

(Additional file 1: Table S1 and Additional file 2: Figure

S2). Additionally, 3α-, 3β-, and 7β-HSDHs were found in

17, 12, and 3 genomes, respectively (Additional file 1:

Table S1 and Additional file 2: Figure S2). Using results

from a recent work [24], we found the 12α-HSDH in 39

genomes, which belonged mostly to Firmicutes represen-

tatives (Additional file 1: Table S1). We could not find the

12α-HSDH in the Clostridium leptum genome, although

the enzymatic activity has been demonstrated [28].

The bile acid-inducible (bai) gene cluster for the mul-

tistep 7α/β-dehydroxylation pathway, which has been

reported for Clostridiaceae and Eggerthella spp. [4, 23],

was found in seven analyzed genomes belonging to

Clostridioides sp., Lachnoclostridium sp., and Eggerthella

sp. (Additional file 2: Figure S2). Remarkably, all these

genomes also have genes for 12α-HSDH as well as either

7α-HSDH or genes for both 3α- and 3β-HSDHs

(Additional file 1: Table S1). Thus, these microbes could

play a crucial role in biotransformation of bile acids in

the human intestine. The genes encoding for the last

two steps of the 7α/β-dehydroxylation pathway, i.e., the

NADH-dependent reduction and the export of second-

ary bile acids (Fig. 2c–e), have not been identified.

Recently, the baiN gene was shown to encode a

bi-functional enzyme NADH-dependent ∆6/∆4-hy-

droxysteroid reductase (Fig. 2) [29]. We analyzed the

genomic context of this gene and found it in the C. scin-

dens genome to be chromosomally co-localized with the

gene for a probable NAD(FAD)-utilizing dehydrogenase

(CLOSCI_00522). This chromosomal clustering was con-

served in all Clostridiales genomes having the bai path-

way, except for Clostridium hiranonis DSM 13275

(Additional file 2: Figure S3). It has been previously

Fig. 2 Illustration of bile acid pathways in human gut microbes reconstructed for AGORA. a Deconjugation of Tauro-CA/Glyco-CA and

subsequent conversion to 12-dehydro-CA, UCA, and Iso-CA. b Deconjugation of Tauro-CDCA/Glyco-CDCA and subsequent conversion to UDCA. c

Conversion of CA to DCA via the bai pathway. d Conversion of CDCA to LCA via the bai pathway. e Conversion of UDCA to LCA via the bai

pathway. CoA Coenzyme A. For metabolite abbreviations, see Table 1.
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shown that genes encoding enzymes for the same meta-

bolic pathway are often clustered on chromosome and

such a clustering is conserved in genomes of related or-

ganisms [30]. Thus, the genes baiN and CLOSCI_00522

can possibly belong to the same metabolic pathway,

\namely bai pathway. The enzyme for the last step of the

bai pathway, NADH-dependent 3α-hydroxysteroid reduc-

tase, is unknown. Because the product of CLOSCI_00522 is

a NADH-depended reductase, we propose that product is

an enzyme catalyzing the final reaction of the bai pathway

(Fig. 2) and rename the gene to baiO. The bai pathway has

also been found in Eggerthella lenta [23]; consequently, we

searched for orthologs of the baiNO genes in the E. lenta

genome. Because C. scindens and E. lenta belong to differ-

ent phyla, we defined orthologs of the analyzed genes as

best/symmetrical bidirectional hits (see the “Materials and

methods” section). An ortholog of the BaiN in E. lenta is

likely to be encoded by the gene Elen_1017 (protein iden-

tity = 32%, e-value for the protein alignment = 3e−44),

whereas the BaiO ortholog was encoded by the gene

Elen_1018 (identity = 45%, e-value = e−126). These genes

were co-localized in E. lenta’s genome as well in genomes

of Eggerthella sp. 1_3_56FAA and Eggerthella sp. HGA1

(Additional file 2: Figure S3). Additionally, these genes

were co-localized with a gene encoding for a probable

transporter (Elen_1016) in the genomes of E. lenta and

Eggerthella sp. HGA1. Hence, the gene Elen_1016 was

assumed to encode a transporter for the products of the

bai pathway and was named here baiP. An ortholog of this

gene (CLOSCI_01264, identity = 59%, e-value = e−180) was

found in C. scindens genome as well in other genomes of

Clostridiaceae, having the bai pathway (Additional file 2:

Figure S3), whereas in the C. hiranonis genome, this gene

was co-localized with the baiO gene. Phylogenetic analysis

of the BaiNOP proteins and their homologs revealed that

BaiN and BaiO proteins of Eggerthella spp. and Clostri-

diales are phylogenetically distant from each other

(Additional file 2: Figure S4 and S5), whereas BaiP proteins

from these groups of genomes are phylogenetically close

(Additional file 2: Figure S6).

In summary, our comparative genomics results

expanded substantially our knowledge about bile acid

deconjugation and transformation in gut microbes, while

being consistent with previous studies [21–25]. Conse-

quently, we propose that 253 of the 693 analyzed intes-

tinal microbes (37%) can deconjugate and/or transform

bile acids, including 232 reconstructed AGORA organ-

isms (Additional file 1: Table S1, Fig. 1a).

Expansion of the gut microbial genome-scale

reconstructions by a species-specific bile acid subsystem.

The manual curation and refinement of genome-scale re-

constructions is an iterative process [8]. Species-specific

pathways are typically absent in draft reconstructions [31].

Since we did not explicitly account for bile acid pathways

in the curation of AGORA [15] prior to the present paper,

this subsystem was absent. The 232 metabolic reconstruc-

tions found to carry bile acid enzymes (Additional file 1:

Table S1) were expanded with the corresponding metabo-

lites and reactions, while ensuring functionality of the in-

cluded pathways, following established procedures [8, 32]

(see “Materials and methods” section). The complete re-

constructed bile acid biotransformation subsystem

contained 39 bile acid metabolites and 82 reactions (Fig. 2,

Table 1, Additional file 1: Table S2a, b). For CA, CDCA,

and the 13 secondary bile acids (Table 1), transport and

exchange reactions enabling the uptake and secretion of

these metabolites were added to the corresponding recon-

structions. Taken together, we expanded the AGORA

reconstructions with a bile acid module thus further im-

proving their predictive potential and enabling their use

for large-scale simulations of bile acid deconjugation and

transformation.

Investigating the complementary capabilities of human

gut microbes in silico

The majority of primary bile acids, released by the

human gallbladder into the intestine, where the gut

microbiome encounters them, are conjugated to glycine

or taurine [3]. However, many strains capable of synthe-

sizing secondary bile acids do not possess the bile salt

hydrolase (Additional file 1: Table S1) and thus, rely on

bile salt hydrolase-encoding strains to access the decon-

jugated primary bile acids.

To determine the capability of each strain alone to con-

vert the deconjugated primary bile acids into secondary

bile acids, the 232 corresponding AGORA reconstructions

were converted into condition-specific models by applying

an Average European diet supplemented with taurocholate

(Tauro-CA), glycocholate (Glyco-CA), taurochenodeoxy-

cholate (Tauro-CDCA), and glycochenodeoxycholate

(Glyco-CDCA) (Additional file 1: Table S3) as modeling

constraints. The maximally possible production flux for

the 13 secondary bile acids was predicted for each strain

using flux balance analysis [9] while setting the corre-

sponding exchange reactions as the objective function (see

the “Materials and methods” section). A total of nine

strains could synthesize 7-ketodeoxycholate (7-keto-DCA)

and 7-dehydrochenodeoxycholate (7-dehydro-CDCA)

from the conjugated primary bile acids as they possessed

both the bile salt hydrolase and the 7α-HSDH (Table 1). In

contrast, no single strain was capable of synthesizing

12-dehydrocholate (12-dehydro-CA), ursocholate (UCA),

and UDCA from the conjugated primary bile acids. Of the

five strains carrying the bai gene cluster, only Clostrid-

ium hiranonis TO-931 could synthesize LCA and DCA

from the conjugated primary bile acids (Table 1) as it

also possessed the bile salt hydrolase enzyme in
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contrast to the other four strains. Taken together, only

few strains could both deconjugate and biotransform

primary acids in isolation.

To investigate whether pairwise combinations of cer-

tain strains could complement each other’s bile acid

pathways, the 232 bile acid-producing AGORA models

were joined in every possible combination resulting in

26,796 pairwise models using the Microbiome Modeling

Toolbox [33], a COBRA Toolbox [34] extension. When

comparing the bile acid production capabilities of the

pairwise models with the respective single-strain models

on the bile acid-supplemented “Average European” diet,

we identified 7673 microbe pairs (29%) that could

synthesize at least one secondary bile acid whereas the

respective two individual strains were incapable to do so,

resulting in 19,883 cooperative bile acid syntheses (Fig.

3a, Additional file 1: Table S5). For example, 3135/7673

pairs (40.9%) could synthesize 12-dehydro-CA from

Glyco-CA or Tauro-CA (Additional file 1: Table S5).

Further, 736 pairs (2.7%) and 100 pairs (0.4%) could

synthesize DCA/LCA and UCA/UDCA, respectively,

from the conjugated primary bile acids (Additional file 1:

Table S5), demonstrating distinct bile acid synthesis cap-

abilities of microbial pairs. There was no pairwise com-

bination enabling synthesis of all secondary bile acids as

the maximal number of secondary bile acids to be syn-

thesized by any pair was 12 out of 13 (Fig. 3a). Taken

together, while only few strains were capable of both bile

acid deconjugation and biotransformation, many of the

microbial pairs are predicted to synthesize secondary

bile acids from the conjugated bile acids. This example

demonstrates that constraint-based modeling is an effi-

cient approach to elucidate the combined capabilities

present in thousands of microbe pairs compared with

the single microbes. The presented computational work-

flow could readily be applied to other microbial path-

ways of interest, in which enzymes are distributed across

multiple taxa in an ecosystem.

Large-scale modeling of the interpersonal variation in the

bile acid deconjugation and transformation of gut

microbiomes.

We next aimed to predict the bile acid deconjugation

and biotransformation potential of individual-specific

gut microbiomes. It is well known that bile acid metab-

olism is altered in individuals with IBD [3]. We were in-

terested whether personalized modeling could provide

novel insight into the differences in bile acid deconjuga-

tion and biotransformation potential between the micro-

biomes of IBD patients and controls as well as elucidate

species contributing to the pathways. For comparison,

we also evaluated the range in bile acid metabolic cap-

abilities in healthy adults. We used metagenomic data

from two sources: (1) 149 healthy American donors aged

Table 1 Overview of primary and secondary bile acids. VMH Virtual Metabolic Human database (https://vmh.life) [16]. AGORA, a

compendium of 818 curated genome-scale gut microbial metabolic reconstructions used in this study.

Name Abbreviation VMH ID Type Producer

Taurocholate Tauro-CA tchola Primary/conjugated Human

Glycocholate Glyco-CA gchola

Taurochenodeoxycholate Tauro-CDCA tdchola

Glycochenodeoxycholate Glyco-CDCA dgchol

Cholate CA cholate Primary/unconjugated Human; released by 185/818 AGORA strains

Chenodeoxycholate CDCA C02528

12-dehydrocholate 12-dehydro-CA 12dhchol Secondary 38/818 AGORA strains

7-ketodeoxycholate 7-keto-CA 7ocholate 41/818 AGORA strains

7-dehydrochenodeoxy-cholate 7-dehydro-CDCA 7dhcdchol

3-dehydrocholate 3-dehydro-CA 3dhchol 16/818 AGORA strains

3-dehydrochenodeoxy-cholate 3-dehydro-CDCA 3dhcdchol

Isocholate Iso-CA isochol 11/818 AGORA strains

Isochenodeoxycholate Iso-CDCA icdchol

Lithocholate LCA HC02191 5/818 AGORA strains

Deoxycholate DCA dchac

Allolithocholate allo-LCA alchac

Allodeoxycholate allo-DCA adchac

Ursocholate UCA uchol 3/818 AGORA strains

Ursodeoxycholate UDCA HC02194
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18–40 years provided by the Human Microbiome Project

Consortium [35] and (2) 20 children with newly diag-

nosed Crohn’s disease and microbial dysbiosis and 25

healthy controls (COMBO/PLEASE cohort [36, 37]).

Using strain-level abundances, after mapping the reads

onto the reference set of AGORA genomes [38], we gen-

erated personalized microbiome community models for

each of the 194 sample by joining the corresponding

Fig. 3 The predicted bile acid metabolic profiles of microbe-microbe pairs and individual gut microbiomes. a Complementary bile acid

biosynthesis capabilities of the 232 gut microbial models with bile acid pathways joined in all possible combinations. The numbers of secondary

bile acids (out of 13), which can be produced by each pair, are shown. b, c Total secretion potential in the healthy adults (Healthy_HMP), IBD

patients (IBD_pediatric), and healthy pediatric controls (Healthy_pediatric) (flux values are given in mmol × person-1 × day-1): b deconjugated

cholate, c 12-dehydro-CA. Significant difference (p value < 0.001) is indicated by stars. d Principal Coordinates Analysis of the strain-level

contributions to two deconjugated primary and 13 secondary bile acids for the healthy adults, IBD patients, and healthy pediatric controls. Details

on the strain to metabolite contributions are shown in Additional file 1: Table S8, and in Additional file 2: Figure S7.
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metabolic reconstructions (Fig. 1b, the “Materials and

methods” section ). Each microbiome model was con-

strained with the “Average European” diet supplemented

with conjugated primary bile acids (Additional file 1:

Table S3). A typical personalized microbiome model

contained 127 AGORA models and 142,000 reactions

(Table 2) making this work one of the largest

constraint-based modeling efforts to date.

The bile acid deconjugation and biotransformation

potential is variable in healthy individuals and depleted

in Crohn’s Disease patients

To predict the maximally possible bile acid deconjuga-

tion and biotransformation potential of the 194 micro-

biome models, we performed flux balance analysis while

maximizing for the fecal secretion reaction flux (mmol ×

person-1 × day-1) of the primary bile acids, CA and

CDCA, and 13 secondary bile acids (Fig. 3b, c and Add-

itional file 1: Table S6). The quantitative production po-

tential varied significantly between the models, with the

quantitative production potential of LCA and DCA vary-

ing by a factor of 100 (Additional file 1: Table S6). A

statistical analysis (Wilcoxon rank sum test, with p

values adjusted for false discovery rate (FDR) by

Benjamini-Hochberg method) was performed on the

total community production potential of the 20 IBD pa-

tients (IBD_pediatric) and the 25 control microbiomes

(Healthy_pediatric) (Fig. 3b, c, Additional file 1: Table

S7). Compared with the microbiomes of healthy chil-

dren, the IBD patient microbiomes were significantly de-

pleted in 12-dehydrocholate production potential (p

value < 0.001). Primary bile acid deconjugation potential

was lower in IBD patients but only borderline significant

after adjustment for FDR (adjusted p value = 0.0551);

however, the abundance of the bile salt hydrolase reac-

tion was significantly reduced in IBD microbiomes (p

value 0.0235, Additional file 1: Table S7) and also dif-

fered based on phylum-and genus-level reaction abun-

dances for many taxa (Additional file 1: Table S7).

Microbiomes with low CA/CDCA liberation potential

from the conjugated bile acids also had a low secondary

bile acid potential (Additional file 1: Table S6) in agree-

ment with the fact that the bile salt hydrolase is the

gateway reaction in the pathway [39]. Taken together, we

predicted the inter-person variability in the bile acid bio-

synthesis potential with microbiomes from IBD patients

being significantly depleted in bile acid deconjugation

and biotransformation potential, consistent with reports

that IBD patients have higher levels of fecal conjugated

and lower levels of secondary bile acids [5].

Functional analysis of strain-level contributions in each

microbiome.

What is the contribution of individual strains to the

overall bile acid deconjugation and biotransformation

potential? While previous studies have correlated certain

taxa to measured metabolite levels [40], we determined

here exactly which strains were producing the bile acids

in the individual microbiome models using the afore-

mentioned simulation results. Overall, 198 strains con-

tributed to total production flux of at least one bile acid

in at least one microbiome model (Additional file 1:

Table S8). Of those, 15 strains contributed in > 90% of

communities across both cohorts and thus play a signifi-

cant role in bile acid metabolism. These strains included

known commensals, such as Ruminococcus gnavus

ATCC 29149, Coprococcus comes ATCC 27758, Faecali-

bacterium prausnitzii L2_6, Clostridium sp. M62_1, Eu-

bacterium ventriosum ATCC 27560, Bacteroides

pectinophilus ATCC 43243, and Dorea formicigenerans

ATCC 27755. A variety of Bacteroides strains performed

bile acid deconjugation and 7-keto-DCA/7-dehy-

dro-CDCA biosynthesis, and their contribution was sig-

nificantly depleted in the IBD microbiomes (p values for

all < 0.01, Additional file 1: Table S7). Consistently, a

positive correlation between Bacteroides spp. and sec-

ondary bile acid biosynthesis was found [36]. Using a

Principal Coordinates Analysis on the strain-level contri-

butions, we observed a clear separation between the IBD

patients and controls (Fig. 3d), as well as between the

HMP individuals and the pediatric individuals, due to the

difference in strains (Fig. 3d, Additional file 2: Figure S7).

The strain difference is most likely due to differences in

age, location, and ethnicity of the two cohorts. On the

phylum level, the contributions in both the healthy adult

and healthy pediatric microbiomes were mostly driven by

Actinobacteria, Bacteroidetes, and Firmicutes representa-

tives, as expected, while Proteobacteria contributed signifi-

cantly in the IBD microbiomes (p values for all < 0.05,

Additional file 1: Table S7 and Additional file 2: Figure S7).

A Wilcoxon rank sum test adjusted for FDR on strain-level

contributions revealed that 303 strain-level contributions

Table 2 Overview of the 194 personalized microbial community models generated within this study.

Average number ± standard deviation Minimum Maximum

Microbes 127 ± 38 21 316

Reactions 141,727 ± 409,31 24,805 366,932

Metabolites 127,190 ± 371,22 21,967 328,108

Coupling constraints 200,618 ± 586,12 33,224 521,077
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differed significantly between dysbiotic IBD and healthy

pediatric microbiomes (p value < 0.05, Additional file 1:

Table S7). Strain contributions mostly depleted in the IBD

microbiomes included those of Bacteroides vulgatus ATCC

8482, Ruminococcus (Blautia) torques L2-14, Faecalibacter-

ium prausnitzii strains, Eubacterium rectale strains, Rumi-

nococcus sp. SR1-5, and Clostridium sp. M62-1 (p values

for strains were < 0.001, Additional file 1: Table S7). The

IBD microbiomes had significantly lower deconjugated CA

and CDCA contributions by Actinobacteria and Bacteroi-

detes representatives (p values < 0.05, Additional file 1:

Table S7 and Additional file 2: Figure S7). The contribution

of 12-dehydro-CA production flux, which was significantly

reduced in the IBD microbiomes (p value < 0.001,

Additional file 1: Table S7) was attributed mostly to repre-

sentatives of the Lachnospiraceae and Ruminococcaceae

families, which are considered to be beneficial due to con-

taining many butyrate producers [41]. These representa-

tives included two Faecalibacterium prausnitzii strains (p

value < 0.001), a species well known to be depleted in IBD

[42]. In contrast, the overall 7-dehydro-CA production po-

tential was comparable between the IBD and the healthy

pediatric microbiomes (Additional file 1: Table S7). How-

ever, the strains contributing were different, with reduced

contributions by commensal bacteria to the production of

7-keto-DCA/7-dehydro-CDCA, and increased contribu-

tions of the pathogenic Escherichia coli strains O157-H7

Sakai and UTI89 UPEC (Additional file 1: Table S7). These

two strains contributed significantly higher to deconjuga-

tion and 7-keto-DCA/7-dehydro-CDCA production in the

IBD microbiomes (p value < 0.001, Additional file 1: Table

S7). Taken together, the dysbiotic IBD microbiomes, com-

pared to the healthy control microbiomes, were depleted in

contributions of a variety of commensal microbes to bile

salt hydrolase and to bile acid biotransformation but

enriched in contributions of pathogenic Escherichia sp.

(Additional file 1: Table S7). Thus, the IBD microbiomes

had distinct bile acid deconjugation and transformation

potential, consistent with reports that bile acid compos-

ition in IBD patients is abnormal [5]. In total, 488 analyzed

features, which encompasses total production, strain con-

tributions, and reaction abundances, were significantly dif-

ferent (p-value <0.05), of which 375 were highly

significant (p-value <0.001) (Additional file 1: Table S7).

Shadow price analysis identifies individual-specific

bottlenecks in bile acid biotransformation potential.

To test whether the bile acid production potential could

be directly predicted from the abundance of the metage-

nomics data mapped onto the AGORA reconstruction

(i.e., from the encoding gene abundance), we calculated

the Spearman correlation between the individual pro-

duction potential for the two deconjugated primary and

13 secondary bile acids (Table 1) and the total

community abundance for all reactions in the bile acid

pathway in the 194 community models. Consistently, for

13 of the 15 bile acids, the correlation between produc-

tion potential and the abundance of reaction directly

synthesizing the respective bile acid was 0.96 or higher

(Additional file 1: Table S9). The secondary bile acid

Iso-CA is synthesized from 3-dehydro-CA by 3β-HSDH.

Surprisingly, the Spearman correlation between produc-

tion potential for Iso-CA/Iso-CDCA and the abundance

of the 3β-HSDH reaction (VMH ID: ICA3bHSDHe/

ICDCA3bHSDHe) calculated for all 194 microbiome

models was only 0.18 indicating that the reaction abun-

dance of the producing reaction did not correlate with

production (Additional file 1: Table S9). In fact, only a

minority of the 194 microbiome models with a high

abundance of the 3β-HSDH reaction (VMH ID:

ICA3bHSDHe), all of which were IBD microbiomes, also

had a high Iso-CA production flux (Fig. 4a). Thus, fac-

tors other than 3β-HSDH abundance limited the pro-

duction flux. To identify these factors, the metabolic

fluxes needed to be analyzed in the context of the path-

way and the microbial community. Constraint-based

modeling is ideal for such analyses of metabolic depend-

encies since it is mechanistic on the molecule level and

takes species-species metabolic exchanges and boundar-

ies into account [18].

To identify the factors limiting the production poten-

tial for secondary bile acids, the shadow prices associ-

ated with the flux solutions of each microbiome model

were analyzed. Shadow prices are a standard feature of

constraint-based modeling that are routinely calculated

with each feasible flux balance analysis solution. Briefly,

the shadow price is a measurement for the value of a

metabolite towards the optimized objective function,

which indicates whether the flux through the objective

function would increase or decrease when the availabil-

ity of this metabolite would increase by one unit [7]. A

positive or negative shadow price indicates that

increased availability of the metabolite would either in-

crease or decrease the flux through the objective func-

tion (note that this definition varies by solver),

respectively. In contrast, the availability of a metabolite

with a shadow price of zero has no influence on the flux

through the objective function. To identify limiting

factors for secondary bile acid production, we investi-

gated the shadow prices in the flux balance analysis solu-

tions (see the “Materials and methods” section) when

optimizing the production of the secondary bile acids in

the 194 microbiome models (Fig. 4b, Additional file 1:

Table S10). Nonzero shadow prices with an absolute

value higher than 10−6 indicating importance for bile

acid production flux were found for biomass metabolites

of 129 strains carrying bile acid enzymes, for

strain-specific metabolites in the bile acid pathway, and
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Fig. 4 (See legend on next page.)

Heinken et al. Microbiome            (2019) 7:75 Page 10 of 18



for dietary exchange metabolites of the bile acids. Over-

all, 1138 microbial and dietary metabolites were found

to be relevant for bile-acid synthesis in the entire set of

microbiome models (Additional file 1: Table S10). When

comparing the shadow prices in the three groups, the

number of metabolites with nonzero shadow prices was

significantly lower in the IBD microbiomes than either

in the healthy pediatric or healthy adult microbiomes

(Fig. 4c). Hence, the pediatric IBD patients were

depleted in strains with bile acid biosynthesis capabil-

ities. This result highlights that an increase in secondary

bile acid biosynthesis in these individual communities

could only be achieved by introducing additional micro-

bial strains.

Next, we aimed to identify the factors limiting Iso-CA

biosynthesis potential. Of the reconstructed strains, 16

and 11 strains, respectively, carried the 3α- and 3β-

HSDH enzyme (Additional file 1: Table S1). Five strains

(Eggerthella sp. 1_3_56FAA, Eggerthella lenta DSM

2243, Gordonibacter pamelaeae 7-10-1-bT, Mycobacter-

ium avium subsp. avium ATCC 25291, and Ruminococ-

cus gnavus ATCC 29149) possessed both enzymes. Of

the strains possessing either or both enzymes, 18 were

present in at least one of the 194 microbiome models.

The shadow prices corresponding to Iso-CA production

were inspected (Additional file 1: Table S10). Note that

shadow prices for Iso-CDCA were analogous.

Four scenarios could be distinguished based on the

shadow prices. Seven microbiomes belonging to the first

scenario were unable to synthesize Iso-CA (Additional

file 1: Table S6). Consequently, in these microbiomes,

shadow prices were only nonzero for dietary Iso-CA

(Additional file 1: Table S10) indicating that Iso-CA

levels could only be increased by directly providing it. In

the second scenario, which was found in 19 micro-

biomes, shadow prices for the six strains carrying

3β-HSDH but not 3α-HSDH were nonzero for at least

one of the six strains’ biomass metabolites (Additional

file 1: Table S10). In the same 19 microbiomes, shadow

prices for all eight strains carrying 3α-HSDH but not

3β-HSDH were zero. This result showed that 3α-HSDH

abundance was not a bottleneck and Iso-CA production

could be increased by increasing the abundance of

strains carrying 3β-HSDH. In these microbiomes the

3β-HSDH abundance directly correlated with Iso-CA

production flux, as illustrated with the example of Hol-

demania filiformis DSM 12042 in Fig. 4d. In the third

scenario, which contained the majority of microbiomes

(145 cases), the shadow prices for all six strains carrying

3β-HSDH but no 3α-HSDH were zero. Instead, the

shadow prices for at least one of the eight strains carry-

ing 3α-HSDH but not 3β-HSDH were nonzero. Conse-

quently, in these microbiomes, the availability of the

precursor 3-dehydro-CA was flux-limiting and Iso-CA

production could not be increased by increasing the

abundance of strains carrying only 3β-HSDH. These 145

microbiomes had the lower than expected Iso-CA produc-

tion potential (Fig. 4e). As expected, in all 145 micro-

biomes, the shadow price for dietary 3-dehydro-CA, the

precursor of Iso-CA, was also nonzero (Additional file 1:

Table S10). Finally, in the fourth scenario, which consisted

of 22 microbiomes, shadow prices were nonzero only for

the biomass metabolite of Ruminococcus gnavus ATCC

29149 and in some cases Eggerthella lenta DSM 2243

(Fig. 4f ). These two strains possess both 3α-HSDH

and 3β-HSDH and are present in most microbiomes

in this study. Thus, they played a central role for all

microbiomes’ capabilities to synthesize Iso-CA.

In summary, by analyzing the shadow prices associated

with each flux balance analysis solution when optimizing

for secondary bile acid production, strain-specific contri-

butions to their biosynthesis were determined for each

personalized community model. Four scenarios with dif-

ferent bottlenecks for the biosynthesis of Iso-CA were

identified. This analysis highlights once more that the

metabolic potential of an individual microbiome, and

(See figure on previous page.)

Fig. 4 Metabolic bottlenecks and shadow price profiles computed when optimizing for Iso-CA production in 194 microbiome community

models. a Abundance of the 3β-HSDH reaction yielding Iso-CA (VMH ID: ICA3bHSDHe) plotted against Iso-CA production potential (flux values

are given in mmol gDW−1 h−1) for the 194 microbiomes. b Heat map of the shadow prices retrieved from the 194 microbiomes when the

production of two deconjugated primary and 13 secondary bile acids was optimized. Blue and white data points show nonzero and zero shadow

prices, respectively. The columns show the 194 microbiomes annotated by group. The rows show all metabolites that had a nonzero shadow

price in at least one community model. The metabolites are annotated by taxonomy. Entries annotated with “Diet_metabolite” represent bile acid

metabolites present in the dietary, luminal, or fecal compartment of the microbiome model. The “bile acid optimized” color bar shows the bile

acid for which production was optimized. c Number of metabolites with nonzero shadow prices in the microbiome models of healthy adults, IBD

patients, and healthy pediatric controls. Significant difference (p value < 0.001) is indicated by stars. d Shadow prices for the biomass metabolite

of Holdemania filiformis DSM 12042, a strain carrying 3α-HSDH but not 3β-HSDH, plotted against Iso-CA production and abundance of the 3β-

HSDH reaction. Blue dots indicate models belonging to Scenario 2 (see main text). e Shadow prices for the biomass metabolite of Collinsella

aerofaciens ATCC 25986, a strain carrying 3β-HSDH but not 3α-HSDH, plotted against Iso-CA production and abundance of the 3β-HSDH reaction.

Blue dots indicate models belonging to Scenario 3 (see main text). f Shadow prices for the biomass metabolite of Ruminococcus gnavus ATCC

29149, a strain carrying both 3α-HSDH and 3β-HSDH, plotted against Iso-CA production and abundance of the 3β-HSDH reaction. g Pathway for Iso-

CA biosynthesis from Glyco-or Tauro-CA, and depiction of the steps representing bottlenecks in Scenarios 2 and 3 (see main text). For metabolite

abbreviations see Table 1. For simplicity, sections of the y axis without any data are omitted in a and d–f (indicated by the two gray lines).
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strategies to manipulate this metabolic potential, cannot

be inferred solely from the abundance of single genes

and depends on the community-wide metabolic network

as well as metabolic constraints (e.g., substrate availability).

We demonstrated that constraint-based modeling allows

for the generation of mechanistic, testable hypotheses.

Discussion

In this work, we used a systematic computational mod-

eling workflow to investigate the bile acid production

capabilities of gut microbes and gut microbial communi-

ties. After annotating and reconstructing the bile acid

deconjugation and transformation pathways (Fig. 1a, Fig.

2) in 693 human gut microbe genomes, we first built

pairwise microbial models providing novel insight into

strain-specific bile-acid production capabilities. We then

assembled gut microbiome models for each metage-

nomics sample of either healthy individuals or pediatric

IDB patients. The three key results of our analysis are as

follows: (1) microbes can complement each other’s bile

acid pathway to achieve the broader bile acid production

repertoire observed in fecal samples, (2) bile acid produc-

tion profiles of 194 microbiome models were

individual-specific and distinguished healthy controls from

pediatric IBD patients, and (3) the bile acid production

profiles could not be predicted by reaction (gene) abun-

dance alone, as illustrated for Iso-CA illustrating the

added value of computational modeling of metabolite

production capabilities of microbial communities.

While it can be intuitively understood that bile acid

biosynthesis is a cooperative task in the gut microbiome

from the known fact that no strain possesses the

complete pathway [23], these microbe-microbe meta-

bolic dependencies could be exactly predicted through

constraint-based modeling yielding more than 7000 pairs

of microbes (Fig. 3a, Additional file 1: Table S5). The

capabilities of most strains to generate secondary bile

acids were shown to be very limited. For example, no

strain alone but 100 pairs could convert tauro-or

glyco-CDCA into UDCA (Additional file 1: Table S5).

This analysis demonstrated that strain-specific

microbe-microbe interactions need to be considered

when studying the metabolic crosstalk between the gut

microbiome and the mammalian host. Similar microbial

corporations through cross-feeding of metabolic prod-

ucts have been suggested, e.g., for intestinal microbial

metabolism of b-vitamins [43], of host-derived mucins

[44], of dietary glycans [45], of flavonoids [46], for

short-chain fatty acid production [41], and for microbial

respiratory capabilities [47].

The personalized bile acid metabolism profile of 194

microbiomes, which included the total production

potential and the strain-level contributions to overall

production was individual-specific and distinct from

healthy controls in pediatric IBD patients (Fig. 3b–d,

Additional file 2: Figure S7). Our finding that the bile

acid profiles of IBD patients differ from healthy controls

agrees with experimental reports. For instance, a recent

study has investigated the microbiomes and fecal meta-

bolomes of pediatric IBD patients and their relatives and

could distinguish two metabotypes both in patients and

relatives [48]. The IBD-associated metabotype has been

characterized by an altered bile acid profile, with

increased levels of cholate and sulfated and taurine-con-

jugated primary bile acids. The altered bile acid profile

suggests a reduced bile acid deconjugation and conver-

sion potential of the gut microbiota [48], which we could

demonstrate being the case with our in silico results

(Fig. 3b–c).

In most analyzed microbiome models, the production

potential for Iso-CA was found to be lower than ex-

pected from the abundance of the 3β-HSDH. Analyzing

the shadow prices [7] revealed that the presence of

strains capable of synthesizing the precursor 3-dehydro-

CA was a bottleneck in many microbiomes. In fact, we

identified four scenarios, for which different strategies

could be used to increase overall Iso-CA production

capabilities in a given microbiome. In these four scenar-

ios, Iso-CA production flux could be increased (1) only

by directly providing it, (2) by increasing the abundance

of strains carrying 3β-HSDH, (3) either by providing

3-dehydro-CA or by increasing the abundance of strains

carrying 3α-HSDH, and (4) by increasing the abundance

of Ruminococcus gnavus ATCC 29149 and in some cases

Eggerthella lenta DSM 2243. To complete the systems

biology cycle, these predictions require experimental

validation, e.g., by measuring the amount of Iso-CA

levels in in vitro cultures from fecal samples. A shadow

price analysis has the advantage of being an unbiased

indicator for metabolites in a pathway that are of key

importance for the end product of the pathway. It

could be readily applied to other health-relevant me-

tabolites produced by the gut microbiome (e.g.,

short-chain fatty acids) and key synthesis-limiting steps

in the relevant pathways.

Compared with commonly used computational and

multivariate statistical approaches, the constraint-based

modeling approach applied in this study has several key

advantages. First of all, unlike quantifications of total

gene abundance (e.g., [49]) and correlation-based ap-

proaches (e.g., [50]), our approach is mechanistic and

obeys physicochemical and environmental constraints

(e.g., mass-charge conservation, laws of thermodynam-

ics, substrate uptake). This property enabled us to pre-

dict the metabolic capabilities of a given microbial

community, as defined by metagenomics data. Import-

antly, the predicted capabilities are physiologically, phys-

icochemically, and thermodynamically feasible under the
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given medium conditions (i.e., diet). Second, the meta-

bolic reconstructions used in our approach are

strain-resolved, and the capabilities included in each

metabolic network are based on the microbes’ genome,

detailed comparative genomic analyses as well as an ex-

tensive review of the literature for biochemical and

physiological data [15]. As a consequence, the metabolic

contribution of each strain in each individual micro-

biome can be exactly predicted with high confidence.

Another advantage of our approach is the incorporation

of species-species boundaries and transport capabilities.

As stated above, species-species cross-feeding plays a

key role for the metabolic potential of a microbial com-

munity and thus needs to be considered. Finally, it is

challenging to link typical metagenomics-based ap-

proaches to a particular host function. Microbial species

or functions can be correlated with certain host metabo-

lites through top-down multivariate statistical analyses

[50]. However, mechanisms explaining these correlations

are often lacking. As more omics data become available

for microbiome samples, the generated microbiome

models can be further constrained and personalized

through the integration of meta-transcriptomic [51],

meta-metabolomic [52], meta-proteomic data [53], or

nutritional information via the Virtual Metabolic Human

database [16]. The microbiome models can also be inte-

grated with the global human reconstruction, Recon3D,

which includes a secondary bile detoxification subsystem

[54], or with the whole-body organ-resolved reconstruc-

tion of human metabolism [19] thanks to the use of a

consistent namespace [15]. The integrated analysis can

predict organ-specific metabolic changes due to differences

in microbial community composition and yield novel hy-

potheses about host-microbiome co-metabolism [19].

One limitation of the method is the steady-state

assumption of flux balance analysis and the resulting

computation of fluxes rather than concentrations. More-

over, the AGORA reconstructions and our modeling

framework do not include regulatory constraints and

kinetic parameters. As a result, the modeling framework

does not account for substrate specificity and trans-

porter capacity, although the latter could be incorpo-

rated as reaction constraints dependent on data

availability. This limitation could be overcome using hy-

brid modeling techniques that integrate the dynamics

and the regulation of biochemical processes through

with differential equations [55–58]. Furthermore, our

method does not allow predicting microbial composition

or organismal abundances in the microbiome, again due

to the steady-state assumption. The method relies on

parameterizing the personalized models with the relative

microbial abundances calculated from the metagenomic

data. For predicting microbial abundances, dynamic

community flux balance analysis methods [58, 59] are

more appropriate. Consequently, we focus the applica-

tion of our framework on exploring the metabolic profile

of a given gut microbiome with known microbial

composition. Finally, it is well known that the gut micro-

biome fluctuates over time [60], however, each simula-

tion performed with the personalized models only

represents the fecal microbiome at a single time point.

This is expected as the fecal metagenomic sample that

serves as the input data also only captures the gut

microbiome at a single time point. Fecal metagenomic

samples from the same individuals at multiple time

points are, for example, available in [61]. Such data

could be used to model a time series of metabolic states

and elucidate how the gut microbial metabolic profiles

fluctuate over time.

Flux profiles predicted by the framework can be read-

ily compared with qualitative increases or decreases in

metabolites in disease conditions to validate simulation

results, which would require metagenomic or 16S rRNA

data as well as fecal metabolomics from the same sub-

jects. Metagenomic and fecal metabolomic measure-

ments of bile acids have been performed in [62] and

such data could be linked through modeling in future ef-

forts. Such comparisons have valuable applications for

mechanistically linking metagenomic and metabolomic

measurements from the same sample. Moreover, qualita-

tive and quantitative metabolomic data could be used as

input data to contextualize the models further. A

COBRA Toolbox module for the implementation of

metabolomic data with constraint-based models has

been developed [52].

While the scope of the present work is the prediction

of bile acid metabolism, in future efforts, other

health-relevant microbial metabolic subsystems may be

considered. For instance, Lewis et al. found that several

pathways, e.g., glycerophospholipid metabolism, amino

benzoate degradation, sulfur relay system, and glutathi-

one metabolism, separated healthy and dysbiotic micro-

biomes [36]. In a follow-up work, fecal amino acid levels

have been found to be altered in IBD patients and to

positively correlate with Proteobacteria [40]. Applying

the computational workflow presented in this study to

predict the gut microbial metabolome beyond bile acid

metabolism would allow us to mechanistically link al-

tered metabolites with strain-specific capabilities. Ultim-

ately, such analysis could lead to novel insights into the

mechanisms behind altered metabolomes in disease

states and allow pinpointing disease-relevant species

and/or enzymes that may serve as novel drug targets.

Conclusions

We demonstrated that an in silico metabolic modeling

workflow could elucidate the metabolic potential of an

individual’s microbiome, which cannot be done based on
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gene count and reaction abundance alone. We illustrated

this workflow using metagenomics data of healthy indi-

viduals and IBD patients while focusing on bile acid

metabolism. Importantly, we were able to demonstrate

that this mechanistic, strain- and metabolite-resolved,

unbiased, and inexpensive approach allows for the sys-

tematic interrogation of the metabolic potential of an in-

dividual’s microbiome and can yield testable novel

hypotheses. Integrative systems biology approaches are

urgently needed to gain novel insight into complex,

multifactorial diseases, such as IBD [1]. In future efforts,

personalized modeling could also be applied to predict-

ing individual-specific dietary or therapeutic interven-

tions [63]. The AGORA resource, the COBRA Toolbox,

and the Microbiome Modeling Toolbox are freely avail-

able to the scientific community. We have also created

extensive tutorials (available at the COBRA Toolbox

GitHub) aiding users interested in applying our frame-

work. We expect that the metabolic modeling approach

presented will have valuable applications in unraveling

the role of human-gut microbiome metabolic interac-

tions in human health and disease.

Materials and methods

Comparative genomic approach

All 773 strains of the AGORA resource [15], 46 strains

reconstructed in this study, and 23 currently not recon-

structed strains were analyzed for the presence of their

genomes at the PubSEED resource [26, 27], resulting in

690 bacterial and three archaeal genomes to be consid-

ered in this study (Fig. 1a). Note that only 670 of the re-

constructed microbes had their genomes available in

PubSEED and were consequently used for the compara-

tive genomic approach. All 693 human gut microbe

genomes were analyzed for the presence of orthologs of

bile acid deconjugation and biotransformation genes

(Additional file 1: Table S1). Orthologs are defined as

genes that satisfy the following conditions: (1) Orthologs

should be closely homologous proteins (e-value cutoff =

e−50). (2) Orthologs should be found in the same gen-

omic context, i.e., the structure of gene locus should be

conserved in related genomes. (3) Orthologs should

form a monophyletic branch of a phylogenetic tree.

For the search of homologs and analysis of genomic

context, the PubSEED platform was used along with

phylogenetic trees for protein domains in MicrobesOn-

line [64]. Multiple protein alignments were performed

using the MUSCLE v. 3.8.31 tool [65, 66]. Phylogenetic

trees were constructed using the maximum-likelihood

method with the default parameters implemented in

PhyML-3.0 [67]. The obtained trees were visualized and

midpoint-rooted using the interactive viewer Dendro-

scope, version 3.2.10, build 19 [68].

The following previously analyzed genes were used as

a starting point: (1) genes for bile salt BSH from mul-

tiple genomes [21], (2) 7α–HSDH) from Bacteroides

fragilis [22], (3) 3α- and 3β-HSDHs genes from

Eggerthella lenta DSM 2243 and Ruminococcus gnavus

ATCC 29149 [23], (4) 7α-HSDH and baiABCDEFGHI

genes for a multistep 7α/β-dehydroxylation pathway, (5)

bai genes from Eggerthella lenta DSM [23], (6)

7β-HSDH gene from Clostridium absonum [25], and (7)

12α-HSDH from Clostridium hylemonae DSM 15053,

Clostridium scindens ATCC 35704, and Clostridium hir-

anonis DSM 13275 [24]. Note that Clostridium leptum

has been experimentally shown to have 12α-HSDH

activity [28]; however, we were unable to identify the

12α-HSDH gene in its genome. BSH proteins are closely

related to the penicillin V amidase (PVA) proteins [21].

To avoid mis-annotations, a phylogenetic tree for BSH

proteins and their homologs in the analyzed genomes

was constructed (Additional file 2: Figure S1), and ortho-

logs of the known BSH genes were identified. All HSDH

proteins listed above demonstrated similarity to each

other and with BaiA proteins. Thus, orthologs for

HSDH/BaiA proteins were resolved through the

construction of a phylogenetic tree (Additional file 2:

Figure S2). Finally, two new genes in the 7α/β-dehydrox-

ylation pathway (BaiO and BaiP, Fig. 2) were predicted

in this work. All of the annotated genes are represented

as a subsystem at the PubSEED website [69] and can be

found in Additional file 1: Table S1.

Formulation and addition of reactions

Reaction mechanisms were retrieved from the KEGG

database [70] as well as published literature (e.g., [71]).

For all genomes having genes for BSH, HSDHs, or the

complete 7α/β-dehydroxylation pathway (Fig. 2), meta-

bolic mass- and charge-balanced reactions were formu-

lated. Exchange reactions were added for all extracellular

metabolites. Most reactions were associated with genes

and proteins annotated in the analyzed genomes. Reac-

tions not-associated with genes and proteins were only

added if the gene was unknown but the reaction was

required to eliminate dead-ends in a metabolic pathway.

Thus, the following gap-filling reactions were added

without associations with genes or proteins: (1) A trans-

port reaction for LCA, the final product of 7α/β-dehy-

droxylation pathway which was added as the transporter

is unknown. (2) Pathways that yield allolithocholate

(allo-LCA) and allodeoxycholate (allo-DCA) were in-

cluded for strains possessing the bai gene cluster as these

compounds are known to be side-products of the 7α/

β-dehydroxylation pathway [72] and found in human

adults under certain circumstances [3].

Pathways for cholesterol reduction to coprostanol

were also reconstructed. These enzymatic activities, both
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cytoplasmic and extracellular, have been shown in Lacto-

bacillus acidophilus, Lactobacillus bulgaricus, and Lacto-

bacillus casei [73]. The precise mechanisms of these

reactions as well as the enzyme-encoding genes are

unknown, but the biotransformation has been shown to

be associated with the oxidation of NADH to NAD+

[73]. Consequently, reactions for extracellular and cyto-

plasmic NADH-dependent reduction of cholesterol to

coprostanol were added to six Lactobacillus sp. models,

together with exchange reactions for cholesterol and

coprostanol as well as a predicted transport reaction for

cholesterol uptake.

All metabolites and reactions were formulated following

an established reconstruction protocol [8]. Metabolites

and reaction abbreviations in the bile acid subsystem were

created in accordance with the Virtual Metabolic Human

(VMH) [16] nomenclature to ensure compatibility with

the human metabolic reconstruction. The MATLAB-

based reconstruction tool rBioNet [74], which ensures

quality control and quality assurance, such as mass- and

charge-balance, was used to add the metabolites and reac-

tions to the appropriate reconstructions. All reactions and

metabolites in the reconstructed bile acid subsystem are

described in Additional file 1: Table S2a, b.

Expansion of AGORA

A total of 46 gut microbial strains were newly recon-

structed. The reconstructions were generated by

semi-automatically expanding and curating KBase [75]

draft reconstructions following the established AGORA

pipeline used in [15] (Additional file 1: Table S11). Of

the 773 AGORA strains and 46 newly reconstructed

strains, 232 strains total carried at least one gene in the

bile acid pathway (Additional file 1: Table S1) and six

produced coprostanol. The corresponding reconstruc-

tions were expanded by the appropriate metabolites and

reactions using rBioNet [74] and subjected to extensive

quality-assurance and control measures [8, 32] (Fig. 1a).

The expanded resource, accounting for 818 strains, is

available on the Virtual Metabolic Human website [16].

Construction of pairwise models

The 232 AGORA reconstructions carrying bile acid reac-

tions were joined pairwise in every possible combination

as described previously [15] using the Microbiome

Modeling Toolbox [33]. In total, 26,796 pairwise models

were created.

Construction of sample-specific gut microbiota models

Metagenomic datasets from 194 samples in total were

obtained from three sources: (1) Strain-specific relative

abundance data from 149 individual microbiotas of

healthy American individuals was obtained from the

Human Microbiome Project website [35]. (2) Paired-end

Illumina raw reads of 33 dysbiotic Crohn’s Disease

patients in the PLEASE cohort [36] and of 26 healthy

controls in the COMBO cohort [37] were retrieved from

NCBI SRA under SRA: SRP057027. For the latter data-

set, the reads had been pre-processed and then mapped

onto the reference set of 773 AGORA genomes, as

described in [38]. To reduce the number of false posi-

tives, a cutoff of 10% genome coverage was applied to

the resulting coverages (representing a threshold of at

least 10% genome coverage for each microbe in each

human individual). The resulting coverages were

normalized for each individual in order to obtain the

relative abundances. To avoid too small model sizes,

microbiome models, for which less than 20 strains could

be mapped to the reference set of AGORA genomes,

were excluded from the analysis. This was the case for

13 samples from the PLEASE cohort and one sample

from the COMBO cohort.

Personalized microbiome models were then created

using the mgPipe module in the Microbiome Modeling

Toolbox [33] (Fig. 1b). Briefly, for all strains identified in

at least one metagenomics sample, the corresponding

AGORA reconstructions, if available, were joined into

one global constraint-based microbiome community re-

construction as described elsewhere [17, 33]. For each of

the 194 metagenomic samples, the list of all the mapped

strains and their strain-level abundances served as input

data for deriving a personalized microbiota model from

the global community reconstruction, which consisted of

the joined AGORA reconstructions corresponding to

each strain present in the sample. The flux through each

AGORA strain’s model was coupled to its respective bio-

mass objective function, as described elsewhere [11].

Then, we parameterized the community biomass reac-

tion by applying the strain-level abundances as stoichio-

metric values for each microbe biomass reaction in the

community biomass reaction (Fig. 1b). These constraints

enforced that all strains grew at the experimentally mea-

sured ratios. Subsequently, an Average European diet

supplemented with conjugated primary bile acids (see

below) was applied as constraints on the dietary ex-

changes. To simulate a realistic turnover of microbial

biomass, the allowed flux through the community

biomass reaction was set to be between 0.4 and 1 mmol

× person-1 × day-1, corresponding to a fecal emptying of

once every three days to once a day. The features of the

personalized community models are given in Table 2.

Definition of the average European diet

A diet representing the nutrient intake of an average

European individual was obtained from the nutrition re-

source in the Virtual Metabolic Human database [16]

along with the corresponding flux values. The diet was

supplemented with metabolites previously determined
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necessary for the biomass production of at least one

AGORA reconstruction [15]. Each microbiota commu-

nity model was constrained with the Average European

diet using a dedicated function in the Microbiome

Modeling Toolbox [33] (adaptVMHDietToAGORA.m).

Additionally, to enable modeling of bile acid transform-

ation, the uptake of the conjugated primary bile acids

Glyco-CA (VMH ID: gchola), Tauro-CA (VMH ID:

tchola), Glyco-CDCA (VMH ID: dgchol), and

Tauro-CDCA (VMH ID: tdchola) was allowed to be

taken up unlimitedly by setting the lower bounds on

the corresponding exchange reactions to − 1000 mmol

× person-1 × day-1. The lower bounds on all other

dietary exchange reactions were set to zero preventing

the uptake of these metabolites. The constraints im-

plemented to simulate the diet are given in Additional

file 1: Table S3.

Interrogation of models for bile acid synthesis capabilities

The bile acid production potential in 232 AGORA re-

constructions and 26,796 pairwise models was deter-

mined using FBA [9]. To predict the maximally possible

bile acid production flux, the exchange reactions (in the

single and pairwise models) and the fecal secretion reac-

tions (in the community models) for CA, CDCA, and 13

secondary bile acids were individually chosen as the ob-

jective function and maximized. The 194 sample-specific

community models were interrogated using distribu-

tedFBA [76]. To determine the total maximal production

potential, the maximal flux through the fecal exchange

reactions in the community models was maximized. To

retrieve the contribution of each individual strain to

overall production, the minimal fluxes through the

luminal exchange reactions of each joined AGORA

model (representing secretion into lumen) were ex-

tracted. Shadow prices were retrieved from each com-

puted flux balance solution [7]. To extract the shadow

prices for all metabolites in the respective community

model that were computed while maximizing the pro-

duction flux of secondary bile acids, a dedicated function

(analyseObjectiveShadowPrices.m) in the Microbiome

Modeling Toolbox [33] was used.

Simulations

Model creation and contextualization, and simulations

were carried out using the COBRA Toolbox [34] and the

Microbiome Modeling Toolbox [33] in MATLAB

version 2016b (Mathworks, Inc.) as programming envir-

onment. Flux balance analysis (FBA) [9] for pairwise

simulations was performed using the optimization solver

CPLEX through the Tomlab (Tomlab, Inc.) interface for

MATLAB. Distributed flux balance analysis (distribu-

tedFBA) [76] for personalized microbiome simulations

was performed using the IBM CPLEX solver (IBM, Inc.)

through the CPLEX interface for Julia.

Data analysis

The calculation of the Spearman correlation and the

two-sided Wilcoxon rank-sum test was performed in

MATLAB version 2016b (Mathworks, Inc.) using the

corr and ranksum functions, respectively. The p values

were adjusted for false-positive discovery rate with the

Benjamini-Hochberg method using the mafdr function

in MATLAB. Heatmaps were generated with R version

3.3.2 [77] using the aheatmap, pheatmap, ggplot2, easy-

Ggplot2, and RColorBrewer packages, as well as the

ComplexHeatmap package in Bioconductor 2.7 (http://

www.bioconductor.org/). Principal Coordinates Analysis

(PCoA) was performed with the vegan package in R

using the Bray-Curtis dissimilarity index. Other plots

were generated with MATLAB.
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in the flux balance solutions when optimizing for secondary bile acid
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man gut microbe genomes. Figure S7. Heat map of the strain-level con-

tributions clustered in Fig. 3d, and presented in Additional file 1: Table S8.
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