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PURPOSE The tumor microenvironment is complex, comprising heterogeneous cellular populations. As mo-

lecular profiles are frequently generated using bulk tissue sections, they represent an admixture of multiple cell

types (including immune, stromal, and cancer cells) interacting with each other. Therefore, these molecular

profiles are confounded by signals emanating frommany cell types. Accurate assessment of residual cancer cell

fraction is crucial for parameterization and interpretation of genomic analyses, as well as for accurately

interpreting the clinical properties of the tumor.

MATERIALS ANDMETHODS To benchmark cancer cell fraction estimationmethods, 10 estimators were applied to

a clinical cohort of 333 patients with prostate cancer. These methods include gold-standard multiobserver

pathology estimates, as well as estimates inferred from genome, epigenome, and transcriptome data. In

addition, two methods based on genomic and transcriptomic profiles were used to quantify tumor purity in

4,497 tumors across 12 cancer types. Bulk mRNA andmicroRNA profiles were subject to in silico deconvolution

to estimate cancer cell–specific mRNA and microRNA profiles.

RESULTSWe present a systematic comparison of 10 tumor purity estimationmethods on a cohort of 333 prostate

tumors. We quantify variation among purity estimation methods and demonstrate how this influences in-

terpretation of clinico-genomic analyses. Our data show poor concordance between pathologic and molecular

purity estimates, necessitating caution when interpretingmolecular results. Limited concordance between DNA-

and mRNA-derived purity estimates remained a general pan-cancer phenomenon when tested in an additional

4,497 tumors spanning 12 cancer types.

CONCLUSION The choice of tumor purity estimation method may have a profound impact on the interpretation of

genomic assays. Taken together, these data highlight the need for improved assessment of tumor purity and

quantitation of its influences on the molecular hallmarks of cancers.
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INTRODUCTION

The tumor microenvironment represents an admixture

of multiple cell types and complex interactions be-

tween bona fide cancer cells and surrounding stromal

and immune cells.1 Because a majority of high-

throughput experiments are performed on bulk

tissue samples, the resulting signal is usually con-

founded by nonmalignant tumor-adjacent cells (TACs).

Variable tumor content and variable TAC composition

can impinge upon interpretations of molecular data and

subsequent clinical decisions.2-4 To delineate true re-

sidual signal representing individual cell populations, it

is crucial to accurately estimate tumor purity. Tumor

purity represents the fraction of cancer cells in a tumor

and can be estimated either by expert patholo-

gists reviewing tumor sections5 or in silico (using epi-

genomic, genomic, or transcriptomic profiles).6 Pathologic

estimates can be inconsistent5 and pragmatically may

not always represent the region of tumor that is subject

to molecular profiling. Although in silico estimates could

circumvent these problems, it remains unclear to what

extent these estimates vary across purity calling

methods and with the underlying type of biomolecule

(eg, DNA v RNA). Previous studies have quantified the

pan-cancer purity landscape2,7 and compared a panel

of tools for estimating tumor purity.6 However, sys-

tematic benchmarking of in silico tumor purity against

matched pathologic estimates and its association with

multimodal clinico-genomic profiles remains to be

elucidated. Herein, we present systematic bench-

marking of 10 purity estimation methods using DNA,

mRNA, and microRNA (miRNA) profiles in a 333-

patient clinically-coherent cohort8 with matched mul-

tiobserver pathologic estimates of purity. We then
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quantify how molecular correlates of tumor purity can skew

clinico-genomic interpretations as the result of variable es-

timates of cancer cell fraction. Last, we demonstrate

a comparison between the purity estimates inferred from

most commonly used molecular profiles (DNA and RNA)

across 12 additional cancer types.

MATERIALS AND METHODS

Methods for Purity Estimation

Prostate cancer purity estimates were generated by multiple

pathologists using top and bottom slides, as previously

described.8 In silico estimates were generated using a panel

of previously published DNA-, mRNA-, andmicroRNA-based

methods11-17 (ASCAT v2.1, CLONET v1.0.0, OncoSNP

v3.0.1, ISOpure v1.3) and two additional unpublished

methods (LEUC, genomic methylation signature of leuko-

cytes [as previously described in ref13] and INTEGER,

a low-pass DNA sequencing–based method that was run on

a subset of cohort (115 samples, of which 107 were present

in the data freeze used for this study). INTEGER infers purity,

ploidy, and subclonality from paired tumor and normal

samples using the following principles: (1) models the re-

lationship between the observed allelic frequencies and the

underlying copy number changes, and the possible exis-

tences and impacts of multiple subclones that may often

mislead inferences if not explicitly modeled; (2) simultaneous

statistic inference on the basis of both copy number changes

and major allelic frequencies; (3) restoration of information

lost as a result of the guanine-cytosine content and actual

sizes of each library insert and other specific biases of each

genomic location; (4) avoid making inferences when the

signal-to-noise ratio is not ideal because of technical ar-

tifacts; (5) an explicit modeling of whole-genome dupli-

cation events and whole-chromosome duplication events,

which are common in cancer genomics and have huge

impacts on the accurate inference of purity and ploidy;

and (6) high statistical power with the possibility to make

reliable inferences on low-pass genomic data (as low as

0.5× sequencing depths).

Three microRNA samples were missing from The Cancer

Genome Atlas data repository and are therefore not in-

cluded in this study.

The Cancer Genome Atlas pan-cancer purity estimates

were generated using processed RNA-Seq data (for

ISOpure) downloaded from https://gdac.broadinstitute.org/

(download version 2015) and SNP6 array level-1 data (for

ASCAT) downloaded from GDC data portal.

Consensus Pathology, DNA, and mRNA Purity Estimates

Multiobserver pathology reviews yielded purity ranges,8which

were further collapsed into single-point estimates using the

median value of purity range in deciles. DNA (ABSOLUTE,

ASCAT, CLONET, INTEGER, OncoSNP)– and mRNA (DeMix

and ISOpure-R)–based purity estimates were aggregated

using median DNA and mRNA estimates, respectively.

Availability of Data and Materials

All processed data are available either in theData Supplement

or uploaded to DOI: 10.5281/zenodo.3349831 as specified in

the Data Supplement. TCGA prostate adenocarcinoma study

data are available in the original publication.8

Recurrently Altered Genes Panel, Androgen Receptor

Signature, Percent Genome Altered, SNVs, and

Clinical Covariables

These data sets were reused from the original publication.8

Data Analysis and Visualizations

All data analyses were performed using R statistical pro-

gramming language (v3.4.4). All statistical tests were two

sided. Visualizations were created using R package Bou-

trosLab.plotting.general (v5.9.2).28

CONTEXT

Key Objective

Tumor cell fraction (also called tumor purity) is routinely estimated by expert pathologists. Genome-wide molecular assays

have led to active development of in silico algorithms for estimating tumor purity. To determine the context specificity of

these algorithms, we compared tumor purity estimates from multiobserver pathology to those from multiple algorithms

working on different biomolecules (eg, DNA, RNA).

Knowledge Generated

Tumor purity estimates from in silico tools varied significantly from pathology estimates. In silico purity estimates were biased

by the biomolecule type. We recommend parameterizing genomic analyses with tumor purity estimated from the matched

molecular analyte being analyzed.

Relevance

Tumor purity is a key criterion for sample inclusion in clinico-genomic studies and subsequent interpretation of molecular

results. Computational tools often require purity estimates; we show that these are influenced by the selected purity estimator.

Both molecularly driven clinical trials, as well as therapeutic and theranostic decisions, may be affected by these choices.
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Ethics Approval and Consent to Participate

Tissue contributing sites followed appropriate consent

documentation and approved submission of cases to

The Cancer Genome Atlas, as detailed in the original

publication.8

RESULTS

Prostate cancer presents complex intra- and interpatient

heterogeneity. It is an ideal model to study heterogeneity

because of frequent surgical management via radical

prostatectomy of the whole gland, allowing spatio-genomic

studies.9,10 We collated pathologic, molecular, and clinical

data sets from The Cancer Genome Atlas’ (TCGA) prostate

marker study, which comprised 333 patients.8 Purity es-

timates from multiple pathologists were consolidated,

resulting in point estimates as previously described8 (see

Methods). For a subset of cases, both top and bottom tissue

block slides (with sections acquired for molecular analysis

in between these) were assessed by multiple pathologists,

demonstrating moderate correlation between pathologists

(top sections: Pearson’s R = 0.64, P = 6.23 × 10−7; bottom

sections: Pearson’s R = 0.53, P = 8.93 × 10−3; Data

Supplement Fig 1A-B). A similar trend was observed be-

tween the pathology estimates of top and bottom sections

(Pearson’s R = 0.59, P = 2.03 × 10−12; Data Supplement

Fig 1C), highlighting potential influence of spatial hetero-

geneity. In silico estimates of tumor purity were generated

using nine methods11-18 that leverage DNA (methylation or

copy number data), mRNA, or miRNA profiles (Data

Supplement Tables 1 and 2; Methods). These purity es-

timates demonstrated considerable intermethod variation

(Panalysis of variance = 1.16 × 10−176; Fig 1A). Of note, LEUC

estimates on the basis of DNA methylation data were right

skewed, with a median purity of 0.9 (∆LEUC-Other = 0.33, P =

1.44 × 10−95, Wilcoxon rank sum test). This is expected

because they represent an upper bound of tumor content

by estimating the percentage of leukocytes in a specimen.

Among the panel of methods assessed, five failed to esti-

mate purity on the complete data set (percentage missing:

ASCAT = 4.8%, CLONET = 12.9%, ABSOLUTE = 14.1%,

INTEGER = 16.8%, LEUC = 40.5%). Interestingly, all these

methods were based on DNA profiles (genomic or epi-

genomic), suggesting intrinsic limitations in estimating

tumor purity from DNA-based assays in this setting. These

limitations could be explained by the DNA profile itself,

because samples with failed purity estimates exhibited

quiet genomes with low numbers of somatic single

nucleotide variants (SNVs; Data Supplement Fig 2A-B). We

tested whether these failed samples were considered low-purity

samples by pathology and RNA-based methods. Pathology

calls did not show clear evidence of low purity; however, RNA-

basedmethods predicted a trend toward low purity for a subset

of samples (Data Supplement Fig 2C). Some of these failed

samplesmay thus truly have low tumor cellularity. However, it is

probable that somemay also represent quiet cancer genomes,

which are now increasingly recognized as a real phenomenon,

particularly in prostate cancer.8,19

Inspection of the complete sample set revealed no asso-

ciation with histologic heterogeneity (rationalized as Glea-

son score10; Fig 1B, Data Supplement Fig 3A-B). Tumor

purity estimates across methods strongly clustered with the

type of molecular profile used to generate them (Fig 1B).

DNA copy number–based assays showed strong correla-

tion among themselves (Pearson’s R between each pair of

methods = 0.47 to 0.89), and RNA-based methods

exhibited similar strong intraprofile correlation (Pearson’s R

between each pair of methods = 0.68 to 0.89; Fig 1C).

DNA methylation–based LEUC estimates showed weak/

moderate correlation with other DNA- and RNA-based

methods (Pearson’s R between LEUC and other methods =

0.15 to 0.48; Fig 1C). Surprisingly, pathology estimates were

weakly correlated with the other nine methods (Pearson’s R

between pathology and other methods = 0.13 to 0.40;

Fig 1C, Data Supplement Fig 4A). This raised concerns

about the appropriateness of pathology estimates in pa-

rameterizing bioinformatics tools that analyze DNA or RNA

profiles. Moreover, correlation between in silico callers and

pathology estimates of top and bottom sections separately

remained weak (Pearson’s R = 0.04 to 0.32, Data Sup-

plement Fig 4B). Hence, we preclude spatial heterogeneity

as the primary factor underlying this lack of concordance.

These data highlight that variation and error profiles among

the intraplatform estimates are probably correlated and

suffer from similar intrinsic limitations, independent of the

specific algorithm used. Therefore, we created consensus

DNA andmRNA purity estimates using themedian for each

class of methods, hereafter referred to as DNA and mRNA

estimates (see Methods). The differences between pa-

thology estimates and either DNA or mRNA estimates were

strongly correlated (Pearson’s R = 0.81, P = 4.68 × 10−79;

Fig 2), with 29.13% of cases demonstrating agreement

(within 15% purity of each other). Samples that had

agreement in DNA and mRNA estimates were significantly

more likely to underestimate (UE) than overestimate (OE)

FIG 1. Purity landscape in The Cancer Genome Atlas (TCGA) prostate cancer cohort (PRAD). (A) Distribution of TCGA prostate tumor purity estimates

(n = 333) using in silico methods and consolidated multiobserver pathology reviews; (B) Patient-wise purity estimates grouped by Gleason score. Gray

represents missing data, including both failed estimates and missing molecular profiles (see Methods for details). Columns were clustered using Ward

hierarchical clustering method. Data from INTEGER were available for 107 samples using the low-pass DNA sequencing data; (C) Pearson correlation

between purity estimates inferred using in silico methods and pathology reviews. Rows and columns were clustered using Ward hierarchical clustering

method.

Haider et al

998 © 2020 by American Society of Clinical Oncology

Downloaded from ascopubs.org by 106.51.226.7 on August 9, 2022 from 106.051.226.007
Copyright © 2022 American Society of Clinical Oncology. All rights reserved. 



purity relative to pathology estimates (UE = 25.5% of cases,

OE = 11.4%, PBinomial = 2.72 × 10−5). This trend persisted

when DNA and mRNA estimates were compared with

pathology independently (DNA: ∆UE−OE = 20.13%, mRNA:

∆UE−OE = 23.43%). Of the DNA- and mRNA-based esti-

mates, only two samples displayed discordant directions of

effect relative to pathologic estimates (purple and yellow

dots in Fig 2), highlighting overall similarity in error profiles

of the underlying biomolecules.

Next, we assessed whether the key transcriptional and

genomic biomarkers that underpin prostate cancer biology

are dependent on tumor purity. The activity of androgen

receptor transcriptional targets (AR Score) showed no as-

sociation with pathologic or DNA-based methods while

demonstrating a weak association with mRNA- and miRNA-

derived purity estimates (Pearson’s R = 0.20 to 0.22, P ,

.001; Fig 3A). Genomic instability (percent genome altered),

a strong predictor of disease aggressiveness,20 was weakly
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associated with pathologic estimates of purity (Pearson’s

R = 0.19) and moderately correlated with purity derived from

DNA, mRNA, and miRNA profiles (Pearson’s R = 0.40 to

0.44, P , .001; Fig 3B). SNV mutation burden was weakly

associated with DNA- and mRNA-based purity estimates

(Pearson’s R = 0.21 to 0.33, P , .001; Fig 3C). To further

delineate the relationship between tumor purity and somatic

mutations, we stratified purity estimates by the mutation

status of a panel of recurrently altered genes in prostate

cancer.8 Tumor purity determined by at least one profile was

associated with six genes, including ERG fusions and SPOP,

FOXA1, and TP53 point mutations (false discovery rate

[FDR]–adjusted P , .25, Wilcoxon rank sum test; Fig 3D,

Data Supplement Table 3). For these six genes, tumor purity

was moderately higher in mutant samples.

To characterize this association between driver gene status

and tumor purity, we evaluated the associations between

tumor purity and the variant allele frequency (VAF) in

samples carrying mutations (Fig 3E). Tumor purity inferred

by at least one of the DNA and RNA analytes was positively

correlated with the VAF, in particular, demonstrating strong

associations with SPOP, FOXA1, TP53, ATM, and KMT2C

(FDR-adjusted P , .1). However, pathology estimates of

tumor purity were unable to accurately capture the VAF of

these recurrently altered genes.

Next, we evaluated whether pathology, DNA, mRNA, and

miRNA purity estimates vary in their associations with in-

dividual genes or miRNAs and to what extent these can be

overcome by using in silico deconvolution.15 Each of the

four consensus purity estimators was individually correlated

with five molecular profiles (bulk/naı̈ve and deconvolved

mRNA abundance, bulk/naı̈ve and deconvolved miRNA

abundance, and bulk copy number data; deconvolved

profiles were generated using ISOpure). Here, deconvolved

profiles represent signal in bulk mRNA/miRNA abundance

profiles, predicted to emanate from tumor cells only, re-

moving signal from TACs.4,15 Most of the features (genes’

mRNA abundance or copy number, miRNA abundance)

were correlated with only one purity estimator at a time

(Spearman’s |ρ| . 0.3, FDR-adjusted P , .01), a trend

which was consistent across all fivemolecular profiles (Data

Supplement Tables 4-8, Fig 4A). Naı̈ve mRNA and miRNA

profiles exhibited the greatest proportion of features cor-

related with tumor purity, which diminished after in silico

deconvolution, highlighting potentially confounding TACs.

With the exception of naı̈vemiRNA profiles, purity estimates

were inversely correlated with molecular profiles regardless

of the underlying purity estimation profile (Data Supple-

ment Fig 5A-F). These data suggest that the presence of

genomic and transcriptomic correlates of tumor purity are

likely to confound biologic and clinical interpretations.

Because DNA- and mRNA-based assays are most com-

monly used in cancer genomics, we asked if the purity

estimates from these two analytes are comparable in

other cancers. Given the strong intra-analyte correlation

(Fig 1C), we considered a representative DNA-based

method (ASCAT) and an mRNA-based method (ISOpure)

to estimate tumor purity for an additional 12 cancer types

(4,497 tumor samples) from TCGA project (Fig 4B, prostate

cancer data discussed above is shown for reference only).

Overall, all cancer types showed an average purity of at least

0.56. Breast cancer exhibited the lowest mean purity (0.56)

and kidney renal papillary cell carcinoma the highest mean

purity (0.77). Assessment of concordance between DNA-

and mRNA-based estimates revealed an overall trend

of poor correlation across 11 of 12 cancers (Pearson’s

R = −0.27 to 0.09; Fig 4B). DNA- and mRNA-based

estimates for rectum adenocarcinoma were correlated

(Pearson’s R = 0.47, P = 3.03 × 10−6). However, the

distribution of these two sets of estimates differed sig-

nificantly (∆DNA−mRNA = −0.19, P = 1.09 × 10−13, Wilcoxon

rank sum test). These data further underscore the im-

portance of using analyte-matched purity estimates for

bioinformatics analysis and subsequent interpretation.

DISCUSSION

Herein, we provide evidence that tumor purity estimates

manifest intrinsic properties of the underlying information

used for purity estimation and exhibit only modest inter-

profile concordance. One explanation for these variations

lies in the starting tissue material corresponding to the

different areas of tumor specimen assessed. Pathology-

based estimates are considered the gold standard. How-

ever, interpathologist variation observed in our study, as

well as previous studies, suggests that there are probably

some inaccuracies in these estimates because of their

subjectivity/qualitative nature.5,21 These discrepancies may

also be a result of the lack of full spatial heterogeneity of the

pathologic slide. To some extent, this limitation may be

overcome by increasing the observer size and spatially

diverse slides per sample. However, this is often not

FIG 3. Molecular correlates of tumor purity. Genomic correlates of tumor purity as summarized using androgen receptor (AR) signature score (A),

percent genome altered ([PGA], B), and mutation burden (C). Correlation statistic was estimated using Pearson correlation. (D) Purity estimates

stratified by prostate cancer–specific driver mutations and ERG fusions. log2FC represents difference in mean purity (log2 scale) betweenmutant and

wild-type samples (ERG represents ERG fusions). Statistical significance was estimated using Wilcoxon rank sum test, and P values were adjusted for

multiple comparisons using the Benjamini–Hochberg method. Statistical tests were performed for genes with more than three mutant samples.

Therefore, IDH1, RB1, AKT1, and CHD1 (displayed with “x”) were deemed inappropriate for statistical testing. (E) Correlation between purity

estimates and variant allele frequency of mutant samples. Correlation statistic was estimated using Pearson correlation, and P values were adjusted for

multiple comparisons using the Benjamini–Hochberg method. For reliable correlation estimates, genes (in panel 3D) with more than 10 mutant

samples were considered for estimating correlation with tumor purity. FDR, false discovery rate; miRNA, microRNA.
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FIG 4. Deconvolved prostate cancer profiles, and DNA- and mRNA-derived purity estimates across The Cancer

Genome Atlas (TCGA) cancer types. (A) Correlation between purity estimates derived using pathology, DNA,

mRNA, and microRNA (miRNA) profiles and molecular profiles (mRNA.naive = bulk mRNA abundance,

mRNA.ISOpure = deconvolved mRNA abundance, miRNA.naive = bulk miRNA abundance, miRNA.ISOpure =

deconvolved miRNA abundance, and CNA = bulk copy number data; deconvolved RNA profiles were generated

using ISOpure). Each feature (genes for mRNA and copy number aberration [CNA] profiles, miRNAs for miRNA

profiles) was correlated with tumor purity estimators (pathology, DNA, RNA, miRNA) separately. The x-axis

represents number of purity estimators where a feature was found to be significantly correlated (Spearman’s |ρ|

. 0.3, false discovery rate–adjusted P , .01). (B) Distribution of tumor purity estimates across 13 TCGA tumor

types (4,830 tumors) using an in silico DNA-based (ASCAT) and mRNA-based (ISOpure) method. “Mean”

estimate indicates combined mean of purity estimates from ASCAT and ISOpure. “Pearson’s R” indicates

correlation between ASCAT and ISOpure estimates. “n” shows total number of samples with valid estimates

available for both ASCAT and ISOpure.
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practical in the absence of digital pathology strategies. For

clinico-genomic sequencing studies requiring a minimum

purity threshold for inclusion in the study, an alternative to

pathology estimates is to infer purity directly from the

analyte by performing low-pass DNA sequencing to filter

low-purity samples.22

In addition to poor concordance between pathology andDNA/

RNA-based tumor purity in prostate cancer, our pan-cancer

data reported herein suggest that the purity estimates from

DNA and mRNA profiles also show limited concordance. The

concordance between purity estimators also varies depending

upon the tumor type and patterns of somatic changes it

exhibits (eg, DNA-based methods rely on the presence of

copy number aberrations). Furthermore, previous studies

have reported varying levels of concordance in purity esti-

mates inferred from DNA- and RNA-based methods.2,23 For

instance, Aran et al2 show much stronger concordance be-

tween ESTIMATE24 (RNA-based purity estimator) and

ABSOLUTE13 (DNA-based purity estimator) compared with

the RNA- and DNA-based methods in our study. This has

significant implications because many genomic algorithms

require tumor purity as an input parameter, and selection of

the right algorithm for the right tumor type remains chal-

lenging. We recommend using purity estimates inferred from

matched startingmaterial. For instance, DNA analyses should

be adjusted with purity estimates inferred from the DNA

profiles and gene expression analyses with RNA-based purity

estimates. Because purity estimates vary across methods,

consensus estimates on the basis of matched analyte type

may further improve purity estimates and may also overcome

missing values and normalize outlier estimates. After confi-

dent purity estimates have been created, one way to account

for these is to adjust bioinformatics and statistical analyses for

tumor purity, as stressed in previous studies.2,7,15 Because

bulk tumor profiles are heterogeneous compositions of tumor

cells and TACs featuring complex interplay, it is crucial to

interpret the clinico-genomic profiles in the context of the

underlying heterogeneity.25 Many in silico deconvolution

techniques have been developed to estimate relative abun-

dance of different cell types,24,26,27 as well as techniques that

explicitly generate residual transcriptomic11,12,15,18,23 and

genomic14profiles of tumor-only and stromal-only cells. Use of

these residual profiles has generated optimism4,18,23; however,

their applicability in routine bioinformatics analyses remains

less popular. Herein, we recommend researchers to consider

deconvolution of bulk profiles into individual component

profiles (e.g., cancer and stromal profiles) to improve sensi-

tivity and specificity of downstream analyses.4,15
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