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ABSTRACT

The redshifted 21 cm line of neutral hydrogen is a promising probe of the epoch of reionization

(EoR). However, its detection requires a thorough understanding and control of the systematic

errors. We study two systematic biases observed in the Low-Frequency Array-EoR residual

data after calibration and subtraction of bright discrete foreground sources. The first effect is

a suppression in the diffuse foregrounds, which could potentially mean a suppression of the

21 cm signal. The second effect is an excess of noise beyond the thermal noise. The excess

noise shows fluctuations on small frequency scales, and hence it cannot be easily removed by

foreground removal or avoidance methods. Our analysis suggests that sidelobes of residual

sources due to the chromatic point spread function (PSF) and ionospheric scintillation cannot

be the dominant causes of the excess noise. Rather, both the suppression of diffuse foregrounds

and the excess noise can occur due to calibration with an incomplete sky model containing

predominantly bright discrete sources. The levels of the suppression and excess noise depend

on the relative flux of sources which are not included in the model with respect to the flux of

modelled sources. We predict that the excess noise will reduce with more observation time

in the same way as the thermal noise does. We also discuss possible solutions such as using

only long baselines to calibrate the interferometric gain solutions as well as simultaneous

multifrequency calibration along with their benefits and shortcomings.

Key words: methods: data analysis – techniques: interferometric – dark ages, reionization,

first stars.

1 IN T RO D U C T I O N

The first stars and galaxies formed towards the end of cosmic dark

ages and their energetic radiation is thought to have ionized mat-

ter in the Universe. The epoch of reionization (EoR) is the era in

which matter in the intergalactic medium was transformed from

being neutral to ionized. The EoR carries a wealth of information

about structure formation and the first astrophysical objects in the

Universe.

⋆ E-mail: patil@astro.rug.nl

As hydrogen is the most abundant element in the Universe, the

21 cm transition line of neutral hydrogen is a promising probe of

the EoR. The evolution of neutral hydrogen through cosmic time

can be studied by observing the 21 cm line at different redshifts.

The EoR is expected to have occurred between redshifts 6 and 12

(Hinshaw et al. 2013; Planck Collaboration XLVII 2016), which

correspond to observational frequencies of 120 to 200 MHz for the

redshifted 21 cm transition line. Therefore, several experiments are

aiming at observing the EoR with low-frequency radio telescopes

including Giant Meterwave Radio Telescope (Paciga et al. 2013),

Low-Frequency Array (LOFAR; van Haarlem et al. 2013), Murchi-

son Widefield Array (MWA; Bowman et al. 2013; Tingay et al.

2013; Dillon et al. 2015; Trott et al. 2016), the Donald C. Backer
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Precision Array for Probing the Epoch of Reionization (Parsons

et al. 2010; Ali et al. 2015), the Hydrogen Epoch of Reionization

Array (DeBoer 2016), the Square Kilometer Array (Mellema et al.

2013; Koopmans et al. 2015).

The contamination due to the Galactic and extragalactic fore-

ground emission is one of the primary challenges in detecting the

cosmic redshifted 21 cm emission from neutral hydrogen (hereafter

referred as the 21 cm signal). The astrophysical foregrounds are

either discrete sources such as radio galaxies and clusters or diffuse

synchrotron and free–free emissions from our Galaxy (Shaver et al.

1999; Di Matteo et al. 2002; Oh & Mack 2003; Cooray & Furlanetto

2004; Di Matteo, Ciardi & Miniati 2004). These foregrounds are

several orders of magnitude brighter than the expected 21 cm signal.

Therefore, an accurate removal of the foregrounds while avoiding

possible systematic errors is crucial for the success of EoR exper-

iments. In this paper, we present some systematic biases observed

in the residual LOFAR-EoR data after calibration and subtraction

of bright discrete foreground sources, investigate their origins and

discuss possible solutions.

Two important systematic biases observed in the LOFAR-EoR

data after calibration and foreground subtraction are (i) a suppres-

sion of diffuse, polarized foregrounds and (ii) an excess of noise.

Diffuse foregrounds appear both in total and polarized intensity

(Jelić et al. 2014, 2015), but they are difficult to detect in total in-

tensity (Stokes I) in presence of numerous bright discrete sources.

Diffuse foregrounds are dominant in polarized intensity, because

only few discrete foreground sources show polarized emission. We

observe a suppression in the polarized diffuse foregrounds while

subtracting discrete foreground sources. Diffuse foregrounds ap-

pear predominantly on large angular scales, which are also the most

promising scales for a detection of the 21 cm signal (Zaroubi et al.

2012; Chapman et al. 2013; Patil et al. 2014). Although one aims

to detect the 21 cm signal in total intensity, a suppression of the

diffuse polarized foregrounds could suggest a suppression of the

21 cm signal as well. The second systematic effect is an excess of

noise beyond the thermal noise. The excess noise not only reduces

sensitivity, but also causes an obstacle in the foreground removal.

Several foreground removal or avoidance algorithms separate the

foregrounds based on their spectral smoothness [see Chapman et al.

(2015) for a review of foreground removal methods]. The excess

noise introduces additional random variations along frequency in

the data, and hence it makes removal of foregrounds inefficient. We

investigate three potential sources of the excess noise: the chromatic

nature of the point spread function (PSF), ionospheric scintillation,

and calibration artefacts.

The response of a radio interferometer needs to be calibrated in

order to correct for variations in electronics and the ionosphere.

A bright compact source with known flux is needed to calibrate

the gains of interferometric elements. However, few such calibra-

tor sources are known at low radio frequencies, and it is possible

that none of them might be located within the field view of an

observation. One can instead use self-calibration in such cases. In

self-calibration, a model of bright sources in the sky is constructed,

and it is used to calibrate the gains of interferometric elements

(Schwab 1980; Cornwell & Wilkinson 1981). The sky model and the

gain solutions are improved in an iterative manner. The traditional

self-calibration obtains one gain solution for each interferometric

element. However, this may not be sufficient for the new generation

of telescopes with wide field of views, where the gain might change

as a function of direction. Direction-dependent self-calibration is

then used where the gain solutions in multiple directions are ob-

tained (van der Tol, Jeffs & van der Veen 2007; Wijnholds &

van der Veen 2009). Some EoR projects use direction-dependent

self-calibration for the calibration and subtraction of bright sources

(Mitchell et al. 2008; Yatawatta et al. 2013). Nearby sources can

be clustered together to get one solution in the respective direction

(Kazemi, Yatawatta & Zaroubi 2013a).

The sky model in self-calibration is often imperfect due to errors

in flux, position or morphology of the modelled sources (Datta,

Bhatnagar & Carilli 2009; Datta, Bowman & Carilli 2010). The sky

model is also incomplete, because it contains only bright discrete

sources and excludes faint discrete sources and diffuse emissions.

Some artefacts of calibration with an incomplete sky model have

been well known. These include generation of spurious source com-

ponents and suppression of real components (Wilkinson, Conway

& Biretta 1988). Grobler et al. (2014) and Wijnholds, Grobler &

Smirnov (2016) considered a simple case of one bright and one

faint source and provided an analytical description of how spuri-

ous sources can be generated when the faint source is excluded in

the model for calibration. However, real data are more complex

with many discrete sources and diffuse foregrounds. Therefore, in

this paper, we rely on simulations to study effects of model in-

completeness. In a similar study, Barry et al. (2016) found that

excluding faint discrete sources in a sky model leads to contami-

nation of foreground-free power-spectrum modes. In this paper, we

also consider effects of diffuse foregrounds and show the contami-

nation in the observed data. Recently, some solutions to artefacts of

the calibration with an incomplete sky model have been discussed

in literature. Simulations by Nunhokee (2016) showed that using

a longer time interval for the calibration reduces suppression of

unmodelled sources. However, increasing solution time interval in

reality would limit time-scales on which ionospheric effects can

be removed. Barry et al. (2016) and Ewall-Wice et al. (2016) used

multifrequency calibration for MWA by modelling the instrument

response with low-order polynomials. They were limited by intrin-

sic spectral structures in the instrument such as cable reflections.

We will discuss some new solutions in this paper along with their

advantages and shortcomings.

An alternative to self-calibration is redundancy calibration which

does not require a priory model of the sky (Noordam & de Bruyn

1982; Wieringa 1992). Therefore, the discussion in this paper does

not apply to redundancy calibration. However, redundant arrays use

a hybrid approach consisting of redundancy calibration followed by

a sky model based calibration to resolve degeneracies of the former

(Zheng et al. 2014; Ali et al. 2015).

The paper is organized as follows: in Section 2, we briefly de-

scribe the data analysis pipeline for the LOFAR-EoR project. In Sec-

tion 3, we discuss systematic biases observed in the calibrated data,

namely, an excess noise and suppression of the diffuse foregrounds.

Detailed properties of the excess noise and possible sources of its

origin are discussed in Section 4. In Section 5, we show with the

help of simulations that the above two systematic biases could be

artefacts of calibration with an incomplete sky model. We discuss

some possible solutions to the systematic biases in Section 6, before

concluding in Section 7.

2 O BSERVATI ONS AND DATA PROCESSING

The data used in this paper were observed with LOFAR during

observing cycle 0 (2013 February–November) and cycle 1 (2013

November–2014 May). We concentrate on the primary target field

of the LOFAR-EoR experiment centred on the North Celestial Pole

(NCP). The NCP field was observed with 55 LOFAR High Band

Antenna stations in the Netherlands, providing baselines from 68 m

MNRAS 463, 4317–4330 (2016)
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Table 1. Observational details of the data used in this paper.

Telescope LOFAR High Band Antenna

Observational period:

LOFAR cycle 0 February–November 2013

LOFAR cycle 1 November 2013–May 2014

Duration of an observation 6–16 h (season-dependent)

Frequency range 115–174 MHz

Field of view at 150 MHz 3.◦8 (FWHM)

Polarization Linear X–Y

Longest baseline:

LOFAR core 3.5 km

LOFAR Dutch array 121 km

Collecting area (zenith):

LOFAR core 512 m2 × 48 stations

Dutch remote stations 1024 m2 × 16 stations

Time, frequency resolution:

Raw data 2 s, 3 kHz

After RFI flagging 2 s, 12 kHz

After calibration 10 s, 183 kHz

Figure 1. Block diagram of the data reduction pipeline. Time and frequency

resolutions at different stages are noted. DI and DD refer to direction inde-

pendent and direction dependent, respectively. The final output is a set of

images of Stokes parameters (I, Q, U, V), the PSF and gridded visibilities.

to 121 km, and operating in the frequency range 115–189 MHz.

However, we use the data only up to 174 MHz in this paper, be-

cause the 174–189 MHz part of the bandwidth is corrupted by radio

frequency interference (RFI). The frequency range 115–174 MHz

corresponds to redshifts 7 to 11.35 for the 21 cm line of neutral

hydrogen. Visibilities, i.e. correlations of voltages from pairs of an-

tennas, were recorded with 2 s time resolution. The total bandwidth

was divided into 195 kHz sub-bands. Each sub-band consisted of

64 channels, thereby providing a frequency resolution of 3 kHz.

We observed only during night time to avoid contamination due

to the solar emission and minimize ionospheric phase errors. The

duration of an observation varied between 6 and 16 h depending on

the season at the time of observation. The observational details are

summarized in Table 1. For more information about LOFAR capa-

bilities, the reader is referred to van Haarlem et al. (2013). Different

steps in the processing of the observed data are summarized in the

following subsections. Please see Fig. 1 for a block diagram of the

data reduction pipeline.

2.1 Pre-processing

The first step in our data processing is to discard that part of the data

which is affected by RFI. The RFI mitigation is performed by the

software AOFLAGGER (Offringa et al. 2010; Offringa, van de Gronde

& Roerdink 2012) at the highest time and frequency resolution

available to minimize information loss. Two frequency channels on

either edge of every sub-band are discarded to avoid edge-effects of

the polyphase filter. This reduces the bandwidth of each frequency

sub-band to 183 kHz. The remaining data is then averaged to 12 kHz,

2 s resolution to reduce its volume for further processing.

2.2 Direction-independent calibration

Usually, a bright source with known flux can be used to calibrate the

gain of each interferometric element. However, the region within the

field of view at the NCP contains not one dominant source but rather

many sources with comparable fluxes e.g. NVSS 7011732+89284

with 7.2 Jy,1 3C61.1 with 1 to 11 Jy depending on frequency and

several sources with 1 Jy apparent flux at 150 MHz. Therefore, we

use 300 sources spread over the area of 10 × 10 deg2 to calibrate the

average station gains over the field of view in the direction of the

NCP. We use the Black Board Selfcal package (Pandey et al. 2009)

to obtain and apply the calibrated gain solutions for every 10 s time

interval and 183 kHz bandwidth. Each station gain is described by

a 2 × 2 Jones matrix for two orthogonal linear polarizations.

2.3 Source subtraction

Supernova remnants and radio galaxies and clusters are the discrete

foreground sources observed at low radio frequencies. The brightest

sources in the NCP field are about six orders of magnitude brighter

than the expected 21 cm signal. Therefore, we need to remove the

foreground sources with a very high accuracy to reach the required

sensitivity for a signal detection. Foreground sources can be sub-

tracted by self-calibration. However, station gains obtained towards

the centre of the field or the average gains over the field of view

are not good enough for the entire field of view of LOFAR. Vary-

ing primary beam shapes and ionospheric effects cause direction-

dependent effects (Lonsdale 2005; Koopmans 2010; Vedantham &

Koopmans 2015), which require obtaining gains towards multiple

directions in which sources are to be removed. This is called a

direction-dependent calibration. We use SAGECAL (Yatawatta et al.

2009; Kazemi et al. 2011; Kazemi & Yatawatta 2013; Kazemi,

Yatawatta & Zaroubi 2013b) to calibrate the station gains in multi-

ple directions and ultimately subtract sources. SAGECAL takes a sky

model containing positions, fluxes and morphologies of a set of

known sources as an input. It solves for the station gains in the

direction of these sources by minimizing the difference between

the observed data and predicted visibilities for the sky model mul-

tiplied with the estimated station gains (please see the appendix for

a mathematical description of the calibration). Finally, the sources

are removed by subtracting their predicted visibilities multiplied

with the obtained gain solutions.

It is important to note that the station gain solutions are only used

to subtract the modelled sources, they are not applied to the residual

data. The residual data still remains affected by direction-dependent

errors (DDEs). DDEs are not relevant for the cosmic signal itself,

because only a small central region around the pointing centre will

be used for an analysis of the cosmic signal where the sensitivity is

1 The flux of NVSS 7011732+89284 was earlier thought to be 5.3 Jy

(Yatawatta et al. 2013) and was used to set the absolute flux scale. It was

assumed that the source has a constant spectrum from 100 to 300 MHz.

However, recent observations with LOFAR have revealed that the spectrum

of the sources rises and falls within this frequency range with the correct

flux of 7.2 Jy at 150 MHz (de Bruyn et al., in preparation).

MNRAS 463, 4317–4330 (2016)
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highest due to the primary beam response. However, DDEs affect

foregrounds that are further away from the pointing centre and hence

their sidelobes in the central region of interest. The primary beam

and ionospheric effects causing these errors are expected to vary

smoothly with frequency. Therefore, the residual foregrounds can

be removed in a second step of foreground removal using algorithms

that separate spectrally smooth foregrounds from the thermal noise

and the cosmic signal (Chapman et al. 2015).

In order to reduce the data volume, we average data to 10 s and

183 kHz resolution before source subtraction. However, effects of

frequency and time smearing are taken into account while predicting

visibilities for the sky model. The sky model is regularly updated as

we reach better sensitivities by subtracting sources and observing

more data. We refer the reader to Yatawatta et al. (2013) for more

details about the calibration and source subtraction in the LOFAR-

EoR NCP field.

2.4 Imaging

Residual visibilities obtained after source subtraction are imaged

using the software package EXCON (Yatawatta 2014). We attempt

to maintain the spectral smoothness of foregrounds by using uni-

form weighting and only the densely sampled part of the uv plane,

i.e. baselines between 30 and 800 wavelengths (Patil et al. 2014).

Separate images are made for each 183 kHz wide sub-band.

3 SYSTEMATIC BIASES IN THE DATA

As a first step towards the detection of the 21 cm signal, we would

like to measure the variance (Patil 2014; Patil et al. 2014) and

the power spectrum (Harker et al. 2010; Chapman et al. 2013) of

the differential brightness temperature of the 21 cm emission as

a function of redshift. Simulations in Patil et al. (2014) show that

the 21 cm signal variance can be detected with a 4σ significance

in 600 h if all systematic errors can be controlled. However, we

identify two systematic biases in the residual data after calibration

and subtraction of bright discrete foreground sources, namely, an

excess of noise and a suppression in diffuse foregrounds. These two

problems are described in the following subsections.

3.1 The excess noise

An accurate determination of the statistical properties of the thermal

noise such as its standard deviation and power spectrum is impor-

tant. The expected standard deviation (σ ) of the thermal noise in a

visibility can be calculated from the system equivalent flux density

(SEFD) as

σ =
SEFD

√
2�ν�t

, (1)

where �ν and �t are integration frequency bandwidth and time,

respectively. The SEFD depends on the elevation of an observation.

The expected SEFD of the LOFAR High Band Array towards the

NCP is about 4100 Jy, as derived from the empirical SEFD towards

the zenith (de Bruyn et al., in preparation). For 10 s and 180 kHz

integration, the noise per visibility should be 2.16 Jy. About 7 × 106

visibilities are observed over 12 h of observation. Therefore, the

thermal noise in an image made with such an observation should

be about 580 µJy. In reality, the noise in an image depends on

several factors such as the fraction of the data flagged due to RFI,

weights given to different visibilities during imaging, the Galactic

background in the direction of observation, calibration artefacts. A

Figure 2. The ratio of the rms of differential Stokes I images (σ�I) to those

of Stokes V images (σV), as a function of frequency for three observations.

Consecutive sub-bands 195 kHz apart are used for the difference. The ratio

is always greater than unity, implying there is an excess of noise in Stokes I

as compared to the thermal noise dominated Stokes V. Sub-bands containing

strong RFIs have been removed.

more detailed discussion about noise properties will follow in de

Bruyn et al. (in preparation).

The actual thermal noise in an observation can be determined

using the circular polarization data, i.e. Stokes V parameter. Most

radio sources in the sky do not show circular polarization. Therefore,

the Stokes V images are expected to be thermal noise dominated.

There can be a small leakage of the total intensity, i.e. Stokes I into

Stokes V. Such leakage occurs because of the different projections

of the two orthogonal dipoles towards the same direction in the sky.

However, the polarization leakage for modelled sources is removed

during the calibration and source removal. Furthermore, Asad et al.

(2015) have shown that the Stokes I to Stokes V leakage is less

than 0.003 per cent. Therefore, the Stokes V images provide good

estimates of the noise properties. The root mean square (rms) of the

Stokes V noise in our data is about 0.9 mJy for a 13 h and 195 kHz

(one sub-band) integration at 150 MHz in uniform-weighted images

of 3 arcmin resolution.

Another way to estimate the noise properties directly from the

Stokes I parameter is to take the difference between two Stokes I

images separated by a small frequency interval. All other signals

from the sky, e.g. foregrounds and cosmological signal, should

almost be the same in the two channels. The PSF changes by only

0.1 per cent over 0.2 MHz.2 Hence, the difference between two

consecutive frequency channels should be dominated by the thermal

noise, especially after the brightest discrete foreground sources have

been subtracted. In principle, the noise properties obtained from the

differential Stokes I images should be very close to those obtained

from Stokes V. However, we find the Stokes I differential noise

to be higher, as shown in Fig. 2 where we plot the ratio of their

rms values for three different nights of observations. We call this

additional noise in the Stokes I images the ‘excess noise’. The

excess noise could originate from the following sources:

(i) Convolution of residual sources with the chromatic PSF;

(ii) ionospheric scintillation;

(iii) calibration and foreground removal artefacts.

2 We measure the chromatic variation of the PSF by constructing images of

the PSF towards the pointing centre. The rms of the difference between 10◦

images of the PSF separated by 0.2 MHz in frequency is about 0.001, where

each PSF image is normalized to have the maximum value of unity.

MNRAS 463, 4317–4330 (2016)
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Figure 3. Suppression of the diffuse foregrounds: uniform weighted, 4◦ polarized intensity maps for the following cases: (i) before subtraction of discrete

sources (first column), (ii) after source subtraction using SAGECAL (second column) and (iii) after subtracting sources using baselines only longer than 200

wavelengths in calibration (third column). The top and bottom rows correspond to Faraday depths of −30 and −24.5 rad m−2. The diffuse foregrounds are

suppressed during the source subtraction because they are not included in the sky model. They can partially be recovered by excluding short baselines in

calibration, but this results into an enhanced noise. The bright discrete sources present in the first column have been removed by SAGECAL in other columns.

We perform several tests and simulations to study properties

and causes of the excess noise. The potential sources, i.e. a

chromatic PSF and ionospheric scintillation will be discussed

in Section 4, whereas calibration artefacts will be discussed in

Section 5.

The excess noise cannot be removed by the foregrounds fitting

algorithms which are used to remove faint sources and the diffuse

foregrounds after subtracting the bright sources. Most of these al-

gorithms separate the foregrounds from the 21 cm signal based on

their smooth frequency spectra [Chapman et al. (2015) and ref-

erences therein]. The excess noise is uncorrelated even on small

frequency separations of 0.2 MHz, and hence it cannot be eas-

ily removed by standard foreground removal methods that expect

spectrally smooth foregrounds.

3.2 Suppression of the diffuse foregrounds

The second systematic effect that we observe in the data is a sup-

pression of the diffuse foregrounds, which occurs in the process of

removal of discrete sources. Synchrotron and free–free emissions

from our own Galaxy constitute the diffuse foregrounds. These

diffuse foregrounds are difficult to model and computationally ex-

pensive to include in the sky model for the direction-dependent cal-

ibration in SAGECAL. We remove them at a later stage based on their

presumed smooth frequency spectra (Harker et al. 2009; Chapman

et al. 2012, 2013). Therefore, our sky model for SAGECAL contains

only discrete sources, whereas the observed data contains also the

diffuse foregrounds in total intensity as well as the linear polar-

ization (Jelić et al. 2014, 2015). A consequence of the difference

between the true sky and the calibration sky model could be to sup-

press structures that are not part of the model, absorbing them in

gains applied to the restricted calibration sky model and potentially

lead to excess power elsewhere in the image or on different spatial

or frequency scales.

The suppression of the diffuse foregrounds is not easy to notice

in Stokes I images because they are dominated by bright discrete

sources and confusion noise. However, the suppression of the po-

larized diffuse foregrounds can be easily seen, because not many

discrete sources are polarized. The first two columns in Fig. 3 show

the diffuse foregrounds in polarized intensity before and after the

source subtraction, and the suppression in the latter case is self-

evident. We show polarized intensity maps at two Faraday depths

(�) of −30 and −24.5 rad m−2 obtained by rotation measure syn-

thesis (Brentjens & de Bruyn 2005). The diffuse foregrounds appear

on large angular scales where a detection of the 21 cm signal is also

most promising (Zaroubi et al. 2012; Chapman et al. 2013; Patil

et al. 2014). Therefore, our concern is that a suppression in the

diffuse foregrounds could mean a suppression of the 21 cm signal

as well. A solution for mitigating the suppression of the diffuse

foregrounds and the 21 cm signal is to exclude short baselines in

the calibration. One can use only baselines longer than a certain

baseline length and still obtain the gain solutions for all stations.

Previously, Jelić et al. (2015) have used only baselines longer than

800 wavelengths in the calibration to minimize the suppression of

the diffuse foregrounds. We use baselines longer than 200 wave-

lengths to obtain station gains but subtract the sky model sources on

all baselines. As shown in the third column in Fig. 3, this reduces

the suppression of the diffuse foregrounds. One should note that the

first and the third columns in Fig. 3 do not look exactly the same

because the bright, largely instrumentally polarized, point sources

present in the left-hand panels have been subtracted using SAGECAL

in the right-hand panels.

4 PRO PERTI ES O F THE EXCESS NOI SE

We performed several tests with an aim of investigating properties

and ultimately the origin of the excess noise. Results of these tests

are presented in this section.

MNRAS 463, 4317–4330 (2016)
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Figure 4. Angular power spectrum of the excess and thermal noise for the observation on 2013 April 17. The ratio of the two remains constant irrespective of

the baseline length. The power spectra have been multiplied by 10 for the convenience of plotting their ratio in the same plot.

4.1 Angular power spectrum

The angular power spectrum can be a useful tool in identifying

causes of the excess noise. One should expect higher power on

smaller angular scales if either sidelobes of sources due to the

chromatic PSF or ionospheric scintillation is the dominant cause of

the excess noise. Sidelobes of unsubtracted sources are not perfectly

subtracted in a sub-band difference due to the chromatic nature of

the PSF (Morales et al. 2012; Parsons et al. 2012; Vedantham, Udaya

Shankar & Subrahmanyan 2012). The PSF is chromatic because the

uv coordinate or the spatial frequency u corresponding to a baseline

scales with frequency f as

u =
bf

c
, (2)

where b is the physical length of the baseline and c is the speed of

light. The rate of change of the uv coordinate with frequency, i.e.

du

df
=

b

c
, (3)

is larger at longer baselines. Therefore, we expect the power spec-

trum of the excess noise to increase with the baseline length, if a

chromatic PSF were the dominant cause of the noise. Similarly,

ionospheric scintillation noise shows more power on longer base-

lines (Vedantham & Koopmans 2015, 2016).

We compute the azimuthally averaged angular power spectrum

of the excess noise by Fourier transforming the differential Stokes

I images and then squaring their magnitude. In Fig. 4, we show

the power spectrum of the excess noise as a function of baseline

length for the observation on 2013 April 17. We also show the

power spectrum of the thermal noise from Stokes V. The ratio of

the power spectrum of the excess noise to that of the thermal noise

remains constant as a function of the baseline length. Therefore, we

conclude that sidelobes of the unsubtracted sources and ionospheric

scintillation are unlikely to be the dominant sources of the excess

noise. This is in agreement with Vedantham & Koopmans (2016)

where it is shown that scintillation noise is confined to the wedge-

like structure in the two-dimensional power spectrum similar to

smooth spectral foregrounds.

4.2 Contribution due to the chromatic PSF

The analysis presented in Section 4.1 suggests that sidelobes of

unsubtracted sources is unlikely a dominant cause of the excess

noise. However, we would like to study the chromatic nature of

sidelobes in more detail and quantify its contribution to the excess

noise in this subsection.

The observed Stokes I signal in a frequency sub-band can be

expressed as

i1 = s1 ∗ p1 + ni1, (4)

where s1 is the original signal from the sky, p1 is the PSF, ni1 is the

thermal noise in Stokes I, and ∗ denotes a convolution operation.

Taking a Fourier transform,

I1 = S1 × P1 + Ni1, (5)

where a capital letter denotes the Fourier transform of the respective

quantity in equation (1). For Stokes V,

V1 = Nv1, (6)

as we assume that the Stokes V contains only the thermal noise.

Similarly, for a consecutive sub-band,

I2 = S2 × P2 + Ni2, (7)

V2 = Nv2. (8)

For a 195 kHz separation between two consecutive sub-bands, we

assume that the signal from the sky does not change, i.e.

S = S1 ≈ S2. (9)

The difference between the two sub-bands then becomes

dI = I1 − I2 = S dP + Ni1 − Ni2, (10)
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where dP = P1 − P2. We can compute the power spectrum of the

differential Stokes I as
〈
|dI |2

〉
= |S|2 |dP |2 +

〈
|Ni1|2

〉
+

〈
|Ni2|2

〉
. (11)

Equation (10) follows from equation (9) because the thermal noise

realizations at different sub-bands do not correlate. Similarly, for

Stokes V,
〈
|dV |2

〉
=

〈
|V1 − V2|2

〉
=

〈
|Nv1|2

〉
+

〈
|Nv2|2

〉
. (12)

The noise in Stokes I and V should be statistically identical, imply-

ing 〈|Ni1|2〉= 〈|Nv1|2〉 and 〈|Ni2|2〉= 〈|Nv2|2〉. Therefore, subtracting

equation (11) from equation (10),
〈
|dI |2 − |dV |2

〉
= |S|2 |dP |2 , (13)

where the power spectrum of the signal from the sky |S|2 is obtained

using

|I1|2 − |V1|2

|P1|2
=

|S|2 |P1|2 + |Ni1|2 − |Nv1|2

|P1|2
= |S|2 . (14)

The left-hand side of equation (13) is the power spectrum of the

observed excess noise. Whereas the right-hand side is the contri-

bution of sidelobes of sources due to the chromatic PSF. Equa-

tion (13) implies that in an ideal case, where the sky signal does

not change in consecutive sub-bands, nor other effects contribute

such as the ionosphere or imperfect calibration, the excess noise

should be same as the differential sidelobe noise. We compute the

power spectra of Stokes I, V and the PSF using uniform weighted

images produced by EXCON. The PSF images are produced by re-

placing all visibility data points by unity. We use the PSF at the

centre of the field in this test, assuming that the PSF does not vary

significantly towards different directions. Fig. 5 shows the observed

total excess noise and estimated contribution of the sidelobe noise,

i.e. the right-hand side of equation (13), computed before and af-

ter the direction-dependent calibration and source subtraction. The

differential sidelobes amount to the total observed excess noise be-

fore source subtraction. However, it is only a small fraction of the

excess noise after source subtraction. This suggests that the excess

noise might have been introduced in the data during the source

subtraction, and we will discuss this in detail in Section 5.

4.3 Correlation with the ionospheric scintillation

As discussed in Section 4.1, the angular power spectrum of the

excess noise suggests that ionospheric scintillation is also unlikely to

be a dominant cause of the excess noise. However, in this subsection,

we further study any possible correlation of the excess noise with the

ionospheric conditions in more detail. The ionosphere introduces

stochastic phase fluctuations in the low-frequency radio signals.

Vedantham & Koopmans (2015, 2016) have studied the scintillation

noise due to ionospheric diffraction of discrete sources in the case

of wide-field interferometry. We expect the ionospheric scintillation

noise to be higher when the diffractive scale is shorter (Vedantham

& Koopmans 2015, 2016).

We briefly discuss here how we compute the diffractive scales

from the data, but a more detailed description can be found in

Mevius et al. (2016). For each baseline, we compute the time series

of the phase difference between the direction-independent gain so-

lutions of the pair of stations forming the baseline. We then compute

the structure function which is the variance of the time series of the

phase difference as a function of the baseline length. The structure

function is fit to a power law, and it is expected to have a power-

law index of 5/3 for a Kolmogorov-type turbulence. The diffractive

Figure 5. Comparison of the total observed differential excess noise in

differential Stokes I images with the differential sidelobe noise due to the

chromatic PSF. Top panel: differential sidelobes account for the total excess

noise before the direction-dependent (DD) calibration and source subtraction

with SAGECAL. Bottom panel: the total excess noise is much higher than the

contribution due to the differential sidelobes after the DD calibration.

Figure 6. The ratio of the rms of SAGECAL residuals in Stokes I to Stokes

V as a function of frequency for different diffractive scales in the iono-

sphere observed on different nights. The diffractive scales are mentioned

at 150 MHz. The shorter the diffractive scale, the higher the ionospheric

scintillation noise. However, the noise in the data does not show an obvious

anticorrelation with the diffractive scale.

scale is the baseline length at which the phase variance is 1 rad2. In

Fig. 6, we show the ratio of Stokes I to Stokes V rms for different

nights of observations with different diffractive scales. We do not

find any obvious anticorrelation between the excess noise and the

diffractive scale in the ionosphere. This again confirms our conclu-

sion based on the angular power spectrum of the excess noise that

the ionosphere is unlikely to be the dominant cause of the excess

noise.

We should note that we have seen an anticorrelation be-

tween the ionospheric diffractive scale and the noise before the
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direction-dependent calibration and source subtraction in our other

target field towards 3C196 which contains brighter sources (Mevius

et al. 2016). This effect might be difficult to see in the NCP field

which does not contain bright sources. Furthermore, the travelling

ionospheric disturbances are prominent on time-scales of few min-

utes, and their effect is likely removed from the NCP data during

the direction-dependent calibration.

5 SI M U L AT I O N S

In this section, we test whether the direction dependent calibration

can introduce an excess noise using simulations of the calibration

and source subtraction process, where effects of the chromatic PSF

and ionosphere are eliminated. The simulated mock data sets contain

discrete sources, diffuse foregrounds and thermal noise. SAGECAL is

then used to obtain station gains and subtract the discrete sources.

The steps involved in the simulations are as follows.

(i) 25 sources with brightest apparent (i.e. observed) fluxes are

selected from the NCP sky model and their visibilities are predicted.

The NCP sky model is constructed from the observed data and

contains sources within a radius of 20◦ around the NCP. The selected

brightest 25 sources are located within a radius of 7◦ from the NCP,

and their flux densities range from 5 to 0.24 Jy.

(ii) We predict the Stokes I visibilities of the simulated diffuse

foregrounds from Jelić et al. (2008, 2010) multiplied with a time-

averaged primary beam of LOFAR. The rms flux density of these

diffuse foregrounds is normalized to 5 mJy/PSF, i.e. 7 K of bright-

ness temperature. We do not know the brightness temperature of

the diffuse foregrounds in the NCP field in total intensity, but we

have assumed it to be 10 times the brightness temperature of the

observed polarized diffuse foregrounds in the field.

(iii) The thermal noise of rms 1.5 Jy per visibility is simulated at

the resolution of 10 s, 183 kHz at 135 MHz. This results into an rms

noise of 0.83 mJy per sub-band image for a 13 h long observation,

which is comparable to the observed noise in Stokes V images in

the data.

(iv) Visibilities of the discrete sources, diffuse foregrounds and

the thermal noise are added to form a mock data set.

(v) SAGECAL is used to calibrate the station gains and remove

discrete sources from the simulated data. We cluster the simulated

25 sources in 21 directions for which the station gain solutions

are obtained. We keep the number of directions small so that the

calibration remains an overdetermined system.3

While predicting visibilities for discrete sources, we increase

their fluxes by 5 per cent. This is equivalent to station gains being

higher than their expected values. This way, we ensure that the

actual values of gain solutions in the calibration are not the same as

the initial values used in calibration iterations. Such absolute scaling

of fluxes does not affect the end result. However, if we were to vary

relative fluxes of sources grouped within a cluster that would affect

the common solution for that group of sources. In the following

3 Radio interferometric calibration can be considered to be an equivalent

of the factor analysis technique, as described in Sardarabadi (2016). For P

interferometric elements, the maximum number of directions in which the

gain solutions can be obtained, is given by P −
√

P (chapter 4, Sardarabadi

2016). Therefore, in the case of 64 LOFAR stations in the Netherlands, one

can solve for maximum 56 directions in an instantaneous monochromatic

snapshot. We use 5 to 20 min time intervals in SAGECAL which provide more

constrains.

Figure 7. Results from multiple noise realizations of one frequency sub-

band. Top panel: angular power spectra of the input diffuse foregrounds,

thermal noise and SAGECAL residuals after source subtraction. The diffuse

foregrounds are suppressed at short baselines in residuals, whereas long

baselines show excess power above the thermal noise. Bottom panel: differ-

ential residuals (�I) between different noise realizations, which are higher

than the thermal noise. The simulated data contains 25 discrete sources (5–

0.24 Jy), the diffuse foregrounds (7 K) and the thermal noise (0.83 mJy/PSF).

subsections, we present the results of different tests performed with

the simulations.

5.1 Different noise realizations of one sub-band

Here, we simulate multiple realizations of the mock data for one

frequency sub-band at 135 MHz. Different realizations contain the

same discrete and diffuse foregrounds but different realizations of

the thermal noise. The advantage of this test is that we exclude

effects of the chromatic PSF in this analysis. Ideally, we expect

the discrete sources to get perfectly subtracted and the diffuse fore-

grounds with the thermal noise to be left as residuals. However, as

shown in the top panel of Fig. 7, we find an excess of power in

the residuals at baselines longer than 200 wavelengths, i.e. the dis-

crete sources are not perfectly subtracted. Additionally, the power

at short baselines is suppressed, i.e. the diffuse foregrounds are par-

tially removed during the source subtraction. As the diffuse fore-

grounds remain the same in different data realizations, we expect

the difference between the residuals of different realizations to be

consistent with the thermal noise. However, as shown in the bottom

panel of Fig. 7, we see an excess of flux in the differential residu-

als of different realizations. The power spectrum of the differential

residuals resembles thermal noise only at baselines longer than 100

wavelengths. At shorter baselines, the diffuse foregrounds affect the

power spectrum of the residuals.
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Figure 8. Simulation results, same as Fig. 7, except here the brightness of

the diffuse foregrounds is reduced by 10 times. The foreground suppression

is reduced, and the excess noise has disappeared as compared to Fig. 7,

showing that these systematic effects are functions of the unmodelled flux

due to the diffuse foregrounds.

We find that both the suppression of the diffuse foregrounds and

the excess noise depend on the brightness of the diffuse foregrounds

which are not part of the sky model. In Fig. 8, we show the results

when the intensity of the diffuse foregrounds is reduced by a factor

10 to have an rms of 0.7 K. The suppression of foregrounds is

reduced, and the residuals reach the thermal noise at long baselines.

This test shows that both the foreground suppression and the excess

noise problems occur when the sky model used in self-calibration

and source subtraction is incomplete. Additionally, the intensity of

these problems depends on the missing flux in the model. Barry

et al. (2016) suggested unmodelled foregrounds convolved with a

chromatic PSF as the source of variations in calibration solutions

and an excess noise. However, as evident from this test, unmodelled

flux in itself could be sufficient to cause variations in calibration

solutions.

5.2 Multiple SAGECAL runs on the same realization

of simulation

In order to understand the interplay between unmodelled flux and

the thermal noise, we study results of multiple calibration runs on

the same realization of the thermal noise in this subsection. Different

calibration runs on the same data may not find the exact same gain

solutions due to any randomization implemented in the calibration

algorithm. In every expectation maximization step in SAGECAL, the

order in which the station gains in different directions are solved, is

randomized to reduce the systematic errors in the solver. However,

the final solution in every run of SAGECAL is expected to reach the

global minimum in the likelihood space. Differences between the

residuals of different calibration runs on the same data should then

be near zero. We find that this is not the case. For a simulation

containing discrete sources in the flux range 5–0.24 Jy and diffuse

foregrounds of rms brightness temperature 0.7 K, the differential

noise is 10 per cent of the thermal noise. The level of this excess

noise depends on the relative fluxes of the discrete sources and the

diffuse foregrounds as summarized in Table 2. As shown in Fig. 9,

the power spectrum of the differential noise resembles that of the

thermal noise just as observed in the real data, unless the unmodelled

flux dominates on certain baselines which was the case in Fig. 7.

This test provides a possible explanation for the excess noise. We

think that the unmodelled flux due to the diffuse foregrounds alters

the likelihood function of calibration parameters in such a way that

Table 2. The differential noise (�I) in residuals of multiple SAGECAL runs

on the same realization of the simulated data for different levels of discrete

and diffuse foregrounds. The diffuse foregrounds are mentioned in flux

densities of rms/PSF and in rms brightness temperature in parentheses. The

differential noise in residuals is mentioned as a percentage of the thermal

noise.

Discrete sources Diffuse foregrounds �I/Noise

5 to 0.24 Jy 5 mJy (7 K) 130 per cent

5 to 0.24 Jy 0.5 mJy (0.7 K) 10 per cent

0.5 to 0.24 Jy 0.5 mJy (0.7 K) 25 per cent

Figure 9. Results from multiple SAGECAL runs on one realization of the

simulation. The difference between residuals of different runs (�I) is 10 per

cent of the thermal noise, and it has the same power spectrum as the thermal

noise.

the maximum-likelihood (ML) condition becomes degenerate, i.e.

multiple sets of calibration parameters satisfy the condition. The

calibration could find any one of these sets of parameters as the

gain solution in a run. If the obtained solution is different than

the true ML solution, it will lead to residuals in source subtraction

containing excess power beyond the thermal noise. However, the

difference between the residuals of any two solutions would have

the same statistical properties as the thermal noise, because both so-

lutions satisfy the ML condition of the altered likelihood function.

This hypothesis could in principle be verified by sampling the like-

lihood space of calibration parameters. However, this is computa-

tionally very expensive for our parameter space of high dimensions

(21 directions × 64 stations × 2 polarization components).

In reality, we will not calibrate hundreds of hours of LOFAR-EoR

data multiple times, because the direction dependent calibration is

a computationally expensive process. However, an important impli-

cation and prediction of the above explanation of the excess noise

is that the excess noise produced as an artefact of the calibration

with an incomplete sky model should not correlate among different

calibration runs or even different data sets observed on different

nights. As shown in Fig. 10, we indeed find that differential Stokes

I images of pairs of observations show only about 10 per cent cor-

relation. All observations used here are from LOFAR cycle 0 and

are calibrated with the same sky model. We compute the correlation

coefficient between two observations as

C12 =
〈�i1 × �i2〉√

(〈�i2
1 〉 − 〈�v2

1〉)(〈�i2
2 〉 − 〈�v2

2〉)
, (15)

where �ik, �vk are differential Stokes I and Stokes V images

of the kth observation, respectively. Differential images are ob-

tained by subtracting consecutive frequency sub-bands. We subtract
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Figure 10. Correlation coefficient between differential Stokes I images of

pairs of observations separated by 1, 2 and 3 months.

respective variances of Stokes V images in the denominator to cor-

rect the correlation coefficient for the fact that two observations

contain different realizations of the thermal noise. The small pos-

itive correlation coefficients observed in Fig. 10 could be due to

chromatic sidelobes of residual sources in Stokes I images. If the

excess noise introduced as an artefact of the calibration is uncor-

related among different observations, its rms will reduce with the

square root of the total observation time as we integrate more data.

However, we must note that a part of decorrelation observed in

Fig. 10 is due to the rotation of foreground sources with respect to

the NCP. Although images are made such that a source appears at

the same position in images from different observations, the source

actually gets convolved with different PSFs at different times of a

year depending on its position on the sky. Therefore, sidelobes of

sources should partially decorrelate among different observations.

6 POSSIBLE SOLUTIONS

TO T H E FO R E G RO U N D S U P P R E S S I O N

AND EXCESS N OISE

The simulations presented in Section 5 have shown a clear evidence

that the excess noise and suppression of the diffuse foregrounds

occur because of an incomplete model in self-calibration. We now

discuss two possible solutions to mitigate these systematic errors.

6.1 Excluding short baselines from calibration

The diffuse foregrounds are not part of the sky model, but they

are dominant only on short baselines. Their brightness is negligi-

ble at baselines longer than 200 wavelengths as compared to the

discrete sources in total intensity in the NCP field. We can use

baselines only longer than 200 wavelengths to obtain gain solutions

for all stations and then subtract sources on all baselines. In such

a case, the diffuse foregrounds would affect the self-calibration at

a much reduced level. In Fig. 11, we compare SAGECAL residuals

when all and only long baselines are used for the calibration of the

25 brightest sources in the NCP field in the presence of 7 K dif-

fuse foregrounds. In the former case, the suppression of the diffuse

foregrounds and residuals of the discrete sources is evident. Both of

these issues are mitigated in the latter case. The top panel of Fig. 12

shows the same phenomenon in the form of angular power spectra.

When the short baselines are excluded in the calibration, the diffuse

foregrounds remain untouched in the residuals at short baselines.

Additionally, there is no excess noise at long baselines because the

discrete sources are perfectly removed. Excluding short baselines,

Figure 11. Comparison of SAGECAL residuals (uniform weighted, 10◦ im-

ages) when all baselines are used for calibration (left-hand panel) and only

baselines longer than 200 wavelengths are used (right-hand panel). When all

baselines are used, the sky model is incomplete due to the missing diffuse

foregrounds. As a result, the diffuse foregrounds are suppressed and the

discrete sources are imperfectly subtracted. Excluding short baselines in the

calibration resolves both of these issues.

Figure 12. Excluding baselines shorter than 200 wavelengths in calibration.

Top panel: the SAGECAL residuals contain the diffuse foregrounds without any

suppression. Additionally, the residuals reach the thermal noise at longer

baselines implying perfect removal of the discrete sources and no excess

noise. Bottom panel: the ratio of the power spectrum of the thermal noise

after source removal (Stokes V) to that of the input noise. The noise is

enhanced by a factor of 2 on baselines which were excluded from calibration.

however, has a severe disadvantage as it enhances the noise on the

excluded baselines. In the bottom panel of Fig. 12, we plot the ratio

of the power spectrum of the noise (Stokes V) after source subtrac-

tion to that of the input noise. The noise on the excluded baselines is

boosted by a factor of 2 in power. A mathematical derivation of this

phenomenon is given in the appendix for interested readers. The

enhancement of noise implies a loss in sensitivity on short base-

lines, i.e. large angular scales, which otherwise would have been
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most promising for a detection of the 21 cm signal (Zaroubi et al.

2012; Patil et al. 2014). As evident in the lower panel of Fig. 12, the

thermal noise is suppressed by 10 per cent on long baselines which

are used for the calibration. However, this suppression would not

affect any further analysis because these long baselines will only be

used for the calibration but not for a detection of the 21 cm signal.

6.2 Simultaneous multifrequency calibration

The calibration is often performed on one frequency sub-band at

a time due to computing and memory constraints. This gives the

station-gain solutions a partial freedom to vary independently at

different sub-bands, producing an excess noise which is uncorre-

lated along frequency, as also shown by Barry et al. (2016). As seen

in our data as well as simulations, the power spectrum of this excess

noise is similar to that of the thermal noise. Trott & Wayth (2016)

also reached to the same conclusion in the context of bandpass

calibration.

The primary beam as well as any ionospheric effects vary

smoothly with frequency. Therefore, a parametric calibration can be

obtained for a large bandwidth instead of independent gain solutions

at each sub-band. Barry et al. (2016) suggested fitting a low-order

polynomial to gain solutions along frequency or averaging calibra-

tion solutions of multiple interferometric elements. Alternatively,

Yatawatta (2015b) have proposed a regularization which enforces

smoothness on the calibration solutions to a degree depending on

the chosen value of the regularization parameter. As a result, the

errors on the station gains are reduced, although the theoretical limit

based on the thermal noise cannot be reached due to the model in-

completeness. We also believe that a simultaneous multifrequency

calibration should reduce the suppression in the diffuse foregrounds.

Nunhokee (2016) have shown that using longer time intervals for

the calibration reduces suppression of unmodelled flux. The unmod-

elled flux due to the diffuse foregrounds changes significantly from

115 to 170 MHz. Therefore, the suppression should be reduced if

the entire or a significant fraction of the bandwidth is simultane-

ously used to constrain the calibration solutions. We leave a more

detailed analysis of the multifrequency calibration for future work.

7 C O N C L U S I O N S

The LOFAR EoR project aims to detect the redshifted 21 cm emis-

sion from neutral hydrogen from redshift 6 to 11. It is crucial to

control the systematic errors for a signal detection, because the fore-

grounds are several orders of magnitude brighter than the expected

signal. In this paper, we have studied two systematic biases observed

in the residual LOFAR-EoR data after calibration and subtraction of

bright discrete foreground sources: (i) a suppression in the diffuse

emission and (ii) excess of noise beyond the thermal component.

These biases occur because of the direction-dependent calibration

with an incomplete sky model, and they are potential obstacles in a

signal detection for the following reasons.

(i) Both the diffuse foregrounds and the 21 cm signal are easiest

to detect on large angular scales, and the suppression of the former

might imply a suppression of the 21 cm signal as well.

(ii) The excess noise implies a loss in sensitivity and an addi-

tional bias in a measurement of the power spectrum of the 21 cm

signal. Furthermore, the excess noise would not be removed by

the foreground removal methods which remove spectrally smooth

signals.

The differential noise between two closely spaced frequency bins

after removing the bright sources from the data is higher than the

thermal noise. We call this additional noise: ‘excess noise’. We

have performed tests to study properties of the excess noise and

identify its causes. The angular power spectrum of the excess noise

resembles that of the thermal noise, i.e. it shows the same power

on all baselines. The chromatic PSF and ionospheric scintillation

would have shown increasing power with the baseline length. We

have estimated that the contribution of sidelobes of the unsubtracted

sources due to the chromatic PSF is only a small fraction of the

excess noise. The excess noise in different observations does not

show any obvious correlations with the diffractive scales in the

ionosphere on respective nights. Therefore, we establish that the

chromatic PSF and ionosphere scintillation cannot be the dominant

causes of the excess noise.

We use simulated data sets to study the systematic errors that

could be produced by the calibration and source subtraction algo-

rithms. Just like the real data, the discrete sources are removed by

modelling them, calibrating the LOFAR station gains in their direc-

tions and then subtracting the sources. The calibration minimizes

the difference between the data and the model by adjusting the sta-

tion gains. In this process, the diffuse foregrounds are suppressed,

because they are not part of the model. This also results in imperfect

removal of the discrete sources. The source residuals are partially

uncorrelated in multiple noise realizations of the simulated data.

This could explain the excess noise in the difference between two

frequency bins in the actual data which contain uncorrelated real-

izations of the thermal noise. The angular power spectrum of the

excess noise resembles that of the thermal noise in the simulations,

just as it does in the actual data, and its magnitude depends on

the amount of flux that is included in the sky model relative to the

amount of flux that is excluded in the model.

We find that multiple randomized calibration runs of one data

set lead to different realizations of the excess noise. Although not

yet proven, our interpretation of this finding is that unmodelled flux

alters the likelihood function of calibration parameters such that the

ML condition becomes degenerate for multiple parameter values.

An important implication of this interpretation is that the excess

noise among different observations should be uncorrelated, which

we verify from our observations. Therefore, although calibration

with an incomplete model introduces extra residuals in the data,

these residuals will reduce as the square root of the total observation

time as we average multiple observations.

We discuss two possible solutions to the observed systematic

biases, i.e. the foreground suppression and the excess noise. First,

short baselines where the diffuse foregrounds are dominant, can be

excluded from the calibration. This ensures that the diffuse fore-

grounds and the 21 cm signal are not suppressed. However, it en-

hances the noise on the excluded baselines, implying a poor sensi-

tivity on large angular scales where a detection of the 21 cm signal

otherwise would have been most promising. Secondly, we believe

a better solution would be to use multifrequency constraints to en-

force spectral smoothness on the calibration parameters. Our future

efforts are going to be focused on that front (Yatawatta 2015b).
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APP ENDIX A : LEVERAG E A S A DIAG NOS TI C

I N C A L I B R AT I O N

In this appendix, we provide a mathematical proof of the enhance-

ment of noise on baselines which are excluded in calibration. We

use Leverage, a well-known concept in regression analysis, to study

the performance of calibration. Leverage (Cook & Weisberg 1982)

can be loosely described as the change in the predicted value based

on the data model used, due to the change in the data used for

estimating the calibration parameters. In non-linear regression, Ja-

cobian Leverage (Laurent & Cook 1992, 1993) is widely used

(Neugebauer 1996). Here, we apply it to study calibration. We

adopt a case deletion model in regression (Ross 1987) to study the

situation where only a subset of baselines (or data points) are used

for calibration (Yatawatta 2015a).

A1 Radio interferometric calibration

Here, we give a brief overview of the data model used in ra-

dio interferometric calibration (Hamaker, Bregman & Sault 1996;

Thompson, Moran & Swenson 2007). In interferometry, the corre-

lated signal from pth and qth stations, Vpq is given by

Vpq =
K∑

i=1

JpiCpqiJ
H
qi + Npq , (A1)

where Jpi and Jqi are the Jones matrices describing errors along

the direction of source i at stations p and q, respectively. The ma-

trices represent the effects of the propagation medium, the beam

shape and the receiver. There are K sources in the sky model and

the noise matrix is given as Npq. The contribution from the ith

source on baseline pq is given by the coherency matrix Cpqi. We

estimate the Jones matrices Jpi for p ∈ [1, R] and i ∈ [1, K], during

calibration and calculate the residuals by subtracting the predicted

model (multiplied with the estimated Jones matrices) from the data.

The vectorized form of (A1), vpq = vec(Vpq ) can be written as

vpq =
K∑

i=1

J
⋆
qi ⊗ Jpivec(Cpqi) + npq (A2)

where npq = vec(Npq ). Depending on the time and frequency in-

terval within which calibration solutions are obtained, we can stack

up all cross-correlations within that interval as

d =
[
real

(
vT

12

)
imag

(
vT

12

)
real

(
vT

13

)
. . . . . . imag

(
vT

(R−1)R

)]T
, (A3)

where d is a vector of size N × 1 of real data points. Thereafter, we

have the data model

d =
K∑

i=1

si(θ ) + n, (A4)

where θ is the real parameter vector (size M × 1) that is estimated

by calibration. The contribution of the ith known source on all data

points is given by si(θ ) (size N × 1). The noise vector is given by n

(size N × 1). The parameters θ are the elements of Jpi-s, with real

and imaginary parts considered separately.

The ML estimate of θ under zero mean, white Gaussian noise is

obtained by minimizing the least-squares cost

θ̂ = argmin
θ

∥∥∥∥∥d −
K∑

i=1

si(θ )

∥∥∥∥∥

2

(A5)

as done in current calibration approaches (Boonstra & van der Veen

2003; van der Veen, Leshem & Boonstra 2005; Kazemi et al. 2011)

and this is improved by using a weighted least-squares estimator to

account for errors in the sky model (Kazemi & Yatawatta 2013).

The Cramer–Rao lower bound is used to find a lower bound to

the variance of θ̂ (Zmuidzinas 2003; van der Tol, Jeffs & van der

Veen 2007; Wijnholds & van der Veen 2009; Kazemi, Yatawatta

& Zaroubi 2012). However, relating this lower bound to the resid-

ual d −
∑K

i=1 si(θ̂ ) is not simple. Instead, we propose Leverage to

quantify errors on the residuals.

A2 Leverage

Consider a non-linear regression model

y = m(θ) + n, (A6)

where y is a N × 1 data vector, n is the N × 1 noise vector, and

m(θ ) is a non-linear function of the M × 1 parameter vector θ . The

residual vector r(θ ) is given by

r(θ ) = y − m(θ ). (A7)

The estimated value of θ using (weighted) least squares is given

by θ̂ and the predicted value based on the estimated parameters is

given by ŷ = m(θ̂). Now consider perturbing the data by b f where

f (N × 1) is any arbitrary vector and b is a real scalar. Let us call

the perturbed data as yb and the estimated value of θ using the

perturbed data as θ̂b. The predicted value using θ̂b is denoted by ŷb.

We define the leverage vector as (Laurent & Cook 1992)

g
△= lim

b→0

1

b

(
ŷb − ŷ

)
, (A8)

and for (weighted) least-squares estimation, we define Jacobain

leverage as (Laurent & Cook 1993)

Ŵ(θ)
△= ηθ

(
ηT

θ ηθ −
N∑

i=1

r i
(
(ηi)θθ

)
)−1

ηT
θ ,

ηθ =
∂

∂θT
m(θ ),

(ηi)θθ =
∂2

∂θ∂θT
mi(θ ), (A9)

where r i is the ith element in r(θ ) and mi(θ ) is the ith element in

m(θ ). We see that ηθ is a matrix of size N × M and (ηi)θθ is a matrix

of size M × M. Once we have Ŵ(θ) (N × N) matrix, and also the

estimated parameters θ̂ , given any arbitrary vector f (N × 1), we

can find g = Ŵ(θ̂ ) f (Laurent & Cook 1992).

Now consider the case when the model is a summation of L non-

linear functions, and that each function depends only on a subset of

parameters (also called as partially separable), i.e.

m(θ ) =
L∑

i=1

hi(θ i) (A10)

with θ = [θT
1 , θT

2 , . . .]T . Also assume that we are only interested in

finding the diagonal values of Ŵ(θ ). In this case, applying (A9) to

(A10) yields

ηθ =
[
η1 η1 . . . ηL

]
, (A11)
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where ηi = ∂

∂θT
i

hi(θ i) and

(η
j

i )θθ =

⎡
⎢⎢⎢⎢⎢⎢⎣

H
j

1 0 . . . 0

0 H
j

2 . . . 0

...
...

...
...

0 0 . . . H
j

L

⎤
⎥⎥⎥⎥⎥⎥⎦

, (A12)

where

H
j

i =
∂2

∂θ i∂θT
i

h
j

i (θ i) (A13)

with h
j

i (θ i) being the jth element of hi(θ i). Substituting (A11) and

(A12) to (A9) and only considering the block diagonal entries, we

get

Ŵ(θ ) =
L∑

j=1

ηj

(
ηT

j ηj −
N∑

i=1

r i
H

i
j

)−1

ηT
i , (A14)

which can be used to get the diagonal entries of Ŵ(θ ).

A3 Calibration with excluded data

We consider the general case where a subset of data (baselines) are

excluded during calibration. Consider J to be the set of indices of

excluded data points in (A4). Assume the total ignored data points

to be R, 0 ≤ R < N. Following Ross (1987), we modify (A4) as

d =
K∑

i=1

si(θ ) + Dγ + n, (A15)

where D (N × R) is a matrix whose ith column has 1 at the J i-

th location and the rest of the entries in the column are 0. We

introduce an additional parameter vector γ (R × 1) into the data

model. Normally γ is called the cross-validatory residual. The effect

of these slack variables is to nullify the constraints introduced by

the data points indexed by the set J . If θ r = [θT γ T ]T are the

augmented parameters (M + R), calibration gives us

θ̂ r = argmin
θ ,γ

∥∥∥∥∥d −
K∑

i=1

si(θ ) − Dγ

∥∥∥∥∥

2

(A16)

even though we do not explicitly solve for γ . Therefore, the calibra-

tion with excluded data (A16) estimates M + R parameters using N

constraints, while calibration with all data (A5) estimates M param-

eters using N constraints. In both cases, the useful set of parameters

is still θ of size M.

Now we apply (A14) for the data model in (A15), where we have

L = K + 2, with K non-linear functions sj (θ j ) (parameters θ j ), one

linear function Dγ (parameters γ ) and noise n.

(i) sj (θ j ): the values for ηj and H
i
j for each j can be calculated

using (A2), and since this is quadratic, both ηj and H
i
j are non-zero,

but they are sparse.

(ii) Dγ : since this is linear in γ , ηj = D and H
i
j = 0.

(iii) n: for noise, we do not have any parametrization, and there-

fore, we assume both ηj and H
i
j to be matrices with random entries.

We notice the following for the computation of the leverage:

Considering the aforementioned three cases, we see that (i) and (iii)

are always present, regardless of calibration using the full data set

R = 0 or a subset of baselines (R > 0). In other words, (i) and (iii)

contribute to (A14) in both cases. Moreover, the contribution (iii)

is not dependent on θ and therefore is uniform if the noise n is

uniformly distributed. The interesting case is (ii), when R > 0. The

contribution to (A14) can be written as

Ŵd = D
(
D

T
D − 0

)−1
D

T = DD
T = Ĩ, (A17)

where Ĩ is a diagonal matrix with 1-s at the locations given by J

and the rest of the entries 0. To sum up: if the ith diagonal entry of

Ŵ(θ) calculated with the estimate θ̂ using the full data set is Ŵii(θ̂),

then this value changes to Ŵii(θ̂ ) + 1 for the case where the ith data

point is excluded during calibration. The excluded baselines have

an increase in leverage by 1. Therefore, the error in the residuals is

enhanced on the excluded baselines. The only way to minimize this

error is to minimize the variance of estimated parameters, θ̂ , or in

other words, find the global minimum point in the parameter space.
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