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GeneSapiens<p>A method for the comparison of mRNA expression levels of most human genes across gene expression array experiments, and a data-base of the results, are presented.</p>

Abstract

Our knowledge on tissue- and disease-specific functions of human genes is rather limited and highly

context-specific. Here, we have developed a method for the comparison of mRNA expression

levels of most human genes across 9,783 Affymetrix gene expression array experiments

representing 43 normal human tissue types, 68 cancer types, and 64 other diseases. This database

of gene expression patterns in normal human tissues and pathological conditions covers 113 million

datapoints and is available from the GeneSapiens website.

Background
A fundamental challenge in the post-genome era is the iden-

tification of the context-specific functions of human genes

across healthy and disease tissues. Thousands of gene expres-

sion microarray measurements are performed each year by

the scientific community and many of the data are made pub-

licly available. In order to make use of this resource, integra-

tion of large collections of gene expression data from different

tissues and microarray platforms is required. Available data-

sets, however, are often discordant and challenging to inte-

grate due to the variety of the technologies used.

Nevertheless, meta-analyses have already been shown to

facilitate the analysis of gene expression across healthy and

disease states [1-3]. Due to the use of various microarray plat-

forms in studies, the multiple datasets are typically analyzed

separately [4-9], for instance, focusing on cancer-normal

comparisons within an organ type. Other studies have looked

for systematic co-expression patterns between genes across
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multiple datasets in order to predict functions of genes

[1,3,10-15]. While this is useful for the understanding of com-

mon shared functions of genes across different organs, highly

tissue- or disease-specific gene functions may be missed.

Here, we describe the development of a database of in silico

transcriptomics data that currently integrates 157 separate

studies involving 9,783 human specimens, from 43 normal

tissue types, 68 cancer types and 64 other disease types. The

launch of the database was made possible by the development

and validation of a novel method to normalize data arising

from different Affymetrix microarray generations. The array

data are linked with detailed clinical classifications and end-

points and are available through an interactive web interface

designed for exploration by biologists and available at the

GeneSapiens website [16]. We demonstrate here the applica-

tion of the GeneSapiens system to the tissue- and disease-spe-

cific expression profiles of human genes one at a time or as

gene clusters.

Results and discussion
Overview of the in silico transcriptomics data in the 

GeneSapiens system

The database was constructed from 9,783 CEL files of

Affymetrix based gene expression measurements from nor-

mal and pathological human in vivo tissues and cells. We

selected data from the five most widely used Affymetrix array

generations (HG-U95A, HG-U95Av2, HG-U133A, HG-

U133B, HG-U133 Plus 2), which were then normalized

together. The detailed contents of the database are described

in Additional data files 3 and 4. Each sample was systemati-

cally manually annotated with detailed information (when

available) on sample collection procedures, demographic

data, anatomic location, disease type, and clinicopathological

details. These integrated data make it possible to generate

expression profiles of any gene across 175 human tissue and

disease types.

Custom software was developed to construct the database

from the collection of CEL files and manually curated annota-

tions linked to each sample. The software was based upon a

Perl wrapper calling several subprograms written in Perl, R

[17], C++ and MySQL and Linux Bash scripts. The subpro-

grams identify unique CEL files by using cyclic redundancy

checks, preprocess the files, perform the normalization steps,

fetch gene annotations from Ensembl and incorporate the

manually made annotation for each sample, create a complete

MySQL database and perform the final integrity checks. Vis-

ualization and analysis tools were implemented in R [17], and

the processed data are made available through a user-friendly

and interactive web site [16]. We also implemented a virtual

machine approach, the final result being a hardware-inde-

pendent and rapidly installable complete operating system

optimized for running the GeneSapiens database and web-

server for the visualization interface.

Development of the data normalization procedure

We implemented a three-step normalization strategy that

consisted of probe-level preprocessing, equalization transfor-

mation (Q) and array-generation-based gene centering

(AGC). We demonstrate that these steps resulted in data that

are comparable across the major Affymetrix array

generations.

Step I: data preprocessing at the probe level

We first used the MAS5.0 method [18] to preprocess raw data

in the .CEL files. MAS5.0 is an optimal algorithm for the pur-

pose of analyzing very large datasets [19] as it requires less

memory than other widely used methods, and the biological

representativity of the MAS5.0 normalized data is well docu-

mented [19]. In the three-step normalization approach, the

subsequent normalization stages also minimized possible

problems generated by the MAS5.0 preprocessing algorithm.

Importantly, we mapped the probes from each array genera-

tion type directly to Ensembl gene IDs by using alternative

CDF files (version 10) [20] to avoid inaccuracies generated by

the original probeset design of Affymetrix arrays. Therefore,

this resulted in the optimal redefinition of the gene specifici-

ties of the probes and excluded those probes that, according

to the recent genome assembly, mapped to multiple genes or

nowhere in the genome.

Step II: Q normalization

After preprocessing, we performed sample-wise normaliza-

tion of the entire dataset at the gene level. This was done by

equalization transformation [21] (Q), which is similar to the

widely used quantile normalization [22] in which the samples

are transformed by substituting their values with the means

of quantiles in the entire dataset. In the Q procedure, we

transformed each sample to follow a normal distribution that

was estimated from the log2-transformed values of the entire

dataset (Additional data file 1). The estimated parameters

were a mean of 8 and standard deviation of 2. This step of the

sample-wise normalization was necessary to prevent a small

number of aberrant samples from dominating the mean val-

ues for genes within an array generation used in the AGC

correction.

Step III: array-generation-based gene centering (AGC normalization)

We developed a novel AGC method to avoid the bias caused

by the different oligos quantifying the same gene in the differ-

ent Affymetrix array generations. The AGC method is based

on the availability of data, on each array generation, from a

large number of samples representing different tissues or dis-

eases. In the AGC method, a correction factor is calculated for

each gene in each array generation. These correction factors

are then used to normalize the gene expression distributions

across the whole database (see Materials and methods for

details).
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Validating the entire normalization protocol

We validated the AGC method as well as the entire normali-

zation procedure by a number of ways and demonstrated that

we had achieved improved comparability of the data across

the multiple array generations. First, analysis by multi-

dimensional scaling (MDS) showed that samples from 15 nor-

mal human tissues tested clustered initially based on the four

array generations (Figure 1a, b), but after the AGC procedure,

the tissue of origin was the primary driver of the clustering

(Figure 1c, d). Second, in K-means clustering of the same

data, we showed that the corrected rand index [23] (a meas-

ure of the accuracy of the sample segregation into character-

istic clusters) for array generations decreased from 0.45 to

0.15 and that of the tissues jumped from 0.22 to 0.92 (Addi-

tional data file 5). Third, correlation of data from two large

datasets where the same samples had been analyzed on two

different array generations improved significantly after the

AGC correction (Figure 2), reaching across-generation corre-

lations of 0.9. Finally, and most importantly, we showed that

the gene profiles of multiple previously known tissue-specific

genes matched exactly with those expected based on litera-

ture data. Therefore, we expect poorly known genes to pro-

vide similarly informative results on their biological and

medical importance. These various validation steps are

described in more detail below.

Multi-dimensional scaling analysis

We applied MDS [24] to the data processed by Q normaliza-

tion alone or after the AGC correction. This was done to com-

pare the variability (that is, noise) caused by the array

generation with the biological variability in the data. We eval-

uated 1,137 healthy tissue samples having 7,390 genes in

common without any missing values. The samples repre-

sented 15 distinct anatomical locations with more than 20

samples from each site. The samples were measured with four

array generations (HG-U133A Plus 2, HG-U133A, HG-U95A

and HG-U95Av2). In Q normalized data, only some tissue-

associated variation could be observed (Figure 1a), while the

clusters were primarily driven by the array generations (Fig-

ure 1b). After the AGC step was applied, a major change in the

clustering of the samples was seen. Array generations no

longer defined clusters (Figure 1c), which were now formed

predominantly by the tissue types (Figure 1d). The effect was

very striking and defined, for example, a clear cluster of neu-

ronal, muscle, hematological and lung tissues. Even though

the MDS in three dimensions gives an illustrative example of

the segregation of these 15 tissues types, we do not expect the

clusters to be completely separated with MDS and only three

dimensions. The main reason is that there is significant bio-

logical similarity as well as biological variability within each

tissue type (such as multiple overlapping cell types). How-

ever, this analysis was not meant to provide a demonstration

of complete classification accuracy of human tissues but

rather to validate the biological relevance of our data. Taken

together, the analysis indicates clear improvement in overall

biological relevance of the data after our three-step normali-

zation procedure.

K-means clustering

We clustered the data before and after normalization with

four initial centroids using the median values of each array

generation, and again with 15 initial centroids using the

median values of each tissue type. This test was done for the

specific purpose of comparing the impact of the variation gen-

erated by the array generations before and after normaliza-

tion. We calculated the corrected rand indices [23] for each

clustering to see whether the array generations or the tissue

types form more accurate clusters. The corrected rand index

compares partitions defined by the K-means clustering to the

known partitions of the data (for example, partitions by array

generation or by tissue type). The index varies between [1, 0]

where one indicates that the partitions are identical and not

due to chance, whereas zero indicates that the found parti-

tions would be expected by chance. The corrected rand index

for the array generations went down from 0.45 to 0.15 when

we applied the AGC normalization, while the corrected rand

index for tissues jumped from 0.22 to 0.92. The percentages

of samples per array generation and per tissue type segre-

gated to the distinct clusters are given in Additional data file

5.

We also tested the impact of the Q normalization step by per-

forming the same clustering operations on AGC corrected

MAS5 data. In this case, the corrected rand index for array

generations was 0.11 and for tissue types 0.84. This result

showed that AGC could also significantly improve MAS5 data

even without the Q normalization, but that the three consec-

utive steps provided the optimal ability to distinguish biolog-

ically relevant signals.

Correlations of technical replicates

We then studied the correlations between technical replicates

of the same samples analyzed on different Affymetrix array

generations. While in itself this does not ensure optimal nor-

malization, such analyses have often been used to compare

data from different array generations in previous publications

[4,9,25]. Thus, we used data from three datasets as a basis for

these analyses [9,26,27]. We first used data for 14 samples of

human muscle biopsy samples from patients with inflamma-

tory myopathies [9]. For these cases, data from hybridiza-

tions on both HG-U95Av2 and HG-U133A human arrays

were available. The correlation coefficient of each replicate

pair was > 0.9 when normalized with the AGC method com-

pared to the correlation of the preprocessed and Q normal-

ized values, which were less than 0.75, a significant difference

(Figure 2a). We then utilized a dataset from St Jude Chil-

dren's Research Hospital [26,27] of 123 human leukemias,

each analyzed with the three array generations; HG-U95Av2,

HG-U133A and HG-U1331B. The mean value of the correla-

tions computed based on the AGC corrected data was signifi-

cantly higher, 0.78, than the mean of correlations computed
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based on pre-processed or Q normalized values, which was

0.5 (Figure 2b). For most comparisons, the Q normalized cor-

relations were also slightly higher than those with pre-

processing alone.

In summary, validation of the normalization approach (Fig-

ures 1a–d, 2a, b; Additional data file 5) together indicate that,

in our three-step data processing procedure, the samples

clustered mainly according to array generation, until the last

AGC correction is applied. After the last AGC step, the biolog-

ical origin of the samples, and not the array generation, drove

the clustering (Figure 1d). Therefore, our in silico transcrip-

tomics data have been integrated across all the array genera-

tions to the extent that biological variability caused by the

tissue and disease types will exceed the technical noise caused

by the array generations. This does not mean that the differ-

ences between array generations are non-existent, but they

will be smaller than most of the biological differences. The

final and most important validation of the method was the

demonstration that known tissue-and disease-specific genes

generated expected profiles across all tissues and diseases

(see examples below), thus validating that technical variation

is diminished enough to allow accurate biological findings to

be made.

Validating GeneSapiens expression profiles with known 

tissue-specific genes

To evaluate the biological relevance of gene expression pro-

files from in silico transcriptomics data, we generated tissue-

and disease-wide expression profiles for well-known tissue-

specific marker genes. Figure 3 provides examples of the

GeneSapiens plots for TNNT2, ALPP and MAG. In these

plots, all the 9,783 samples are represented along the x-axis

in a pre-determined fixed order, first the normal tissues, then

cancers and then other diseases. The y-axis reflects the rela-

tive level of gene expression after the three-step normaliza-

tion approach.

Multidimensional scaling (MDS) of Q normalized data before and after AGC correctionFigure 1

Multidimensional scaling (MDS) of Q normalized data before and after AGC correction. MDS was performed using 1,137 healthy in vivo samples 
representing 15 tissue categories with 7,390 genes in common without missing values. Color codes show the array generation of each sample for panles 
on the left-hand side and the high level anatomical system from which samples originate for panels on the right-hand side. (a, b) Clustering of samples in 
Q normalized data without AGC correction. (a) Clustering driven dominantly by the array generations, but some biological division can be seen in the 
form of some division within the large clusters. (b) Several tissue classes are separated into two or more clusters due to the different array generation of 
origin. (c, d) After QAGC, array generations no longer define clusters (c) but instead tissue types form distinct clusters (d).

(a) (b)

(c) (d)
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Troponin T (TNNT2) showed highly specific expression in

heart tissue, as expected for a clinically used cardiac biomar-

ker [28] (Figure 3a). Heart samples in our database originate

from four different array generations and comprise only 0.5%

of the samples. Therefore, finding an expected tissue-specific

expression profile for these samples demonstrates the per-

formance of the normalization even for such a small propor-

tion of samples measured on multiple array generations.

Interestingly, TTNT2 is also rather highly expressed in many

rhabdomyosarcomas and some Muellerian ovarian tumors.

There is one report in the literature for a single case of rhab-

domyosarcoma showing increased Troponin T levels in

serum [29], while our GeneSapiens profile demonstrated that

this gene is indeed likely to be upregulated in the two afore-

mentioned tumor types. This demonstrates how GeneSapiens

profiles can give additional information even from well-

known genes. Expression of placental alkaline phosphatase

(PLAP; ALPP) was seen predominantly in healthy placenta

(Figure 3b), as expected [30], but also often in tumors of the

uterus and ovary and rarely in some other tumor types. This

observation fits well with the known oncodevelopmental

nature of PLAP, with ectopic expression being common in

various types of cancers, with uterine and ovarian cancers

being particularly well defined as PLAP-positive [31,32].

Finally, MAG, a neuronal cell marker [33], showed the high-

est expression in central nervous system, and to a lesser

extent in gliomas (Figure 3c), again a GeneSapiens profile

that could be expected for this well-known marker gene.

Additional examples are given in Additional data files 4 and 5,

and dozens of known tissue-specific genes or biomarkers can

be evaluated through the online tool for exploring tissue- and

disease-specific gene expression patterns. For example, KLK3

(PSA) is the best-known prostate-specific gene [34] and its

GeneSapiens expression profile (Additional data file 2)

showed expression only in normal and cancerous human

prostate tissues. GFAP is a glial fibrillar acidic protein and

showed the expected [35] high level of expression in normal

and pathological tissues from the central nervous system

(Additional data file 2). Insulin shows the expected extremely

Boxplots of correlations between the replicated samples after each step of the data normalization processFigure 2

Boxplots of correlations between the replicated samples after each step of the data normalization process. All boxes for which notches do not overlap 
vertically have significantly (α = 0.05) different median values. On the left is a sample set from 14 human muscle biopsy samples measured with array 
generations U95Av2 and U133A. The correlations computed based on the QAGC-normalized data are significantly higher when compared to MAS5 and 
Q methods. On the right, all correlations between 123 leukemia samples are plotted. The samples are from three different array generations U95Av2, 
U133A, and U133B. The first column illustrates correlations between all replicates together (369 correlation values), and in the other columns the 
correlations are grouped based on the array generation pairs. When the mean values of the correlations computed with each method were compared, the 
values in the QAGC data were significantly higher.
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Detailed expression profiles of TNNT2, ALPP and MAGFigure 3

Detailed expression profiles of TNNT2, ALPP and MAG. (a) TNNT2 is a clinically used cardiac biomarker and, as expected, it shows heart-specific 
expression. In addition, it has been shown that TNNT2 has elevated expression in some cases of rhabdomyosarcoma, also visible from the profile. (b) ALPP 

had high expression in placenta and somewhat elevated expression in uterine tumors. Additionally, serous ovarian tumors showed elevated expression 
when compared to the mucinous ones. (c) Known neuronal marker gene MAG similarly shows an expression profile that was highly central nervous 
system specific.
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pancreas-specific expression (Additional data file 6). LDHC,

a known germ-cell specific marker [36], showed a strong tes-

tis-specific expression profile (Additional data file 6).

GeneSapiens makes it possible to generate gene expression

profiles for 17,330 genes across 175 systematically annotated

human tissues in a uniform scale with 2,265 to 9,783 data

points per gene. Due to the breadth of the tissue and disease

spectrum, this kind of analysis provides novel insights into

the biological, medical and clinical associations of genes. Fur-

thermore, the expression levels of a given gene can be com-

pared across all normal tissues and all disease types, not just

between specific test and control samples (like normal and

tumor tissues from the same organ as is usually done). Figure

4a, b illustrate the power of this global tissue- and disease-

wide analysis, displaying the expression profile of the PRAME

gene. PRAME (preferentially expressed melanoma antigen)

showed high expression in normal testis, but was very highly

over-expressed in a large variety of human cancers. PRAME

over-expression has been previously described in many can-

cer forms [37] and is known to function as a dominant repres-

sor of retinoic acid receptor signaling [37].

'Body-map' analysis to visualize expression profiles for 

groups of genes across all tissues and diseases

To illustrate the power of GeneSapiens analysis in the study of

gene expression profiles of human cancer genes (as defined

by Sanger Center human cancer gene census), we produced a

clustered map of the mean expression levels of 342 cancer

genes across 110 healthy and malignant human tissues (Fig-

ure 5). Clustering along the sample type (y-axis) revealed that

based on the expression profiles of these cancer genes, the

samples could be divided into three overall classes: solid

tumors (84.4% of sample types were malignant in this class),

normal tissues (82.1% of sample types were healthy in this

class) and hematological samples (100% sample types were

normal or malignant hematological samples in this class).

Thus, the group of classic cancer genes had distinctly differ-

ent expression between healthy and malignant solid tissues,

but in hematological samples, cancer and normal samples

could not be separated.

Clustering of the cancer genes according to their mean body-

wide expression profiles revealed five characteristic sub-

groups. Expression of MKI67 (Ki-67) [38] and PCNA [39]

genes, two cell proliferation markers, showed the highest cor-

relations with specific branches of the cancer genes (Figure 5,

purple branch). KRT19 (a known epithelial marker) [40] and

PTPRC (an established marker for hematopoiesis) [41]

revealed a correlation with genes in the orange and blue

branches. Genes most highly associated with proliferation

markers were clearly the ones with gain of expression in solid

malignant tissues. The branch colored red contained enrich-

ments of Gene Ontology classes [42,43] related to differenti-

ation, cell adhesion and catabolic processes (data not shown),

which fits with the tendency for down-regulation of this group

of cancer genes in malignant tumors.

This kind of body-wide expression map of genes can also be

used to pinpoint medically interesting associations for indi-

vidual genes (three examples marked with rectangles and

labeled A, B and C). KIT had the highest GeneSapiens expres-

sion level in gastrointestinal stromal tumors (GISTs; Figure 5,

rectangle A, and Figure 6). KIT is a key therapeutic target of

Gleevec in GIST tumors [44]. The body-wide expression pro-

files of GeneSapiens would have therefore readily identified

this association of KIT with GIST samples along with this

therapeutic opportunity.

The second example is FEV (Figure 5, rectangle B, and Addi-

tional data file 7), a gene known to have functions in healthy

nervous system. This ETS-family transcription factor showed

low, but detectable, expression in healthy central nervous sys-

tem and in prostate. In malignant tissues FEV had highly ele-

vated expression in synovial sarcoma, neuroblastoma,

malignant peripheral nerve sheath tumors, and small intesti-

nal adenocarcinoma, and somewhat elevated expression in

prostate cancer.

The third example of cancer gene profiles is C1orf56, also

known as AF1Q or MLLT11 (Figure 5, rectangle C, and Addi-

tional data file 8). In healthy tissues it was expressed only in

the nervous system, but in malignant tissues there was gain of

expression in T-cell acute lymphoid leukemia, Ewing sar-

coma, lung small cell cancer, and nephroblastoma, and

extreme overexpression in neuroblastoma. MLLT11 is known

to be fused to the MLL gene in acute leukemias [45]. This

raises the possibility that MLLT11 could be a fusion gene tar-

get [46,47] or undergoing activating mutations in a range of

tumor types. Alternatively, the high levels of expression in

these tumors suggest that this gene is often activated in can-

cer by other mechanisms.

Conclusion
The major advantage of the GeneSapiens data mining meth-

odology is that it provides an integrated view of human gene

expression levels across thousands of samples representing

hundreds of different tissue and disease types. GeneSapiens

offers unprecedented possibilities to study gene expression

levels not only between a particular tumor type and the corre-

sponding normal tissue, but by providing body-wide over-

views of gene expression levels across all kinds of normal and

disease states. While meta-analysis of microarray data

[48,49] has been previously demonstrated to be powerful in

taking advantage of the enormous amounts of publicly avail-

able data [1,2,50] most existing methods, such as Oncomine

[2] and Genvestigator [51], are based on the analysis of one

study at a time. Others, like the Celsius resource, provide the

analysis option on one Affymetrix array generation only,

therefore providing data from a more limited spectrum of tis-
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sues and diseases. In comparison, GeneSapiens provides

insights on 'body- and disease-wide' expression of 17,330

genes in approximately 10,000 human samples. Its value is

evidenced by the capturing of much of the known data on bio-

logical and medical associations for several tissue-specific

marker genes (Figures 3, 4, 5, 6), as well as in providing new

Detailed gene expression profile of PRAMEFigure 4

Detailed gene expression profile of PRAME. (a) Body-wide expression profile of the PRAME gene across the database. Each dot represents the expression 
of PRAME in one sample. Anatomical origins of each sample are marked with colored bars below the gene plot. Sample types having higher than average 
expression or an outlier expression profile are additionally colored in the figure (legend at the top left corner). The PRAME gene is a highly testis-specific 
gene in normal samples, but is ectopically expressed across the majority of human cancers. Gene plots like these can easily be used to identify outlier 
expression profiles, like as can be seen for kidney cancer in this case, where only a small fraction of the tumors are PRAME positive. (b) Box plot analysis 
of the PRAME expression levels across a variety of normal and cancer tissues. The number of samples in each category is shown in parentheses. Normal 
tissues are shown with green boxes and cancerous ones with red boxes. The box refers to the quartile distribution (25-75%) range, with the median 
shown as a black horizontal line. In addition, the 95% range and individual outlier samples are shown.
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insights on even well-studied cancer genes. GeneSapiens is

characterized by detailed anatomical, histopathological and

clinical annotations of disease states, a critically important

feature that is often missing in other more generic gene

expression database projects.

Virtually every gene we have studied in GeneSapiens has had

a distinct pattern of expression across the thousands of sam-

ples. Hence, GeneSapiens provides systematic biological and

medical annotation of individual human genes, which could

prove useful even in the case of relatively well-known and

abundantly studied cancer genes. For example, the fact that

by far the highest levels of KIT expression across all samples

available were seen in GISTs demonstrates that one could

identify key driver genes that are mutated or otherwise acti-

vated in human cancers and could, therefore, be of significant

therapeutic significance. This high level of overexpression of

KIT in GISTs probably reflects the selection pressure favoring

the expression of this gene during clonal cancer evolution.

GeneSapiens provides the exciting possibility that one could

find other previously unknown cancer genes with a similar

profile of high expression in one or a few cancer types only

that could also turn out to be driven by mutations or translo-

cations [47]. Conversely, even though we will see more and

more mutational data being generated from selected human

cancers, understanding the impact of the mutations on gene

expression will be important. Furthermore, it is extremely

useful to be able to characterize the expression of these 'can-

cer genes' across thousands of cancers and normal tissues of

different origins, as sequencing is typically done from a highly

selected group of samples. This is illustrated by our analysis

of the expression profiles for FEV and C1orf56 (MLLT11).

Besides the therapeutic importance, the data on several

serum biomarkers of disease, such as Troponin T and PSA,

indicate that the body-wide expression profiles of genes could

highlight genes with a high specificity to a single organ or dis-

Body-wide expression map of known cancer genesFigure 5

Body-wide expression map of known cancer genes. On the x-axis are 342 genes and on the y-axis are 110 in vivo tissues (both healthy and malignant) from 
human. The color indicates the mean expression value of each gene in each tissue. Grey color signifies missing values. Values have been gene-wise scaled 
(mean 0 and standard deviation 1). Both axes have been clustered by using Euclidean distance with complete linkage method. Below the expression map 
are gene-wise Pearson correlation coefficients with four known cellular process/tissue-specific marker genes (Ki-67, PCNA, KRT19 and PTPRC). 
Correlations have been calculated over 8,409 healthy and malignant samples using pairwise complete observations. Comparison of highest correlation 
values and clusters of genes on the expression map confirm that through the analysis of in silico transcriptomics data it is possible to find both tissue 
specificity and functional associations with processes such as cell cycle. For example, the orange colored branch contains genes having highest correlation 
with epithelial marker KRT19, branches colored blue contain genes mostly expressed in the hematological system and they also correlate with PTPRC, a 
marker for hematological tissues. Additionally, genes related to mitosis cluster together (purple branch), having highest correlations with Ki-67 and PCNA. 
The rectangles (A, B, C) highlight three genes as examples of extreme expression in some cancers (see Figure 6 and Additional data files 7 and 8 for 
enlargements of these areas).
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ease type, and, therefore, with potential value as serum

biomarkers.

The third important aspect of the GeneSapiens system is the

interactive nature of the analysis options that we have gener-

ated for making these data publicly available in a user-

friendly format. We have set up an interactive website [16] to

provide access to the in silico transcriptomics data with

detailed expression profiles for 17,330 genes across all the

9,783 annotated healthy and pathological human samples.

We provide the possibility to analyze the levels of gene

expression across all the tissues and malignant diseases (box-

and-whisker plots; Figure 3a–d), as well as to analyze gene

expression at the level of individual samples. The 'GeneSapi-

ens plot' (see, for example, Figure 4a) displays expression lev-

els of the genes in each of the 10,000 samples, arranged in

anatomical order and by disease type. The datapoints dis-

played are interactive and provide links to the specific type of

the sample, the histopathological diagnosis and the type of

the array generation used. We also provide filtered analysis

options where users can explore in detail a particular organ or

disease type as well as the option of analyzing the correlation

of any two genes across the whole database or subsets of tis-

sues or diseases. Taken together, we believe that the GeneSa-

piens analysis system provides a highly useful resource to the

biomedical research community.

Materials and methods
Data collection

This in silico collection of human transcriptomes was con-

structed by collecting 9,783 publicly available Affymetrix

microarray experiments in the form of CEL files as source

material. The uniqueness of the collected files was tested with

the cyclic redundancy check algorithm (cksum). For a com-

plete listing of the original source data from 157 separate

studies, please see Additional data file 3. We combined data

from the following Affymetrix generations (HG-U95A, HG-

U95Av2, HG-U133A, HG-U133B, HG-U133 Plus 2). Even

though HG-U133A and HG-U133B are not different genera-

tions, they do have 2,074 common genes, and we considered

them as such for the practical purposes of our normalization.

Data preprocessing

Data from all CEL files were pre-processed with the MAS5.0

algorithm [18] with default parameters. Although different

opinions exist about optimal preprocessing methods [52],

recent comparison studies indicate that MAS5.0 provides the

Blood lympho id cell (96)
Blood myeloid cell (32)

Blood unspeci fied leukocyt e (28)
Bone marro w myelo id cell (10)

Bone marro w (8)
Hematopo ietic s tem cell (26)
Circulating reticulocyt e (30)

Whole blood (41)
Lymphatic sys tem (96)

Musc le (73)
Tongue (11)

Heart (49)
Blood vesse l (8)

Ad ipose tissu e (16)
Hair fo llic le (16)

Central nervous sys tem (425)
Peripher al nervous syst em (20)

Salivary g land (9)
Resp iratory sys tem (123)

Colo rectal (23)
Other GI sys tem (33)

Liver (15)
Liver and bilia ry syst em (9)

Pancreas (17)
Endocr ine sys tem (52)

Kidney (59)
Bladder (20)

Testis (22)
Pros tate (147)

Breast (15)
Ovary (10)

Uterus (30)
Placent a (48)

Other u rogeni tal syst em (11)
Mesenchy mal s tem cell (10)

Adul t s tem cell (10)
B-ALL (793)

T-ALL (68)
B-CLL (101)

AML (322)
Plasma cell leukem ia (6)

Myeloma (102)
B-cell lymphom a (198)

Burk itts lymphom a (36)
T-cell lymphoma (43)

Chondr osar coma (15)
Osteosar coma (11)

Ewings sarcoma (18)
Synovi al sarcoma (12)
Leiomyosar coma (12)

Rhabdo myosarcoma (37)
Liposar coma (16)
Sarcoma, NOS (9)

Melanoma (8)
Glio ma (275)

Neurob lastoma (123)
Oral squa mous cell carc inoma (34)

Lung adenocar cinoma (311)
Lung , large cell cance r (8)
Lung, small cell cancer (6)

Lung , squam ous cell carcinoma (83)
Lung, carcinoi d tumor (27)

Meso thelio ma (35)
Esophagu s adenocar cinoma (13)

Gastric adenoca rc inoma (21)
GIST (6)

Small intestine, adenocar cinoma (6)
Colo rectal carc inoma (505)

Liver cance r (7)
Pancr eatic cancer (29)

Adrenal tumors (11)
Thyro id carcinoma (58)

Renal cance r (209)
Nephr oblastoma (33)
Bladder cance r (174)

Testis , seminom a (15)
Testis , non-seminoma (90)

Pros tate adenocar cinom a (349)
Breast duct al cance r (327)
Breast lobu lar cancer (46)

Breast medu lla ry cancer (12)
Breast cancer , others (15)

Breast carc inom a, NOS (652)
Ovarian, clear cell carcinoma (20)

Ovarian, endom etrioid carcinoma (37)
Ovarian, mucinous carc inom a (19)

Ovarian, serous carc inoma (141)
Ovarian adenocar cinom a, NOS (59)

Ovarian tumor, others (10)
Peritoneum adenocar cinoma (13)

Uterine sarcoma (14)
Uterine adenocar cinoma (140)

Uterine, Mulle rian tumor (15)
Cerv ical adenocar cinoma (8)

Cerv ical squam ous cell carc inoma (57)
Vagina/Vulva carc inom a (9)

0 1000 2000 3000 4000

KIT ENSG00000157404Heart (54)
Glioma (475)
Central nerv.system (426)
GIST (6)
Peripheral nerv.system (20)
Colorectal (6)
Skin (3)

T
S

H
R

W
t1

C
C

D
C

6
D

D
X

1
0

K
IT

T
A

F
1
5

B
C

R
M

L
L
T

4
G

N
A

S

Laryngopharynx squamous cell carcinoma (9 )

Expression profile for the KIT gene shows interesting patterns in the bodymap in Figure 5Figure 6

Expression profile for the KIT gene shows interesting patterns in the 
bodymap in Figure 5. KIT exhibits extremely high expression in 
gastrointestinal stromal tumors. KIT is known to be inhibited by Gleevec®, 
demonstrating that findings like these pinpoint immediate possibilities for 
drug repositioning.
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most faithful cellular network construction [53] and optimal

identification of differentially expressed genes [54]. In addi-

tion, other preprocessing methods may create false positive

results [53,55,56]. We used version 10 of the alternative CDF

files [20] summarizing the probe level intensities directly to

the Ensemble [57] gene IDs (Ensembl build 46). Probes map-

ping to multiple genes and other problems associated with old

generations of Affymetrix probe designs were thereby

excluded. Within our normalization process the term pre-

processing refers only to steps performed by the MAS5.0

algorithm, and subsequent normalization steps are described

below.

Sample-wise normalization with equalization 

transformation

We utilized equalization transformation (Q) [21], a method

similar to widely used quantile normalization [22], to nor-

malize the pre-processed data. After Q normalization, the

dataset had the desired distribution that has been determined

prior to transformation. The normal distribution with mean

of 8 and standard deviation 2 (N(8, 4)) was selected as the

desired distribution since the distribution of logarithmic, pre-

processed values of all samples (N = 9,783) with median 7.92

and standard deviation 2.3 was near to this distribution

(Additional data file 1). EQ values were brought to exponen-

tial scale to maintain the scale of the original values.

The quantile normalization [22] would be another choice to

perform normalization but has considerable drawbacks in

this particular setting. First, it does not perform well when

there is variation in the number of genes between samples.

This problem is magnified when merging thousands of sam-

ples from different array generations. Also, the means of the

quantiles may vary substantially when new samples are

added to the dataset, whereas the change caused by the equal-

ization transformation is smaller. Quantile normalization is

also resource-intensive to compute for thousands of samples

with different numbers of measured genes. Thus, equaliza-

tion transformation (Q) [21] was the method of choice in this

study.

Array-generation-based gene centering (AGC)

To be able to compare the samples of in silico transcriptomics

also between the array generations, we developed a novel

method for gene-wise normalization of the data. In this AGC

method we assume that the mean of the expression values for

any particular gene in each array generation is the same. If the

mean value of some of the array generations differs substan-

tially from the others, the shift is assumed to be caused by the

array generation based variation, and the AGC method aims

to correct this variation. The AGC method requires that the

collection of samples to be analyzed is large enough so that

one can assume the distribution of values of each gene k to

represent the total distribution of all potential expression val-

ues across all tissues for each array generation i. Therefore,

the AGC method normalizes the data to have mean values μi,

k= μall, k for all array generations i, where μall, k is the mean of

all values of the gene k. Further, it is assumed that the mini-

mum and the maximum estimates for the gene value are

reached and the range of the gene k should approximately be

[ak, bk], where ak is the lowest 2% value and bk is the largest

2% value of gene k. AGC values should not go over this range.

However, if the new centered value exceeds the range, the dif-

ference is diminished towards the range limits with coeffi-

cient c, 0 ≤ c ≤ 1. Here, the coefficient is set to c = 1/5.

Coefficient c is necessary to prevent some extremely tissue-

specific genes from having arbitrarily large correction factors,

which is possible if the specific tissue is absent from one or

more array generation. The coefficient c affects 2.9% of all

correction factors. Of those cases, the proportion of the cor-

rection factor modified by coefficient c was, on the average,

7.6%. Thus, the coefficient c affected an extreme minority of

the corrections in a significant manner, but nevertheless, it

was found to be crucial for the AGC method. The centered val-

ues can now be obtained with:

where xi, j, k is the value of gene k in sample j from array gen-

eration i, μi, k is the mean of the values of gene k across array

generation I, and μall, k is the mean of the values of gene k

across all array generations. Further, the adjusted values are

computed based on the equation:

The resulting AGC values are now AGCvalue = 2y.

Some other methods [58,59] are useful to combine different

datasets. However, these are computationally very demand-

ing and probably impractical for datasets comprising almost

10,000 samples. Additionally, the performance of these

methods is not validated for integration of multiple datasets.

Sample annotation and manual curation

Annotation of the samples is important to make biological

and medical sense of the data. Since not all sources of CEL

files come with annotations following the MIAME standards

[60], we performed manual annotation of all the data in the

database. Annotation terms linked to each sample were

defined by a team of seven biologists and medical doctors.

The content of the database in terms of healthy, malignant

and other disease samples can be seen in Additional data file

4

Gene annotation

Gene annotation is based on Ensembl. The database has data

for each Ensembl gene, even those not featured on any arrays.

Gene data include transcript and protein product informa-
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tion, chromosome name and position (band and nucleotide

count), biotype (protein coding, miRNA, ribosomal, and so

on), and Hugo and Entrez IDs for each gene. These data were

downloaded from the Ensembl web site, using the same

Ensembl genome build version (release 46) as that used for

the construction of the used alternative CDF files [20].

Multidimensional scaling and clustering accuracy

We utilized classic MDS in order to diminish the number of

the dimensions within the data [24]. With MDS, 1,137 sam-

ples with 7,390 dimensions (that is, genes) were brought to

low-dimensional space so that the distance between each

sample pair with these new dimensions is very close to the

distance between the original values of the samples. As a dis-

tance metric, we used Manhattan distance.

K-means clustering and rand index analysis

K-means clustering was performed with default parameters

in R. The initial centroids were given as the median value of

each gene in array generations or tissues. The algorithm was

allowed to run for a maximum of 100,000 iterations for each

clustering. The corrected rand index [23] was calculated in R

with fpc library.

Replicate analysis

Replicate analysis was performed by comparing the correla-

tion coefficients of the logarithmic values of two or three

hybridizations from a single biological sample using standard

methods of computing the Pearson correlation coefficient.

This was done for all samples described in [9,26,27].

Body-wide expression profiles of genes

We visualize the expression profile of a single gene across all

human tissues with boxplots and with custom designed body-

wide expression plots. In the boxplots, the expression profiles

of a single gene are displayed and grouped into healthy sam-

ples (green boxes) and malignant samples (red boxes). Both

types are in anatomically meaningful order, allowing easy

comparison of related tissue types. Numbers of samples in

each tissue type are in parentheses.

Custom designed body-wide expression profiles show the

expression pattern of a single gene at the level of individual

samples, while its layout allows easy analysis of the biological

or medical significance of the profile. The y-axis provides the

expression level of the gene and the x-axis contains all sam-

ples arranged into a fixed order by the type of the sample

(healthy, malignant) and subsequently by the tissue type.

Thus, each dot describes the expression level of a particular

gene in one sample. The anatomical origin of each sample can

be seen from the color bar at the bottom of the image. Tissues

expressing the gene at a high level (more than one standard

deviation higher than the baseline for that gene or having a

group of outlier data points) are colored.

Body-wide gene expression heatmaps for human 

cancer genes

Bodywide expression maps of genes are done with hierarchi-

cal clustering (Euclidean distance with Ward linkage) of

mean expression profile for 342 genes across 110 in vivo tis-

sues. The number of samples per tissue type is given in paren-

theses. Values for each gene are mean-centered at 0 with a

standard deviation of 1.

Availability of data

As the in silico transcriptomics data of this project are com-

posed of custom integration of already public microarray data

we provide a table describing the origins of the data used to

construct GeneSapiens (Additional data file 3). We have set

up a website [16] to allow browsing of expression profiles of

these genes and associated information as well as generation

of correlations/scatterplots between any pairs of genes across

any tissues.
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AGC: array-generation-based gene centering; GIST: gastroin-

testinal stromal tumor; MDS: multi-dimensional scaling;

PLAP: placental alkaline phosphatase; Q: quantile; QAGC: Q
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Competing interests
The institute has filed a patent application regarding the nor-

malization methodology.

Authors' contributions
SK contributed to the majority of data analysis, database con-

struction and development of normalization and writing of

the manuscript. RA and MS contributed to the development

and testing of the normalization. KO and EB contributed to

data collection and the annotation process. KO also contrib-

uted to data mining methods and checking of all annotations.

KI had a major contribution to the annotation. SH contrib-

uted to the development of normalization and supervised the

comparison and validation of the normalization methods. OK

supervised the entire project for database construction, data

mining and annotation efforts and participated in manuscript

writing and editing. The remaining authors contributed

towards annotation, data visualization and other methods as

well as editing the manuscript.

Additional data files
The following additional data are available with the online

version of this paper. Additional data file 1 shows the distri-

bution of preprocessed datapoints across the entire database

(solid line) and normal distribution (N(8, 4)) estimated from

it (dashed line). Additional data file 2 shows boxplots of vari-

ous known tissue-specific genes. Additional data file 3 lists
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the sources for all the raw expression data files used in this

study. Additional data file 4 lists the various healthy tissues,

cancers and non-cancer diseases represented by the samples

in the database and the amounts of samples in each of these

categories. Additional data file 5 lists rand indices for the dif-

ferent normalizations, and the distribution of array genera-

tions and tissues into clusters with Q and QAGC (Q

normalized data to which AGC correction has been applied)

normalized data. Additional data file 6 shows boxplots of var-

ious known tissue-specific genes. Additional data file 7 shows

that FEV has clearly elevated expression in several malignan-

cies, when compared to any healthy tissue. Most interestingly

this ETS-factor family member appears to have slightly ele-

vated expression in prostate cancer when compared to

healthy prostate. Additional data file 8 shows that expression

of the C1orf56 gene, also known as AF1Q or MLLT11, shows

extreme expression in several cancers, especially in

neuroblastoma.

Additional data file 1Distribution of preprocessed datapoints across the entire database and normal distribution (N(8, 4)) estimated from itDistribution of preprocessed datapoints across the entire database (solid line) and normal distribution (N(8, 4)) estimated from it (dashed line).Click here for fileAdditional data file 2Boxplots of various known tissue-specific genes(a) KLK3 (PSA) is a known prostate specific gene. This specificity is perfectly shown in its expression profile. (b) GFAP, a gene cod-ing for glial fibrillary acidic protein, is known to be expressed in central nervous system. Its expression profile perfectly confirms this prior knowledge.Click here for fileAdditional data file 3Sources for all the raw expression data files used in this studySources for all the raw expression data files used in this study.Click here for fileAdditional data file 4Various healthy tissues, cancers and non-cancer diseases repre-sented by the samples in the database and the amounts of samples in each of these categoriesVarious healthy tissues, cancers and non-cancer diseases repre-sented by the samples in the database and the amounts of samples in each of these categories.Click here for fileAdditional data file 5Rand indices for the different normalizations, and the distribution of array generations and tissues into clusters with Q and QAGC normalized dataRand indices for the different normalizations, and the distribution of array generations and tissues into clusters with Q and QAGC normalized data.Click here for fileAdditional data file 6Boxplots of various known tissue-specific genes(a) Insulin (INS) has pancreas specific expression, as one expects it to have. (b) LDHC is a known testis-specific gene and it is expressed above background only in healthy testis.Click here for fileAdditional data file 7FEV has clearly elevated expression in several malignancies, when compared to any healthy tissueMost interestingly this ETS-factor family member appears to have slightly elevated expression in prostate cancer when compared to healthy prostate.Click here for fileAdditional data file 8Expression of the C1orf56 gene shows extreme expression in sev-eral cancers, especially in neuroblastomaExpression of the C1orf56 gene, also known as AF1Q or MLLT11, shows extreme expression in several cancers, especially in neuroblastoma.Click here for file
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