
Systematic Breakdown of Amontons’ Law
of Friction for an Elastic Object Locally
Obeying Amontons’ Law
Michio Otsuki & Hiroshi Matsukawa

Department of Physics and Mathematics, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara 252-5258, Japan.

Inmany sliding systems consisting of solid object on a solid substrate under dry condition, the friction force
does not depend on the apparent contact area and is proportional to the loading force. This behaviour is
called Amontons’ law and indicates that the friction coefficient, or the ratio of the friction force to the
loading force, is constant. Here, however, using numerical and analytical methods, we show that Amontons’
law breaks down systematically under certain conditions for an elastic object experiencing a friction force
that locally obeysAmontons’ law. Themacroscopic static friction coefficient, which corresponds to the onset
of bulk sliding of the object, decreases as pressure or system length increases. This decrease results from
precursor slips before the onset of bulk sliding, and is consistent with the results of certain previous
experiments. The mechanisms for these behaviours are clarified. These results will provide new insight into
controlling friction.

W
hen we apply a shear force to a solid object on a solid substrate to start a sliding motion, the shear force
must be greater than the maximum static friction force. When the object is sliding, the kinetic friction
force applies. Friction plays an important role in various phenomena ranging from those at the

nanometre scale to earthquakes; the phenomenon of friction has been investigated since ancient times1–5.
From the engineering point of view, friction is required to be small in certain cases and large in other cases.
The control of friction is one of the key factors towards achieving improvements in green technology and
nanotechnology. In the 15th century da Vinci discovered that the friction force is proportional to the applied
loading force and is independent of the apparent contact area between two solid surfaces1–5. This behaviour of
friction was rediscovered by Amontons approximately 200 years later; this law is now called Amontons’ law of
friction and holds for various systems at first approximation1–5. The ratio of the friction force to the loading force
is called the friction coefficient, and according to Amontons’ law, this coefficient does not depend on the loading
force or the apparent contact area. The mechanism of friction was explained in the mid-twentieth century by
Bowden and Tabor1. For actual solid surfaces in contact with each other, because of surface roughness, only a tiny
fraction of the surfaces form junctions, the so-called real contact points. Amontons’ law is explained as resulting
from the increase in the total area of real contact points, that is, the real contact area, in proportion to the loading
force and the constant binding energy per unit real contact area1–7. However, the mechanism and the validity of
Amontons’ law are still discussed actively2–13.

Another interesting problem concerning sliding friction is the question of how a macroscopic object begins to
slide. Usually, it is considered that a shear force smaller than the maximum static friction force does not induce
any slip motions. However, recent measurements of the instantaneous local real contact area density of poly-
(methyl methacrylate) (PMMA) show that precursors appear as local slips at the interface under shear forces well
below the maximum static friction force, and this force corresponds to the onset of bulk sliding14–17. If the shear
force is applied slowly from the trailing edge of the sample, a discrete propagation sequence for the local slip
appears15. Each front of the slip starts from the trailing edge and stops after propagating a certain length greater
than that of the previous front. When the slip front reaches the leading edge, bulk sliding occurs. Similar
behaviour is observed in numerical studies based on 1D17–20 and 2D21 spring-block models. The variation in
the front velocity and the front velocity’s dependence on the stress distribution have been observed in experi-
ments14,16 and have been examined using numerical approaches18,21,22. A slow precursor with a finite front velocity
has been investigated with a 1D continuum model23,24. The precursor dynamics are expected to relate to the
inhomogeneity of the system and are expected to be important to the understanding of friction. In fact, ref. 9
reported that the macroscopic static friction coefficient mM, which corresponds to the maximum static friction
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force, varies with the experimental loading configuration, and this
variation is related to the precursor dynamics. Similar behaviour for
the maximum static friction force has also been investigated with a
1D spring-block model25. Despite these studies, however, the mech-
anism of the precursor and its relation to themaximum static friction
force have not been clarified theoretically.
In this study, using both numerical and analytical methods, we

investigate the precursor dynamics and the relation of these
dynamics to the macroscopic static friction coefficient mM of an
elastic object in contact with a rigid substrate, and we show that
mM decreases as pressure or system length increases. This behaviour
indicates the systematic breakdown of Amontons’ law. In the present
system, the elastic object is subject to viscous damping and a friction
force that obeys Amontons’ law locally; however, the law breaks
down for the overall system. The breakdown of the law results from
a quasi-static precursor appearing in the propagation of local slips
before the onset of bulk sliding and from the transition of the quasi-
static precursor to a dynamic precursor at a certain critical precursor
length. For sufficiently large or small pressures or system lengths, mM
becomes nearly constant and Amontons’ law approximately holds.
The relation ofmM to the critical precursor length and themechanism
of the breakdown are clarified analytically with a 1D effective model.
These behaviours arise from the distribution of pressure on the bot-
tom of the object, which results from the torque induced by the shear
force, and from the competition between the viscous damping and
the velocity-weakening friction. Consequently, the behaviours do not
depend on the details of the system. It is known that Amontons’ law
does not apply under some conditions, such as in the presence of
strong adhesion, in the absence of multiple real contact points, with
nonlinear dependence of the real contact area on the applied load,
with surface detachment, with a change in surface conditions, and
for gels2–4,6,10,11. However, the mechanism of the breakdown of
Amontons’ law discussed in this paper is different from those known
previously. In addition, a theoretical prediction of the behaviour of
the friction coefficient is given for the first time. These results will
provide new approaches to control friction.

Results

Finite element method (FEM) calculation. We first analyse the
friction behaviour for an elastic block with length L, width W, and
heightH along the x-, y-, and z-axes, respectively, on a rigid substrate
(see Fig. 1(a)) using a 2D finite element method (FEM). We assume
that the block has viscous damping proportional to the strain rate
and has friction stress proportional to the pressure at the interface;
that is, the local friction force obeys Amontons’ law. Note that the
resolution of the models employed in this work is larger than the
mean distance between the real contact points between the two
surfaces and smaller than the length scale of the variation of the
stresses discussed below. The validity of the law on this length
scale for PMMA is supported by the proportionality of the real
contact area to the loading pressure7, with the assumption of a
constant binding energy per unit real contact area, and the law’s
validity is consistent with the friction experiments in which the
size of the apparent contact area is on the order of 1 mm2 in a
multiple real contact point configuration6. The local friction
coefficient m ( _ux) is given by the local static friction coefficient mS
when the local slip velocity _ux is equal to zero, and it decreases
linearly from mS to the local kinetic friction coefficient mK with
increasing _ux until the local friction coefficient finally equals mK at
velocities greater than characteristic velocity vc. The plane stress
condition is assumed along the y-axis. We apply a uniform
pressure Pext 5 FN/(LW) to the top surface, where FN denotes the
loading force. The shear force FT is applied from the trailing edge at
height h bymeans of a rigid rod with a width of 0.1H. The rodmoves
with a constant velocityV that is sufficiently slow.We setW5 1 and
h5 H/2. The results shown here do not depend on the details of the
system parameters. However, for the quantitative calculations, we
employ two parameter sets; parameter set (A) simulates a model vis-
coelastic material, and (B) simulates PMMA. Hereafter, we employ
quantities normalised by the mass density, Young’s modulus, and
viscosity, and these quantities are expressed with a tilde. The
following results are obtained for d:~H

�

~L~0:5. (See Methods for

Figure 1 | (a) An elastic object under uniform pressure Pext 5 FN/(LW) on a rigid substrate is pushed at height h by a rigid rod with shear force FT.

(b) The ratio ~FT
�

~FN as a function of ~U:~V~t. The horizontal line indicates the value of mM. The inset shows an enlarged view of the box indicated by the red

outlines. (c) The local slip region is shown in red in the ~U�~x plane. The horizontal line indicates the critical length of the quasi-static precursor ~‘c. (d) The
normalised instantaneous local density of the real contact area in the region of the box indicated by blue outlines in (c). The thin line indicates the position

of the precursor front. The results are obtained for ~L~1:0, ~Pext~0:003 and parameter set (A).
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more details regarding the FEM calculation, the velocity dependence
of the local friction coefficient, and the parameters.).
Figure 1(b) shows the ratio ~FT

�

~FN as a function of the displace-
ment of the rod ~U~~V~t, where ~t denotes time. The ratio repeatedly
shows a nearly linear increase and a periodic large drop after the first
drop. In this work, we focus on the periodic regime. The periodic
behaviour corresponds to a periodic stick-slip motion. The large
drop is caused by a large slip accompanied by bulk sliding. The value

of ~FT at the peak of the ~FT
�

~FN curve is the maximum static friction
force. The inset shows an enlarged view of the box indicated by the
red outline. A sequence of small drops in ~FT

�

~FN is clearly observed

before the onset of bulk sliding at ~U^0:0047. As discussed below,
each small drop is accompanied by a rapid local slip. This behaviour
has previously been observed in certain experiments15 and numerical
studies17–21. Figure 1(c) shows the local slip region, where the slip
velocity at the interface has a finite value, in the ~U�~x plane. Here, ~x
denotes the position at the bottom of the object. At values well below
the maximum static friction force, the shear force ~FT induces a slow
precursor slip from the trailing edge, and this precursor slip is called
the quasi-static precursor. The velocities of the local slip and the front
of this precursor are proportional to the driving velocity, and they are
vanishingly small. The precursor length ~‘ increases with increasing
~U . When ~‘ reaches a critical length ~‘c, the quasi-static precursor
becomes unstable and transforms to a leading rapid precursor with
large slip and front velocities. The leading rapid precursor nucleates
near the trailing edge. The front of the leading rapid precursor begins
with a velocity close to that of sound and in a manner similar to the
supershear rupture observed in experiments9,16. Subsequently, the
front velocity reduces and approaches the Rayleigh wave velocity.
When the front enters the leading edge, bulk sliding occurs, and FT
shows a large drop in value.
Figure 1(d) shows the normalised instantaneous local density of

the real contact area in the region of the box indicated in (c). The local
density is calculated from the local slip velocity and decreases with
increasing velocity. (See Methods for this calculation.). Before the
onset of bulk sliding at ~U^0:0047, a discrete sequence of rapid
precursors, similar to that observed in experiments15, appears at
~U^0:0045, and this set of precursors causes the sequence of small
drops in ~FT

�

~FN observed in the inset of (b). This type of precursor is
called the bounded rapid precursor. Each precursor nucleates in the
region ~xƒ~‘ with a front velocity that is close to the velocity of sound
and is independent of the driving velocity and nucleates in a manner
similar to the leading rapid precursor. Subsequently, the front decele-
rates and stops after propagating a certain length. The propagation
length of the precursor front increases with ~U . This increase is also
observed in experiments15. The local slip velocity of this precursor
is considerably larger than that of the quasi-static precursor shown
in (c); however, this slip velocity decreases with decreasing driving
velocity in contrast to the behaviour of the slip velocity for the leading
rapid precursor. The quasistatic precursor observed in (c) almost
disappears for the real contact area density shown in (d) because
of its vanishingly small slip velocity. The disappearance of the
quasi-static precursor is also consistent with the results of certain
experiments15.
We define the macroscopic static friction coefficient mM to be the

peak value of ~FT
�

~FN in Fig. 1(b). The pressure (~Pext) dependence of
mM is shown for various values of the system length ~L in Figs. 2(a) and
2(b) for parameter sets (A) and (B), respectively. Clear decreases in
mM are observed with increasing ~Pext or ~L values. It can be shown that
mM also depends on the apparent contact area. These behaviours
indicate the breakdown of Amontons’ law and the extensive property
of the friction force. This pressure dependence is consistent with the
results of experiments conducted with PMMA8,9. The magnitudes of
the normalised parameters, ~Pext and ~L, depend on the mass density,
Young’smodulus, and the viscosity coefficient. Therefore, in contrast
to the general belief that the friction coefficient depends mainly on

the surface properties, mM also depends on these bulk material para-
meters, as noted in ref. 25. The variation in mM results from the
formation of the precursors before the onset of bulk sliding.
Figure 3(a) shows that mM is scaled by the critical length of the
quasi-static precursor normalised by the system length, ~‘c

�

~L, for
each parameter set. The dependence of ~‘c

�

~L on ~Pext, shown in the
inset, with this scaling of mM on ~‘c

�

~L indicates the ~Pext dependence of
mM.
Figure 3(b) shows the pressure at the interface ~p ~xð Þ for the mag-

nitudes of ~U indicated by arrows in Figs. 1(b, c). The applied pressure
at the top surface is uniform; however, ~p ~xð Þ is not uniform and
increases with ~x. Similar pressure distributions are observed in
experiments9,16 and result from the torque induced by the shear force
~FT

19. The low pressure causes the local maximum static friction force
to be small. As a result, the quasi-static precursor starts from the
trailing edge at ~x~0. Figure 3(c) shows the ratio of the shear stress at
the interface ~t ~xð Þ to the pressure, ~t ~xð Þ=~p ~xð Þ. Immediately after bulk
sliding stops, this ratio approximately equals the value of mK (dashed
line) for the entire interface because of the large local slip velocity
accompanied by the bulk sliding and the finite relaxation time of the
local stress. The magnitude of ~t ~xð Þis equal to the local friction stress
mK~p ~xð Þ at the instant of the vanishing acceleration of the rapid local
slip, and this magnitude has almost no change during the decelera-
tion and after stoppage because of the finite relaxation time.
However, in the region of length ~‘ where the quasi-static precursor
front has passed, ~t ~xð Þ=~p ~xð Þ equals mS (straight line) because ~t ~xð Þ is
given by the local friction stress for vanishing velocity mS~p ~xð Þ. When
~‘ reaches the critical length ~‘c, the quasi-static precursor transforms
to the leading rapid precursor. Subsequently, the front of this rapid
precursor enters the leading edge of the system quickly and bulk
sliding occurs. The stress distribution has almost no change during
the propagation of this front because of the short duration of the
propagation. As a result, mM is determined by ~‘c, and this relation is
shown analytically below. Note that the stress relaxes slightly after
the appearance of each of the bounded rapid precursors, and the
stress recovers its original value quickly through the following
quasi-static precursor, as shown in Fig. 1(d). Figure 3(c) also shows
that ~t ~xð Þ=~p ~xð Þ can be larger than the macroscopic static friction
coefficient mM without precipitating any local slip, as was observed
in experiments9,16.

Analysis based on a 1D effective model. To analyse the abovemen-
tioned numerical results, we employ a 1D effective model in which
the degrees of freedom of the elastic object along the z-axis are
neglected. The equation of motion of the model is expressed by

Figure 2 | Macroscopic static friction coefficient mM as a function of ~Pext
for parameter sets (A) (a) and (B) (b). The lines with symbols indicate the

results of the FEM calculation. Thin lines indicate analytical results based

on the 1D effective model, where we set a5 0.2. Lines of the same colour

correspond to the same value of ~L.

www.nature.com/scientificreports
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L
2
~u ~x,

~tð Þ
L~t2

~
L~sxx ~x,

~tð Þ
L~x

z
~sxz ~x,

~tð Þ{m _~u
� �

~p ~xð Þ
a~H

: ð1Þ

Here, ~u ~x,
~tð Þ denotes the displacement along the x-axis at the inter-

face, m _~u
� �

~p ~xð Þ is the friction stress, and a~H denotes the characteristic

length of the variation in the (xz) component of the stress. We
employ a as a fitting parameter. The normal and the shear stresses

are respectively given by ~sxx~~E1L~u
�

L~xz~gtL
2
~u
�

L~xL~t, and ~sxz~

~E2 ~U{~u
� �

.

~hz ~V{L~u=L~t
� �

.

2~h, where ~gt denotes the effective vis-

cosity and ~E1 and ~E2 represent effective elastic constants (see
Methods for these parameters and the boundary condition.). We
assume that the pressure at the interface is given by
~p ~xð Þ~2~Pext~x

�

~L, which simulates the FEM result shown in

Fig. 3(b). Hereafter, we set the origin of ~U to be the position of the
pushing rod just after bulk sliding stops. The adiabatic solution of

equation (1) with a precursor of length ~‘ is obtained analytically, and

the solution gives ~‘^~E2~L~U
.

mS{mKð Þ~h~Pext
n o

for ~‘
�

~L=1 (see

Supplementary Information). Hence, ~‘ increases adiabatically with

an adiabatic increase in ~U . This adiabatic increase in length indicates
the precursor is quasi-static. A similar relation between the precursor
length and the shear force is obtained with a 1D spring-block model;

however, in this case the precursor is not adiabatic20. When ~‘ reaches

a critical length ~‘c, the quasi-static precursor becomes unstable and
transforms to the leading rapid precursor. The leading rapid pre-
cursor leads to bulk sliding. Substituting the adiabatic equation and

the relation between ~U and ~‘ into the expression for the shear force

~FT~
Ð ~L

0 d~x~sxz ~xð Þ and setting ~‘~~‘c, we obtain

mM~mKz mS{mKð Þ~‘c
�

~L ð2Þ

for ~‘c
�

~L=1. As shown in Fig. 3(a), this relation agrees well with the

FEM calculation, even for ~‘c
�

~L=1.

The critical length ~‘c is obtained by a linear stability analysis of
equation (1) in the limit of vanishing ~V (see Supplementary
Information). The analysis provides the equation for the n-th eigen-
value ~vn of the time evolution operator for the fluctuation by

~v2
n
~L2z ~gt

~k2n

~‘
~L

 !

{2

z
1

2

~r

~L

� �

{2
( )

~vn

z~E1
~k2n

~‘
~L

 !

{2

z
1

k2
~r

~L

� �

{2
( )

{
mS{mK
~ucad

1{
1

~k2n

 !

~Pext
~L

~‘
~L

 !

~vn~0,

ð3Þ

where k2:~E1
�

~E2,~r
2
:a~h ~H, and ~kn: nz1=2ð Þp. Here, the off-diag-

onal terms, which are of a higher order in ~‘, are neglected. The
eigenvalue ~vn gives the instability condition of the adiabatic solution.
The instability results from the appearance of a positive real part for

any eigenvalue. For small values of ~‘
�

~L, the viscosity expressed by the

second term in equation (3) stabilises the adiabaticmotion.However,
the velocity-weakening friction force expressed by the last term leads

to instability in motion for large ~‘
�

~L. In the present case, the oscil-

lating fluctuation corresponding to a complex ~vn with a positive real
part never grows, because the backward motion of the oscillation
relaxes the local shear stress, and this motion is inhibited by the
friction stress. Instead, this oscillating fluctuation yields the bounded
rapid precursors observed in Fig. 1(d).
The appearance of the positive real part of ~v0 at ~‘~~‘sc, where ~‘sc

denotes the subcritical length, yields the first bounded rapid pre-
cursor, and the appearance of ~vn with n $ 1 is considered to yield
each of the subsequent precursors appearing at ~‘w~‘sc. Further
increase in ~‘ causes ~v0 to become real and positive at ~‘cw~‘sc; a
positive, real ~v0 results in the growing instability and causes the
leading rapid precursor and the subsequent bulk sliding. The relation

between ~‘c and ~Pext is given by the instability condition, ~v0w0. As
mentioned above, the instability is caused by the competition
between the viscosity and the velocity-weakening friction force,
which are expressed by the second and last terms in equation (3),
respectively. Hence, ~‘c~~L decreases as ~Pext or ~L increases because the

last term is enhanced by ~Pext~L; for ~‘c
�

~L=1, ~‘c
�

~L! ~L~Pext
� �{1=3

as is
easily seen from equation (3) (also see Supplementary Information).
This result is consistent with that of the FEM calculation shown in
the inset of Fig. 3(a). By inserting ~‘c ~Pext,~L

� �

, which is given by the

Figure 3 | (a) Macroscopic static friction coefficient mM as a function of ~‘c
�

~L for various values of ~Pext and ~L. The open symbols indicate results for the

parameter set (A) with ~L~0:25 (%), 1.0 (#), and 4.0 (n) and the filled symbols indicate those for (B) with ~L~0:02 (&), 0.04 ( ), and 0.08 (m). The

lines show the theoretical result as obtained with equation (2). The inset shows the ~Pext dependence of ~‘c
�

~L for parameter set (A). (b) The normalised

pressure ~p ~xð Þ
�

~Pext and (c) the ratio of the shear stress to the pressure ~t ~xð Þ=~p ~xð Þ at the interface for the magnitudes of ~U indicated by arrows in Figs. 1(b)

and 1(c). The arrows in (c) indicate the positions of the precursor front. The three horizontal lines mS, mM, and mK in order from the top of the panel. The

parameters are the same as those for Figs. 1(b–d).
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abovementioned relation, into equation (2), we obtain the pressure
and system length dependence of mM, and mM decreases with increas-
ing ~Pext or ~L. The results are shown in Figs. 2(a,b). The analytical
results agree with the FEM calculation semiquantitatively for para-
meter set (A) and qualitatively for parameter set (B). The deviation of
the analytical results from the FEM calculation may arise from the
absence of internal degrees of freedom along the z-axis in the 1D
effective model given by equation (1).

Discussion
In this work we observed three types of precursors prior to the
occurrence of bulk sliding: the quasi-static precursor and the
bounded and the leading rapid precursors. The latter two are seen
to correspond to those observed in experiments9,14–17. The quasi-
static precursor is also observed in numerical studies23, but not in
experiments9,14–17, because it vanishes away in the local density of the
real contact area measured in experiments, as previously discussed.
Some numerical studies17,19–21 do not report this precursor. The lack
of this precursor is because local friction coefficient discontinuously
decreases as velocity increases in these studies. This discontinuous
decrease in the local friction coefficient corresponds to a vanishing vc
and a subsequently vanishing stable region for the quasi-static pre-
cursor. In ref. 22, a model similar to the present FEM model is
employed; however, the value of the viscosity coefficient corresponds

to ~‘c
�

~L*0. This result is also consistent with the absence of the
quasi-static precursor.
In ref. 9, it was reported that mM varies with a certain acceleration

length of the leading rapid precursor. The acceleration length is
difficult to define in the present work, and this difficulty may result
from a loading configuration different from that of the experiment.
The relation of mM with the acceleration length will be studied in
future work. However, the measured values of mM in ref. 9 show a
tendency to decrease with an increase in the loading force and
depend on the stress distribution in the system. These behaviours
are consistent with those observed in the present work.
Earthquakes are among the largest friction phenomena on the

earth. Many large earthquakes are preceded by foreshocks. In the
2011 Tohoku-Oki earthquake with magnitude 9, the propagation of
slow slip preceding the main shock was observed over approximately
1 month26. The behaviour is similar to the propagation of the pre-
cursor front observed in this work. The present results will provide
new insights into earthquake behaviour.
In conclusion, using both numerical and analytical methods, we

show that the macroscopic static friction coefficient mM of an elastic
object decreases with increasing pressure or system length. Themag-
nitude of mM also depends on the apparent contact area and the bulk
material parameters. These behaviours indicate the systematic break-
down of Amontons’ law. The elastic object is subject to viscous
damping and a friction force that obeys Amontons’ law locally; how-
ever, the law undergoes breakdown as a whole. The behaviour of mM
is consistent with the results of relevant experiments8,9, and it arises
from the occurrence of precursor slips before bulk sliding and from
the transition from quasi-static to rapid motion of the precursors.
The linear stability analysis based on a 1D effective model gives the
relation between mM and the critical length of the transition, and it
clarifies the mechanism of the transition. The transition is caused by
the pressure distribution at the bottom of the object, which results
from the torque induced by the shear force, and by the competition
between the viscous damping and the velocity-weakening friction. If
the ratio of the critical length of the transition to the system length is
considerably less than or approximately equal to unity, mM becomes
almost constant and Amontons’ law holds approximately. These
situations are caused by sufficiently large or small values of pressure
or system length. The qualitative features of these results do not
depend on the details of the model for the case in which the pressure
at the bottom of the object increases monotonically along the driving

direction, the local friction coefficient decreases with velocity con-
tinuously, and the system has viscous damping. According to these
results, an object with greater width or an object in which the part
contacting with the interface is divided into shorter portions along
the driving direction can have a larger maximum static friction force
under a constant loading force. The present results will provide new
techniques for controlling friction.

Methods
FEM calculation. The equation of motion of the displacement vector of the elastic
object u(r, t) employed in the FEM calculation is expressed as rL2u r,tð Þ

�

Lt2~=:s,
where r is the mass density. The stress tensor s is composed of an elastic part s(el) and
a dissipative part. The dissipative component is expressed as
s

disð Þ
ab ~g1 abzg2 xxz zzð Þdab . Here ab denotes a component of the strain rate

tensor, and g1,2 denote the viscosity coefficients
27. The boundary condition is given by

szz 5 2Pext and sxz 5 0 at the top surface, and sxx 5 0 and szx 5 0 at x 5 0 and L
except for the portion in contact with the rigid rod.

In the FEM calculation, the object is divided into equal-sized rectangular cells. The
number of cells is 403 40 or 803 80. The convergence of the results with respect to
the FEM mesh size is verified. At the beginning of the FEM simulation, we apply a
uniform pressure to the top surface causing the elastic object to relax. Subsequently,
we start pushing the object at ~t~0. The results shown in the paper are obtained for
~V~10{5 . This value of ~V corresponds to the adiabatic limit except for the results
shown in the inset of Fig. 1 (b) and in Fig. 1 (d).

Velocity dependence of the local friction coefficient and the real contact area
density. The velocity dependence of the local friction coefficient employed in this
work is obtained from the rate- and state-dependent friction law, m 5 mK 1 (mS 2
mK)w with _w~ 1{wð Þ=t{ _uxj j=D, as discussed in ref. 4. Here, 0 # w # 1 represents
the state variable and t andD denote the relaxation time and length, respectively. The
above equation yields m _uxð Þ, as noted in the text for vc5D/t, in the limit of vanishing
t, where w~1{ _uxj j=vc . The magnitude of w is proportional to the deviation of the
local density of the real contact area from that for _uxj j§vc . Thus, we obtain the
normalised instantaneous local density of the real contact area shown in Fig. 1(d).

Parameters. We introduce the normalised quantities in which the length, mass and
time are normalised by L0:g1=

ffiffiffiffiffiffi

rE
p

, m0:g31

.

ffiffiffiffiffiffiffiffi

rE3
p

and t0:g1=E, respectively,
where E represents Young’s modulus. In this paper, the normalised quantities are
expressed with a tilde. We employ two parameter sets: parameter set (A) simulates a
model viscoelastic material, which has Poisson’s ratio n5 0.34, mS 5 0.38, mK 5 0.1,
~vc~3:4|10{4 , and ~g2~1; and (B) simulates PMMA, which has n 5 0.4, mS 5 1.2,
mK5 0.2, ~vc~3:9|10{7 , and ~g2~1. The present FEM calculation shows that mS and
mK correspond to the maximum and minimum values of the ratio of the local shear
stress to the pressure, respectively. Hence we estimate mS and mK for PMMA from the
maximum value of the ratio in Fig. 4(c) and the minimum value of the ratio in
Fig. 4(b) in ref. 9, respectively. The value of vc is estimated from the values of mS, mK
and the linear fit of the steady-state velocity dependence of the rate- and state-
dependent friction law reported in ref. 5. The value of L0 for PMMA is estimated as
follows. In ref. 9, mM5 0.6 for L5 0.2 m, d5 0.5, and Pext5 1.673 106 Pa. The FEM
calculation yields mM 5 0.6 for ~Pext~L~2:3|10{6 . Consequently, we obtain L0 5
48 m. These values of the parameters for PMMA have some uncertainties. However,
the essential feature of the results obtained here is, asmentioned before, not specific to
these values. The local validity of Amontons’ law for PMMA may require some
discussions. Even if Amontons’ law breaks down locally, the behaviour of the
precursor dynamics and the static friction force discussed here will be still
qualitatively valid because their mechanism is general. For metals, Amontons’ law is
expected to better hold locally and the present qualitative results will also be
applicable.

1D effective model. In the 1D effective model, the effective viscosity is given by
~gt:1z~g2 and the two elastic constants are given by ~E1:1= 1znð Þ 1{nð Þf g and
~E2:1= 2 1znð Þf g. The boundary condition is given by ~L~u ~x,

~tð Þ
.

L~x~0 at ~x~0 and ~L.
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