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Systematic bromodomain protein screens
identify homologous recombination
and R-loop suppression pathways
involved in genome integrity
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Bromodomain proteins (BRD) are key chromatin regulators of genome function and stability as well as therapeutic
targets in cancer. Here, we systematically delineate the contribution of human BRD proteins for genome stability
and DNA double-strand break (DSB) repair using several cell-based assays and proteomic interaction network
analysis. Applying these approaches, we identify 24 of the 42 BRD proteins as promoters of DNA repair and/or ge-
nome integrity. We identified a BRD-reader function of PCAF that bound TIP60-mediated histone acetylations at
DSBs to recruit a DUB complex to deubiquitylate histone H2BK120, to allowing direct acetylation by PCAF, and
repair of DSBs by homologous recombination. We also discovered the bromo-and-extra-terminal (BET) BRD pro-
teins, BRD2 and BRD4, as negative regulators of transcription-associated RNA-DNA hybrids (R-loops) as inhibition
of BRD2 or BRD4 increased R-loop formation, which generated DSBs. These breaks were reliant on topoisomerase
II, and BRD2 directly bound and activated topoisomerase I, a known restrainer of R-loops. Thus, comprehensive
interactome and functional profiling of BRDproteins revealed newhomologous recombination and genome stability
pathways, providing a framework to understand genome maintenance by BRD proteins and the effects of their
pharmacological inhibition.

[Keywords: bromodomain; chromatin; homologous recombination; DNA repair; DNA damage response; R-loops]

Supplemental material is available for this article.

Received July 28, 2019; revised version accepted October 28, 2019.

Preserving the integrity of the genome is paramount for
maintaining cellular and organismal homeostasis. In eu-
karyotes, the nuclear genome is organized into chromatin,
which participates in compacting the genome and regulat-
ing its accessibility to promote cell identity and function.
Given the constant bombardment of DNA by exogenous
and endogenous factors including radiation, carcinogens,
reactive oxygen species, replication stress, and dysregu-
lated protein products (Jackson and Bartek 2009; Tubbs

and Nussenzweig 2017; Xia et al. 2019), cells engage spe-
cialized signaling pathways termed the DNA damage re-
sponse (DDR) that detect, signal, and repair DNA
lesions (Jackson and Bartek 2009; Ciccia and Elledge
2010). DNA double-strand breaks (DSBs) are a particularly
deleterious form of DNA damage, which can provoke
genome instability including insertions, deletions, trans-
locations, and chromosome loss. DSBs are repaired by
two main pathways in mammalian cells, homologous
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recombination (HR) and classical nonhomologous end-
joining (NHEJ). The importance of DDR pathways is high-
lighted by the various diseases associated with DDR
defects, including neurodegenerative disorders, immune
deficiencies, and cancer (Jackson and Bartek 2009;Negrini
et al. 2010).

DNA damage and the responses and activities elicited
by it are carried out within the context of chromatin.
These chromatin-based DDR pathways ensure the coordi-
nation of other DNA-templated processes such as tran-
scription and replication with the signaling and repair of
DNA damage, including DSBs (Lukas et al. 2011; Polo
and Jackson 2011;Miller and Jackson 2012; Gong andMil-
ler 2013; Jackson and Durocher 2013; Agarwal and Miller
2016; Gong et al. 2016; Kim et al. 2019). For example, the
histone variant H2AX is phosphorylated by ATM and
DNA-PK at DSBs, which promotes the accumulation of
DDR factors into microscopically visible foci at break
sites including the DDR factors 53BP1 and BRCA1 (Polo
and Jackson 2011; Scully and Xie 2013). 53BP1 is a multi-
valent chromatin interacting protein that binds to ubiqui-
tylated histone H2A and methylated H4, while BRCA1
interacts with the nucleosome to promote its ubiquityla-
tion activity on H2A (Fradet-Turcotte et al. 2013; Panier
and Boulton 2014; Densham andMorris 2017). Chromatin
plays an essential role in the DDR and in DSB signaling
and repair.

Acetylation represents a key posttranslational modifi-
cation that regulates chromatin structure and function,
including in the DDR (Gong et al. 2016; Fujisawa and Fil-
ippakopoulos 2017). Acetylation is catalyzed by histone
acetyltransferases (HATs) (Lee and Workman 2007; Ver-
din and Ott 2015) and erased by histone deacetylases
(HDACs), (Seto and Yoshida 2014), which dynamically
regulate this mark on both histone and nonhistone pro-
teins. Acetylated lysines are recognized bymultiple recog-
nition reader domains, including the bromodomain
(BRD), which is found in 42 human proteins that play
key functions in chromatin regulation, including tran-
scription and chromatin remodeling (Filippakopoulos
and Knapp 2012; Filippakopoulos et al. 2012; Gong et al.
2016; Fujisawa and Filippakopoulos 2017). Over one-third
of human BRD proteins and half of all human HAT and
HDAC enzymes are dynamically relocalized, following
DNA damage, including to the sites of DNA lesions and
repair (Miller et al. 2010; Gong and Miller 2013; Gong
et al. 2015). These studies from our lab and others have es-
tablished the importance of acetylation signaling in the
DDR (Gong et al. 2016). For example, a variant of
the bromo-and-extra-terminal (BET) BRD protein BRD4
has been shown to insulate DNA damage signaling, and
the BRD protein ZMYND8 recruits the NuRD chromatin
remodeling complex to DNA damage sites where it pro-
motes repression of transcription and HR repair (Floyd
et al. 2013; Gong et al. 2015). Given the demonstrated
role of BRD proteins in transcription and the growing ev-
idence for their participation in the DDR, these proteins
are likely to represent keymediators of transcription-asso-
ciated DNA damage response pathways, although their
participation and function in theDDR are not yet defined.

BRD proteins are highly mutated and/or aberrantly ex-
pressed in cancer, which has motivated targeting BRD
proteins therapeutically (Muller et al. 2011; Barbieri
et al. 2013; Zhang et al. 2015). These efforts are highlight-
ed by the development and use of BET inhibitors, includ-
ing JQ1 and I-BET (Filippakopoulos et al. 2010; Dawson
et al. 2011), which are widely used in preclinical and clin-
ical studies as therapeutic strategies to target various can-
cers (Boi et al. 2015; Andrieu et al. 2016). Given the dual
functions of BRD proteins in the DDR and cancer, under-
standing mechanistically how BRD proteins promote ge-
nome stability, a feature often lost in cancer (Negrini
et al. 2010), will be critical for revealing the involvement
of BRD proteins in cancer as well as for guiding the use of
cancer therapies targeting BRDproteins. As ameans to ad-
dress this question, we have systematically analyzed the
involvement of all ubiquitously expressed human BRD
proteins in promoting genome stability using diverse ex-
perimental approaches. We find that the deficiency of
the majority of BRD proteins results in chromosome in-
stability, reduced DNA damage tolerance, and DNA
DSB repair defects, especially in HR repair. These data
and our construction of BRD protein interactomes provid-
ed pivotal insights that led directly to the identification of
two new genome integrity pathways by BRD proteins de-
scribed here. We found that the HAT PCAF and an associ-
ated DUB complex localize to DNA damage sites, where
PCAF engages TIP60 acetylated histones with its BRD
to trigger a ubiquitin-acetylation switch on histone H2B
that promotes HR repair. We further show that BRD2 or
BRD4 deficiency, either by depletion using siRNAs or tar-
geting with the small molecule Pan-BET BRD inhibitor
JQ1, results in aberrant transcription and control of topo-
logical topoisomerase enzymes and R-loop formation, re-
sulting in DSBs. Collectively, these data reveal BRD
proteins as key chromatin reader proteins that are vital
formaintaining the integrity of the genome through repair
and transcriptional responses.

Results

Systematic identification of bromodomain proteins
involved in the DNA damage response

BRD proteins are key epigenetic regulators, one-third of
which we previously identified as being relocalized to
DNA damage after laser-induced DNA damage (Fig. 1A;
Gong et al. 2015). To further investigate the role of BRD
proteins in DSB repair, we performed a siRNA screen of
all BRD proteins that are widely expressed in cells using
well-established HR and NHEJ cell-based reporter sys-
tems (Fig. 1B; Supplemental Fig. S1B; Pierce et al. 1999;
Bennardo et al. 2008). Knockdown efficiencies of individ-
ual BRD genes by siRNAs pools were validated by
RT-qPCR analyses (Supplemental Fig. S1A). The deple-
tion of CtIP and Ligase 4, which are known regulators of
HR andNHEJ, respectively, were used as positive controls
for each assay. This screen identified 19 BRD genes whose
depletion reduced HR >25% below HR levels observed in
control cells, while NHEJ rates were comparable to
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Figure 1. Human BRD proteins promote DNA double-strand break repair and genome stability. (A) Functional classification of human
BRD proteins into eight subfamilies. DNA damage-associated BRD proteins indicated with red circle. (B) Comparative analysis of HR and
NHEJ repair in cells deficient for each individual BRD protein. Individual BRD genes were depleted with siRNAs and analyzed for DSB
repair inU2OS cells containingHR (DR) andNHEJ (EJ5) reporters. Data represent themean of three independent experiments. (C ) Ionizing
radiation sensitivity screen for BRD proteins. Clonogenic survival assays were performed on siRNA-depleted BRD proteins that scored
HR-deficient in B. Data shown is the ratio of relative survival for 8 Gy from three biologically independent experiments and represent
the mean±SEM. Results were normalized to control, nontargeting siRNA (siCtrl) treated cells and <75% of control values are indicated
in red. (D) Endogenous DNA damage screen for BRD proteins. BRD proteins were depleted by siRNAs as in C and analyzed by immuno-
fluorescence for the DNA damage marker γH2AX. BRD-deficient cells exhibiting an increase of γH2AX foci >4 standard deviations of
siCtrl (4 SDs) are labeled in red. Data representmean±SEM from >100 cells. (E) BRD-deficient cells exhibit chromosomemis-segregation.
Individual BRDproteinswere depleted as inB, and cellswere analyzed formicronuclei formation (seeMaterials andmethods). An increase
of >4 SDs of siCtrl are marked in red. Data represent the mean±SEM from >100 cells.
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control cells (Fig. 1B; Supplemental Fig. S1B,C). Five BRD
genes, p300, GCN5, BAZ1B, CECR2, and BRD9, were re-
quired for efficient repair by bothHR andNHEJDSB repair
pathways, and one gene, ATAD2B, promoted NHEJ repair
only (Fig. 1B; Supplemental Fig. S1C). Our results suggest
that the majority of BRD proteins (24 out of 40) are in-
volved inDSB repair andmoreover, with a noted penchant
for HR repair. To further ascertain the functional involve-
ment of BRD proteins in DSB repair, we tested the
involvement of HR-promoting BRD genes in radiosensi-
tivity, as repair-deficient cells often exhibit sensitivity
to ionizing radiation (IR), a treatment that generates
DSBs. Indeed, individual depletion of the 24 BRD proteins
implicated in HR repair from our initial screen resulted in
hypersensitivity to IR for 21 out of the 24 BRD proteins
tested, supporting the notion that our reporter screen ef-
fectively identified DSB repair-promoting BRD proteins
(Fig. 1C; Supplemental Fig. S2A). While several BRD pro-
teins had previously been shown to be recruited to DNA
damage sites, many HR-promoting BRD proteins from
our screen have not been identified as damage-localized
proteins. Due to the chromatin-bound nature of BRD pro-
teins, their accumulation at DNA damage sites may be
difficult to detect. Alternatively, these BRD proteins
may promote HR independently from active association
to DNA lesions through their roles in other biological pro-
cesses, such as transcription, which regulate HR either
directly or indirectly.

To further investigate the involvement of BRD proteins
in suppressing endogenousDNAdamage, we analyzed the
levels of γH2AX, a marker of DSBs, in BRD-deficient cells
that displayed reduced HR repair when depleted (see Fig.
1B). Compared to control cells, depletion of several BRD
proteins, including BRD2, BRD4, BAZ1B, BRD9, GCN5,
and SP110, significantly increased endogenousDNAdam-
age (Fig. 1D; Supplemental Fig. S2B). Chromosomal mis-
segregation, including the formation of micronuclei, is
also indicative of defective DNA repair and endogenous
DNA damage (Fenech et al. 2011). Following depletion
of BRD proteins by siRNA,wemonitoredmicronuclei for-
mation in these cells under normal growth conditions.
Consistent with defective DNA repair, radiation sensitiv-
ity, and increased levels of γH2AX that we observed upon
depletion of several individual BRD proteins, themajority
of BRD proteins were found to be required to suppress mi-
cronuclei formation compared to their control counter-
parts (Fig. 1E). Collectively, these screening results
provide evidence for the involvement of BRD proteins in
promoting DSB repair and genome stability.

Human BRD protein network

To investigate how individual human BRD proteins that
scored as HR repair defective in our screens regulate ge-
nome integrity, we identified the human BRDprotein net-
work using a systematic proteomic approach (Fig. 2A).
The interactomes of BRD proteins were obtained by ana-
lyzing affinity purification of BRD proteins coupled with
mass spectrometry (AP-MS) using protocols optimized
for detecting protein-protein interactions (Fig. 2A; seeMa-

terials and methods). We generated stable HEK-293 Flp-In
T-REx cells, inducibly expressing individual S protein,
Flag tag, Streptavidin Binding peptide (SFB)-tagged BRD
proteins (baits) upon tetracycline treatment. We per-
formed tandem affinity purification (TAP) with the
24 HR promoting BRD proteins identified in our DSB re-
pair screen. Two biological replicates were analyzed by
liquid chromatography (LC) tandem MS/MS for each
bait BRD protein, as well as several controls (Supplemen-
tal Table S1). The LC-MS/MS data we obtained was
searched against the human UniProt database, and pep-
tide spectral counts were assigned to proteins (seeMateri-
als and methods). To efficiently discriminate confident
interacting protein from false-positive or contaminant
proteins, the probability of a bona fide protein–protein in-
teraction was analyzed using Significance Analysis of
INTeractome software (SAINTexpress) (Teo et al. 2014).
Interacting proteins with a false discovery rate (FDR)
<1% were further filtered to identify high-confidence in-
teracting proteins (see Materials and methods), resulting
in a total of 1109 high-confidence bait-associated proteins
(i.e., preys) involved in 1805 BRD protein candidate bait/
prey interactions (Supplemental Table S2). To visualize
the organization of HR-regulated BRD protein interac-
tomes, we built the protein interaction network with
BRD baits and preys (Fig. 2B). This analysis revealed ex-
tensive connectivity between different BRD proteins,
which may in part explain their shared involvement in
HR repair and genome integrity pathways.

Our BRD protein interaction network pinpointed sever-
al complexes of immediate interest. The BRD-containing
HAT proteins PCAF (KAT2B) and GCN5 (KAT2A) are
components of the SAGA chromatin remodeling com-
plex. Our AP-MS analysis revealed that the SAGA com-
plex proteins were interacting proteins of PCAF and
GCN5, suggesting that proteins within the SAGA com-
plex may participate in HR repair processes (Fig. 2B,C).
The BET BRD protein family, including BRD2, BRD3,
and BRD4, is implicated in transcription regulation and
cancer development (Wu and Chiang 2007; Fujisawa and
Filippakopoulos 2017). Our analysis identified several
transcription-associated factors and chromatin remodel-
ers that interacted with BET proteins (Fig. 2B,D), which
is in line with a recent analysis of BET BRD protein inter-
actions (Lambert et al. 2019). Comparisons of these data
sets revealed an overall overlap of 21%, with many of
our high-confidence interactors observed in both studies,
including TOP1 (Supplemental Table S2), a gene we vali-
dated and studied further (see below). These data sets pro-
vide high-confidence BET BRD protein interactors
obtained from both studies, as well as highlight the com-
plementary nature of these proteomic data sets obtained
using different experimental approaches. We next chose
to investigate further several of these protein networks
with the goal of establishing how these BRD proteins
function in HR repair and genome maintenance path-
ways. Furthermore, our results provide a HR repair-based
BRD protein network, enabling a platform for future iden-
tification of BRD protein functions in genome integrity,
including homologous recombination repair.
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The histone acetyltransferase PCAF is a DNA damage
response factor

Our initial screen identified the histone acetyltransferase
(HAT) PCAF as a regulator of HR repair. In addition to
acetylating histones, PCAF has been linked to BRCA1
and RPA1 acetylation following UV damage and BRCA1
K830 acetylation in response to ionizing radiation (Zhao
et al. 2017; Lahusen et al. 2018), but the role of PCAF in
DSB repair is unknown. To validate our siRNA results,
we generated PCAF knockout (KO) cell lines by
CRISPR/Cas9 genome editing (Fig. 3A). We then analyzed
survival following DNA damage and HR repair efficiency
in two independent PCAF KO clones compared to paren-
tal cells. Loss of PCAF rendered cells sensitive to several
DNA damaging agents, including IR, hydroxyurea (HU),
and camptothecin (CPT), which was consistent with our
initial screen results (Fig. 3A; Supplemental Fig. S3A,B).
PCAF KO cells also exhibited increased levels of DSBs fol-
lowing these treatments compared to control cells asmea-
sured by a neutral comet assay (Fig. 3B; Supplemental Fig.
S3C,D). These data were consistent with defective DNA
repair resulting from PCAF deficiency. To further address
this idea, HR repair of DSBs was directly measured in
control and PCAF KO cells using both CRISPR-EGFP
and CRISPR-mClover assays to measure HR efficiency.
The CRISPR-EGFP and -mClover assay inserts the
EGFP and mClover fluorescent protein into the LMNB
and LMNA gene, respectively, using CRISPR-mediated
DSBs and is therefore a direct measure of gene targeting
(Pinder et al. 2015). Consistent with our screen results
by siRNA depletion of PCAF, PCAFKO cells exhibited re-
duced HR repair in both gene targeting and HR cell-based
assays, providing further support for a role for PCAF in
DSB repair by HR (Fig. 3C; Supplemental Fig. S3E–G).
The requirement for PCAF in HR-mediated processes
was not limited to U2OS cells, as a reduction in gene-
targeting efficiency was also observed in HeLa and
HEK-293 cells upon PCAF depletion by siRNA (Supple-
mental Fig. S3H). Based on previous reports of PCAF
also facilitating NHEJ (Ramachandran et al. 2016; Clou-
aire et al. 2018), we measured NHEJ by random plasmid
integration assay (Miller et al. 2010). Consistent with oth-
er studies, we also observed a reduction inNHEJ in PCAF-
deficient cells using this assay (Fig. 3C). These analyses
suggest that PCAF promotes both main DSB repair path-
ways, HR and NHEJ.

To further analyze how PCAF participates in DNA re-
pair, we monitored the recruitment of PCAF to DNA
breaks using laser-microirradiation. Upon laser-induced
DNA damage, GFP-tagged PCAF was recruited to DNA
damage sites (Fig. 3D). PCAF contains three major func-
tional domains: an N-terminal PCAF-specific domain, a
central N-acetyltransferase (N-AT) domain, and a C-ter-
minal bromodomain (Fig. 3E). To identify which domains
mediate PCAF translocation to DNA damage sites, we
generated a series of PCAF domain mutants: ΔN-terminal
(ΔN-term; 1–320), ΔN-AT (503–651), and ΔC-terminal
(ΔC-term; 740–832) (Fig. 3E). The ability of PCAF to con-
centrate at DNA damage sites was independent from the

N-term and HAT domains but reliant on the BRD (Fig.
3F). These results were confirmed using chromatin frac-
tionation following IR treatment, which showed that ec-
topically expressed SFB-tagged ΔC-term, which lacks the
BRD, displayed reduced enrichment onto chromatin after
IR compared to wild-type (WT) PCAF (Fig. 3G). Taken to-
gether, these data suggest that the BRD of PCAF is re-
quired for its DNA damage localization.

The BRD is awell-established reader domain that recog-
nizes acetylated histones within chromatin (Chiang 2009;
Filippakopoulos et al. 2012; Musselman et al. 2012). To
identify which histone modification binds to the BRD of
PCAF, we performed a modified histone peptide array
with purified GST-tagged recombinant WT and ΔC-term
PCAF proteins (Supplemental Fig. S3I). Full-length
PCAF, but not PCAF lacking the BRD, bound to histone
H4 peptides acetylated on residues K12, K16, and K20
(Fig. 3H). We next validated these interactions in PCAF
expressing cells. Consistent with our in vitro data, WT
full-length PCAF, but not PCAF lacking the BRD (i.e.,
ΔC-term), bound to acetylated H4 peptides (Fig. 3I). A
key contributor to DNA damage-dependent acetylation
of H4 is the HAT TIP60 (Ikura et al. 2000; Miller et al.
2010; Gong and Miller 2013; Tang et al. 2013; Gong
et al. 2015). Indeed, TIP60 depletion impaired PCAF ac-
crual at DNA damage sites (Fig. 3J; Supplemental Fig.
S3J). Taken together, these results established PCAF as a
DNA damage response factor that utilizes N-terminal
acetylated H4 that is mediated by the HAT TIP60 to asso-
ciate with DNA damage sites.

H2BK120 ubiquitylation-acetylation switch at DNA
damage sites is mediated by PCAF and the SAGA
complex

PCAF is a component of the SAGA complex, a large, mul-
ti-subunit transcriptional co-activator and histone modi-
fying complex (Helmlinger and Tora 2017). In our
AP-MS data, we identified many SAGA complex proteins
as PCAF interactors (Figs. 2C, 4A). These interactors in-
cluded SAGA factors specific for transcription binding,
core structure, and DUB modules. A previous study re-
ported that the SAGA deubiquitylating enzyme (DUB)
module promoted DSB repair through H2B deubiquityla-
tion, which facilitated ATM-mediated γH2AX foci forma-
tion, but the involvement of PCAF in DSB repair is
unclear (Ramachandran et al. 2016). Streptavidin pull-
down of SFB-tagged PCAF validated our AP-MS, as inter-
actions between PCAF and the SAGA DUB components
USP22, ENY2, and ATXN7L were observed (Fig. 4B). We
next determined which domain was required for interac-
tions between PCAF and the SAGA DUB module using
WT and domain mutants of PCAF. We found that the
ΔN-AT domain failed to bind components of the SAGA
DUBmodule (Supplemental Fig. S3K). Together, these ob-
servations identified PCAF as an interactor of the SAGA
DUB module and that this interaction requires the N-
AT domain of PCAF.

To further define the role of PCAF in the DDR, we ana-
lyzed DNA damage signaling following IR treatment in
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Figure 3. PCAF is a DNA damage response factor. (A) Knockout (KO) of PCAF by CRISPR/Cas9 in U2OS cells (left panel) and IR-sensi-
tivity analyses by clonogenic assay (right panel). Knockout of PCAFwas confirmed bywestern blottingwith a PCAF-specific antibody. For
IR sensitivity, colonies from undamaged and IR-damaged cells were counted, normalized to undamaged controls, and values were plotted
as percent survival. Data represent the mean±SEM;N= 3. (B) Loss of PCAF results in increased DSBs following ionizing radiation (IR) as
detected by neutral comet assay (left panel, quantified in right panel). For all box-and-whisker plots, the box depicts 25%–75%, whiskers
are 10%–90%, and themedian is indicated. Data represent themean±SEM from>100 cells. (∗∗∗) P <0.001. (C ) CRISPR-mClover HR assay
(left) and random plasmid integration NHEJ assay (right). mClover-HR donor vector was transfected with Cas9-gRNA into U2OS WT or
PCAFKOcells. Percentage ofmClover-positive cellswas normalized to control cells.NHEJ repair efficiencywas analyzed by randomplas-
mid integration assay with normalization to control cells. Data represent the mean± SD;N=3. (∗∗) P <0.01, (∗∗∗) P <0.001. (D) GFP-PCAF
translocates to laser-induced DNA damage sites. (E) Schematic illustration of PCAF mutants. (F ) C-terminal region (containing BRD
domain) of PCAF promotes recruitment toDNA lesions. GFP-tagged PCAFmutants weremonitored (left panel) and quantified (right pan-
el) by live cell imaging using confocal microscopy. (G) C-terminal region (containing BRD domain) of PCAF is required for efficient chro-
matin binding. U2OS cells were fractionated following IR (10 Gy) treatment and analyzed by western blotting with indicated antibodies.
(H) PCAF binds to acetylated histone 4 (H4Ac) via its C-terminal region (containing the BRD domain). A modified histone peptide array
was performed with recombinant PCAFWT and C-terminal deletion mutant (upper panel). Lower black box shows a 2× magnification of
original imageswith highly bound peptides indicated. (I ) The C-term-containing BRD region of PCAF binds to H4ac. Biotinylated H4 pep-
tides were incubated with GFP-PCAFWT and mutant overexpressed HEK-293 cell extracts and then immunoprecipitated with anti-GFP
antibody. (J) Recruitment of PCAF to DNA lesions requires Tip60. GFP-tagged PCAFwasmonitored (left panel) and quantified (right pan-
el) in siCtrl and siTip60 cells as in Figure 3F. For laser microirradiation experiments inD, F, and J, white dotted lines indicate laser paths
and all images were normalized to undamaged regions. Data represent the mean± SEM from >10 cells.
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Figure 4. PCAF regulates H2BK120 ubiquitylation and acetylation to promote DSB repair. (A) PCAF protein interactome network, in-
cluding the SAGA DUB module (see Fig. 2C). (B) PCAF interacts with the SAGA DUB module. Cell extracts from SFB-PCAF expressing
HEK-293 cells were immunoprecipitated with streptavidin beads and analyzed by western blotting. (C ) PCAF promotes DNA damage sig-
naling following IR treatment. U2OS WT and PCAF KO cells were treated with IR, collected at the indicated times, and cell lysates an-
alyzed by western blotting with the indicated antibodies. (D) H2BK120 ubiquitylation accumulates in PCAF KO cells after IR treatment.
Samples were analyzed as inC. (E) PCAF promotes USP22 recruitment to DNAdamage sites. GFP-taggedUSP22wasmonitored (left pan-
el) and quantified (right panel) following lasermicroirradiation inU2OSWTand PCAFKOcell lines by confocalmicroscopy.White dotted
lines indicate laser paths, and all images were normalized to undamaged regions. Data represent themean±SEM from >10 cells. (F ) N-AT
and C-terminal BRD domains promote H2BK120 deubiquitylation. PCAF KO cells were transfected with SFB-tagged PCAF WT and de-
rivatives followed by western blot analysis as in C. (G) PCAF N-AT and C-terminal domains facilitate HR. HR was measured by Cas9/
EGFP-LNMB1HR assay.Data represent themean±SEM;N =3. (∗∗) P <0.01, (∗∗∗) P<0.001, (n.s.) not significant. (H) Inhibition or depletion
of PCAF sensitive to PARP inhibitor. Cells were treatedwith olaparib andGSK4027 as indicated. Cell survivalwas analyzed by clonogenic
assays. Data represent the mean±SEM; N=3. (I ) PCAF bromodomain inhibitor (GSK4027) suppresses PCAF and USP22 recruitment to
DNA damage sites. GFP-tagged PCAF and USP22weremonitored (left panel) and quantified (right panel) following laser microirradiation
in DMSO- and GSK4027-treated cells by confocal microscopy. White dotted lines indicate laser paths, and all images were normalized to
undamaged regions. Data represent themean±SEM from >10 cells. (J) Recombinant PCAF acetylates H2BK120. An acetylation assay was
performed with purified PCAF WT and H2B. H2BK120 acetylation was detected using a specific antibody. (K,L) PCAF but not GCN5 is
required for H2BK120ac at DSBs. Site-specific DSBs in DlvA cells were analyzed by ChIP assays using the indicated primers. DSB I and II
represent HR-prone DSB sites. Data represent the mean±SEM; N=3. (∗) P< 0.05, (∗∗) P<0.01, (∗∗∗) P <0.001, (n.s.) not significant. (M )
H2BK120 ubiquitylation to acetylation switch following DNA damage requires Tip60.



U2OS WT and PCAF KO cells. In PCAF knockout cells,
γH2AX levels and downstream RPA phosphorylations
were reduced compared with wild-type U2OS cells (Fig.
4C). We also observed a modest but reproducible decrease
in H2BK120 ubiquitylation in control cells, consistent
with a recent report identifying this histonemark as being
removed at DSB sites (Clouaire et al. 2018). Interestingly,
PCAF KO cells failed to reduce H2BK120ub levels
following IR treatment and rather displayed increased
H2BK120ub levels following DNA damage compared to
control cells (Fig. 4D). PCAF and its associated DUB com-
plex can deubiquitylate H2BK120 in vitro (Clouaire et al.
2018). Thus, PCAF and the SAGA DUB module may me-
diate the deubiquitylation of H2BK120 at DSBs (Clouaire
et al. 2018). Given our observation that PCAF localizes to
DNA damage sites and interacts with the SAGA DUB
module, we analyzed DNA damage recruitment of the
SAGA DUB components USP22 and ENY2 to DNA dam-
age lesions by laser micro-irradiation. We observed rapid
accumulation of USP22 and ENY2 at DNA damage sites,
which were reliant on PCAF in ALT positive (U2OS) and
ALT negative (HeLa) cell lines (Fig. 4E; Supplemental
Fig. S3L,M). Given that the PCAF-related HAT GCN5
also interacted with the SAGA complex (Fig. 4A), we gen-
erated GCN5 knockout cells which exhibited comparable
USP22 recruitment to DNA damage sites as parental cells
(Supplemental Fig. S3N,O). These data indicated that
PCAF, but not GCN5, regulates SAGA DUB module
translocation to DNA damage lesions within acetylated
chromatin, as well as the deubiquitylation of H2BK120
following DNA damage.
Our data suggested that PCAF requires its BRD domain,

as well as the HAT TIP60, to optimally associate with
DNA damage sites, highlighting the importance of acety-
lation in regulating PCAF DDR functions. To test the re-
lationship between specific domains within PCAF and
H2Bub, PCAF KO cells were reconstituted with WT
PCAF and several derivatives (Fig. 3E), and H2Bub levels
were monitored by western blotting. Expression of
PCAF BRD and HAT domain mutants in PCAF KO cells
did not rescueH2Bub and γH2AX levels after IR treatment
compared to WT or N-terminal deletion PCAF (Fig. 4F).
The BRD andHAT domains were also required for homol-
ogous recombination as measured in reconstituted PCAF
KO cells subjected to cell-basedHR assays (Fig. 4G). PCAF
KO cells also exhibited sensitivity to the PARP inhibitor
Olaparib, a phenotype associated with HR deficiency
(Fig. 4H). Unlike cells that lack PCAF, GCN5 KO cells
were similarly resistant to the PARP inhibitor as parental
U2OS cells (Fig. 4H). Interestingly, the PCAF/GCN5 BRD
inhibitor, GSK4027 (Humphreys et al. 2017), rendered
cells sensitive to PARP inhibitors (Fig. 4H), which is con-
sistent with the PCAF promoting HR through interac-
tions including those mediated by the BRD domain (Fig.
4G). In addition to PARP inhibitor sensitivity, GSK4027
treatment also reduced recruitment of PCAF and USP22
to DNA damage sites, again consistent with the BRD of
PCAF being an essential domain linking PCAF to its
DNAdamage functions (Fig. 4I).We also observed reduced
GCN5 accumulation in GSK4027-treated cells, which

may point to an as-yet-unidentified DDR function of the
BRD of GCN5 (Supplemental Fig. S3P).
We observed that the HAT domain, which is important

for acetyltransferase activity of PCAF, also promotes an
interaction with USP22. In an attempt to separate the
HAT activity from the DUB interaction domain to assess
the contribution of both acetylation and deubiquitylation
of PCAF and USP22, we generated an enzymatically dead
PCAF by installing two mutations in the core HAT
domain (PCAF-YFAA [Y616A/F617A] mutant) (Supple-
mental Fig. S4A,B; Clements et al. 1999). While PCAF-
YFAA interacted similarly to USP22 compared to WT
PCAF, this mutant was unable to promote HR repair as ef-
ficiently as WT PCAF as determined using a gene-target-
ing assay (Supplemental Fig. S4C,D), These data
demonstrate that the acetylation activity of PCAF is re-
quired for HR. We observed similar results using the
PCAF HAT inhibitor garcinol (Balasubramanyam et al.
2004), which blocked H2BK120 acetylation in vitro (Sup-
plemental Fig. S4E) while not affecting PCAF-USP22 in-
teractions or recruitment of USP22 to DNA damage
sites in treated cells (Supplemental Fig. S4F,G).We further
generated deletion mutants of the HAT domain of PCAF
and found that the central HAT domain of PCAFmediates
its interaction with USP22 (Supplemental Fig. S4H). The
crystal structure of the HAT domain has identified vital
acetyl-CoA interactions that span this region, making a
separation of function mutant of the HAT and USP22 in-
teraction challenging (Clements et al. 1999). Regardless,
our data have identified andmapped interactions between
PCAF and USP22, as well as further revealing the impor-
tance of the HAT and BRD domains of PCAF inmediating
DNA damage signaling and repair of DSBs by HR.
The observation of a H2BK120 ubiquitin to acetyl

switch at DSBs (Clouaire et al. 2018) and the potential in-
volvement of PCAF in mediating these events prompted
us to test directly the involvement of PCAF in regulating
H2BK120 acetylation. Recombinant PCAF acetylated
H2B on lysine 120 (Fig. 4J), consistent with the finding
that purified human SAGA complex from cells acetylates
this site on H2B (Clouaire et al. 2018). To analyze the in-
volvement of PCAF directly on H2B acetylation at DSBs,
we analyzed H2B acetylation levels at DNA damage sites
using the DIvA (DSB inducible via asiSI) cell line, which
allows for site-specific generation of DSBs at both HR
and non-HR prone sites, as well as analysis of histone
PTMs, including acetylation at these DSBs (Miller et al.
2010; Aymard et al. 2014). Using ChIP analysis with
anti-H2BK120ac antibodies followed by qPCR, we ana-
lyzed this mark in undamaged and damaged conditions
(i.e., +4-OHT) at two HR-prone DSBs and two non-HR
prone DSB sites. Upon DNA damage induction, we ob-
served an increase of H2BK120ac at HR-prone DSBs (Fig.
4K), which is in line with a recent report identifying the
induction of this histone mark at DSBs (Clouaire et al.
2018). Importantly, the acetylation of H2B on lysine 120
was dependent on both PCAF and TIP60 but not GCN5
(Fig. 4K,L; Supplemental Fig. S3Q). Finally, depletion of
TIP60 mimicked the loss of PCAF, as these cells were un-
able to switch H2BK120 ubiquitylation to acetylation
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following IR to regulate γH2AX levels (Fig. 4M). These ex-
periments revealed a clear inverse relationship between
H2Bub and γH2AX-H2Bac levels. As IR treatment was
found to increase H2Bac levels with a concomitant in-
crease in γH2AX, either TIP60 or PCAF deficiency inhib-
ited these marks and resulted in an increase in H2Bub
following DNA damage (Fig. 4F–M).

Our comprehensive genetic, cellular, and biochemical
data revealed a new chromatin-mediated DSB repair path-
way involving a TIP60-PCAF-SAGA DUB complex. Our
data suggests that DSB-activated TIP60mediates H4 acet-
ylations that are bound by the BRD domain of PCAF that
promote the retention of PCAF to chromatin at DSBs.
PCAF then triggers a ubiquitin to acetylation switch on
histone H2B lysine 120 via interactions with and the re-
cruitment of the SAGADUBmodule to damage sites. Fol-
lowing the deubiquitylation of H2B, PCAF then directly
acetylates the unmodified lysine 120 of H2B, a requisite
histone mark at DSBs that is required to promote HR re-
pair. These data suggest that the repriming of chromatin
from a transcription to repair-proficient state requires
H2BK120ub conversion to H2BK120ac, which requires
the TIP60-PCAF-SAGA DUB module repair axis.

Endogenous DNA damage triggered by BET-BRD protein
deficiencies requires transcription

Our screen for BRD proteins involved in DSB repair and
the suppression of endogenous DNA damage identified
several BET BRD proteins. Given the importance of BET
BRD proteins in cancer and as therapeutic targets, we
chose to study these proteins and their participation in ge-
nome integrity pathways inmore detail. BET BRD protein
inhibition by JQ1, which is an inhibitor of BET-proteins,
resulted in increased γH2AX signaling and DSB formation
(Fig. 5A–C). Similar results were observed in nontrans-
formed, immortalized cells (Supplemental Fig. S5A). As
JQ1 binds and inhibits all BET BRD family members, we
individually depleted BRDT, BRD2, BRD3, and BRD4 to
identify the targets of JQ1 whose inhibition resulted in in-
creased endogenous DNA damage. Specific depletion of
BRD2 and BRD4 significantly increased DSBs and
γH2AX levels, suggesting that cells deficient in these
BET BRD proteins were susceptible to spontaneous DSB
formation (Fig. 5C; Supplemental Fig. S5B,C).

BET BRD proteins have been linked to DNA damage
signaling and repair previously (Floyd et al. 2013; Li
et al. 2018; Sun et al. 2018), although how these proteins
functionmechanistically to suppressDNAdamage has re-
mained elusive. Given our identification of increased en-
dogenous γH2AX levels and micronuclei formation in
BRD2- or BRD4-deficient cells (Fig. 1D–E), as well as the
well-documented role of BET BRD proteins in transcrip-
tional regulation (Yang et al. 2005; Wu and Chiang 2007;
Bennardo et al. 2008; Devaiah et al. 2012; Patel et al.
2013; Di Micco et al. 2014; Baranello et al. 2016; Bhagwat
et al. 2016), we hypothesized that altered transcriptional
processes in BET BRD-deficient cells may generate intrin-
sic DNA damage. As a means to address our hypothesis,
we cotreated cells with JQ1 and the transcriptional initia-

tion inhibitor triptolide (Bensaude 2011) and analyzed
γH2AX levels, a surrogate marker for endogenous DNA
damage. The inhibition of transcription by triptolide
treatment was confirmed by nascent 5-EU incorporation
(Supplemental Fig. S5D). Remarkably, inhibition of tran-
scription suppressed endogenous DNA damage formation
in JQ1-treated cells (Fig. 5D). Importantly, we observed
the same effects in BRD2- or BRD4-depleted cells, which
validated that these effects were due to specific inhibition
of these BET proteins and not other targets of JQ1 (Sup-
plemental Fig. S5E). These results demonstrated that
BET inhibition-induced DNA damage is caused by a tran-
scription-dependent process.

R-loops initiate DNA damage formation in BET-deficient
cells

During transcription, the inability to release the nascent
RNA transcript from the DNA template strand can result
in RNA-DNA hybrids, also known as R-loops, which can
trigger DSBs and genomic instability (Huertas and Agui-
lera 2003; Sollier and Cimprich 2015; Gaillard and Agui-
lera 2016; Marnef et al. 2017; Makharashvili et al. 2018;
Puget et al. 2019). Given the connection between tran-
scription and DNA damage that we observed upon BET
BRD protein inhibition, we sought to test if altered
R-loop formation/processing may be occurring in these
cells, which could help explain the observedDNAdamage
and genome instability that occurs in BRD2- and/or
BRD4-deficient cells (Figs. 1C,D, 5A–D). Using the well-
documented S9.6 antibody that recognizes RNA-DNA
hybrids (Boguslawski et al. 1986; Hu et al. 2006), we mea-
sured the accumulation of R-loops using immunofluores-
cence and cell imaging in control and JQ1-treated cells.
While we observed robust cytoplasmic staining, likely a
reflection of mitochondrial-associated R-loops (Pohjois-
mäki et al. 2010), we observed nuclear signals correspond-
ing to nucleoli in control cells (Supplemental Fig. S5F).
Interestingly, we observed an increase in the nuclear R-
loop signal, both in nucleoli and nonnucleoli regions as
detected with the nucleoli marker protein nucleolin, in
JQ1-treated cells, which was also sensitive to RNaseH1
expression (Supplemental Fig. S5F). Importantly, expres-
sion of mCherry-tagged RNaseH1, which resolves R-
loops, removed this signal, validating these results as de-
tecting bona fide R-loops (Fig. 5E). To measure the accu-
mulation of R-loops at specific DNA loci, we performed
DRIP qRT-PCR in control and JQ1-treated cells, analyzing
sites previously reported to be prone to R-loop formation.
For example, the 5′ ETS regions andHIF1 α gene have been
reported to accumulate R-loops in topoisomerase I-deplet-
ed cells (Manzo et al. 2018), andG-rich “pause” sequences
of the β-actin gene are also prone to accumulate R-loops
(Skourti-Stathaki et al. 2014; Hatchi et al. 2015). We ob-
served that RNA-DNA hybrids were increased almost
twofold in JQ1-treated cells and these signals were re-
moved by RNaseH1 treatment (Supplemental Fig. S5G).
We further validated these results using a different
RNA-DNA hybrid pulldown method called R-ChIP.
This method employs the pulldown of R-loops using an
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Figure 5. RNA-DNA hybrid-induced DNA breaks form in BET-protein inhibited cells. (A–C ) Inhibition of BET proteins trigger DNA
breaks. Cells treated with the BET-BRD protein inhibitor (JQ1) were analyzed by western blotting with the DNA damage marker
γH2AX. (B,C ) Cells were treated with JQ1 (B) or indicated siRNAs (C ); DNA breaks were detected by neutral comet assay (left panel)
and tail moments were quantified (right panel). Data represent the mean±SEM from >100 cells. (∗) P<0.05, (∗∗∗) P <0.001. (D) Transcrip-
tion promotesDSBs in BETprotein-deficient cells. JQ1 and/or transcription inhibitor (triptolide)were added toU2OS cells and γH2AXwas
analyzed by western blotting. (E) Inhibition of BET-proteins induced R-loops. Immunofluorescence (IF) analysis was performed with S9.6
antibody and mCherry-tagged RNaseH1. Nuclear S9.6 intensities were quantified with Image J (right panel). Diminution of nuclear S9.6
signal by mCherry-tagged RNaseH1 overexpression confirmed R-loops. (F ) Quantification of R-loops by dot blot. Cells were treated with
JQ1 or indicated siRNAs and purified genomicDNA±RNaseH1was analyzedwith S9.6 antibody and α-ssDNA as a loading control (upper
panel). The intensity of S9.6 was measured by Image J and normalized to DMSO or siCtrl (lower panel). Data =mean± SEM;N= 3. (G) R-
loops, and their associated DNA damage, that form in BET-protein inhibited cells require transcription. R-loop and γH2AX accumulation
was monitored by IF in the presence or absence of triptolide, and images were analyzed as in E. (H) BET-inhibition induced R-loop gen-
erated DSBs in BET-inhibited cells. Inducible mCherry-RNaseH1 cell lines were treated with JQ1 with and without doxycycline
(DOX) and compared to DMSO control cells. DSBs were detected by neutral comet assay (left panel, quantified in right panel). Data rep-
resent the mean±SEM from >100 cells. (I,J) Resolution of R-loops by RNAseH1 suppresses DNA damage in BET-inhibited cells. DNA
damage was monitored as in A in the presence or absence of RNaseH1 in JQ1 (I ) or BET-BRD protein siRNA-treated cells (J). (K ) BET in-
hibition-mediated R-loops occur in replicating (EDU+) and nonreplicating (EDU−) cells. R-loops were analyzed as in E. Representative
images are shown (quantified in right panel). For the IF experiments in E–K, data represent the mean±SEM from >100 cells. For all
box-and-whisker plots, the box depicts 25%–75%, whiskers are 10%–90%, and median is indicated. (∗) P<0.05, (∗∗∗) P <0.001, (n.s.)
not significant.
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mCherry-tagged catalytic mutant RNaseH1, which can
bind but not resolve RNA-DNA hybrids (Chen et al.
2017), Consistent with the S9.6 DRIP assay, we observed
increased mutant RNaseH1 binding to these sites in
JQ1-treated cells, further demonstrating the presence
of R-loops in BET-protein inhibited cells (Supplemental
Fig. S5H).

To identify which specific BET BRD protein is responsi-
ble for suppressing R-loops, as JQ1 inhibits all BET BRD
proteins, we depleted individual BET BRD proteins and
performed S9.6 immunofluorescence to detect R-loops.
While control and siBRD3 cells exhibited similar levels
of R-loops, we observed that BRD2- and BRD4-depleted
cells displayed increased R-loops, similar to JQ1-treated
cells (Supplemental Fig. S6A). Again, expression of RNa-
seH1 removed the S9.6 signal, demonstrating the presence
of increased R-loop structures in BRD2 and BRD4 siRNA-
depleted cells (Supplemental Fig. S6A). These results are
consistent with those obtained with the BET BRD protein
inhibitor JQ1 and suggest that BRD2 and BRD4 are the
specific factors that act to suppress excessive R-loop for-
mation in cells (Fig. 5E; Supplemental Fig. S6A).

To further verify these results with multiple indepen-
dent assays, we performed a dot blot analysis that allows
detection and quantifications of R-loops from purified ge-
nomic DNA (see schematic in Supplemental Fig. S6B). R-
loops were enriched in JQ1-treated, as well as BRD2- and
BRD4-depleted, cells as measured by dot blot (Fig. 5F).
These signals were sensitive to RNaseH1, confirming
the detection of R-loops that formed in JQ1-treated or
siRNA-depleted BRD2 or BRD4 cells. Using a fluorescent-
ly-tagged catalytic mutant RNaseH1 (mCherry-RNaseH1
mut) that is a robust sensor of R-loops in cells (Bhatia et al.
2014), we observed that R-loops levels increased at DNA
damage sites in both JQ1-treated and BRD2/BRD4-deplet-
ed cells as measured by increased visualization of
mCherry-RNaseH1 mut at laser microirradiated sites in
these cells compared to control cells or undamaged re-
gions of the cell (Supplemental Fig. S6C). Altogether,
these data demonstrate that JQ1treatment increases R-
loop formation in cells and that this is specific to the
BET proteins BRD2 and BRD4, which are required to sup-
press excessive R-loop formation in cells.

To investigate whether R-loops were involved in gener-
ating DNA damage in BET protein-deficient cells, we an-
alyzedDNAdamage signaling andDSB formation in these
cells with and without transcription or RNaseH1 overex-
pression. Consistent with our observation that transcrip-
tional inhibition suppressed DNA damage induction in
JQ1-treated or BRD2/BRD4-depleted cells (Fig. 5D; Sup-
plemental Fig. S7A), we also observed a reduction in
R-loop levels, as well as DNA damage when analyzed
together in cells, upon transcription inhibition in both
JQ1-treated and BRD2/BRD4-depleted cells (Fig. 5G; Sup-
plemental Fig. S7A). In support of these data, recruitment
of mCherry-RNaseH1 mut to laser-induced DNA dam-
age-associated R-loops was dependent on transcription,
which further validated our observation that increased
R-loops in BET-deficient cells was reliant on transcription
(Supplemental Fig. S7B). Remarkably, induced expression

of RNaseH1 reduced DNA damage signaling (i.e., γH2AX)
and the formation of DNA breaks as detected by neutral
comet assay in JQ1-treated and BRD2- or BRD4-depleted
cells (Fig. 5H–J). Thus, these data identify transcription-
generated R-loops as the source of DNA damage in cells
deficient for the BRD proteins BRD2 or BRD4, as well as
those treated with the small molecule BET BRD protein
inhibitor JQ1.

Recently, induction of DSBs by R-loops has been shown
to be associatedwith transcription-replication conflicts in
human cells (Hamperl et al. 2017). To address if the DNA
damage caused by R-loops associated with BET protein in-
hibition was formed in this manner, we investigated the
cell cycle distribution of BET-inhibited cells to determine
if there was a correlation between R-loops and DNA dam-
age in replicating cells. Surprisingly, we observed R-loop
formation and DNA damage induction by IF staining of
S9.6 and γH2AX, respectively, in both replicating and
nonreplicating JQ1-treated and BRD2- or BRD4-depleted
cells (Fig. 5K; Supplemental Fig. S7C; note—EdU staining
identifies replicating cells). Taken together, these data
suggest that transcription-associated R-loops that trigger
DNA damage in BRD2- and BRD4-deficient cells, as
well as their cellular outcomes, do not occur solely by
transcription-replication conflicts.

BRD2 regulates topoisomerase I activity
to resolve R-loops

As a means to identify how inhibition of BET proteins
stimulated R-loop formation, we analyzed BET protein in-
teractions provided by our protein network analysis of
BRD proteins (Fig. 2). Interestingly, these data captured
an interaction between BRD2 and topoisomerase I
(TOP1) (Fig. 6A). TOP1 acts to relax negative supercoils,
activities known to reduce transcription-associated
R-loop formation (Drolet et al. 1995; Massé et al. 1997;
El Hage et al. 2010). To validate our protein network re-
sults, we performed immunoprecipitation with GFP-
tagged BRD2 and observed that endogenous TOP1 bound
to GFP-tagged BRD2 (Fig. 6B). To identify if these interac-
tions were direct, we performed a far western blot analysis
with recombinant proteins. Recombinant TOP1 protein
directly interacted with BRD2, which implicated that
this interaction may directly regulate TOP1 activity
(Fig. 6C). To test this idea, we performed in vitro TOP1 ac-
tivity assays with TOP1 alone and/or with recombinant
BRD2 and other BET proteins. While addition of BET pro-
teins alone did not affect the levels of supercoiled plasmid,
TOP1 readily converted the supercoiled plasmid species
to nicked and relaxed forms as expected (Fig. 6D). Interest-
ingly, recombinant BRD2 stimulated TOP1 relaxation ac-
tivity while BRD3 and BRD4 did not exhibit this behavior
(Fig. 6D). BRD2 addition increased TOP1 activity in a
dose-dependent manner, with quantification of super-
coiled to relaxed forms exhibiting an almost threefold en-
hancement of TOP1 activity upon BRD2 addition
compared to TOP1 alone (Fig. 6E). These results suggest
that BRD2 protein deficiency, either by JQ1 treatment
or by siRNA-mediated depletion, could decrease the
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activity of TOP1, explaining the increased R-loop forma-
tion and subsequent endogenous DNA damage induction
observed in these cells. An alternative explanation of
these results could include TOP1 and BRD2 activities be-
ing involved in resolving R-loops once formed. As ameans
to address this possibility, we generated R-loops on in vi-
tro plasmid templates as previously described (Stolz et al.
2019). As proposed by Stoltz et al., we also observed that
the formation of R-loops in vitro generated a relaxed plas-
mid, which was not further topologically relaxed by the
addition of TOP1 (Supplemental Fig. S7D). Taken togeth-
er, these results suggest that TOP1 and its regulation by
BRD2 act to inhibit R-loops from forming during tran-
scription, but that once formed, these structures relax lo-
cal topological stress, necessitating TOP1-independent
activities for their resolution. To further understand
how BRD2 regulates TOP1 activity, we identified a
TOP1 binding region in the C terminus of BRD2 using a
series of BRD2 truncation mutants, which was required
to stimulate TOP1 activity in vitro (Fig. 6F,G). In line
with these results, we observed a loss of BRD2-TOP1 in-
teractions in cells, which was readily observed in WT
BRD2 and several other BRD2 mutants but abolished in
BRD2ΔC (Fig. 6H). To analyze the impact of disrupting
BRD2-TOP1 interaction in cells, we depleted endogenous
BRD2 and ectopically expressed WT and BRD2ΔC (Sup-
plemental Fig. 8A).While expression ofWTBRD2 rescued
R-loop and DNA damage formation that was observed in
siBRD2 cells, BRD2ΔC was unable to complement these
cells (Supplemental Fig. 8B). Our data identify a BRD2-
TOP1 interaction that is mediated by the C terminus of
BRD2, which promotes the activity of TOP1 and is re-
quired to suppress DNA damage and R-loop generation
that occurs in BRD2-deficient cells.

Although our results provided an explanation for how
inhibition of BRD2 could trigger R-loop formation by re-
ducing TOP1 activity, we also observed that the reduction
of BRD4 resulted in R-loops and DNA damage. Interest-
ingly, BRD4 was previously shown to regulate TOP1 ac-
tivity by regulating RNAP II CTD phosphorylation
(Baranello et al. 2016). The similar ability of BRD2 and
BRD4 to regulate TOP I activity may explain why deple-
tion of either of these BET BRD proteins, or treatment
with the JQ1 inhibitor that targets both BRD2 and
BRD4, result in increased R-loops and DNA damage. Re-
gardless, our results have revealed that BRD2 and BRD4
functions during transcription are required to avoid un-
scheduled R-loop generation, which can trigger DNA
damage formation.

Topoisomerase II activity promotes DNA damage in
BET-deficient cells

Although our data identified BRD2 and BRD4 as suppres-
sors of R-loops and their associated DNA damage in nor-
mal cells, the mechanisms governing DSB formation in
BRD2- andBRD4-deficient cells remainedunclear. Several
pathways involved in R-loop-mediated DSBs have been
identified. R-loop processing by XPG and XPF nucleases
can generate DSBs (Sollier et al. 2014; Stork et al. 2016).

CtIP in association with TOP1-mediated single-stranded
lesions can process R-loops into DSBs (Makharashvili
et al. 2018). Topoisomerase II (TOP2)-generated DSBs
can occur when RNAP II is paused (Ju et al. 2006; Haffner
et al. 2010; Bunch et al. 2015). To test the potential in-
volvement of these pathways, we monitored JQ1-induced
γH2AX foci formation in cells individually depleted for
several factors implicated in R-loop processing/formation.
Depletion of XPG, XPF, or CtIP did not reduce γH2AX lev-
els compared to control cells as measured by IF or western
blot analysis in JQ1-treated cells (Fig. 6I; Supplemental Fig.
S9A,B). These data were consistent with our determina-
tion that induction of DNA damage in JQ1-treated cells
can occur in nonreplicating as well as replicating cells.
However, we observed that depletion of TOP2α or
TOP2β suppressed γH2AX levels in JQ1-treated cells (Fig.
6I; Supplemental Fig. S9C). As depletion of TOP2α sup-
pressed DNA damage under these conditions, we further
tested if depletion of TOP2α could alleviate DNA damage
induction resulting from BET protein deficiency. Indeed,
reduced TOP2α protein by siRNA-depletion or activity
through the use of theTOP2 inhibitor dexrazoxane (which
blocks TOP2 activitywithout generatingDNAdamage by
trapped TOP2-DNA complexes [Classen et al. 2003]) re-
duced γH2AX levels in JQ1-treated and BRD2/BRD4-de-
pleted cells (Fig. 6J,K; Supplemental Fig. S9D). The above
results have identified TOP2 in promoting DNA damage
following R-loop formation in BET BRD protein-deficient
cells. These results are unlikely to be a mere consequence
of suppressing R-loops upon TOP2α or TOP2β deficiency,
as depletion of TOP2α or TOP2β resulted in increased for-
mation of RNA/DNA hybrids that were induced upon
BRD2 or BRD4 deficiency by siRNA-depletion or JQ1
treatment (Supplemental Fig. S9E,F). These data support
topoisomerase II acting downstream of R-loops to trigger
DNA damage that is generated upon BET BRD deficiency
by JQ1 treatment or specific loss of BRD2 or BRD4.

It has been reported that aberrant TOP2 cleaved
complexes require active transcription, as well as the pro-
teasome and TDP2, to generate DNA breaks (Mao et al.
2001; Cortes Ledesma et al. 2009; Canela et al. 2019).
Given the involvement of transcription in DNA breaks
generated by BET BRD deficiency, we analyzed the poten-
tial use of the proteasome andTDP2, a tyrosyl-DNAphos-
phodiesterase enzyme that repairs TOP2-DNA lesions
(Cortes Ledesma et al. 2009), in the processing of TOP2
into DNA breaks in JQ1-treated cells. We observed re-
duced DNA damage signaling and breaks in JQ1-treated
cells when the proteasome was inhibited using MG132
(Supplemental Fig. S9G–I). We also detected a reduction
in DNA damage signaling in TDP2-depleted cells com-
pared to control cells upon JQ1 treatment (Supplemental
Fig. S9J). These data suggest that the conversion of aber-
rant TOP2 cleaved complexes by etoposide or defective
TOP2 that occurs upon BET BRD deficiency engage simi-
lar pathways to remove TOP2 to generate free DNA
breaks that activate DNA damage signaling, including
γH2AX (Supplemental Fig. S9; Canela et al. 2019).

Taken together, our data point to an important new re-
lationship between BET BRD proteins and topological
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stress pathways involving TOP1 and TOP2. Our data sug-
gest that BET BRD proteins act to suppress aberrant
R-loop formation during transcription through the coordi-
nated regulation of topoisomerases that collectively keep
R-loops in check to avoid the deleterious production of
DNA damage, which can lead to genome instability and
cell death.

Discussion

In this study, we have used a comprehensive approach to
systematically identify human bromodomain proteins in-
volved in DNADSB repair and genome stability. Our data
have revealed and established the BRD protein family as
key modulators of DSB repair and, in particular, homolo-
gous recombination. Indeed, we have identified that out
of the 40 ubiquitously expressed human BRD proteins,
24 promote HR repair. Generation of protein interaction
networks of these BRD proteins has provided a rich re-
source of protein interactors and a framework by which
to identify genome stability and DNA repair mechanisms
involving BRD proteins (Fig. 7A). The discovery of over 47
newly identified BRD-BRD interactions increases the re-
ported interactions between these chromatin reader pro-
teins by nearly fourfold (Supplemental Fig. S10A). The
potential of our study is demonstrated by the identifica-
tion of two new genome integrity mechanisms involving
the BRD proteins PCAF and BRD2/BRD4 reported here.
We show the HAT PCAF associates with DNA damage

sites through its BRD in an acetylation-dependentmecha-
nism to promote DSB repair. Although PCAF is an
acetyltransferase enzyme, PCAF resides in a large tran-
scription regulatory complex that contains the deubiqui-
tylase enzyme (Nagy and Tora 2007), USP22, which has
been shown to act on H2B during transcription (Zhao
et al. 2008). A genome-wide analysis of histone modifica-
tions at DNA break sites identified a H2BK120 ubiquitin
to acetylation switch at DNA damage sites (Clouaire
et al. 2018). While previous work implicated PCAF in
DSB repair (Ramachandran et al. 2016; Clouaire et al.
2018), our analysis has revealed that PCAF function in
the DDR involves the DUBmodule of the SAGA complex
and upstream acetylation signaling by the HAT TIP60.
While we observed and confirmed interactions between
PCAF and the SAGADUBmodule, includingUSP22, defi-
ciency in PCAF resulted in reduced USP22 accrual at
DNA damage sites (Fig. 4). Both genetic and biochemical
investigations of PCAF interactions with DNA damage
sites and chromatin demonstrated that PCAF interacted
with H4 acetylations in a BRD domain-dependent man-
ner that required TIP60 to promote its localization to
DNA damage sites. In support of the role of TIP60 in
this pathway, loss of TIP60 reduced H2BK120ac at DNA
lesions with a concomitant increase in H2BK120ub (Fig.
4K,M). We also determined that PCAF directly acetylates
H2BK120 (Fig. 4J), suggesting a model whereby TIP60
acetylates H4 at DNA damage sites, which subsequently
acts to recruit PCAF and its associated DUB, USP22,
to DNA damage sites where they work together to

convert H2BK120ub to H2BK120ac to promote DSB re-
pair (Fig. 7B).
While this work has defined a TIP60-PCAF-SAGADUB

module axis involved in modifying chromatin at break
sites to promote repair, the precise role of H2BK120 ubiq-
uitylation and acetylation inDNA repair remains unclear.
H2BK120ub is involved in promoting the elongation of
RNAP II during transcription (Xiao et al. 2005; Wu et al.
2014). DNA damage results in a reduction of elongating
Pol II and subsequent transcriptional repression at tran-
scription-associated DNA lesions (Shanbhag et al. 2010),
which may involve PCAF. In support of this notion,
TIP60 represses transcription following DNA damage
(Gong et al. 2015), which may explain its involvement
in regulating the DNA damage accumulation of PCAF
and subsequent H2Bub to H2Bac switch at DNA damage
sites. Our data do not rule out that H2Bub/ac may
also alter chromatin structure at damage sites, as H2Bub
blocks higher-order chromatin structure (Fierz et al.
2011), and compaction of chromatin has been observed
at damage sites and proposed to be involved in HR repair
(Khurana et al. 2014; Oberdoerffer 2015). We speculate
that H2Bac may recruit a BRD protein to damage sites.
Consistent with this idea, isolated BRD domains from
SMARCA2, SMARCA4, SP140, and p300, have been
shown to bind H2BK120ac (Filippakopoulos et al. 2012).
Interestingly, several of these proteins were identified in
our screens as being damage-associated and required for
repair. Whether or not these BRD proteins recognize
H2BK120ac at DNA damage sites to promote HR awaits
future investigation.
It is well established that aberrant transcription can

threaten genome integrity, including through the direct
formation of DNA breaks and the production of R-loops
(Marnef et al. 2017; Crossley et al. 2019). A potentially sur-
prising finding from our data was the identification of the
BET BRD proteins BRD2 and BRD4 as key mediators in
suppressing transcription-associated R-loops and DNA
damage. Inhibition of BRD4was previously reported to in-
duce DNA damage through a DNA damage signaling in-
sulator function (Floyd et al. 2013); however, our data
suggest that the source of endogenous DNA damage in
BET BRD protein-inhibited cells is triggered by aberrant
transcription. BRD4 associates with the positive tran-
scription elongation factor b (P-TEFb) complex to promote
transcription elongation (Jang et al. 2005; Yang et al. 2005)
but also participates in regulating topoisomerase I (TOP1)
to overcome the topological constraints of DNA super-
coiling that occur during active transcription (Baranello
et al. 2016). How then does BRD2 or BRD4 inhibition re-
sult in transcription and R-loop-dependent DNA breaks?
Based on our data, we propose that the activation of

TOP1 and resolution of DNA topology by BRD4 and
BRD2, as identified here, are critical functions of BET
BRD proteins in maintaining genome stability through
the suppression of R-loops that can generate DNA breaks.
This idea is supported by our identification of increased R-
loop formation and DNA damage in cells where BRD2 or
BRD4 are either inhibited by JQ1 or depleted by siRNA.
The suppression of DNA damage by RNaseH1 expression

Bromodomain proteins promote genome integrity
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or inhibition of transcription in these cells suggests that
transcription-generated R-loops are the structures that
are responsible for causing DNA damage in these settings.
These results also support that R-loop suppression by BET
BRD proteins BRD2 and BRD4 is direct, and is not an in-
direct consequence of gene expression changes that could
occur upon their inhibition. Supporting a direct role for
BET BRD proteins in R-loop suppression, we identified
BRD2 as a direct interactor and stimulator of TOP1 activ-
ity, suggesting that an inability to fully activate TOP1 ei-
ther directly by BRD2 or throughRNAP IImodification by
BRD4 is likely to explain the increased R-loop formation
and DSB generation that accompanies BRD2 or BRD4 in-
hibition. This notion is consistent with the known role of
TOP1 in suppressing R-loops and genomic instability
(Tuduri et al. 2009; El Hage et al. 2010; Li et al. 2015).
RNAP II pausing can also increase R-loops (Zhang et al.
2017; Shivji et al. 2018), suggesting that reduced RNAP
II elongation in BRD2/BRD4-deficient cells may also con-
tribute to these phenotypes. However, perhaps counterin-
tuitively, JQ1 treatment has been shown to result in
increased RNA synthesis (Bowry et al. 2018), which may
exacerbate the requirement for TOP1 activity in BET
BRD-deficient settings due to aberrant transcription. We
observe similar increases in nascent transcription in
JQ1-treated or BRD4-depleted cells, while in BRD2 defi-
cient cells, we observed a reduction in RNA synthesis
(Supplemental Fig. S10B,C). These observations suggest
a complex relationship between transcription and BET
BRD proteins that must be tightly regulated to avoid
DNA damage stress. Regardless, defects in transcription
upon BET BRD inhibition, as well as our data identifying
BRD2 as a stimulator of TOP1 activity, may help to ex-
plain the synergistic cell killing that is observed with
the TOP1 poison camptothecin and JQ1 (Baranello et al.
2016). Our results suggest that R-loops and the pathways
that govern their processing/regulation may participate
in the therapeutic responses of BET inhibitors, an impor-
tant question worth assessing further for these com-
pounds that are actively being developed and used in
therapeutic applications.
We observed that a consequence of increasedR-loop for-

mation in BET BRD-deficient cells was the production of
DNA breaks. A number of endonuclease enzymes have
been shown to act on R-loops, which can lead to DSBs, in-
cluding XPG, XPF, CtIP, TOP1, and TOP2 (El Hage et al.
2010; Sollier et al. 2014; Makharashvili et al. 2018), re-
viewed in (Marnef et al. 2017; Crossley et al. 2019). Our ge-
netic analysis of these factors in BET BRD-inhibited cells
identified TOP2 specifically as the enzyme responsible for
generating DSBs in these cells. R-loop-mediated DNA
damage upon BET BRD inhibition occurred largely inde-
pendently of the cell cycle, suggesting that these breaks
are not merely a consequence of transcription-replication
conflicts, which are known events that trigger DSBs as a
result of R-loops (Hamperl et al. 2017; Crossley et al.
2019). In the absence of TOP1, TOP2 has been shown to
resolve R-loops in the rDNA in yeast (El Hage et al.
2010). TOP2 is also involved in gene activation, where it
has been shown to generate DSBs (Ju et al. 2006; Haffner

et al. 2010; Madabhushi et al. 2015), and these breaks
have been proposed to be involved in RNAP II transcrip-
tion elongation (Bunch et al. 2015). Importantly, TOP2-
mediated breaks are observed in neuronal cells, which
are not actively cycling, showing that TOP2 breaks can
occur throughout the cell cycle (Madabhushi et al.
2015). We propose that the R-loops that accumulate in
BRD2- and BRD4-deficient cells are targets for TOP2,
whose activity results in heightened DSB formation (Fig.
7C). The decrease in TOP1 activity resulting from BRD2
or BRD4 inhibition may lead to TOP2-dependent breaks
that act to resolve the transcriptional pausing and R-loops
that accumulate in cells deficient for BRD2 or BRD4
activity.
There are several possibilities to explainwhyTOP2 gen-

erates breaks under these conditions. We and others have
shown that BET BRD proteins are involved in DSB repair,
which may result in unrepaired breaks when BRD2/4 are
inhibited (Fig. 1B; Li et al. 2018; Sun et al. 2018).Mechanis-
tically, the requirement for BRD2 and BRD4 inDSB repair
by HRmay stem from their involvement in R-loop regula-
tion, which is implicated in DSB repair (for review, see
Crossley et al. 2019), and/or by gene expression functions,
as BRD4 has been shown to regulate the HR factor CtIP
(Sun et al. 2018) andBRD2maysimilarly regulate genes in-
volved in HR. We can also not rule out that BET BRD pro-
teins regulate TOP2 activity, given their involvement in
regulating the topological resolving enzyme TOP1 during
transcription (Fig. 6; Baranello et al. 2016). Regardless, the
identification of R-loops and TOP2-dependent breaks in
JQ1-treated cells may inform the potential interplay be-
tween these pathways in therapeutic targeting of BET
BRD proteins. For example, JQ1-treated cells may be reli-
ant on DSB repair given the increased breaks associated
with BET BRD protein inhibition. This is in line with
the recent findings that BET BRD inhibitors synergize
with PARP inhibitors (Karakashev et al. 2017), which gen-
erate DNA breaks and impede DSB repair (Ray Chaudhuri
andNussenzweig 2017). Furthermore, potential genetic as
well as therapeutic interactions between R-loop metabo-
lism and BET BRD protein inhibitors should now be ana-
lyzed based on the R-loop suppressive function of BRD2
and BRD4 identified here.
Bromodomain proteins are key epigenetic factors that

are best studied for their functions in regulating gene ex-
pression. Our systematic and deep interrogation of human
BRD proteins has revealed a highly connective and indis-
pensable family of proteins that govern genome integrity,
including by promoting the repair of DSBs by homologous
recombination and suppressing R-loops that generate
DNA breaks. Indeed, we have determined that over half
of BRD proteins participate in DNA double-strand break
repair, and our generation of BRD protein interaction net-
works has illuminated amultitude of new protein-protein
interactions, including those that enabled the identifica-
tion of two new BRD-dependent genome maintenance
mechanisms reported here. Future studies are warranted
to analyze the potential involvement of other BRD pro-
teins in R-loop regulation and other DNA transactions
that can generate DNA damage, including replication.
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The propensity of BRD proteins to interact with each
other and participate in transcription, as well as genome
stability and DNA repair as determined here, point to
important functional and physical interactions of BRD
proteins that govern genome maintenance. Given the
involvement of BRD proteins in human diseases, includ-
ing cancer (Gong et al. 2016; Fujisawa and Filippako-
poulos 2017), and their potential for therapeutic
targeting (Barbieri et al. 2013; Stathis and Bertoni
2018), our comprehensive analysis of BRD proteins will
likely assist ongoing efforts to convert mechanistic un-
derstanding of BRD proteins in diseases to therapeutic
opportunities.

Materials and methods

Cell lines and cell culture

Human osteosarcoma (U2OS), human embryonic kidney (HEK-
293), human cervical adenocarcinoma (HeLa), BJ-hTERT, and
MRC5-hTERT cell linesweremaintained inDulbecco’smodified
Eagle’s medium (DMEM) supplemented with 10% fetal bovine
serum (FBS), 2 mM L-glutamine, 100 U/mL penicillin, and 100
μg/mL streptomycin. Inducible cell lines (HEK-293 for SFB-tagged
proteins, U2OS cells for mCherry-tagged RNaseH1) were estab-
lished andmaintained inmediumwith 0.2mg/mLhygromycin B.

siRNAs, primers, chemicals, and antibodies

siRNA and primer sequences, chemicals, and antibodies are sum-
marized in Supplemental Tables S4–S7. All JQ1, triptolide, and
dexrazoxane treatments were performed for 4 h with a final con-
centration of 500 nM, 1 μM, and 50 μM, respectively. Garcinol
and GSK4027 treatments were performed for 24 h with a final
concentration of 20 μM.

Cloning and plasmids

BRD genes were cloned into the pENTR Gateway vector as de-
scribed previously (Gong et al. 2015), and the detailed informa-
tion is summarized in Supplemental Table S3. The pENTR
cloneswere transferred intoGFP-, GST-, or SFB-taggedDESTvec-
tors using the Gateway LR Cloning system (Invitrogen). Full-
length PCAF was generated by PCR amplification from U2OS
cDNA and cloned into the Gateway entry vector. PCAF and
BRD2mutants were constructed by PCR based on the full-length
WT entry clone. All mutants were validated byDNA sequencing,
and each primer set used in this study is described in Supplemen-
tal Table S5.

Generation of inducible cell lines and knockout (KO) cell lines

To establish the inducible SFB-tagged BRD protein-expressing
cell lines, pcDNA5/FRT/TO containing SFB-tagged constructs
were transfectedwith pOG44 Flp Recombinase expression vector
into Flp-In T-REx HEK-293 cells. After 48 h, cells were treated
with 0.2 mg/mL hygromycin B (Invitrogen) for selection of trans-
fected cells. The inducible RNase H1 (WT or mutant)-expressing
cell lineswere generated using the same strategy as BRDproteins.
pcDNA/FRT/TO containing the mCherry-tagged RNase H1 con-
struct was transfectedwith pOG44 into Flp-In T-RExU2OS cells.
PCAF and GCN5 knockout (KO) cell lines were generated by the
CRISPR/Cas9 system. Individual gRNAs (PCAF and GCN5
gRNAs) were subcloned into pSpCas9 (BB)-2A-Puro (PX459,

Addgene #48139) and then stably transfected into U2OS cells us-
ing Lipofectamine 2000 (Invitrogen). Transfected cells were se-
lected by 500 ng/mL puromycin for 3 d. Single cells were
isolated by limited dilution using 96-well plates, and the levels
of endogenous protein were analyzed by western blotting with
the indicated antibodies (PCAF, Cell Signaling, #3378; GCN5,
Cell Signaling, #3305). The gRNA sequences used in this study
are described in Supplemental Table S5.

HR and NHEJ repair assay

U2OS-based HR and NHEJ reporter cells were transfected with
the indicated siRNAs by Lipofectamine RNAiMax (Invitrogen).
On the following day, the I-SceI-expressing vector (pCAG-I-
SceI) was transfected intoHR andNHEJ reporter cells, respective-
ly. Forty-eight hours after I-SceI transfection, cells were harvested
andwashed with PBS and then resuspended in sodium citrate sol-
ution without fixation. The percentages of GFP-positive cells
were analyzed by an Accuri Flow Cytometer (Fong et al. 2015).
For the CRISPR-mClover HR assay (Arnoult et al. 2017), the
mClover-HR donor plasmid and Cas9-gRNA vector were trans-
fected into indicated cells. The Cas9-LMNB HR assay was trans-
fected with the EGFP-LMNB HR donor and Cas9-gRNA vector
(Roberts et al. 2017). After transfection, cells were incubated for
72 h and analyzed by an Accuri FlowCytometer (BD Biosciences)
(Fong et al. 2015) to detect the percentages of GFP-positive cells.
A random plasmid integration assay was performed as previously
described (Miller et al. 2010). Briefly, U2OS WT and PCAF KO
cells were transfected with indicated siRNAs and the linearized
pEGFP-C1 plasmid (BamHI and XhoI). On the following day,
transfected cells were plated into two duplicate plates. One plate
was incubated with 0.5 µg/mL G418 to detect NHEJ efficiency
and the other plate incubated with normal media to calculate
plating efficiency. Cells were grown for 2 wk, and colonies were
stained using clonogenic assay methods. NHEJ efficiency was
normalized to an siControl.

Immunofluorescence

After indicated treatments, cells were pre-extracted with CSK
buffer (10 mM PIPES, pH 6.8, 100 mM NaCl, 300 mM sucrose,
3 mM MgCl2, 1 mM EGTA, 0.5% [v/v] Triton X-100) on ice for
5 min and were fixed with 2% paraformaldehyde (PFA) at room
temperature for 15 min. After washing with PBS, cells were
blocked with 3% BSA in TBST for 30 min and incubated with
the indicated primary antibodies at 4°C for 18 h. Cells were
then washed 3× in PBS and stained with the appropriate second-
ary antibody at room temperature for 1 h. Cover slips were
mounted onto 1.2-mm glass slides using Vectashield mounting
medium containing DAPI (Vector Labs) and analyzed by FV10-
ASW3.1 software on a Fluoview 3000 confocal microscope
(Olympus).

Clonogenic cell survival assay

Clonogenic cell viability was examined using a colony-forming
assay. Briefly, U2OS cells were transfected with the indicated
siRNAs, and 24 h later, cells were seeded into 6-cm plates. Cells
were treatedwith ionizing radiation (0–8Gy) orOlaparib (0–2 µM)
on the following day and incubated for 14 d in a tissue culture in-
cubator (37°C, 5% CO2). Colonies were fixed with methanol and
stained with crystal violet solution (0.5% crystal violet in 20%
ethanol). Results were normalized to plating efficiencies of un-
treated cells for each siRNA.
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Tandem affinity purification (TAP)

Tandem affinity purification was performed as previously de-
scribed with minor modifications (Leung et al. 2017). Briefly, in-
ducible SFB-tagged BRD proteins expressed in HEK-293 cells
were treatedwith tetracycline (1 μg/mL) for 24 h. Cells were lysed
with NETN buffer (150 mM NaCl, 1 mM EDTA, 10 mM
Tris-HCl, pH 8.0, and 0.5% [v/v] NP-40) supplemented with Tur-
boNuclease (Accelagen) and 1 mM MgCl2 at 4°C for 1 h. The
supernatants were collected by centrifugation and incubated
with 300 μL of streptavidin beads (GE Healthcare) overnight at
4°C. The beads were washed with NETN buffer, and bound pro-
teins were eluted two times with 1 mL of biotin solution (2 mg/
mL biotin in NETN buffer). The eluted samples were incubated
for 4 h with 40 μL of S-protein beads (Novagen) at 4°C. The beads
were washed three times with NETN buffer. The samples were
eluted by boiling with 2× Laemmli buffer and resolved by SDS-
PAGE for mass spectrometry analysis. The detailed procedures
of our mass spectrometry (MS) analyses are described in Supple-
mental Materials and Methods. All AP-MS proteomic data have
been deposited in the public data repository; PRoteomics IDEnti-
fications (PRIDE) database.

Live cell imaging

Laser-inducedDNAdamagewas generated using a Fluoview 3000
confocal microscope (Olympus), and recruitment levels of pro-
teins were quantified by FV-10-ASW3.1 software. In brief, cells
were seeded onto glass-bottom dishes (Ted Pella) and were pre-
sensitized by adding 10 μM BrdU for 20 h before laser-induced
damage. Laser damage was induced using a 405-nm laser beam
(60%) in a temperature-controlled chamber (37°C, 5% CO2),
and all images were captured using a 60× oil objective lens. The
fluorescence intensity at the damage sites was analyzed using
FV10-ASW3.1 software and normalized with the intensity of a
nondamaged region.

Chromatin fractionation

Chromatin fractionation was performed as previously described
(Wysocka et al. 2001). Briefly, 1 × 107 cells were harvested and
washed with PBS. Cells were lysed in 200 µL of buffer A
(10 mM HEPES, pH 7.9, 10 mM KCl, 1.5 mM MgCl2, 0.34 M
sucrose, 10% glycerol, 1 mM dithiothreitol, and protease inhibi-
tor). Triton X-100 (final concentration 0.1%) was added to the ly-
sate, whichwas incubated on ice for 8min. Nuclei were collected
by centrifugation at 1300g for 5 min at 4°C, and the pellet was
washed with 500 µL of buffer A. Washed nuclei in the pellet
were lysed in 100 µL of buffer B (3 mM EDTA, 0.2 mM EGTA,
1 mM dithiothreitol, and protease inhibitor) for 30 min on ice
and centrifuged at 1700g for 5 min at 4°C. The supernatant con-
tained the soluble nuclear fractions and the pellet was the insol-
uble chromatin fractions. The chromatin fraction was washed
once with 500 µL of buffer B and resuspended in 200 µL of 2×
SDS-Laemmli buffer. Samples were boiled for 10 min before ana-
lyzing by western blotting.

Histone modification binding assay and peptide pull-down assay

These experimentswere performed as previously described (Gong
et al. 2015). For the histone modification binding assay, a modi-
fied histone peptide array (Active Motif) was blocked with 5%
(v/v) nonfat milk in TNT buffer (50 mM Tris-HCl, pH 7.5, 150
mM NaCl, 0.05% [v/v] Tween-20) and then incubated with the
indicated recombinant proteins at 4°C for 1 h. The histone pep-

tide array was washed three times with TNT buffer and detected
with HRP conjugated antibody. To validate the results of the his-
tone peptide array, peptide pulldown assays were carried out us-
ing PCAF-expressing cell extracts. Biotinylated H4 peptides
were incubated with PCAF-expressing HEK-293 cell extracts at
4°C for 1 h. Samples were pulled down with streptavidin Dyna-
beads (Invitrogen), and bound proteins were detected by western
blotting using the indicated antibodies.

Neutral comet assay

DNA double-strand breaks were monitored using a CometAssay
Reagent Kit (Trevigen) according to the manufacturer’s instruc-
tions. In brief, U2OS cells were transfected with indicated
siRNAs or plasmids. After 48 h, each cell was treated with the in-
dicated reagents and then harvested. The cells were mixed with
LMAgarose (Trevigen) and placed on a glass slide. Cells were
lysed with 100 µL of lysis solution (Trevigen) for 1 h at 4°C and
electrophoresed (1 V/cm2) for 40 min in TBE buffer. Samples
were fixed with 70% ethanol for 10 min and dried overnight.
The DNA was stained with SYBR-green (Invitrogen), analyzed
by fluorescence microscopy, and comet tail moments were cal-
culated by counting 100 cells for each sample and analyzed
with Image J (v 1.48). Tail moment (TM) reflects both the tail
length (TL) and the fraction of DNA in the comet tail (TM=%
DNA in tail ×TL/100).

Immunoprecipitation

Cells expressing SFB-, or GFP-tagged proteins were lysed in
NETN buffer (10 mM Tris-HCl, pH 8.0, 150 mM NaCl, 0.5%
(v/v) NP-40, protease inhibitor cocktail) containing TurboNu-
clease (Accelagen) at 4°C for 1 h. Cell lysates were centrifuged
at 15,000 rpm at 4°C for 10 min. SFB- or GFP-tagged proteins
were immunoprecipitated with streptavidin Dynabeads (Invitro-
gen) or GFP-Trap beads (ChromoTek) at 4°C for 6 h. Next, beads
were washed with NETN buffer, and bead-bound proteins were
eluted with SDS sample buffer. Boiled supernatants were separat-
ed by 8%–16% SDS-PAGE, and proteins were detected by immu-
noblot with the appropriate antibodies.

Chromatin immunoprecipitation (ChIP) assay

ChIP assays were performed as previously described (Shanbhag
et al. 2010; Aymard et al. 2014). Briefly, cells were crosslinked
for 10 min with 1% PFA and then quenched with glycine.
Next, cells were lysed with SDS buffer and sonicated. The sam-
ples were centrifuged, and the supernatants were incubated
with primary antibodies at 4°C for 18 h. Antibody-bound pro-
tein/DNA complexes were pulled down using Protein G Dyna-
beads (Invitrogen) and eluted with elution buffer. Eluted
protein/DNA complexes were digested with protease K, and puri-
fied DNA was analyzed by qRT-PCR for HR prone (HR DSB) or
non-HR prone (Non-HR DSB) sites. All primer sequences used
are described in Supplemental Table S5. The R-loop ChIP assay
is described in Supplemental Materials and Methods.

Immunofluorescence for RNA-DNA hybrid analysis

U2OS cells were treated with the indicated inhibitor or transfect-
ed with the indicated siRNAs. After incubation, each cell was
washed with 2% paraformaldehyde at room temperature and
fixed with 100% ice-cold methanol at 4°C for 5 min. Next, cells
were blocked with 3% BSA/TBST at room temperature for 1 h
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and incubated with S9.6 (Kerafast, #ENH001) and γH2AX anti-
body (Novus Biologicals, #NB100-384) at 4°C for 18 h. Cells
were washed three times with PBS and then incubated with ap-
propriate secondary antibody in 3% BSA/TBST at room tempera-
ture for 1 h. After washing, each cover slip wasmounted onto 1.2-
mm glass slides using Vectashield mounting medium containing
DAPI (Vector Labs). RNA-DNA hybrids were detected by a Fluo-
view 3000 confocal microscope (Olympus), and nuclear S9.6 sig-
nals were quantified using Image J (v 1.48). The cytoplasmic and
nucleolar S9.6 signals were excluded by overlaying DAPI-less re-
gions,which correspond to nucleoli. Resultswere confirmedwith
nucleolin staining by IF.

In vitro topoisomerase I (TOP1) activity assay

In vitro topoisomerase I activity was analyzed using the Topo-
isomerase I Assay kit (Topogen) following the manufacturer’s
protocol. In brief, recombinant TOP1 protein was incubated
with recombinant purified BET-proteins for 6 min in TOP1 assay
buffer (10 mM Tris-HCl, pH 7.9, 1 mM EDTA, 150 mM NaCl,
0.1% BSA, 0.1 mM spermidine, 5% glycerol) on ice and then in-
cubated with supercoiled pHOT-1 DNA at 37°C for 20 min.
The reaction was terminated by STOP buffer (1% Sarkosyl,
0.25% bromophenol blue, 5% glycerol). Samples were electro-
phoresed on a 1% agarose gel in TAE buffer, and DNA was visu-
alized using ethidium bromide (EtBr) stain.

In vitro acetylation assay

Recombinant PCAF protein and histone H2B were incubated
with HAT assay buffer (50 mM Tris-HCl, pH 8.0, 50 mM NaCl,
4 mM MgCl2, 0.1 mM EDTA, 1 mM DTT, 10% glycerol) in the
presence or absence of Acetyl-CoA (Sigma). Input samples were
subjected to SDS-PAGE and stained with Bio-Safe Coomassie
G-250 (Bio-Rad). Acetylation was analyzed by western blotting
with anti-histone H2B K120 acetylation antibody (Millipore,
#07-564).

Statistical analysis

Graphs were created and statistics were calculated with Prism
software (GraphPad). If the datawere two groups, a two-tailed Stu-
dent’s t-test was used. One-way analysis of variance (ANOVA)
was used when comparing more than two groups, followed by a
Dunnett multiple comparison test. P-values and sample sizes
are provided in figure legends. Experiments were repeated at least
two times using biologically independent replicates with techni-
cal replicates as indicated, with exact experiment numbers indi-
cated in the figure legends and methods.
Additional methods are described in Supplemental Materials

and Methods.
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