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Abstract

Slow maturation time of fluorescent proteins limits accurate measurement of rapid gene 

expression dynamics and effectively reduces fluorescence signal in growing cells. We used high-

precision time-lapse microscopy to characterize, at two different temperatures in E. coli, the 

maturation kinetics of 50 FPs that span the visible spectrum. We identified fast-maturing FPs that 

yield the highest signal-to-noise ratio and temporal resolution in individual growing cells.

Fluorescent proteins (FPs) are commonly used to monitor dynamic cellular processes in a 

wide variety of biological systems. Nascent FPs, however, require a stochastic maturation 

step to become fluorescent. Consequently, the kinetics of this process directly affects the 

accuracy with which biological processes can be monitored. While many excellent studies 

have exhaustively compiled in vitro characteristics of FPs1–4, the maturation times of FPs in 

living cells remain sparsely characterized5,6. The lack of systematic maturation 

measurements might be due to the inherent complexity of the maturation process that 

involves, in addition to the folding of the β-barrel, torsional rearrangements, cyclisation, 

oxidation and dehydration of the chromophore7. However, even if the full details of these 

processes are not completely understood, a systematic empirical characterization of 

maturation time would be highly valuable as it would help researchers select the fastest 

maturing proteins or be aware of artifacts inherent to slow FPs.

To measure maturation kinetics with high precision, we used an agarose-based, single-cell 

chemostat that allowed us to image and track hundreds of bacterial colonies growing 

exponentially in a tightly regulated environment for more than thirty generations8 

(Supplementary Fig. 1). In addition, with this setup we could precisely control the delivery 

of chloramphenicol, a translation inhibitor widely used to assess maturation times6,9, via 

microfluidic flow. When cells producing FPs are exposed to the drug, translation is arrested 
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but FP maturation continues. As previously synthesized proteins mature and become visible, 

the fluorescence signal continues to increase despite the absence of newly synthesized FPs 

(Supplementary Figs. 2–4). From the fluorescence increase, we quantified the fraction of 

immature protein at the time of translation arrest and extracted the kinetics of maturation 

(Supplementary Fig. 5). We effectively eliminated photobleaching from our measurements 

by reducing exposure time to the lowest possible values (Supplementary Note).

FP maturation is often modeled as a first-order process with single exponential kinetics and 

a characteristic half-time (t50). Surprisingly, however, we observed highly diverse maturation 

kinetics (see Supplementary Note for all maturation curves) even for FPs within the same 

spectral class. Some variants such as mEGFP exhibited simple first-order kinetics: the 

fraction of immature protein as a function of time followed a single exponential (Fig. 1a). 

The maturation of other variants such as mGFPmut2, however, was better described by two 

exponentials indicating the existence of effectively two kinetic steps in the maturation 

process (Fig. 1b). In yet another contrast, the maturation rate of wild-type GFP was initially 

slow but progressively became faster (Fig. 1c). This “complex maturation” kinetics was not 

due to multimerization since introducing the monomeric substitution A206K to wtGFP 

resulted in the same maturation curve (Supplementary Fig. 6). Similar “complex maturation” 

has previously been observed in red FPs9–11; however, several FPs derived from Aequorea 
victoria (avFPs), e.g. moxGFP, SCFP1, mTurquoise2 and mClover3 also showed complex 

maturation kinetics indicating that it is not an exclusive property of red FPs. In view of this 

diversity of maturation kinetics, we chose to report two effective maturation times, t50 and 

t90, that correspond to the time it takes for 50% or 90% of fluorescent proteins to become 

mature, respectively in Table 1 (Supplementary Data 1). Although the precise mechanism 

behind different maturation kinetics is unclear, we speculate that amino acids flanking the 

chromophore forming residues may play a key role (Supplementary Fig. 7).

The coding sequence (CDS) of FPs is often optimized with synonymous codons to increase 

FP expression in different organisms. Another common modification to improve expression 

is the addition of valine at the second amino acid position. We found that maturation kinetics 

was not affected by either change (Supplementary Figs. 8 and 9). By contrast, we discovered 

during this work that many FPs reported in the literature under the same name had different 

non-synonymous CDS. The most surprising case was that of “Venus”, for which we found 

four slightly different non-synonymous CDSs that we named VenNB12, VenJBC13, 

VenME14, and VenSX15, each of which had different maturation times. In such cases, we 

classified each non-synonymous variant as a distinct FP.

There are several FPs that share the same β-barrel structure but have a different 

chromophore or different residues surrounding the chromophore. These FPs had different 

maturation times and often, also different kinetics: this pattern was observed for the green 

FPs mEGFP, mGFPmut2 and wtmGFP; the blue FPs SCFP1, SCFP3A and mTurquoise2; 

and the yellow FPs mVenNB, VenJBC and mVenElo. By contrast, we decided to study the 

effect of specific mutations that would not perturb the chromophore environment. We 

selected four amino acid substitutions classified as “spectroscopically silent” because they 

do not affect the spectroscopic properties of the chromophore: F99S16, K206A (the revertant 

of the monomeric substitution A206K)17, ΔC9 (truncation of the last 9 C-terminus amino 
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acids)18, and ΔC9 combined with M153T16 in a mGFPmut2 background. In all cases, the 

spectroscopically silent mutants retained maturation kinetics similar to that of mGFPmut2 

(Supplementary Fig. 10a–d). Moreover, t50, and t90 were practically identical 

(Supplementary Fig. 10e–f) and the substitutions did not change the original mGFPmut2 

spectra (Supplementary Fig. 10g). These experiments suggest that spectroscopically silent 

mutations do not necessarily affect maturation kinetics. Moreover, since mutations F99S and 

M153T have been associated with improved folding16, these results suggest that 

chromophore maturation and folding are not intrinsically coupled processes.

Our experiments also revealed that the in vitro brightness of FPs (  = molar 

extinction (ε) × quantum yield (QY)) was, alone, a poor predictor of fluorescence signal in 

growing cells even when adjusted for differences in net expression levels (Fexpression), Fig. 

1d and Supplementary Data 2 and 3. In turn, we hypothesized that by taking the maturation 

time into account as well, we could better predict fluorescence signal in growing cells. 

Indeed, we found that simply multiplying the term Fin vitro × Fexpression, with an additional 

factor that quantifies the interplay between maturation time ( ) and dilution of proteins 

due to cell growth ( ), 19, was sufficient to robustly predict 

fluorescence signal in growing cells (Fig. 1e). A similar agreement was found between 

fluorescence signal in batch cultures quantified by flow cytometry and the product Fin vitro × 

Fexpression × Fmat (Supplementary Fig. 11 and Supplementary Data 4). Note that in growing 

cell cultures, under steady-state FP expression, fluorescence signal from fast FPs can be 

greater than that of slower FPs with similar or even greater in vitro brightness. We also 

found that variations in quantitation of in vitro brightness did not play a role as important as 

maturation time for selecting FPs with the greatest fluorescence signal in fast growing cells 

(Supplementary Fig. 12).

We also investigated the effect of maturation time when FPs were used to report 

transcription in single cells. In these conditions, FP expression can be highly dynamic and 

may not reach a steady-state. For example, transcription from the lacZ promoter, PlacZ, 

under repressed conditions (lacI+, glucose+no inducer) occurs in bursts20. To examine how 

maturation time would affect the measurement of such processes, we monitored the activity 

of the repressed PlacZ driving the expression of either mGFPmut2 (fast) or mEGFP (slow). 

To ensure equal Fexpression, both FPs had identical nucleotide sequences except for 3 residues 

unique to each FP. We also confirmed equal Fexpression by quantifying protein expression by 

SDS-PAGE gel densitometry (Supplementary Fig. 13). While both proteins had 

approximately the same in vitro brightness (ε·QY=45.5 for mEGFP vs ε·QY=39.3 for 

mGFPmut2), we observed that signal from cells with mGFPmut2 was systematically 

stronger (Fig. 2a–b and Supplementary Fig. 14). Moreover, we observed richer promoter 

dynamics with the fast maturing FP (Fig. 2a). We reasoned that since fast FPs concentrate 

fluorescence signal within a shorter time window, they are better suited not only for 

temporal precision but also to detect small transient events (Fig 2c). In line with this 

hypothesis, transcriptional bursts reported with the fast FP were consistently greater in 

amplitude than those reported with the slow FP (Fig. 2d). Moreover, the slow FP smeared 

the promoter dynamics so much that it almost resembled that of a constitutive promoter, a 

result which was in stark contrast to the previously reported bursty activity of the repressed 
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PlacZ
20. Overall, the dynamic range of the promoter activity was 1.6 times greater when 

using the fast FP than with the slow FP (Supplementary Fig. 15). Also, the fast FP had the 

ability to monitor faster promoter dynamics (Fig. 2e). Based on the superior performance of 

the fast green FP, we predicted that the fastest cyan FP SCFP3A would be a better reporter 

than the brighter—but slower—mTurquoise2 (ε·QY=28.7 for mTurquoise2 vs ε·QY=17.1 

for SCFP3A) to quantify the dynamics of the repressed PlacZ. Indeed the dimmer SCFP3A 

exhibited a 40% larger dynamic range and had three times better temporal resolution than 

the brighter mTurquoise2 (Supplementary Fig. 16) despite having similar expression levels 

(Supplementary Fig. 13).

Our work demonstrates that in growing cells, there exists a fraction of immature FPs, and 

that accounting for this fraction via the maturation time is crucial for explaining the 

relationship between in vitro brightness and fluorescence signal (Fig. 1e). We hypothesize 

that even in different environments fast FPs will remain faster than slow FPs and, thus, 

remain preferable. For example, at different temperatures (37°C and 32°C), the ranking of 

maturation times is preserved: fast maturing FPs still mature faster despite changes in the 

absolute maturation time. We note that independent of  and , fluorescence in 

growing cells might also unexpectedly vary due to organism-specific effects on net protein 

expression (Fexpression) (extended discussion in Supplementary Note). However, as a general 

guide, we recommend the use of fast maturing FPs which will likely yield higher 

fluorescence signals—particularly in fast growing cells—and, independent of growth rate, 

increase the temporal resolution of any tracked cellular process.

Online Methods

Molecular Cloning

All experiments and cloning were performed with Escherichia coli MG1655 (The Coli 

Genetic Stock Center, Yale University; CGSC 6300). All avGFP derivatives were 

constructed from an initial mGFPmut2 template used to generate linear fragments of dsDNA 

with the appropriate point mutations at the 5′ and 3′ ends. Linear fragments (from 1 to 6 

depending on the FP) and the backbone were assembled together in a single isothermal 

assembly reaction21. The backbone confers kanamycin resistance and harbors the low copy 

origin SC101. FP expression was controlled by a member of a set of constitutive promoters, 

proC22, the T7 RBS and the T1 terminator. The mNeonGreen gene was a gift from J. 

Paulsson. All red FP genes were ordered as gBlocks® from Integrated DNA Technologies 

(IDT) and cloned into a similar backbone as the one used for avGFPs. All FP coding 

sequences were confirmed by Sanger DNA sequencing from two clones. See Supplementary 

Note for the coding sequence definition of all FPs.

PlacZ reporters with FPs of interest were cloned into the chromosome using the λ-Red 

homologous recombination system23. FPs were controlled by an RBS designed by Ishida 

and Oshima24. The RBS is a strong RBS and leaves the lacI binding site O1 and its context 

intact (Supplementary Fig. 17). There is a kanamycin cassette as selection marker located 

downstream of the FP gene. The sequences used as homologies for the integration were 

5′AATTGTGAGCGGATAACAATTTCACACAGGAAACAGCTATGACCA and 

5′TTAAATAGTACATAATGGATTTCCTTACGCGAAATACGGGCAGACATGGC.
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Estimation of FP expression using SDS-PAGE gel densitometry

Exponentially growing cells were harvested at OD600=0.6, concentrated 15X, aliquoted and 

immediately stored at −80°C for later processing. Later, 8ul of thawed cells were mixed with 

7ul of 4X SDS-PAGE loading buffer and incubated at 98°C for 12min. Samples were loaded 

into a 4–20% SDS-PAGE gel. The gel was run at 200V for 65min. After electrophoresis, gel 

was stained with Brilliant Blue and de-stained until gel was transparent. Gel was imaged 

taking special care not to overexpose the image. Densitometry analysis was performed with 

the software GelAnalyzer 2010a. Total protein density profile was background corrected 

using the rolling ball method. Using the protein profile from background strain MG1655, 

density contribution from endogenous proteins at ~27kDa was estimated and subtracted 

from the raw FP value. FP densities were normalized using two sets of total protein 

stereotypical bands around 40kDa and 100kDa. We ran two technical replicates with two 

different loading patterns to compensate for systematic gel distortions (Supplementary Fig. 

18).

Protein extraction and purification

The Three Phase Partitioning (TPP) procedure25,26 was used to extract and purify avFPs. 

Cultures were grown from single colonies in 50 ml of LB Lennox with shaking at 30°C for 

two days. Cells were pelleted down at 10,000×g for 1 min, and resuspended in 25 ml of 1.6 

M ammonium sulfate in Tris-HCl buffer (50mM Tris, pH 8.0). The resuspension was shaken 

for 30 min, and cells were again pelleted at 10,000×g for 10 min and resuspended in 7.5 ml 

of 1.6 M ammonium sulfate. 1st stage of TPP. A 2.4 ml aliquot from the resuspension was 

transferred to a 5ml Eppendorf tube and mixed vigorously for 10 min at 37°C in a vortex 

mixer with a special adaptor to fit 5ml tubes. Subsequently, 2.6 ml of t-Butanol was added 

and the mixture was again shaken vigorously for 10 min at 37°C. The 5 ml tube was 

centrifuged at 21,000×g for 5 min to separate the mixture into three phases. The bottom 

phase (~2ml) was transferred into a fresh 5ml Eppendorf tube by piercing through the upper 

two layers and aspirating. 2nd stage of TPP. To the recovered phase, 3ml of t-Butanol were 

added, and the mixture was shaken vigorously for 5min at 37°C, and centrifuged at 

21,000×g for 10 min to separate the mixture into three phases, the second phase being an 

extremely thin disc with all the FP. The thin disc was separated by slowly decanting the 

bottom and upper phases: the thin FP disc remained stuck to the wall of the tube. The tube 

was left standing for 1 min, and the residual t-Butanol/ammonium sulfate at the bottom was 

aspirated. The FP disc was redissolved in 150–250ul of 1.6 M ammonium sulfate. 3rd stage 
of TPP. The 5ml tube with the redissolved FP was centrifuged at 21,000×g for 20 mins. The 

crystal-clear aqueous phase was transferred with a pipettor to a sterile 1.5 ml Eppendorf 

tube. Care was taken to avoid pelleted debris and also to avoid aspirating possible residual t-

Butanol (a thin upper layer). Purified protein was stored at 4°C.

Spectroscopy

Fluorescence spectra were acquired in a Horiba/Yvon FluoroMax-4 Spectrofluorometer. The 

instrument corrects for excitation lamp fluctuations and compensates for the spectral 

dependence of detector efficiency. Spectra were acquired with a 1nm resolution, and the 

mean spectrum was derived from four readings using the following parameters: YFP Ex 482 
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and Em 497–685, GFP Ex 455 Em 470–675 and Cyan Ex 425 Em 445–750. The integration 

range for CFPs was broad enough to capture the complete tail of the coumarin reference 

dye. Samples were at least a 20X dilution (in Tris-HCl buffer, pH 8) of the purified protein 

recovered at the end of the 3rd stage of the TPP. Thus, final ammonium sulfate concentration 

was at most 70 mM.

Absorbance spectra were acquired using a Shimadzu SolidSpec-3700/3700DUV. To avoid 

reabsorption effects, samples and standard dyes were diluted until the absorption maximum 

did not exceed a reading of 0.1 units. Three spectrum readings were taken and averaged. We 

used polymethyl methacrylate (PMMA) cuvettes, BrandTech Scientific 759125. Cuvettes 

were taken from the same box (i.e. same mold cavity for all cuvettes, manufacturer 

description) to ensure lowest variation in extinction coefficient. The variation found was 

minimal in comparison to the absorption maxima of the FPs (less than 0.5%). Thus, all the 

FPs spectra were corrected with the same average background absorption for a given box of 

cuvettes (Supplementary Fig. 19).

Quantum yield (QY) and molar extinction coefficient estimation

SDS-PAGE densitometry was used to estimate the amount of purified FP at the end of the 

3rd step of TPP. Briefly, 3.25ul of purified protein in 1.6 M ammonium sulfate was mixed 

with 5.75ul of 4× SDS-PAGE sample loading buffer in PCR tubes. FP samples were 

denatured by heating at 98°C for 12 min. In parallel, a dilution series of purified BSA 

(concentrations: 1.000, 0.666, 0.500, 0.333, 0.250, 0.167, 0.125, 0.083, 0.062, 0.041, 

0.031ug/ul) was prepared. FP samples were spiked with 8ul of BSA standard such that every 

sample would have a different known BSA concentration. Volume was adjusted to 20ul. 

Samples were loaded into a 4–20% SDS-PAGE gel. After electrophoresis, the gel was 

stained with Brilliant Blue and de-stained until gel was transparent. Gel was imaged taking 

special care not to overexpose the image. Image was analyzed with the Gel Analysis plug-in 

from ImageJ27. A standard curve using the known concentrations and corresponding band 

densities obtained from the Gel Analysis plug-in was created in Matlab R2013a 

(Supplementary Fig. 20). The standard curve was used to estimate the total FP loaded in 

every well. The molar concentration of the sample was obtained assuming the weight of the 

FP as 26.89 kD. The molar extinction was determined using Beer’s law.

We performed a relative determination of fluorescence QYs28,

where F is the integral photon flux, f the absorption factor at the excitation wavelength 

( ) and n the refractive index. st denotes the dye reference and x the FP 

sample. In the QY determination, the refractive indexes of three solvents were relevant: 

ethanol 200 proof, 0.1 M NaOH and 50mM Tris-HCl pH 8.0. Ethanol was the solvent for 

coumarin. For ethanol, the refractive index used was 1.364 (using the exact refractive index 

at the coumarin average emission gives negligible differences, http://refractiveindex.info). 

For 50mM Tris-HCl pH 8, its refractive index was measured with a Milton Roy Abbe 3L 
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refractometer with different amounts of dissolved ammonium sulfate. Results showed that 

the refractive index of Tris-HCl at relevant ammonium sulfate concentrations (<70mM, after 

doing at least a 20X dilution from our stock of purified FP in ammonium sulfate 1.6 M) was 

equal to that of water at 25°C, n=1.335 at 500nm, http://refractiveindex.info. The refractive 

index of 0.1M sodium hydroxide, the fluorescein solvent, was also found to be equal to that 

of water. Note that, because the refractive index of water and ethanol are different, the 

refractive index ratio, , reduces the relative QY of blue FPs by about 4%. The 

reference dyes were fluorescein “reference standard” (Molecular Probes F-1300, Lot# 

1691-3) and coumarin 153 (99% purity, Sigma-Aldrich 546186-100MG, Lot# 

MKBV7586V). The QYs used were 0.89 and 0.53 respectively28. For every FP, the protein 

was extracted/purified, the molar concentration determined and the absorbance/emission 

spectrum acquired from three independent cultures. QY and molar extinctions were 

determined from those three independent extractions for all FPs except for moxCerulean, 

mEmerald, moxGFP, moxVenus. For these FPs only 2 independent extractions were 

performed. Reported errors are standard deviations.

Maturation time estimation by translational arrest with chloramphenicol

Single-cell chemostat assembly8—Briefly, polydimethylsiloxane (PDMS) chambers 

were casted using home-made metal molds. Then, chambers and glass cover slips were 

treated with O2 plasma (Harrick Plasma; 18W, 25s, 1000mTor atmosphere) and put into 

contact to induce covalent bonding between the two surfaces. Subsequently, the chamber 

was pierced at its ends to create an inlet and an outlet with 30G needles. To avoid leakages, 

needles were sealed to PDMS chambers with a drop of freshly prepared PDMS and left to 

cure for 2hrs at 55°C. Meanwhile, a patterned agarose slab was prepared by pouring 

dissolved low-melt agarose (BP165, Fisher Scientific) on top of a PDMS intermediate that 

had on its surface the negative pattern to be printed on the agarose. Then, the PDMS 

chamber and a second square coverslip were plasma treated (as above). Immediately after, 

2ul of saturated cell culture (OD600~ 1) was dispensed at the center of the PDMS chamber, 

the patterned agarose slab pressed into place and the chamber sealed with the square 

coverslip. The assembled single-cell chemostat was allowed to set for 15–30min before 

intubating to introduce growth media.

Growth media composition—M9 rich media: M9 salts 1×, casamino acids 0.1%, 

glucose 0.5%, thiamine 1ug/ml, MgSO4 2mM, CaCl2 0.1 mM. The day before the 

experiment, growth media was prepared, its pH was checked (7.1 +/− 0.2) and liquid 

cultures of individual colonies were set for overnight growth. Next morning cells were 

diluted 200X in fresh media and incubated for 3–4 hrs before loading them into the single-

cell chemostat. For the PlacZ experiment, same M9 rich media was used except that 

casamino acids were reduced by 200X to decrease background fluorescence. The decrease in 

nutrients increased division time by ~5min.

Temperature calibration—Single-cell chemostat temperature at the objective was 

carefully characterized for different buffer flow rates (Supplementary Note). Four hours 
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before starting a maturation experiment, the microscopy setup was left to equilibrate to the 

desired temperature.

Buffer exchange—The outputs of two 30ml syringes (one with growth media, the other 

one with growth media plus chloramphenicol 100ug/ml) were connected together to a two 

input valve with stopcock (Value Plastics). The valve output was connected to the single-cell 

chemostat. To ensure exponential growth rate prior to data acquisition, cells were grown 

inside the chemostat for 4hr at 37°C with growth media flowing at a rate of 50ul/min via a 

peristaltic pump (KDS-210, KD Scientific). Then, data was acquired for one hour at a rate of 

one frame per minute. After the first hour, the first pump was stopped and the second pump, 

with growth media and chloramphenicol, was activated at a rate of 70ul/min. At this rate, 

growth media in the single-cell chemostat was exchanged in <20secs with media with 

chloramphenicol. After buffer exchange and without interruption, data was acquired for 

three to four more hours. Due to cell wall damage induced by chloramphenicol treatment, 

there is an artefactual dependence of photobleaching on chloramphenicol concentration. 

Nonetheless, there is a chloramphenicol concentration range (40ug/ml to 200ug/ml) where 

photobleaching rate is constant (Supplementary Note and Supplementary Fig. 21).

Microscopy—Time-lapses were taken with a Zeiss Axiovert 200M and a Plan-

Apochromat 40×/1.3 Oil Ph3. Focal plane drift was eliminated by using software-based 

autofocus following the method described in29. Shortly, we characterize the frequency 

response of our optical system (camera/objective) to filter out low and mid-range 

frequencies from Z-stacks. Those frequencies are responsible for unwanted contrast 

reversals usually found in regular software-based autofocuses. A solid-state white 

illumination SOLA SE II was used for fluorescence excitation. The filter set for the green 

channel was Ex. 482/18, Di. 495, Em. 520/35; for the yellow channel was Ex. 500/24, Di. 

520, Em. 542/27; for the blue channel was Ex. 438/24, Di. 458, Em. 483/32; and for the red 

channel Ex. 586/20, Di. 605, Em. 647/57; all filters from Semrock. Images were acquired 

with a CCD camera (Hamamatsu C4742-98-24ERG). Variation in fluorescence intensity 

illumination across the field-of-view was less than 10% in all channels. Under our 

experimental conditions, most maturation curves do not exhibit measurable photobleaching, 

see Supplementary Note and Supplementary Fig. 22 and 23. The microscope setup was 

controlled with home-made software using Micro-Manager 1.430 and Matlab R2013a.

Calculation of the immature fluorescent protein fraction from single cell data

(i) Selection of single-cells. Kymographs of individual linear colonies were constructed from 

time-lapse movies that contained a phase contrast and a fluorescence channel. Using the 

phase contrast kymographs, we backtracked—starting from the last frame—only cells that 

remained in the tracks of the agar pad and that did not lyse. (ii) Single-cell fluorescence 
quantification. For every single-cell, using the fluorescence channel kymograph, raw 

fluorescence was quantified at frame t by adding signal from all pixels within a rectangular 

window that was twice the width of the cell in order to capture all out-of-focus light 

(Supplementary Fig. 24). To measure the background fluorescence as a function of time, a 

kymograph of an agar pad strip without cells was constructed. To obtain a background-

corrected fluorescence value at frame t, the background quantified from the empty agar pad 
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strip at frame t was subtracted from the raw fluorescence value at frame t. (iii) Averaging of 
data. Independently of colony membership, to obtain a mean fluorescence curve, 

fluorescence data from all cells was added and divided by the number of cells. Similarly, but 

with single-cell length data, a mean length curve was obtained. The mean length curve was 

used to determine the precise moment at which chloramphenicol arrived. (iv) Fraction of 
immature FP. To obtain the fraction of immature protein, the mean fluorescence was 

subtracted from the maximum fluorescence value and divided by the fluorescence increase 

after drug treatment; see Supplementary Fig. 5 for a step-by-step diagram. All analysis was 

done using Matlab R2013a.

Fluorescence signal estimation by flow cytometry

Three replicate cultures for every avFP were grown overnight in M9 rich media at 37°C. 

Next day, a first set of replicates was diluted 1000X in fresh M9 rich media and incubated at 

37°C. After 20 min, the same procedure was followed for the second set of replicates and, 

finally, after an additional 20 more minutes the third set was also diluted and incubated. The 

delay between replicates was set to minimize maturation time artifacts in the in vivo 
brightness determination using flow cytometry. Typically, a single set of replicates would 

take ~6min to be quantified. After 2hrs 40min from the first dilution, a second 500× dilution 

was performed for every set of replicates following the same time delay. After 2hrs, the 

replicates were growing exponentially (OD600 = 0.05–0.1). An aliquot of the first set was 

transferred to a 96-well plate pre warmed to 37°C and stored in a styrofoam box. 

Immediately, samples were measured in a BD LSR Fortessa. The same was done for the 

second and the third bio-replicate sets. The excitation/emission configuration was CFP Ex 

440 (laser), Em 470/20; GFP Ex 488 (laser), Em 520/35; and YFP Ex 488 (laser), Em 

542/27.

Statistical methods

Immature FP fraction curves were initially obtained for several FPs (mEGFP, mGFPmut2, 

mGFPmut3, sfGFP, SCFP3A, mVenME, mCherry) with at least 3 independent replicates. 

Once the results from these initial FPs were reproducible, new FPs were measured together 

with a previously characterized FP as a control. If the control displayed an anomalous 

maturation curve, the experiment was not further analyzed. In a successful experiment, after 

~2hrs of chloramphenicol treatment, a small fraction of cells would lose their fluorescence, 

presumably due to cell wall damage (Supplementary Note). We eliminated manually these 

cells from the analysis. Mean single cell fluorescence curves were derived from the mean of 

70±20 cells. We obtained the t50 and t90 values by smoothing the log transformed immature 

FP fraction curves using the function csaps in MATLAB R2013a, smoothing parameter 

equal to 0.01. Maturation time errors were estimated assuming errors in the average 

fluorescence of ±3%. The typical error in our average fluorescence curves is below 1% at 

fluorescence saturation. Thus, the assumed ±3% error in average fluorescence gives at least 

a confidence interval of 66% (one standard deviation), and typically a confidence interval of 

95% (2 standard deviations). For specific FPs, the maturation time at 32°C was estimated 

using the maturation time measured at 37°C (Supplementary Fig. 25). QY and ε average and 

SD were derived from three independent protein extractions except for moxCerulean, 

mEmerald, moxGFP, moxVenus. For these FPs only 2 independent extractions were 
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performed. QY and ε values used for the x-axis of Fig. 1d are the values reported when the 

FPs were first published except for mVenusME and mCeruleanME; for these two FPs, we 

used our own in vitro data (Supplementary Table 1 and 2). In the x-axis of Fig. 1e, the red 

FP in vitro data were taken from different laboratories (Supplementary Table 2 and 

Supplementary Fig. 26). For all other FPs, QY and ε were quantified in our laboratory 

(Supplementary Table 1). We estimated FP expression by SDS densitometry. Fexpression is 

the median ±SD of four measurements from two SDS gels (Supplementary Fig. 13 and 18 

and Supplementary Data 2). The two gels were technical replicates. Errors of derived 

experimental quantities (e.g. Fin vitro error) were obtained by propagation of errors from 

values experimentally determined (e.g. quantum yields and extinction coefficients). In time 

traces, single-cell fluorescence production rate was approximated by finite differences and 

the result smoothed with the function filtfilt using a filter order equal to 3 and a cut-off 

frequency equal to 0.55 (Matlab R2013a). Autocorrelation of fluorescence production rate 

was calculated along cell lineages eliminating sampling bias by avoiding counting branches 

more than once31. The estimated autocorrelation decay constants were obtained by fitting 

the theoretical autocorrelation function given in20. We repeated a single experiment with FPs 

of different colors: two greens (mGFPmut2 & mEGFP) and two blues (SCFP3A & 

mTurquoise2) to support the robustness of the observed effect in Fig. 2.

Code availability

Code to generate Fig. 2 and Supplementary Fig. 16 can be found in Dataverse: doi:

10.7910/DVN/THTGHS. Code to analyze single-cell data from the single-cell chemostat 

experiments is available from the corresponding author upon request.

Data availability statement

Fluorescence maturation curves, SDS-PAGE gel densitometry calculations, a worksheet to 

obtain Fig.1 and Fig.2 and SDS-PAGE images of FP-expressing E. coli total lysate are 

available with the paper online. Data to obtain Fig. 2 and Supplementary Fig. 16 can be 

found in Dataverse: doi:10.7910/DVN/YH7LHM and doi:10.7910/DVN/OVZMXF. Flow 

cytometry source data of Supplementary Fig. 11 can be found in Dataverse: doi:

10.7910/DVN/T4VSGH. Maturation time experiments from which Table 1 and Fig. 1 were 

derived can be found in Dataverse: doi:10.7910/DVN/KBNK6R. FPs listed in Table 1, 

codon optimized FPs and 2nd valine FPs are available at Addgene, IDs from 103968 to 

104034.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Maturation kinetics and its impact on fluorescence signal in growing cells
(a), (b) and (c). Fraction of immature protein as a function of time after translational arrest 

with chloramphenicol in single cells. (a) mEGFP maturation kinetics shows a single 

exponential decay (dashed line). (b) mGFPmut2 exhibits a more complex maturation 

process with two kinetic steps (dashed lines). (c) wtGFP matures with a slow non-

exponential rate that increases with time. Dashed red lines indicate the time it takes for 50%, 

t50, and 90%, t90, of FP to mature, respectively. (d) Fluorescence signal in growing cells vs 
Fin vitro=QY·ε multiplied by Fexpression=amount of protein. Fluorescence signal is the mean 

fluorescence of single-cells (exponential growth in single-cell chemostat, M9 rich media, 

37°C, mean from 70±20 cells, ±SEM). QY and ε are the values reported when the FPs were 

first published except for mVenusME and mCeruelanME; for these two FPs, we used our 

own in vitro data, see Online Methods. Fexpression was estimated using SDS-PAGE gel 

densitometry (±SD, see Online Methods). For green FPs, data normalized by sfGFP data; 

for yellow FPs, by moxVenus data; for blue FPs, by SCFP3A data; and for red FPs by 

mRFP1*. Dotted line is the identity. Dilution is given by the doubling time of E. coli, 
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tgr=28.5±2min. (e) Fluorescence signal in growing cells vs Fin vitro × Fexpression multiplied 

by Fmat=1/(1 + t50/tgr)19. Fluorescence signal data is the same as in (d). QY and ε were 

quantified in our laboratory independently, except for in vitro data of red FPs, see Online 
Methods. We have assumed that the in vitro brightness of mRFP1* and mCherry-L is the 

same as the in vitro brightness of mRFP1 and mCherry, respectively, because amino acid 

differences are not part of the β-barrel. Error bars calculated by propagation of QY, ε and t50 

errors.
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Figure 2. Impact of maturation time on transcription dynamics
In growing cells, fluorescence signal associated with fast-maturing FPs can exhibit greater 

intensity and dynamic range than equally bright slow-maturing FPs. (a) Left: cartoon of a 

kymograph of a linear colony. Kymograph composed from the fluorescence channel of the 

time-lapse movie. Cells express stochastic bursts of an FP; intensity decreases because of 

dilution due to growth, thus creating the dark and bright bands in the kymograph. Right: 

kymograph made from the fluorescence channel showing that a fast FP reports brighter 

transcriptional events than a slower FP even when both fluorophores have the same in vitro 
brightness. Upper half, fast FP (mGFPmut2, ε·QY=39.3, t50=5.6min); lower half, slow FP 

(mEGFP, ε·QY=45.5, t50=14.5min); expression driven by the repressed PlacZ promoter. (b) 
Distribution of fluorescence signal per cell for the fast (light green, ncell=2489) and the slow 

FP (dark green, ncell= 2310). Signal from the fast FP is always higher than that from the 

slow FP (Supplementary Fig. 14). Inset. In vitro brightness, fluorescence signal in growing 

cells, and dynamic range of the fast relative to the slow FP (Supplementary Fig. 15). (c) 
Black solid line: transcriptional burst that yields the same amount of either fast- or slow-

maturing FP. (d) Time traces of the fluorescence production rate of the repressed PlacZ using 
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the fast or the slow FP. The detection limit (dashed line) is 3σ units above autofluorescence 

production rate; black dots indicate cell division, tdiv=33min at 37 °C. Shaded bands indicate 

periods of promoter activity below the detection limit. (e) Autocorrelation of fluorescence 

production rate for the slow and the fast FP variants (characteristic decay times 

tslowFP=24.5min and tfastFP=6.3min). Both FPs are driven by the same promoter thus using 

the fast FP increases temporal resolution.
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Table 1
Maturation time of common fluorescent proteins

(a) See Supplementary Note for a detailed description of the coding sequences. (b) Because the kinetics in 

many cases does not follow a single exponential, we report two maturation times, t50 and t90, ± confidence 

interval of 95%. Temperature has an error of ± 0.5°C. (c) Estimated value of the maturation time at 32°C was 

taken as 60% longer than the time measured at 37°C; see Online Methods. For mRuby3 Addgene the 

estimated time at 32°C is taken equal to that of mRuby3 at 32°C. (d) Even though mGFPmut3 is the fastest 

maturing FP in the green category, its low photostability makes it a poor choice for time-lapse microscopy. 

Supplementary Data 1 contains the mean fluorescence curves used to calculate maturation times.

FPsa

Order by year of appearance

37°Cb 32°Cb

t50 (min) t
90 (min) t50 (min) t

90 (min)

Cyan

mCerulean 6.6 ± 0.5 24.0 ± 2.9 11.3 ± 0.9 50.7 ± 13.1

SCFP1 50.9 ± 2.8 118.5 ± 10.8 81c 189c

SCFP3A 6.4 ± 0.5 24.2 ± 2.7 10.6 ± 0.7 49.0 ± 15.3

mCerluean ME 7.4 ± 0.5 26.9 ± 2.2 12.1 ± 0.9 64.6 ± 13.7

mTurquoise 112.2 ± 7.1 319.9 ± 36.6 179c 512c

mCerulean3 69.8 ± 3.9 177.8 ± 17.8 112c 284c

mTurquoise2 33.5 ± 2.2 95.1 ± 9.3 58.7 ± 4.1 175.7 ± 21.7

moxCerulean3 100.4 ± 5.2 236.9 ± 23.6 159c 369c

Green (UV-Excitable)

Sapphire 38.4 ± 2.4 103.4 ± 8.4 61c 165c

T-Sapphire 156.5 ± 11.2 478.2 ± 57.2 250c 765c

Green

wtGFP 36.1 ± 2.1 83.8 ± 4.9 58c 134c

mEGFP 14.5 ± 1.0 42.4 ± 4.4 22.3 ± 1.5 62.8 ± 6.6

mGFPmut2 5.6 ± 0.4 28.8 ± 4.5 6.8 ± 0.5 20.0 ± 2.1

mGFPmut3d 4.1 ± 0.3 15.8 ± 3.1 4.5 ± 0.3 16.6 ± 2.9

mEmerald 11.2 ± 0.8 37.5 ± 12.1 17.7 ± 1.1 48.4 ± 4.0

sfGFP 13.6 ± 0.9 39.1 ± 4.7 19.4 ± 1.3 56.7 ± 6.0

moxGFP 17.1 ± 1.1 50.7 ± 4.3 35.7 ± 2.2 102.8 ± 17.4

Yellow-Green

mEYFP 9.0 ± 0.7 30.9 ± 4.2 10.6 ± 0.8 34.0 ± 4.3

mVenus NB 4.1 ± 0.3 18.4 ± 6.8 4.7 ± 0.4 18.0 ± 3.2

mVenus JBC 17.6 ± 1.3 59.1 ± 6.9 23.1 ± 1.7 87.1 ± 12.9

mYPet 9.7 ± 0.7 33.5 ± 5.4 11.9 ± 0.8 37.6 ± 4.3

mVenus ME 9.6 ± 0.7 30.9 ± 2.5 11.6 ± 0.8 37.9 ± 5.9

Venus SX 18.6 ± 1.3 57.7 ± 5.2 24.9 ± 1.8 74.4 ± 8.1

Clover 22.2 ± 1.4 61.6 ± 6.8 34.1 ± 2.2 108.3 ± 11.3

mNeonGreen 10.9 ± 0.8 36.8 ± 9.2 13.3 ± 0.9 37.7 ± 4.0
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FPsa

Order by year of appearance

37°Cb 32°Cb

t50 (min) t
90 (min) t50 (min) t

90 (min)

moxVenus 25.8 ± 1.8 77.8 ± 9.1 36.2 ± 2.7 119.0 ± 13.8

mClover3 43.5 ± 2.9 112.4 ± 9.6 63.5 ± 3.6 176.5 ± 19.8

Orange-Red

DsRed-Express 26.1 ± 1.4 70.8 ± 7.4 31.2 ± 1.1 85.8 ± 29.7

TurboRFP 87.8 ± 5.3 276.9 ± 33.5 142c 453c

TagRFP 42.1 ± 2.6 102.8 ± 7.8 51.9 ± 3.6 105.0 ± 6.4

TagRFP-T 42.4 ± 2.1 103.2 ± 6.0 55.1 ± 3.0 113.6 ± 6.0

DsRed-Expresss2 33.6 ± 1.8 78.5 ± 6.5 54c 126c

Red

mRFP1 21.9 ± 1.1 51.4 ± 4.0 35c 82c

mRFP1* 23.8 ± 1.2 53.8 ± 4.7 32.5 ± 1.8 79.2 ± 9.1

mCherry-L 37.0 ± 1.8 81.4 ± 6.0 45.9 ± 3.4 105.7 ± 9.5

mCherry2-L 22.8 ± 1.2 51.3 ± 4.1 33.4 ± 2.1 83.1 ± 6.0

mRuby3 130.8 ± 6.8 342.4 ± 37.8 243.7 ± 15 725.0 ± 85.9

mRuby3 Addgene 136.5 ± 6.9 354.4 ± 39.0 243.7c 725.0c

mScarlet 132.4 ± 7.5 376.2 ± 43.4 212c 602c

mScarlet-I 25.7 ± 1.5 66.3 ± 6.8 32.8 ± 1.8 83.2 ± 8.8

Far-Reds

Katushka 34.0 ± 2.3 92.8 ± 8.4 55.9 ± 4.0 154.2 ± 13.8

mKate2 34.4 ± 1.8 79.4 ± 4.7 47.9 ± 2.8 113.8 ± 6.5

E2Crimson 23.4 ± 1.2 56.4 ± 4.9 30.8 ± 1.8 79.0 ± 9.5

Katushka9-5 27.4 ± 1.7 76.4 ± 7.2 44.5 ± 2.7 114.3 ± 15.4

mNeptune2 591.5 ± 44.8 1982 ± 243 946c 3171c

mNeptune2.5 34.5 ± 1.8 87.4 ± 6.9 82.0 ± 5.4 233.1 ± 26.9
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