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Abstract

Background: Systematic interrogation of single-nucleotide variants (SNVs) is one of the most promising approaches

to delineate the cellular heterogeneity and phylogenetic relationships at the single-cell level. While SNV detection

from abundant single-cell RNA sequencing (scRNA-seq) data is applicable and cost-effective in identifying expressed

variants, inferring sub-clones, and deciphering genotype-phenotype linkages, there is a lack of computational

methods specifically developed for SNV calling in scRNA-seq. Although variant callers for bulk RNA-seq have been

sporadically used in scRNA-seq, the performances of different tools have not been assessed.

Results: Here, we perform a systematic comparison of seven tools including SAMtools, the GATK pipeline, CTAT,

FreeBayes, MuTect2, Strelka2, and VarScan2, using both simulation and scRNA-seq datasets, and identify multiple

elements influencing their performance. While the specificities are generally high, with sensitivities exceeding 90%

for most tools when calling homozygous SNVs in high-confident coding regions with sufficient read depths, such

sensitivities dramatically decrease when calling SNVs with low read depths, low variant allele frequencies, or in

specific genomic contexts. SAMtools shows the highest sensitivity in most cases especially with low supporting

reads, despite the relatively low specificity in introns or high-identity regions. Strelka2 shows consistently good

performance when sufficient supporting reads are provided, while FreeBayes shows good performance in the cases

of high variant allele frequencies.

Conclusions: We recommend SAMtools, Strelka2, FreeBayes, or CTAT, depending on the specific conditions of

usage. Our study provides the first benchmarking to evaluate the performances of different SNV detection tools for

scRNA-seq data.
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Background
Substantial genetic variations accumulate during tumori-

genesis, leading to genetically divergent subpopulations.

SNVs could be faithfully propagated from progenitors to

daughter cells during DNA replication and thus have been

commonly used to delineate the heterogeneity and phylo-

genetic relationship of tumor cells [1–4]. Next generation

sequencing is by far the most useful technology to detect

mutations for its ability to screen SNVs in a high-

throughput manner. SNVs could be detected from the

whole genome sequencing (WGS) or whole exome sequen-

cing (WES), and then be utilized to infer clonal architecture

or to construct the evolutionary relationships of tumors [5].

Accordingly, in single-cell studies, SNV detection is a

compelling strategy to decipher the heterogeneity of cell

compositions and to infer the lineage relationships. Al-

though single-cell WGS (scWGS) or single-cell WES

(scWES) experiments could be performed to detect

single-cell SNVs [6–8], there are substantial challenges

which hamper the large-scale application of such experi-

ments. Indeed, the sparse distribution of SNVs through-

out the genome might lead to a substantial proportion

of SNVs undetected in single-cell experiments. In

addition, numerous biases can be introduced by amplifi-

cation methods that could be error prone, thus failing to
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provide equal coverage across the genome. Furthermore,

the relatively high cost of these experiments hinders the

large-scale application of such methods [9].

In contrast, scRNA-seq has been recently exploding

with the continuous technological innovation and con-

stantly increasing throughput with decreasing costs. It

has been widely used for its capability of revealing com-

plex and rare cell populations, uncovering regulatory re-

lationships between genes, and tracking the trajectories

of distinct cell lineages in development [10, 11]. Most of

these analyses were based on the transcriptome data

with quantified gene expression as features, which could

be influenced by different technical factors such as se-

quencing platforms, batch effects, and dropouts, while

the detection of genetic variations such as SNVs is or-

thogonal to such expression-based analysis, thus poten-

tially increasing the value of the rich resource of scRNA-

seq data. Importantly, SNVs may help to unravel the

heterogeneity of tumors [12] and genotype-phenotype

associations [13]. When considering diseases including

cancer, expressed mutations are of greater interest be-

cause they could affect cellular processes more directly

and their functions are more clearly illustrated. In

addition, detecting SNVs from scRNA-seq data with

quantified expression further enables the study of allelic

expression [14] and manifests the effects of SNVs on

gene expression by cis and/or trans effect [15, 16]. Fur-

thermore, identifying SNVs from scRNA-seq could be

used to find RNA-editing events and to validate DNA

sequence variations. Recently, the mitochondria DNA

mutations derived from scRNA-seq were reported to be

a powerful and scalable strategy to assess cellular dy-

namics of native human cells, thus providing a natural

barcode to infer clonal relationships [17]. Therefore, de-

tecting variants from scRNA-seq data seems to be a

powerful and cost-effective approach, which could not

only identify the expressed variants directly, but also

simultaneously reveal the relationships of DNA alter-

ation and RNA expression at the single-cell level.

In spite of its importance, significant challenges exist for

detecting variants from scRNA-seq data. The sequencing

coverages are usually limited, and it is more difficult to

detect variants from the transcriptome than from DNA

sequences due to RNA splicing. In addition, the dynamic

nature of RNAs, the higher error rate from reverse tran-

scription, and the greater number of PCR cycles could

lead to false positives. Despite these challenges, SNV

detection based on scRNA-seq data has been performed

by existing methods that were originally developed for

bulk RNA-seq data [13, 18–20], due to the lack of tools

specifically designated for scRNA-seq. However, the ac-

curacies and specificities of these methods need to be eval-

uated considering the enormous challenges of RNA-based

SNV detection. Indeed, while benchmarking for detecting

SNVs from bulk RNA-seq data has been performed with

limited tools and methods [21], there is no systematic

comparison of SNV detection from scRNA-seq to our

knowledge. Therefore, it is of paramount importance to

evaluate the performance of variant detection tools

employed in RNA-seq data at single-cell level.

In this study, we perform systematic comparative ana-

lysis of seven widely used SNV-calling methods, including

SAMtools, the GATK Best Practices pipeline, CTAT,

FreeBayes, MuTect2, Strelka2, and VarScan2, on both

simulated and real single-cell RNA-seq datasets. We

evaluate the performances of these tools in different read

depths, genomic contexts, functional regions, and variant

allele frequencies. We also investigate the consistency of

performances for different tissue origins, as well as the im-

pact of sequencing protocols. This study can serve as a

valuable benchmark and guideline for selecting the suit-

able software for SNV detection in scRNA-seq.

Results
Overview of variant-calling methods for RNA sequencing

data

The conventional SNV-calling pipeline for high-throughput

transcriptome sequencing generally consists of four compo-

nents: mapping, pre-processing, variant evaluation, and

post-filtering. RNA-seq reads are usually mapped to the ref-

erence genome using a splice-aware mapper. The Spliced

Transcripts Alignment to a Reference (STAR) aligner is

recommended by the Genome Analysis Toolkit (GATK)

Best Practices [22]. It performs sequential maximum

mappable seed searches, seed clustering, and stitching [23].

Genomic Short-read Nucleotide Alignment Program

(GSNAP) is also widely used in scRNA-seq for its tolerance

of complex variants and splicing for both short and long

sequence reads [24]. Pre-processing procedures, including

removing duplicates, realigning, reassigning mapping qual-

ities, and recalibrating base quality scores, could eliminate

low-quality reads and improve the accuracy of variant call-

ing. Variant evaluation is the key step, in which reliable

candidates are obtained with the best performing software

for downstream analysis, and thus, it is the focus of our

benchmarking. Post-filtering aims to rule out the false-

positive calls from diverse sources, including low quality

(probability) of SNVs, low-complexity regions, and low read

depths, and to retain high-confident SNVs.

MuTect2, Strelka2, and VarScan2 have been widely

used to detect variants in bulk RNA-seq data. MuTect2

combines the DREAM challenge-winning somatic geno-

typing engine with HaplotypeCaller, allowing for a vary-

ing allelic fraction and several harder filters [25, 26].

Strelka2 utilizes mixture model-based parameter estima-

tion and an efficient tiered haplotype-modeling strategy

for variant detection [27]. VarScan2 applies a heuristic

and statistical algorithm to detect and classify sequence
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variants [28]. Although these three tools have not been

used for single-cell SNV detection, we included them in

our benchmarking of scRNA-seq, considering their ex-

tensive utilization.

The GATK Best Practices for variant calling on RNA-

seq data is the most frequently used framework for de-

tecting variations in single-cell RNA-seq, in which there

are two tools for variant evaluation, UnifiedGenotyper

and HaplotypeCaller [18, 19, 29, 30]. HaplotypeCaller is

more recent and sophisticated and is recommended by

GATK. Notably, Trinity Cancer Transcriptome Analysis

Toolkit (CTAT), the software developed for scRNA-seq

SNV detection, was based on the GATK Best Practices

pipeline. In addition, SSrGE, developed to link effective

and expressed nucleotide variations associated with gene

expression in scRNA-seq data, utilizes a module for

identifying variants based on GATK [13].

Apart from the GATK framework, SAMtools has also

been used to examine SNVs in scRNA-seq [12, 20, 31].

Pysam, which functions based on SAMtools, is another

approach utilized to explore variations in scRNA-seq data.

For instance, Ludwig et al. detected mitochondrial muta-

tions with the pysam module and showed that the allele

frequencies estimated from scRNA-seq were consistent

with those estimated from whole genome sequencing [17].

Other tools, including FreeBayes [13] and BamBam [32],

have also been sporadically used for variant detection in

scRNA-seq data, although these tools were originally de-

signed for bulk sequencing and have not been adapted for

scRNA-seq data. Notably, BamBam and other callers, like

JointSNVMix, Seurat, and SomaticSniper, were not in-

cluded in our benchmarking, as they require paired nor-

mal data to call variants from RNA-seq [33–35].

Performance evaluation of variant callers on real data

We generated full-length transcriptome data of 291

CD45− single cells with SMART-seq2 protocol. Among

these CD45− cells, 70 were identified as malignant cells

(Additional file 1), which were derived from two colorectal

cancer patients (P0411 and P0413). The average sequen-

cing depths of these cells were 1.4 million reads per cell.

Germline single-nucleotide polymorphisms (SNPs) can be

identified from bulk exome sequencing (Exome-seq) data

and are expected to occur in each of the single cells, and

thus, the SNPs detected from bulk Exome-seq can be used

as gold standard for single-cell variant calling. Therefore,

we also generated bulk WES data of tumor and adjacent

normal tissues for these two patients.

To generate gold standard variants from bulk WES

data, we aligned reads using the BWA-PICARD pipeline

and called SNPs using VarScan2 after filtering out low-

quality sequencing reads. To validate the reliability of

these SNPs, we further generated bulk RNA-seq data of

tumor tissue for patient P0411 and detected SNPs from

bulk RNA-seq data by aligning reads with STAR and

calling SNPs with SAMtools. We found that of all the

5861 sufficiently expressed (read depths > 5 in RNA-seq

data) benchmark SNPs called from bulk WES, 97.8%

(5827/5861) could also be independently identified from

bulk RNA-seq data, supporting the reliability of our

benchmark SNPs.

Genetic variants can be classified into homozygous

and heterozygous variants, both of which could provide

valuable insights on gene function and could cause

pathogenic phenotypes. However, the heterozygous vari-

ants might be inconsistent between Exome-seq and

RNA-seq data, due to either the lack of sensitivities of

the variant-calling methods or the widespread allele-

specific expression [36]. Therefore, we mainly focused

on homozygous SNPs for benchmarking, unless expli-

citly stated in certain parts.

We used STAR, which was recommended in the

GATK pipeline, to align reads from scRNA-seq data.

Then, we used the seven variant detection tools to iden-

tify SNVs without filtering SNPs and calculated the true-

positive rates (TPRs) as proportions of detected variants

among the number of benchmark bulk SNPs with a

minimal depth. We found that the TPRs were highly

dependent on the minimal read depths. The overall sen-

sitivity in median was below 8%; however, SAMtools,

FreeBayes, Strelka2, CTAT, and GATK detected more

than 95% SNPs in median when read depths were > 2

(Fig. 1a). For most of the tools, the TPRs could reach

plateaus with more than two reads, but VarScan2

needed more reads to generate confident results. In gen-

eral, SAMtools showed the highest sensitivity while

MuTect2 and VarScan2 showed lower sensitivity (me-

dian values of 82.6% and 63.4%, respectively, with > 2

reads). When restricting to high-confident coding regions,

the TPRs were generally higher, but when read depths

were increased, they became close to TPRs in whole gen-

ome (Additional file 2: Figure S1a). This suggests that sen-

sitivity was associated with genomic contexts, partly

attributed to different coverages. Moreover, most variant

detection tools could achieve high sensitivity in scRNA-

seq data with sufficient read depths.

When analyzing both heterozygous and homozygous

SNPs, we found that the overall TPRs decreased as expected

due to probably fewer alternative reads. Notably, the relative

orders of TPRs for different tools were similar as those

based on homozygous SNPs (Additional file 2: Figure S1b).

Synthetic spike-in sequences, which are designed as a

standard set of exogenous RNA controls by External

RNA Controls Consortium (ERCC), were added into our

single-cell libraries before the reverse transcription, and

thus, the resulting ERCC variants could serve as negative

controls. Our results showed that most of the variant-

calling tools, except for MuTect2, identified a median
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level of less than 0.055% noise variants in the ERCC

negative control sequences (Fig. 1b). Notably, VarScan2

identified the fewest ERCC variants, which was expected

considering its low sensitivity. Importantly, the averaged

read depths of ERCC are much higher than those of

RNA reads, which could lead to potential biases when

extending the ERCC-based conclusions to real reads

(Additional file 2: Figure S1c).

Sequence alignment is an important step in processing

short-read data, and unsuitable alignment could dampen

the reliable detection of variations. There are several dif-

ferent aligners developed for effective alignment of se-

quencing data [32], but their performances vary. It is

therefore important to assess the capability of individual

aligner in terms of performance and accuracy. To com-

pare the impact of aligners on SNV detection, we evalu-

ated STAR and GSNAP, which are commonly used for

scRNA-seq data and reported to be reliable general-

purpose aligners [32]. We found that the overall TPRs

were higher for STAR than GSNAP, especially with low

read depths (Fig. 1c, d, Additional file 2: Figure S1d).

When reaching plateaus with sufficient read depths, the

TPRs for STAR and GSNAP became close. Accordingly,

fewer ERCC variants were identified with the GSNAP

aligner compared with those identified with the STAR

aligner for each variant caller (Fig. 1b).

To make a fair comparison for different tools, we fur-

ther investigated how the performances of the methods

varied based on their key parameters (Additional file 3). For

MuTect2, we adjusted the key parameters of log-odds (LOD)

threshold (θT) and found that both the sensitivities and the

false discovery rates (FDRs) would decrease with higher

LOD thresholds. In addition, when the thresholds were re-

duced to 0, the performance became worse than those with

default settings (Additional file 2: Figure S2a, b). For the

GATK Best Practices Pipeline, the FDRs would change ac-

cording to the LOD thresholds, while the sensitivities would

not be influenced as much (Additional file 2: Figure S2c, d).

We have also adjusted the parameters of VarScan2 and

found that both the sensitivities and the FDRs would increase

with the adjusted parameters (Additional file 2: Figure S2e, f).

Generally, we observed the precision-recall trade-offs. In

brief, adjusting parameters were important for SNV-calling

tools to achieve best performance, and users should choose

the most suitable parameters according to the preference of

sensitivities or specificities.

Evaluation based on simulated data in high-confidence

regions

Simulation is a compelling approach for benchmarking

analysis, as the ground truth is known from the process

of generating the data, which enables the evaluation of

properties of different methods. We thus randomly in-

troduced 50,000 SNVs into the high-confident protein-

coding regions of the hg19 reference genome, which rep-

resents an ideal genome context, and then compared the

Fig. 1 The performance measurements of variant-calling tools in real data. a Boxplots showing the TPRs according to the minimal read depths at

SNP loci using different variant-calling methods in genome. b Boxplots showing the percentages of called variants in ERCC spike-in sequences

using two competing aligners. c Boxplots showing the TPRs using two competing aligners. d Performance curves showing the median TPRs

according to the minimal read depths at SNP loci using two competing aligners and different variant calling methods
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called variants of different tools with the expected SNVs

(Fig. 2a). The TPRs were calculated as proportions of de-

tections among all expected loci, and the FDRs were de-

fined as proportions of false positives among all detected

variants. We recapitulated our results in real datasets

that the sensitivity was greatly impacted by read depths

and became stable when the minimal read depths were

larger than 2, except for VarScan2 (Fig. 2b). Specifically,

the median sensitivities for SAMtools, FreeBayes, and

Strelka2 reached > 99% with no less than 10 supporting

reads, and most tools reached > 92% except for

MuTect2. As for the FDRs, the median values were ≤

0.2% for all tools except for MuTect2, which exhibited a

maximal FDR of 2.4% (Fig. 2c). VarScan2 had the high-

est specificity, followed by Strelka2 and FreeBayes. The

GATK-based tool, CTAT, dramatically improved the

specificity with no loss of sensitivity compared with

GATK. Regarding the F-scores with at least 10 reads,

Fig. 2 The performance measurements of different variant-calling tools in high-confident coding regions for simulated data. a The flowchart

showing the simulation procedure of inserting variants into the reference genome and performance assessments. b, c Performance curves

showing the TPRs (b) and FDRs (c) according to the minimal read depths at inserted SNV loci in high-confident coding regions. d Boxplots

showing F-scores of different tools with read depths ≥ 10. e The flowchart showing the simulation procedure based on RSEM. f, g Performance

curves showing the TPRs (f) and FDRs (g) according to the minimal read depths at inserted SNV loci in high-confident coding regions using

RSEM simulation
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FreeBayes, SAMtools, and Strelka2 performed the best

with F-scores > 0.99 in high-confident coding regions

(Fig. 2d). Notably, the overall TPRs calculated based on

real data and simulations for each cell were highly corre-

lated (Pearson’s correlation coefficient = 0.958), suggest-

ing the similar performances of SNV-calling tools for

the identification of germline SNPs and somatic SNVs in

one-sample scRNA-seq analysis.

To further validate our results, we used another simulation

method based on RSEM (RNA-Seq by Expectation

Maximization) [35]. RSEM, commonly used for RNA-Seq

transcript quantification, utilizes a generative model and ex-

pectation maximization to estimate isoform expression and

is capable of simulating RNA-Seq data based on parameters

learned from the real data. We used RSEM and genome ref-

erence with spike-in mutations to generate simulated

scRNA-seq data with known SNVs, and then compared the

spike-in mutations and called variants using the hg19 gen-

ome reference (Fig. 2e). We found that the performances of

variant callers were highly correlated to those from the first

simulation method (Pearson’s correlation coefficient = 0.98

for TPRs and 0.89 for FDRs). The TPRs were quite similar

while the FDRs were considerably higher, especially for

SAMtools with low read depths (Fig. 2f, g). To investigate

the cause of the elevated FDRs, we applied the filter of qual-

ity> 20 for SAMtools and found that the FDRs were signifi-

cantly reduced with similar TPRs. Therefore, low sequencing

quality largely influenced the specificity of SAMtools, espe-

cially with low read depths. The filter procedure is therefore

highly recommended when with low base qualities. Since the

first simulation method used real sequencing data, which

represent the real distribution of base quality, we applied the

first simulation method in the subsequent sections.

Assessment of the impact of genomic contexts on calling

performance

The genomic contexts could have a great impact on

SNV detection for DNA sequencing, as reported by

Krusche et al. [37]. We thus used the same classification

of genomic regions to investigate the performances of

variant-calling methods in different genomic contexts

and performed simulations (Fig. 2a). Notably, for regions

with high GC content, high sequence identity, or low

mappability, the sensitivities were significantly lower

than those for high-confidence regions and the variance

of TPRs were higher (Fig. 3a, Additional file 2: Figure

Fig. 3 The performance measurements of variant-calling tools in different genomic contexts of simulated data. a Boxplots showing the TPRs with

minimal read depths ≥ 3 at inserted SNV loci in different genomic contexts. b Scatter plots showing the log-transformed FDRs with minimal read

depths ≥ 3 at inserted SNV loci. The black lines represent the log-transformed median values of FDRs. c Scatter plots showing the precision and

recall in different minimal read depth thresholds for high-identity regions. d Boxplots showing the F-scores with minimal read depths ≥ 3 at

inserted SNV loci in different genomic contexts
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S3). The order of sensitivities for different tools was

similar to that achieved in the high-confident coding

regions. SAMtools, FreeBayes, and Strelka2 were the

most sensitive tools to different genomic contexts. On

the other hand, the FDRs were generally low but

higher for the high-identity regions (Fig. 3b, c, Add-

itional file 2: Figure S4). MuTect2 exhibited low ac-

curacy. SAMtools performed generally well but were

error-prone in high-identity regions (median FDR =

33.6%). Notably, FreeBayes and Strelka2 performed

well with relatively high F-scores in different genome

contexts (Fig. 3d). In summary, in different genomic

contexts, FreeBayes and Strelka2 outperformed other

tools in both sensitivities and specificities. SAMtools

showed high sensitivities but low specificities espe-

cially in high-identity regions.

Assessment of the impact of functional regions on calling

performance

Next, we restricted our simulations to high-confident

regions and investigated the performances of different

tools for calling SNVs in exons, coding regions, and

introns, as there are still moderate RNA-seq cover-

ages for the intronic regions (Fig. 2a). Although the

overall TPRs were much lower for SNVs called in in-

trons than those in exons or in coding regions (Add-

itional file 2: Figure S5a), they become fairly close

when restricting minimal read depths to be > 2

(Fig. 4a, Additional file 2: Figure S5b). It suggests that

the differences in overall TPRs are mainly because of

the lower coverages in introns. Specifically, SAMtools,

FreeBayes, and Strelka2 showed the highest sensitiv-

ities in all tested functional regions. In contrast, the

FDRs did not show relevance to read depths in either

introns or coding regions (Figs. 2c and 4b). Median

precisions were generally high (> 99%) in introns ex-

cept for SAMtools (96.4%) and MuTect2 (79.5%)

(Fig. 4b, c, Additional file 2: Figure S5). The median

F-scores in introns with > 2 reads were above 0.9 for

the tools except for MuTect2 and VarScan2 (Fig. 4d).

Notably, FreeBayes showed the highest F-score (0.997

in median) in introns with > 2 reads, followed by

Strelka2 (median F-score = 0.981). Therefore, Free-

Bayes and Strelka2 showed superior performances in

different functional regions. SAMtools showed highest

sensitivity but with low precision in introns (Fig. 4a,

c).

Assessment of the impact of variant allele frequencies on

calling performance

In many cases, the variants are heterozygous and both

alleles are expressed. We thus investigated the potential

influences of variant allele frequencies (VAFs) on the de-

tection performance. We used the BAMSurgeon tool

[38] to insert random mutations into the mapped BAM

file with different allelic ratios (Fig. 5a). To control the

impact of genomic contexts, we restricted all inserted

mutations to high-confident coding regions. When re-

quiring the total read depths to be ≥ 10, we observed in-

creasing F-scores with higher VAFs (Fig. 5b). SAMtools

showed superior performance especially when VAF was

low. With the increase of allele frequencies, the perfor-

mances of different tools became more similar, among

which SAMtools and Strelka2 were the best. VarScan2 is

the most sensitive tool to VAF, which is concordant to

our previous results of its sensitivity to read depths. Re-

garding the TPRs (Fig. 5c), SAMtools showed the high-

est sensitivity with a median value of 76.6% for VAF of

25%, 90.3% for VAF of 50%, and 92.6% for VAF of 75%.

Notably, FreeBayes showed dramatical decrease of TPRs

with low VAFs. As for the precision, the median of FDRs

was < 0.5% for all tools except for MuTect2 (Fig. 5d).

Furthermore, we controlled the variant allele read

depths to be ≥ 10, a situation in which all of the 7 tools

could reach plateaus according to our previous simula-

tion and real data analyses. Indeed, increasing F-scores

and sensitivities were observed with elevated VAFs

(Fig. 5e, f), while FDRs remained low (< 0.5% in median

except for MuTect2) at different VAFs for most tools

(Fig. 5g). Notably, Strelka2 and SAMtools outperformed

other tools regarding F-scores, especially when the VAF

was particularly low.

Characteristics of SNVs identified from scRNA-seq data

To characterize the features of SNVs identified from

scRNA-seq data, we performed further comparative ana-

lyses. We observed substantial sharing of SNVs across

multiple cells and also observed non-overlapping distri-

bution of SNVs across cells, suggesting unobserved tran-

scripts or possible heterogeneity among cancerous cells

(Additional file 2: Figure S6a–c). In addition, we also

compared the number of identified SNVs for all se-

quenced CD45− cells and found that for all variant-

calling methods except for VarScan2, the numbers of

SNVs in malignant cells were much higher than those in

epithelial cells or fibroblasts (Additional file 2: Figure

S6d). The difference might be due to the low sensitivities

of VarScan2 with low read depths, for copy number vari-

ations, or nonsense-mediated mRNA decay in malignant

cells might cause a large number of SNVs to be lowly

expressed (Additional file 2: Figure S6e). Furthermore,

we found that the proportions of COSMIC mutations in

malignant cells were much higher than those in non-

malignant cells for all tested tools except for MuTect2

(Additional file 2: Figure S6f).

To delineate the capability of subpopulation identifica-

tion of the single-cell SNV profiles, we used the Barnes-

Hut t-Distributed Stochastic Neighbor Embedding (t-
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SNE) for dimensionality reduction and performed K-

means clustering on the SNV profiles of the 70 malig-

nant cells. The results showed that 70 cells were gener-

ally clustered into 2 subpopulations, coordinating to the

patient origins. Most tools except for SAMtools could

achieve better performances than the clustering result

based on gene expression (Additional file 2: Figure S7),

suggesting that SNVs could serve as important resource

for subpopulation identification. Specifically, VarScan2

achieved the best clustering result (average silhouette

width, 0.76) while SAMtools showed the worst (average

silhouette width, 0.38). Notably, the clustering methods

could be complex and more detailed investigation was

needed for further in-depth characterization.

Performance evaluation of variant callers in different

datasets

To assess the robustness of our benchmark across differ-

ent datasets, we performed further analysis using

scRNA-seq data collected from a patient with hepatocel-

lular carcinoma, as published by Wang et al. [39]. We

repeated the aforementioned simulation process (Fig. 2a)

on the 77 single cells sequenced by SMART-seq2 and

found consistent results with those generated from the 2

colorectal cancer patients. Specifically, SAMtools,

Strelka2, and FreeBayes showed the highest median sen-

sitivities of > 99% with no less than 10 reads in high-

confidence coding regions (Fig. 6a). The FDRs of Free-

Bayes increased while the FDRs of VarScan2, Strelka2,

Fig. 4 The performance measurements of variant-calling tools in different functional genomic regions of simulated data. a Boxplots showing the

TPRs with minimal read depths ≥ 3 at inserted SNV loci in high-confidence regions. b Boxplots showing the false-positive rates according to the

minimal read depths at inserted SNV loci in introns. c The scatter plot showing the log-transformed FDRs with minimal read depths ≥ 3 at

inserted SNV loci in high-confidence regions. The black lines represent the log-transformed median values of FDRs. The criteria of RefSeq, which

we used to annotate coding regions, are more stringent than UCSC, which we annotate exons. Therefore, the performances are slightly different

in exons and coding regions. d Boxplots showing the F-scores with minimal read depths ≥ 3 at inserted SNV loci in high-confidence regions
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CTAT, SAMtools, and GATK remained stable and less

than 0.2% (Fig. 6b). In addition, the performances of

different variant callers in different genomic regions

were also consistent with those for colorectal tumors

(Additional file 2: Figures S8 and S9).

10x Genomics Chromium (10X), a widely used single-

cell expression profiling platform, allows for the simul-

taneous transcriptome quantification of a large number

of single cells. In spite of the skewness of poly-G enrich-

ment [40] and low coverages, which might limit the

application for detecting SNVs, 10X-derived scRNA-seq

data could be useful for the investigation of variant-

calling performances. Thus, we used different tools to

call variants on scRNA-seq data of 78 cells sequenced by

10X in the Wang et al. [39] dataset. As expected, the

numbers of detected SNVs were much lower for 10X

compared with those for SMART-seq2, despite the same

tissue origin of scRNA-seq data (Fig. 6c). We further

performed simulation on the 10X dataset and found that

the TPRs increased with more supporting reads, which

Fig. 5 The performance measurements of variant-calling tools with different variant allele frequencies in simulated data. a The flowchart showing

the simulation procedure of inserting random variants to mapped BAM file and the performance assessments based on simulation. b–d Boxplots

showing the F-scores (b), TPRs (c), and FDRs (d) with minimal read depths ≥ 10 at SNP loci in high-confidence coding regions. e–g Boxplots

showing the F-scores (e), TPRs (f), and FDRs (g) with minimal supporting reads for the variant ≥ 10 in high-confidence coding regions
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would exceed 90% for most variant callers when reaching

stable (Fig. 6d). As for the performances of different SNV-

calling tools on 10X data, FreeBayes showed the highest

sensitivity, while the precision (with a median value of

99.48%) was lower than other tools (Fig. 6e). In compari-

son, other tools detected few false SNVs, showing clear

precision-recall trade-offs. Our results showed that the

overall sensitivities of SNV detection in 10X scRNA-seq

data were relatively low, potentially due to the low cover-

ages in vast regions of genome. Notably, the sensitivities

increase with high specificities when the supporting read

depths increase in high-confidence coding regions.

Discussion
Single-cell sequencing technologies have profoundly facili-

tated the understanding of cellular dynamics and have

redefined concepts about lineage commitment and devel-

opment [41]. SNVs could be stably propagated to daughter

cells but absent in distantly related cells and thus could

serve as intrinsic cellular identifiers [4, 42]. Although

scWGS or scWES could be utilized to detect SNVs, such

de novo sequencing at single-cell level could be prohibi-

tively expensive and have substantial error rates related to

amplification methods, which might hamper the decipher-

ing of cellular dynamics at large scale. Recently, with the

innovations of scRNA-seq technology, single-cell transcrip-

tome data have seen explosive growth, forming the poten-

tial rich resources for cellular dynamics exploration.

Although scRNA-seq has been widely used to characterize

the heterogeneity of cell populations, merely measuring

gene expression is not enough to evaluate the heterogen-

eity and lineage relationship of diverse cell types. While

gene expression profiling could be subjected to confound-

ing factors and biases that derived from batch effects, cell

capture efficiencies, and experimental protocols [43],

genetic alterations are associated with such biases in a

Fig. 6 The performance measurements of variant-calling tools in different datasets. a, b Performance curves showing the median TPRs (a) and

FDRs (b) according to the minimal read depths at SNP loci in high-confident coding regions for the SMART-seq2 hepatocellular carcinoma

dataset. c Boxplots showing the log-transformed counts of detected SNVs using different sequencing platforms. d, e Performance curves showing

the median TPRs (d) and FDRs (e) according to the minimal read depths at SNP loci in high-confident coding regions for the 10X hepatocellular

carcinoma dataset
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different manner. Indeed, several studies have explored

SNVs in scRNA-seq data to decipher the heterogeneity of

cell populations and to track cell lineages retrospectively

[12, 17, 44]. Nevertheless, the reliability of such analyses

needs to be further evaluated, due to the utility of SNVs

detecting tools with different performances, most of which

are developed for bulk sequencing data.

Here, we systematically analyzed and compared seven

SNV-calling methods on scRNA-seq data. We found

that the detection performances of these tools highly de-

pend on the read depths, genomic contexts, functional

regions, and variant allele frequencies. When using

SMART-seq2, the median sensitivities are above 90% for

most tools for homozygous SNVs in high-confidence

exons with sufficient read depths (more than 10). How-

ever, the sensitivities would decrease when detecting

SNVs in regions with high GC content, high identity, or

low mappability for all analyzed tools. In addition, low

supporting reads and low variant ratios could also re-

duce the sensitivities. Low read depths could be a result

of biologically low expressions or technical bias like

dropout events from scRNA-seq. Our results suggest

that the improvement of sequencing methods to elimin-

ate dropout events may greatly improve the variant de-

tection effect. The FDRs were generally low (< 1%),

which were less impacted by read depths or VAFs com-

pared with sensitivity. Notably, SAMtools, FreeBayes,

and Strelka2 achieved the best performance in most situ-

ations, among which SAMtools exhibited higher sensi-

tivity but lower specificity, especially when detecting

SNVs located in high-identity regions or introns. Free-

Bayes showed high sensitivities with high VAFs, while

the sensitivities decreased with low VAFs, and the speci-

ficities were not stable among different datasets. Strelka2

showed stable TPRs and FDRs in different genomic re-

gions and different datasets, while its sensitivities with

low read depths were inferior to SAMtools and Free-

Bayes. In contrast, MuTect2 did not perform well in

most cases, which might be because of the lack of

matched normal samples. VarScan2 showed the highest

specificities, but it needed more supporting reads to gen-

erate confident results. Overall, our results highlight the

importance of stratification, for example, by genomic

contexts or functional regions, in variant calling for

scRNA-seq data, which should be noticed in future

benchmarking studies and variant-calling applications.

As for the usability, SAMtools, CTAT, and Strelka2

have advantages. CTAT harbors a built-in aligner and

thus has the ability to handle unmapped FASTQ files.

Moreover, the alternative parameters enable the flexible

usage of CTAT. Besides its superior performances across

different genomic regions in our analysis, SAMtools pro-

vides clear usage instructions and is user-friendly. In con-

trast, although pre-processing procedures like sorting and

duplicate marking are recommended by FreeBayes, these

procedures are not built in the software, thus increasing

the difficulty to use. Considering both the performance

and usability, we summarize a guideline for the choices of

suitable SNV detection tools in different situations when

calling variants from scRNA-seq data (Fig. 7). This could

serve as a useful reference and shed light on the direction

to improving SNV calling in the future.

One possible limitation of our study is that only two

aligners, STAR and GSNAP, were compared, as our study

mainly focused on the comparison of different variant cal-

lers. STAR showed higher sensitivities than GSNAP. More

aligners need to be compared further to achieve better

performance of variant calling. We showed that parameter

adjustment as well as post-filtering could impact the sensi-

tivity or accuracy of variant detection. Detailed compari-

son of parameter adjustment or post-filtering procedures

will further provide insights into the performances of

different variant callers in scRNA-seq data. It should also

be noticed that the FDR estimations from simulations do

not include possible errors introduced during reverse

transcription or PCR, although the percentages of variants

called in the ERCC spike-in sequences took them into

account. Moreover, we performed one-sample analysis to

identify SNVs. In this case, we obtained similar results in

identifying germline SNPs or somatic SNVs and thus gave

same recommendations. However, it could be a different

story for analysis with match normal samples and the dif-

ferences of identifying germline SNPs or somatic SNVs

should be noted.

The main limitation of SNV-calling methods in

scRNA-seq is the low sensitivity when detecting variants

with low read depths or variants with low VAFs in in-

trons or other specific genome contexts. This is espe-

cially true for 10x Genomics data. Although identifying

SNVs using 10X data could not profile the global land-

scape of variants, it could still be useful in certain condi-

tions such as lineage tracing. Our analyses showed that

there is still room for improvement of the SNV detec-

tion from scRNA-seq. On the one hand, the sensitivities

are in urgent need to be enhanced; on the other hand,

the specificities should be ensured. Due to the great im-

portance of calling SNVs from scRNA-seq data, methods

with better performance warrant further investigation.

Conclusions
Based on a comprehensive benchmark for the applications

of seven variant detection tools in scRNA-seq data, we rec-

ommend SAMtools, FreeBayes, Strelka2, or CTAT in dif-

ferent conditions to optimally detect SNVs in scRNA-seq

data with low read depths, with high variant allele frequen-

cies, and with sufficient supporting reads, or to process

FASTQ files, respectively (Fig. 7). We also illustrate the sig-

nificant influences of read depths, variant allele frequencies,
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and stratification of genomic regions to the sensitivities of

SNV detection in scRNA-seq data. Our results not only

provide a guideline for variant detection, but also highlight

the necessity of improving detection sensitivity in compre-

hensive conditions when developing variant-calling

methods for scRNA-seq.

Methods
Sample collection and single-cell RNA-seq

Two patients were enrolled and pathologically diagnosed

with colorectal cancer at Peking University People’s Hos-

pital. This study was approved by the Research and Ethical

Committee of Peking University People’s Hospital and

complied with all relevant ethical regulations. Written in-

formed consent was provided by these patients. Single

cells were collected and sorted from freshly dissected tu-

mors as we described previously [45]. Briefly, tumors were

cut into 1mm3 pieces and enzymatically digested with

MACS Tumor Dissociation Kit (Miltenyi Biotec), accord-

ing to the manufacturer’s instruction. The dissociated cells

were passed through a 70-μm Cell-Strainer (BD) and cen-

trifuged. After removing the supernatant and lysing the

red blood cell (Solarbio), the pelleted cells were re-

suspended and stained with antibodies against CD45

(anti-human CD45, HI30, eBioscience) for FACS sorting,

performed on a BD Aria III instrument. After FACS ana-

lysis, we conducted single-cell transcriptome amplifica-

tions according to the SMART-seq2 protocol as we

described previously [45, 46]. We added the External RNA

Controls Consortium (ERCC, Ambion; 1: 4,000,000) as ex-

ogenous spike-in control before the reverse transcription.

Multiplex (384-plex) libraries were constructed and ampli-

fied using the TruePrep DNA Library Prep Kit V2 for Illu-

mina (Vazyme Biotech). After purification and quality

assessment by fragment analyzer, the pooled libraries were

analyzed by an Illumina Hiseq 4000 sequencer with 150-

bp paired-end reads.

Bulk DNA and RNA isolation and sequencing

Genomic DNA isolation and bulk DNA sequencing were

performed as we described in our previous work [45].

Briefly, fresh tumors were surgically resected from these

two patients. Each tissue was cut into two pieces, with

one for further single-cell collection and the other for

bulk sequencing. This procedure could maximally en-

sure that the single-cell and bulk sequencing data were

generated from a close region of the tissue. Genomic

DNA were extracted using the QIAamp DNA Mini Kit

(QIAGEN). Exon libraries were constructed using the

SureSelectXT Human All Exon V5 capture library (Agi-

lent). Samples were sequenced on the Illumina Hiseq

4000 sequencer with 150-bp paired-end reads.

For bulk RNA analysis, small fragments of tumor tissues

were first stored in RNAlater RNA stabilization reagent

(QIAGEN) after surgical resection and kept on ice to

avoid RNA degradation. RNA of tumor samples were ex-

tracted using the RNeasy Mini Kit (QIAGEN) according

to the manufacturer’s specification. Libraries were con-

structed using NEBNext Poly (A) mRNA Magnetic Isola-

tion Module kit (NEB) and NEBNext Ultra RNA Library

Prep Kit for Illumina Paired-end Multiplexed Sequencing

Library (NEB). Samples were sequenced on the Illumina

Hiseq 4000 sequencer with 150-bp paired-end reads.

Processing of single-cell RNA-seq data for colorectal

cancer datasets

The three-step low-quality read-pair filtering was as de-

scribed in our previous work [45]. Briefly, we filtered the

Fig. 7 The flowchart demonstrating the recommending process for the choices of suitable SNV-calling methods in scRNA-seq
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low-quality reads when (1) “N” bases accounting for 10%

read length, or (2) bases with quality < 5 account for

50% read length, or (3) containing adapter sequences.

The remaining paired-end reads were aligned to the

hg19 human genome reference downloaded from UCSC

using STAR (2.7.0f_0328) and GSNAP (2011-03-28.v3).

We used the R package tximport (version 1.9.12) to

summarize the transcript-level estimated counts into the

matrix of gene-level counts.

Identification of malignant cells

To distinguish malignant cells from non-malignant cells

in CD45− cells generated by SMART-seq2, we used t-

SNE for dimensionality reduction and performed K-

means clustering on all the sequenced CD45− cells. As a

result, cells were partitioned into three clusters (Add-

itional file 2: Figure S10a), including fibroblasts, normal

epithelial, and malignant cells, each with unique signa-

ture genes. Fibroblasts highly expressed classical markers

of ENG, COL1A2, and ACTA2 (Additional file 2: Figure

S10b), while the remaining two clusters were composed

of epithelial cells, characterized by the high expression

of the Epithelial Cell Adhesion Molecule (EPCAM). Not-

ably, one of the two clusters was characterized by spe-

cific expression of cell cycle-related genes including

MKI67 and CDK1, as well as cancer-associated genes in-

cluding S100A14, MUC13, and KRT7, and thus was de-

fined as malignant cells (Additional file 2: Figure S10b).

In addition, the malignant cell cluster harbored much

higher number of expressed genes (Additional file 2: Fig-

ure S10c) and showed large-scale chromosomal copy-

number variations inferred based on the transcriptome

data (Additional file 2: Figure S10d), further confirming

the malignant phenotype of this cell cluster.

Bulk Exome-seq data and RNA-seq data processing

We filtered out low-quality sequencing reads with the

same procedure as scRNA-seq data processing. Then,

we aligned reads using the BWA-PICARD pipeline and

called SNVs using VarScan2 on bulk Exome-seq data.

For bulk RNA-seq data, we aligned reads with STAR

and called SNVs using SAMtools.

Variant/mutation-calling programs

GATK (4.1.0.0), FreeBayes, SAMtools/BCFtools

(bcftools-1.9), Strelka2 (2.9.10.centos6_x86_64), Mutect2

(gatk-4.0.4.0), CTAT, and VarScan2 (v2.4.3) were evalu-

ated for their performances of variant detection in

scRNA-seq samples. We used the default settings to

generate a fair comparison, except for the specific part

of discussing parameter adjustment. The detailed param-

eters and procedures were provided in Additional file 3.

Genomic region stratification

We used Krusche’s definition of region stratification. In

brief, the high GC regions were those with > 85% GC add-

ing 50 bp on each side. The repetitive regions were those

with > 95% identity adding 5 bp slop. The low mappability

regions were generated based on GEM mappability tool,

and regions considered difficult to map by amplab SiRen.

The high-confidence protein-coding regions were gener-

ated by intersection of the Refseq protein-coding regions

and GIAB pilot sample NA12878/HG0016 high-

confidence regions identified by the Global Alliance for

Genomics and Health Benchmarking Team (GA4GH)

[37]. We downloaded the bed files in https://github.com/

ga4gh/benchmarking-tools. The hg19 introns and exons

were downloaded using USCS table browser.

Evaluation based on bulk sequencing

Although we were not able to evaluate the performance

of somatic SNV identification based on bulk sequencing

data, because of the heterogeneity for tumors, germline

SNPs identified with bulk Exome-seq are expected to

exist in each cancer cell. Thus, we calculated TPRs for

each cancer cell as the proportion of identified SNPs

using scRNA-seq in the number of SNPs detected using

bulk Exome-seq.

Simulation

First, we called variants with one of the competing tools

using the hg19 reference. Then, we inserted 50,000 ran-

dom SNVs into the hg19 reference, restricting them to

the targeted regions and avoiding 100 bp around the ori-

ginally called SNVs for the sample. Then, we called

SNVs using the simulated reference, filtering those iden-

tified as SNVs using original reference, and compared

the derived SNVs with the inserted random variants.

In the RSEM simulation, we first called isoform level

expression and calculated the parameters using “rsem-

calculate-expression” command. Then, we inserted 50,

000 random SNVs into the hg19 reference as above. We

simulated FASTQ files with the simulated reference

using “rsem-simulate-reads” command, producing 2,500,

000 reads per sample. Then, we called SNVs using the

original hg19 reference and compared the derived SNVs

with the inserted random variants.

To modify the variant allele frequencies, we used

BAMSurgeon [38] to insert random variants with VAFs

0.25, 0.5, and 0.75, to the original BAM file. Then, we

subtracted variants called with original BAM file from

variants called with simulated BAM file and compared

the resulting calls with the inserted random variants.

Variants inserted in each cell were different in simula-

tion process, representing the somatic SNVs.

We calculated TPRs as the proportion of identified

random variants in all the inserted variants for each cell.

Liu et al. Genome Biology          (2019) 20:242 Page 13 of 15

https://github.com/ga4gh/benchmarking-tools
https://github.com/ga4gh/benchmarking-tools


We calculated FDRs as the proportion of wrong variants

among all called variants.

Variant comparison

We used the RTG Tool vcfeval to compare SNVs with

the parameters “--squash-ploidy.”

Defining sensitivity and specificity

We defined the number of inserted mutations as true

and the detected SNVs as positive.

Sensitivity (true-positive rate, recall) = detected

inserted mutations/number of inserted mutations

Specificity (precision) = detected inserted mutations /

number of detected mutations

False discovery rate = 1 − detected inserted mutations /

number of detected mutations

F-score = 2 × Specificity × Sensitivity/(Specificity +

Sensitivity)

Processing of scRNA-seq data for liver cancer datasets

For cells sequenced using SMART-seq2, genes expressed

(TPM > 0) in less than 10 cells were filtered out. Cells

were removed according to the following criteria: (1)

cells that had fewer than 800 genes and (2) cells that

had over 50% reads mapped to mitochondrial genes. We

used GSNAP to align reads.

For cells sequenced using 10X, the alignment was per-

formed by CellRanger (version 2.2) as described by

Wang et al. [39].
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