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Candidate gene and genome-wide association studies (GWAS)  

have identified genetic variants that modulate risk for  

human disease; many of these associations require further 

study to replicate the results. Here we report the first  

large-scale application of the phenome-wide association  

study (PheWAS) paradigm within electronic medical records 

(EMRs), an unbiased approach to replication and discovery 

that interrogates relationships between targeted genotypes  

and multiple phenotypes. We scanned for associations  

between 3,144 single-nucleotide polymorphisms (previously 

implicated by GWAS as mediators of human traits) and  

1,358 EMR-derived phenotypes in 13,835 individuals of 

European ancestry. This PheWAS replicated 66% (51/77) of 

sufficiently powered prior GWAS associations and revealed  

63 potentially pleiotropic associations with P < 4.6 × 10−6 

(false discovery rate < 0.1); the strongest of these novel 

associations were replicated in an independent cohort  

(n = 7,406). These findings validate PheWAS as a tool to  

allow unbiased interrogation across multiple phenotypes  

in EMR-based cohorts and to enhance analysis of the  

genomic basis of human disease.

In recent years, GWAS have provided a powerful systematic method 

to investigate the impact of common genomic variations on human 

pathophysiology. Since 2005, more than 1,500 GWAS have identi-

fied genomic variants associated with nearly 250 diseases and traits1;  

a number of the associations had been identified previously by 

focused genetic studies. These are recorded in the National Human 

Genome Research Institute’s (NHGRI) web-accessible GWAS cata-

log (“NHGRI Catalog”)1 (Catalog of Published Genome-Wide 

Association Studies, http://www.genome.gov/26525384). The majority  

of GWAS investigate a single disease or trait; the accrual of such a 

large number of single variant–phenotype associations has led to the 

serendipitous identification of single loci associated with multiple 

diseases, or pleiotropy. Notable examples include variants at 9p21.3, 

which were associated initially with early myocardial infarction2 and 

subsequently with intracranial aneurysm and abdominal aortic aneu-

rysms3; variants in the human leukocyte antigen (HLA) region and 

IL23R, which were associated initially with inflammatory bowel dis-

ease4 and subsequently with a variety of other autoimmune diseases5,6; 

and PTPN22 R602W, which was associated initially with lower risk 

of Crohn’s disease and subsequently with a higher risk of rheuma-

toid arthritis and other autoimmune diseases7. A recent analysis  

of the NHGRI catalog noted pleiotropy in 17% of genes and 4.6% of 

single-nucleotide polymorphisms (SNPs) with reported phenotype 

associations in the catalog8.

An alternative and complementary approach to query genotype-

phenotype associations and to detect pleiotropy is the PheWAS. With 

PheWAS, associations between a specific genetic variant and a wide 

range of physiological and/or clinical outcomes and phenotypes can 

be explored either by using algorithms to parse EMR data9 or by 

analyzing data collected in observational cohort studies10. Previous 

small-scale EMR studies have provided initial support for the ability of 

the EMR-based PheWAS to replicate individual genotype-phenotype 

associations and to uncover novel associations11–13. However,  

whether EMR data or PheWAS methods can be used to discover 

genetic associations with a wide range of phenotypes has not been 

systematically studied.

Here, we expanded the PheWAS disease classifications to analyze 

the diverse spectrum of phenotypes in the NHGRI Catalog using 

EMR data and refined the statistical methods over previous pub-

lications9,11–13. We repurposed extant EMR and GWAS data from 

five institutions in the Electronic Medical Records and Genomics 

(eMERGE) Network14. We report the results of the largest PheWAS 

to date, involving 3,144 SNPs in the NHGRI Catalog. Our objectives 

were to validate PheWAS as a systematic method to detect pleiotropy 

by replicating known NHGRI Catalog results in EMR-derived data, 

to discover new associations for all available SNPs in the NHGRI 
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catalog at the time of this study and to establish a comprehensive 

catalog of phenotypes associated with these SNPs. Our data highlight 

the value of EMR-based PheWAS as a tool for discovery of genotype- 

phenotype associations.

RESULTS

Genotype selection and population characteristics

As of April 17, 2012, the NHGRI Catalog contained a total of 6,092 

SNPs having 7,486 genomic variant–phenotype associations (includ-

ing potentially similar phenotypes and nonsignificant associations). 

A total of 3,144 of these SNPs were present and passed quality control 

on the Illumina Human660W-Quadv1_A GWAS chip. We studied  

13,835 individuals of European descent who were genotyped at one 

of five different eMERGE sites with EMR-linked DNA biobanks 

(Supplementary Table 1). Demographics and the most common 

diagnoses are presented in Supplementary Table 2. The average age 

was 69.5 years, and 52.6% were female. Subjects had a mean follow-up 

of 15.7 ± 10.3 years. Our algorithm identified 1,358 unique PheWAS 

phenotypes, typically diseases and other clinical traits, from 2,080,550 

unique dates of interaction with the EMR (e.g., admissions, clinic 

visits or laboratory tests). Records of individuals were analyzed for 

replications of existing findings and for new discoveries from the 

EMR-based PheWAS (Supplementary Fig. 1).

PheWAS replication of NHGRI Catalog associations

To prove the utility of EMR-derived phenotypes and the PheWAS 

method, we determined whether PheWAS could replicate known 

genomic variant–disease associations already listed in the NHGRI 

Catalog. Using the commonly accepted threshold of genome-wide 

significance, P ≤ 5 × 10−8, we selected NHGRI Catalog associations as 

candidates for replication. We evaluated 751 SNP-phenotype associa-

tions for 673 SNPs that had been identified in at least one prior GWAS 

using a population of European ancestry (Supplementary Fig. 1 and 

Supplementary Table 3).

We mapped the NHGRI Catalog phenotypes to 86 unique PheWAS 

phenotypes (Fig. 1 and Supplementary Fig. 2). Considering all NHGRI 

Catalog SNP-phenotype associations, including associations inade-

quately powered (beta < 0.8) in our experiment, PheWAS replicated 

210 out of 751 (28%) prior NHGRI Catalog SNP-phenotype associa-

tions at P < 0.05 with a consistent direction of effect (Supplementary 

Fig. 2). The probability of replicating 210 associations out of 751 

tests by chance, under the null hypothesis, at the α = 0.05 level is 4 ×  

10−94. However, when considering NHGRI Catalog binary traits  

(e.g., diseases) for which an exact match with an adequately powered 

(beta ≥ 0.8) PheWAS phenotype was found, 51 out of 77 (66%) SNP-

phenotype associations were replicated at P < 0.05 (Fig. 1a, binary 

traits). The probability of replicating 51 out of 77 associations by 

chance, under the null hypothesis of no association, at the α = 0.05 

level is 3 × 10−47. Pruning SNPs in high-linkage disequilibrium in our 

population (r2 > 0.9) did not alter the replication rates (47/70, or 67%, 

for adequately powered associations and 200/718, or 28%, for all asso-

ciations). Similarly, exclusion of the 12 adequately powered associa-

tions in the major histocompatibility complex region on chromosome 6  

(all of which were replicated) had only a small effect on the replication 

rate (39/65, or 60%, for adequately powered associations).

The likelihood of our PheWAS replicating an NHGRI Catalog 

association was directly related to the statistical power of the initial 

SNP-phenotype association, as demonstrated by the linear regres-

sion line (Fig. 1b). Other predictors of the likelihood of replication 

included the number of times the SNP-phenotype association has 

been published in the literature (Fig. 1c) and the significance of 

the original SNP-phenotype association (as measured by P-values,  

Fig. 1d). The replication rates among continuous traits associated 

with surrogate PheWAS phenotypes of obesity and musculoskeletal 

diseases were less than other categories of disease (Supplementary  

Table 4). However, the replication rate did not differ appreci-

ably for putative functional SNPs compared to intergenic SNPs 

(Supplementary Table 5). Highly powered associations (beta ≥ 0.8) 

not replicated in our PheWAS were more likely to have been published 

only once, have lower effect sizes or represent phenotypes difficult 

to detect by billing codes (Supplementary Table 6). For example,  

11 of the 26 nonreplicated catalog associations were for specific types 

of diabetes, which can be difficult to accurately distinguish in the EMR 

without use of more complicated, multicomponent algorithms15,16.

Using a reference standard calculated from phenotypes studied in 

the NHGRI Catalog, we found that our PheWAS had an area under the 

receiver operator characteristic curve (ROC) of 0.83 (Supplementary 

Fig. 3). Subsequent review of highly significant false-positive asso-

ciations in the ROC analysis revealed evidence from sources outside 

of the NHGRI Catalog supporting three HLA associations with P < 

10−5 in the PheWAS study: rs660895 and rs3135338 with type 1 dia-

betes17, and rs3135388 with rheumatoid arthritis18. Thus, excluding 

associations that were erroneous likely due to incorrect differentia-

tion between types 1 and 2 diabetes, all PheWAS associations with  

P < 0.0002 in the ROC analysis were true positives.

Table 1 presents replicated associations having a P < 4.6 × 10−6 

(representing a false discovery rate < 0.1); a full list of tested catalog 

associations is presented in Supplementary Table 3. Associations 

replicated by this PheWAS include: Alzheimer’s disease (rs2075650, 

in linkage disequilibrium with APOE, odds ratio (OR) = 2.41,  

P = 5.2 × 10−28); diabetes type 1 (HLA-DQB1, OR = 1.42, P = 2.0 ×  

10−7) and diabetes type 2 (TCF7L2, OR = 1.31, P = 8.3 × 10−16);  

coronary atherosclerosis and acute myocardial infarction (9p21.3 

region, OR = 1.26, P = 1.0 × 10−12 and OR = 1.28, P = 4.0 × 10−8, 

respectively); gout (ABCG2, OR = 1.72, P = 1.0 × 10−12 and SLC2A9, 

OR = 0.67, P = 5.1 × 10−8); nonmelanoma skin cancer (EXOC2, OR =  

1.32, P = 6.0 × 10−9); prostate cancer (8q24.21, OR = 1.61, P = 2.8 × 

10−7); age-related macular degeneration (CFH, OR = 0.51, P = 7.2 × 

10−20 and near C2/CFB, OR = 0.57, P = 4.8 × 10−8); and autoimmune  

diseases such as psoriasis (HLA-C and HCP5) and rheumatoid  

arthritis (HLA-DRB1 and C6orf10), all P < 2 × 10−6 and OR ≥ 1.5.

Among the 751 tested SNP-phenotype associations, there were 175 

NHGRI Catalog SNP associations with continuous traits for which 

we selected a surrogate binary disease or trait in PheWAS (e.g., the 

PheWAS disease “gout” was used as a proxy for the NHGRI Catalog 

SNP association with “serum uric acid levels”); 68 out of 175 (38.9%) 

of these continuous traits were replicated (Fig. 1a, continuous traits). 

Many of the continuous traits reported in the NHGRI Catalog repre-

sent associations found with biomarkers, measurements not typically 

available in the EMR (e.g., Factor VII levels, waist circumference), or 

values difficult to extract from the EMR (e.g., bone mineral density, 

which is usually recorded in narrative text)19,20. For these, PheWAS 

demonstrated associations with clinical diseases related to abnor-

mal values of the measurement, molecule or analyte (Table 1 and 

Supplementary Table 3). One example is HFE rs1800562 (C282Y), 

the most common variant found in hereditary hemochromatosis and 

previously associated with iron levels19; in our PheWAS study this 

variant was associated with iron metabolism disorders (OR = 12.3,  

P = 3.4 × 10−25), including hemochromatosis. Moreover, individuals  

with C282Y were less likely to be diagnosed with iron-deficiency 

anemia, though the P-value was not significant (OR = 0.72, P = 1.5 ×  

10−3). Similarly, variants in TMPRSS6, previously associated with 
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decreased serum iron levels, trended toward an association with a 

risk of iron-deficiency anemia (OR = 1.17, P = 6.2 × 10−4).

Three of the PheWAS phenotypes (hypothyroidism11, Alzheimer’s 

disease/dementia21 and type 2 diabetes15) have been investigated 

previously within eMERGE through disease-specific algorithms that 

used Boolean logic applied to combinations of billing codes, medi-

cations, laboratory values and data extracted using natural language 

processing algorithms and have been validated through comparison 

to manual review of the EMR by at least two reviewers. We com-

pared performance of the automated PheWAS approach, which used 

groupings and exclusions of ICD 9 billing codes exclusively, to the 

eMERGE phenotype algorithms within this set. The replication rate 

for type 2 diabetes was identical for both methods, but PheWAS was 

slightly inferior when attempting to replicate Alzheimer’s-associated 

SNPs (Supplementary Table 7). A comparison with hypothy-

roidism has been published previously, showing similar results for  

both methods11.

Novel associations identified by PheWAS

As mentioned above, in our PheWAS study testing each of the 3,144 

NHGRI Catalog SNPs for association with 1,358 different diseases and 

traits (Supplementary Fig. 1), we also searched for novel associations. 

Using a false discovery rate (FDR)<0.1 (P < 4.6 × 10−6), we detected 

202 associations for 102 SNPs and 87 phenotypes; of these, 63 (31%) 
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were judged to be potentially novel associations and 109 (54%) were 

either replications or associations with phenotypes related to NHGRI 

Catalog associations. Twenty-eight (14%) were known associations 

not reported in the NHGRI Catalog. Two (1.0%) were likely the result 

of erroneous phenotyping (type 2 diabetes patients classified as type 1 

diabetes). A full listing is available in Supplementary Table 8. Unique 

NHGRI Catalog and PheWAS phenotypes associated with these SNPs 

are presented in Figure 2. An interactive catalog of PheWAS results 

is available at http://phewascatalog.org/. Both in the NHGRI Catalog 

and in our PheWAS results, the genomic region with the highest 

concentration of associations with multiple distinct phenotypes was 

6p21.32 in the HLA region; 24 SNPs in this region were associated 

with 15 distinct disease phenotypes in the NHGRI Catalog, and the 

PheWAS analysis yielded associations with 12 distinct phenotypes at 

P < 4.6 × 10−6. Specific new associations and regions of pleiotropy 

are discussed in more detail below. The Q-Q plot of these results 

(Supplementary Fig. 4) revealed that the number of observed asso-

ciations differed from that expected by chance at P-values around  

1 × 10−4, which is not surprising as each SNP studied has at least one 

previously known association from the NHGRI Catalog.

We then analyzed the novel associations while adjusting for known 

NHGRI Catalog phenotypes (where possible; phenotypes such as eye 

color are not present in the EMR) to test whether the novel associations 

were independent of phenotype comorbidities (Supplementary Table 8).  

For example, this analysis revealed that the association between 

“nephritis and nephropathy” with the rs2647044 near HLA-DQB1 is 

likely mediated by the variant’s association with type 1 diabetes.

The strongest novel associations were with skin phenotypes of 

actinic keratosis, seborrheic keratosis and nonmelanoma skin can-

cer (Table 2). IRF4 rs12203592 (Fig. 3a), previously associated with 

hair and eye color, was strongly associated with actinic keratosis  

(OR = 1.69, P = 4.1 × 10−26). Variants in or near SLC45A2, EXOC2, 

HERC2, CDK10 and CDK5RAP1 were also associated with actinic 

keratosis. Associations with nonmelanoma skin cancer were found 

for IRF4 rs12203592 (OR = 1.50, P = 3.8 × 10−17) and TYR rs1847134 

(OR = 1.28, P = 2.6 × 10−10). The SNP rs2853676 within TERT  

(Fig. 3b), previously associated with glioma, was associated with seb-

orrheic keratosis (OR = 0.80, P = 1.6 × 10−7). Oral mucosal leuko-

plakia, a rare phenotype, was also associated with rs2853676, though 

this finding did not reach significance (44 cases, OR = 2.28, P = 1.6 × 

10−4). Of note, rare TERT variants cause dyskeratosis congenita, an 

autosomal dominant condition that results from defective telomere 

maintenance and that causes skin hyperpigmentation, hyperkeratosis 

and leukoplakia22.

Table 1 NHGRI Catalog associations replicated by PheWAS

PheWAS phenotype Cases Region Nearest gene SNP Odds ratio (95% CI) P-value NHGRI Catalog disease(s)

Autoimmune Psoriasis 327 6p21.33 HLA-C rs10484554 1.71 (1.41, 2.08) 6.2E-08 Psoriasis

6p21.33 HCP5 rs2395029 2.38 (1.74, 3.26) 2.0E-08 Psoriasis

Rheumatoid arthritis 398 6p21.32 C6orf10 rs6910071 1.50 (1.27, 1.76) 1.5E-06 Rheumatoid arthritis

6p21.32 HLA-DRB1 rs660895 1.56 (1.33, 1.84) 6.7E-08 Rheumatoid arthritis

Hypothyroidisma 2,042 9q22.33 FOXE1 rs7850258 0.77 (0.71, 0.83) 1.1E-11 Hypothyroidism

Hematologic Iron metabolism disorder 40 6p22.2 SLC17A1 rs17342717 6.84 (4.36, 10.7) 5.3E-17 Serum ferritin

6p22.2 HFE rs1800562 12.3 (7.64, 19.7) 3.4E-25 Serum transferrin

6p22.1 HIST1H2BJ rs13194491 7.80 (4.76, 12.8) 3.8E-16 Serum transferrin

Neoplastic Melanoma 268 16q24.3 MC1R rs4785763 1.52 (1.27, 1.81) 2.8E-06 Melanoma

Nonmelanoma skin cancer 1,931 6p25.3 EXOC2 rs12210050 1.32 (1.20, 1.45) 6.0E-09 Basal cell carcinoma

Prostate cancer 848 8q24.21 Intergenic rs1447295b 1.61 (1.34, 1.92) 2.8E-07 Prostate cancer

Circulatory Myocardial infarction 1,382 9p21.3 CDKN2BAS rs4977574 1.28 (1.17, 1.40) 4.0E-08 Myocardial infarction

Coronary atherosclerosis 3,499 9p21.3 CDKN2BAS rs4977574b 1.26 (1.18, 1.34) 1.0E-12 Coronary heart disease

Atrial fibrillation 1,950 4q25 Intergenic rs2200733 1.52 (1.34, 1.72) 1.5E-10 Atrial fibrillation

Endocrine /  

metabolic

Type 1 diabetes 615 6p21.32 HLA-DQB1 rs2647044 1.42 (1.24, 1.61) 2.0E-07 Type 1 diabetes

Type 2 diabetes 3,122 10q25.2 TCF7L2 rs7903146b 1.31 (1.23, 1.40) 8.3E-16 Type 2 diabetes

Hypercholesterolemia 4,518 1p13.3 CELSR2 rs646776 0.77 (0.70, 0.85) 1.0E-07 LDL & total cholesterol

2p24.1 APOB rs693 0.78 (0.73, 0.85) 7.4E-10 LDL & total cholesterol

19p13.2 LDLR rs6511720 0.74 (0.65, 0.84) 2.5E-06 LDL cholesterol

Hyperglyceridemia 492 11q23.3 APOA5 rs12272004 2.24 (1.70, 2.95) 7.2E-09 Triglycerides

11q23.3 ZNF259 rs964184 2.22 (1.78, 2.75) 5.8E-13 Hypertriglyceridemia

Gout 769 4p16.1 SLC2A9 rs16890979 0.67 (0.59, 0.78) 5.1E-08 Serum urate

rs13129697b 0.72 (0.63, 0.81) 2.4E-07 Gout, Serum urate

4p16.1 Intergenic rs4698036 0.68 (0.60, 0.79) 7.8E-08 Serum urate

4q22.1 ABCG2 rs2231142 1.72 (1.48, 1.99) 1.0E-12 Serum urate

Hyperbilirubinemia 46 2q37.1 UGT1A1 rs887829b 33.8 (14.5, 78.5) 3.2E-16 Serum bilirubin

2q37.1 HEATR7B1 rs2361502 7.74 (4.72, 12.7) 4.2E-16 Serum bilirubin

Other Alzheimer′s disease 737 19q13.32 TOMM40 rs157580 0.70 (0.62, 0.80) 8.6E-08 Alzheimer′s disease

rs2075650 2.41 (2.06, 2.82) 5.2E-28 Alzheimer′s disease

Age-related macular  

degeneration

749 1q31.3 CFH rs1329428 0.51 (0.45, 0.59) 7.2E-20 Age-related macular degeneration

6p21.33 SKIV2L/C2/CFB rs429608 0.57 (0.46, 0.70) 4.8E-08 Age-related macular degeneration

Fuchs′ dystrophy 108 18q21.2 TCF4 rs613872 2.61 (1.90, 3.58) 2.9E-09 Fuchs’ dystrophy

Table limited to phenotypes that exceeded genome-wide significance in previously reported GWAS in individuals of European ancestry and that had a PheWAS P-value < 4.6 × 10−6  

(FDR < 0.1). A comprehensive list of replication P-values, odds ratios, minor (reference) alleles and minor allele frequencies can be found in Supplementary Table 3.
aThis GWAS used a subset of this data set. bPheWAS results include other SNPs in LD with P < 4.6 × 10−6 (Supplementary Tables 3 and 8).
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The variant rs16861990 near NME7, previously associated with  

d-dimer levels, was associated with hypercoagulable states (OR = 3.71, 

P = 2.0 × 10−12); notably, this SNP is in weak linkage disequilibrium 

(LD) (r2 = 0.05 in the 1000 Genomes CEU (see Online Methods)) 

with Factor V Leiden (rs6025, not assayed directly on the Illumina 

660-Quad). Manual review of a subset of subjects from Vanderbilt for 

whom complete medical records were available identified 29 cases 

with the hypercoagulable phenotype, and five of the seven individuals 

carrying at least one minor allele for rs16861990 were found to have 

the Factor V Leiden mutation through prior testing as part of clinical 

care. Thus, the NME7 association may represent an association with 

Factor V Leiden.

Pleiotropy revealed by PheWAS analysis

We investigated SNPs associated with multiple phenotypes as a measure 

of possible pleiotropy within the PheWAS results. Pleiotropic effects 

of variants at the 9p21.3 locus near CDKN2BAS (Fig. 3c) were noted; 

the same SNPs were associated not only with coronary atherosclerosis 
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Figure 2 GWAS and PheWAS associations in the genome. Each diamond represents a unique phenotype association at each SNP. Red diamonds 

represent associations in the NHGRI Catalog only (including phenotypes not present in the PheWAS catalog), green diamonds represent NHGRI Catalog 

associations replicated by PheWAS (P < 0.05), and blue diamonds represent new phenotype associations identified by PheWAS (P < 4.6 × 10−6, or a 

FDR < 0.1). Numbers to the right and left indicate chromosomes.

Table 2 Potentially novel associations discovered via PheWAS

PheWAS phenotype Cases Region Nearest gene SNP Odds ratio (95% CI) P-value NHGRI catalog disease(s)

Actinic keratosis 2,505 5p13.2 SLC45A2 rs16891982 0.55 (0.44, 0.70) 6.3E-07 Hair, eye color, skin pigmentation

6p25.3 IRF4 rs12203592 1.69 (1.53, 1.86) 4.1E-26 Hair, eye color, freckling, PSP

6p25.3 EXOC2 rs12210050 1.32 (1.20, 1.45) 1.9E-08 Basal cell carcinoma, tanning

15q13.1 HERC2 rs12913832 0.80 (0.73, 0.87) 8.7E-07 Hair, eye color

16q24.3 CDK10 rs258322 1.37 (1.22, 1.55) 2.1E-07 Hair color, melanoma

20q11.21 CDK5RAP1 rs291671 1.39 (1.24, 1.57) 7.0E-08 Hair color

Nonmelanoma skin cancer 1,931 6p25.3 IRF4 rs12203592a 1.50 (1.36, 1.64) 3.8E-17 Hair, eye color, freckling, PSP

11q14.3 TYR rs1847134a 1.28 (1.18, 1.38) 2.6E-10 Eye color

Seborrheic keratosis 2,570 5p15.33 TERT rs2853676 0.80 (0.74, 0.87) 1.6E-07 Glioma

Lipoma 214 3p21.1 ITIH1 rs1042779 0.70 (0.61, 0.81) 9.9E-07 Bipolar disorder

Hypercoagulable state 91 1q24 NME7 rs16861990b 3.71 (2.57, 5.34) 2.0E-12 D-dimer levels

Bronchiectasis 144 1q32.1 KIF21B rs2297909 1.81 (1.43, 2.29) 8.7E-07 Ankylosing spondylitis

Novel associations with P < 4.6 × 10−6 are reported. For highly related sub-phenotypes (e.g., skin cancer and nonmelanoma skin cancer), only the strongest association is reported. 

Associations potentially in linkage disequilibrium with known associations are excluded here. All novel associations with P < 4.6 × 10−6 can be found in Supplementary Table 8.

PSP, progressive supranuclear palsy.

aOther studies have demonstrated associations with squamous cell carcinoma and potentially basal cell carcinoma (P > 1 × 10−4)23,24. bThis SNP is in weak LD with the Factor V 

Leiden mutation (rs6025, r2 = 0.05 per 1,000 genomes).
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(OR = 1.26, P = 1 × 10−12), acute myocardial infarction (OR =  

1.28, P = 4 × 10−8) and abdominal aortic aneurysm (OR = 1.29,  

P = 0.001), consistent with prior publications3, but also with other 

near-significant “vascular” phenotypes such as unstable angina, 

carotid stenosis and hemorrhoids. Associations with hemorrhoids, 

abdominal aortic aneurysms and carotid stenosis all persisted when 

the regression model was adjusted for coronary atherosclerosis or 

myocardial infarction as a comorbidity.

Our study replicated the association between rheumatoid arthritis 

and rs660895 near HLA-DRB1 (Fig. 3d; OR = 1.56, P = 6.7 × 10−8). 

This SNP was also strongly associated with type 1 diabetes (OR = 

1.44, P = 7.1 × 10−8) and potentially associated with inflammatory 

arthritides (OR = 1.64, P = 3.1 × 10−5), a parent phenotype of giant 

cell arteritis (OR = 1.94, P = 6.3 × 10−5). Both of these associations 

persisted when adjusting for rheumatoid arthritis (P = 1.8 × 10−7 

for type 1 diabetes and P = 2.3 × 10−5 for inflammatory arthritides). 
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Figure 3 PheWAS plots for four SNPs. Each panel represents 1,358 phenotypes 

tested for association with a particular SNP, using logistic regression assuming an 

additive genetic model adjusted for age, sex, study site and the first three principal 

components. Phenotypes are grouped along the x axis by categorization within  

the PheWAS code hierarchy. The upper red lines indicate P = 4.6 × 10−6 (FDR = 0.1  

for entire PheWAS); lower blue lines indicate P = 0.05; dashed lines are a  

single-SNP Bonferroni correction (P = 0.05/1,358). Diamonds encircling phenotype 

circles represent known NHGRI Catalog associations. (a) PheWAS associations for 

rs12203592 in IRF4, previously associated with hair and eye color, freckling and 

progressive supranuclear palsy. (b) PheWAS associations for rs2853676 in TERT, 

previously associated with glioma. (c) PheWAS associations for rs4977574 near 

CDKN2BAS at chr9p21, previously associated with myocardial infarction, and in 

LD with carotid stenosis. (d) PheWAS associations for rs660895 near HLA-DRB1, 

previously associated with rheumatoid arthritis. Results and plots for all SNPs 

included in the present study are available at http://phewascatalog.org/. 
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Figure 4 Risk variants for skin phenotypes have different pleiotropy patterns. Association odds ratios are graphed on the x axis and P-values  

(numbers next to the bars) are from the PheWAS analysis for that SNP. All SNPs use the minor allele as the coded allele, except rs2853676 (TERT).  
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Polymyalgia rheumatica, which often co-occurs with giant cell  

arteritis, was not associated with this variant (P = 0.064), whereas it 

may be associated with other variants in the HLA-region (rs10484561; 

OR = 1.59, P = 8.5 × 10−5); however, rs10484561 was not associ-

ated with giant cell arteritis (P = 0.21), suggesting that different HLA 

variants may be involved in polymyalgia rheumatica and giant cell 

arteritis. rs2647044 near HLA-DQB1 was the most pleiotropic SNP 

identified, being associated with nine phenotypes (P < 4.6 × 10−6), 

including a variety of autoimmune disorders such as celiac disease 

(OR = 2.60, P = 6.3 × 10−7), type 1 diabetes (OR = 1.42, P = 2.0 × 10−7) 

and lupus (OR = 2.60, P = 3.3 × 10−6).

Because a number of the new SNP-phenotype associations 

 discovered in this PheWAS were skin phenotypes, we compared 

the patterns of phenotype associations for these SNPs (Fig. 4). IRF4 

was uniquely associated with sunburns and other phenotypes influ-

enced by sun exposure: actinic keratosis, seborrheic keratosis, basal 

cell carcinoma and eye neoplasms. However, the other SNPs associ-

ated with nonmelanoma skin cancer (TYR, EXOC2, MC1R, CDK10) 

and melanoma (MC1R) were not associated with sunburns. The 

TERT variant was not associated with skin phenotypes other than  

seborrheic keratosis.

Independent replication of PheWAS associations

We selected three phenotypes (actinic keratosis, seborrheic keratosis 

and nonmelanoma skin cancer) with novel associations discovered by 

our PheWAS to analyze in a separate EMR-linked GWAS population  

(n = 7,406) for replication of these results; we used a cutoff of P < 0.05. 

For these replications, we developed and validated algorithms using 

natural language processing to find each phenotype in the EMR in order 

to verify the accuracy of both the phenotype and the SNP-phenotype  

association discovered in our PheWAS. Physician review gave high 

positive predictive values (>98%) for each phenotype algorithm. 

Associations between IRF4 and actinic keratosis were replicated 

(OR = 1.60, 95% CI 1.26–2.04, P = 1.2 × 10−4), as were those between 

seborrheic keratosis and TERT (OR = 0.72, 95% CI 0.56–0.95,  

P = 0.02). Associations between nonmelanoma skin cancer and 

IRF4 (OR = 1.50, 95% CI 1.23–1.83, P = 4.8 × 10−5) and TYR (OR =  

1.32, 95% CI 1.11–1.57, P = 1.5 × 10−3) were replicated. Despite 

being underpowered, two additional associations with actinic 

keratosis were replicated: HERC2 (OR = 0.76, 95% CI 0.60–0.97,  

P = 0.03) and CDK10 (OR = 1.42, 95% CI 1.03–1.96, P = 0.03). 

TYR and IRF4 variants also were associated with the more specific 

phenotypes of basal cell carcinoma and squamous cell carcinoma, 

which was possible to evaluate using the natural language process-

ing algorithms deployed during this phase of analysis. Prior studies  

have demonstrated   of this IRF4 variant23 and related TYR vari-

ants24 with squamous cell carcinoma and, more weakly, with basal 

cell carcinoma; this study suggests that IRF4 and TYR variants 

are associated with both skin cancers. Full results are available in 

Supplementary Table 9.

DISCUSSION

Here, we demonstrate that extant EMR-linked genetic data can be 

used in an unbiased search across large numbers of phenotypes to 

broadly replicate known GWAS associations in real-world, practice-

based populations. We replicated 66% (51/77) of the prior NHGRI 

Catalog associations for which our analysis was adequately powered. 

When we included associations that were underpowered for replica-

tion, PheWAS analysis replicated 210 of all 751 (28%) testable NHGRI 

Catalog associations. PheWAS further discovered 63 potentially new 

associations (at P < 4.6 × 10−6), some of which were pleiotropic 

 associations. Associations with actinic keratosis, seborrheic keratosis 

and nonmelanoma skin cancer discovered through PheWAS were 

replicated in a separate population using biopsy-confirmed diagnoses, 

thus validating not only the genetic association but also the quality of 

the EMR phenotype used in the PheWAS. Our findings therefore rein-

force the utility of phenome scanning as a tool for not only replicating 

genotype-phenotype associations but also in providing a comprehen-

sive catalog of human diseases associated with published variants.

In these EMR-based populations, associations for 42 phenotypes 

surpassed Bonferroni significance, including replications of SNPs 

associated with diverse phenotypes such as Alzheimer’s disease, type 

2 diabetes, atrial fibrillation, gout, bilirubin metabolism, age-related 

macular degeneration, Fuchs’ corneal dystrophy, hypothyroidism, 

iron metabolism disorders (a code used for hemochromatosis), 

hypercholesterolemia, hypertriglyceridemia and coronary athero-

sclerosis. Notably, PheWAS replication rates of previously described 

associations were significantly higher for variants that had multiple 

published associations and for associations that had more significant 

P-values in previous publications. These results suggest that some 

of the lower-significance, so far nonreplicated associations in the 

NHGRI Catalog may require further investigation to evaluate the 

possibility of false positives.

Pleiotropy has been previously identified for a number of loci and is 

particularly prevalent among autoimmune phenotypes in the NHGRI 

Catalog. Although the sample size in this study does not permit a 

robust examination of pleiotropy for all SNPs considered here, most 

of the SNPs in our study did not show association for more than one 

phenotype. However, although only 102 of the 3,144 (3.2%) SNPs 

tested had at least one association with P < 4.6 × 10−6, 44 of these 

(43%) were associated with more than one phenotype. Fourteen SNPs 

(0.45%) were associated with more than three phenotypes at P < 4.6 ×  

10−6 (Supplementary Table 8). Thus, with a larger EMR population, 

one might suspect that pleiotropy would be more common than sug-

gested by previous estimations of pleiotropy for 4.6% of SNPs in the 

NHGRI Catalog8.

Most of the highest-significance associations observed in this 

study were known, which is expected, given that the SNPs tested 

were included because they had been found in prior association 

studies. The strongest of the potential novel associations were with 

phenotypes not yet studied by GWAS, such as actinic and seborrheic 

keratoses. Some of these potentially novel pleiotropic associations 

were in fact SNPs in LD with known associations (e.g., MSH5 SNPs 

and type 1 diabetes, as noted in Table 2). The ability of PheWAS 

to demonstrate these pleiotropic associations using a single study 

population contrasts with current labor-intensive methods required 

to recognize pleiotropy, which depend on integration of multiple  

studies, genotyping platforms and LD maps.

By simultaneously evaluating associations with a broad range of 

phenotypes, PheWAS can highlight pleiotropic differences between 

multiple SNPs related to a common disease, some of which may 

suggest a mechanism of action. For example, the collection of sun 

 exposure–related phenotypes associated with IRF4, as well as its 

known associations with hair and eye color, suggest its role in such 

risks may involve sun sensitivity. However, SNPs in other genes such 

as rs4785763 in MC1R (associated with melanoma) and TERT (a novel 

association with seborrheic keratosis) did not have an association with 

sunburns and other sun-exposed phenotypes, suggesting that the risk 

they confer may not be explained by sun sensitivity. In support of this 

hypothesis, MC1R variants predict melanoma risk not captured by 

skin pigmentation and sun exposure questionnaires25. Combining 

PheWAS-type methods with large-scale EMR data mining methods, 
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which can identify phenotype comorbidities and exposure risks26–28, 

may identify compound phenotypes for genetic study and may eluci-

date the mechanism of action behind risk variants.

This analysis was performed on data from 13,835 individuals; 

as a result, the study is underpowered to make many discoveries, 

given that the power to detect a finding in PheWAS is determined 

by the minor allele frequency, the effect size and the prevalence of a 

phenotype within the population. We envision a future with much 

larger genotyped populations linked to longitudinal EMRs. Such a 

population will facilitate detection of associations between rare dis-

eases and dissection of genetic influences on prognosis, responses to 

medication and comorbidity risk. In addition to the samples available 

in the eMERGE Network, large-scale EMR-linked genomic efforts 

are underway at Kaiser Permanente29, the Million Veterans Program 

and the UK Biobank30. Collectively, these efforts will soon involve  

>1 million patients with dense genotype data. Significant challenges 

to analyzing the associated EMR data remain; such challenges can 

be met in part through enhanced data collection within the EMR, 

as mandated through the “meaningful use standards” enacted by the 

Health Information Technology for Economic and Clinical Health 

(HITECH) Act31, and through improved mining of EMR data, includ-

ing use of natural language processing32,33.

The NHGRI Catalog is composed of SNP-phenotype associations 

that were reported in research studies that employed a wide variety of 

study designs, including observational cohorts and controlled trials. 

Given the nature of this study, we were not able to take into account 

the nuances of the phenotype definition underlying a particular SNP-

phenotype association. Many research studies use narrowly defined 

phenotypes, with strict inclusion criteria for both cases and controls. 

That we failed to replicate some of these associations with data derived 

from the heterogeneous environment of clinically indicated testing and 

disease coding is not surprising. Many of the phenotypes represented 

in this PheWAS were diseases that are surrogates for a physiological 

phenotype; as such, the PheWAS phenotypes are a stand-in for health 

outcomes sufficiently poor to trigger healthcare interventions. These 

surrogates include morbid obesity (PheWAS) for BMI (GWAS) and 

osteoporosis (PheWAS) for decreased bone mineral density (GWAS).

Limitations counsel caution in interpretation of this study. First, 

subsequent work is needed to verify our potentially novel associations 

beyond the skin findings, as some may be false positives. Given the 

number of known findings in the top 202 new associations (137), 

the false-positive rate could be estimated as high as 29%. Second, the 

current PheWAS efforts considered pleiotropy as multiple clinically 

apparent diseases and traits, which could classify as pleiotropic two 

traits that share underlying mechanisms. Detection of true pleiotropy 

for these SNPs would require larger data sets, statistical analyses of 

independence and potentially biological validation. Regardless, our 

analyses highlight phenotypes with common genetic underpinnings, 

and tests of independence demonstrate that our strongest associations 

were not a result of known comorbid associations. Third, PheWAS 

phenotypes were defined using billing codes, which have imperfect 

sensitivity and positive predictive value, owing to inherent variations 

in the coding scheme itself (i.e., how broadly or narrowly a code 

defines disease) and variation in how codes are assigned to patients. 

Such inaccuracies typically bias results toward the null hypothesis by 

reducing the magnitude of association. Our replication population for 

the novel skin associations, however, used a gold standard of patholo-

gist-reviewed biopsy specimens. Methods leveraging multiple modali-

ties of information in the EMR allow for more accurate distinction 

between phenotypes, such as types 1 and 2 diabetes15, and detection of 

rare phenotypes34 not defined by billing codes. However, these results 

demonstrate that large data sets can provide robustness to some phe-

notype misclassification using just billing codes, with many replicated 

associations for types 1 and 2 diabetes. Fourth, because our study 

used GWAS data, it shares limitations inherent to GWAS, such as the 

inability to pinpoint causal alleles and the general lack of inclusion 

of rare alleles. When calculating our power to detect an association, 

we used the strongest odds ratio reported in the NHGRI Catalog, 

which may overestimate the true effect size and thus falsely inflate 

our power to replicate. Indeed, the odds ratios for PheWAS asso-

ciations were typically less than those found in the NHGRI Catalog 

(Supplementary Fig. 5), which likely represents both some degree of 

phenotype misclassification as well as a result of the “winner’s curse,” 

such that the GWAS in which the association was discovered often 

overestimates the true effect size35. Finally, we did not test SNPs in the 

NHGRI Catalog that would have required imputation, as that would 

have introduced another potential source of error into interpreting 

replication (or lack thereof) of a known association.

Another consideration when interpreting these data is that because 

the eMERGE population was selected from clinical populations,  

they were, in general, older and sicker than the general population 

(e.g., 66% had hypertension with a mean age of 69.5 years), due in part 

to the fact that the primary phenotypes that established eligibility for 

the cohort included diseases associated with advancing age, including 

Alzheimer’s disease, cataracts and peripheral vascular disease. It may 

be helpful to take into account age of disease onset when selecting 

control groups in future PheWAS analyses. Furthermore, the preva-

lence of disease is enriched relative to the general population at some 

eMERGE sites because of the individuals’ presentation for health care 

at academic medical centers.

An EMR-based, phenome-wide catalog of phenotypic associa-

tions for discovered genetic variants may increase the speed and effi-

ciency of genetic exploration and may uncover pleiotropy, thereby 

aiding discovery of biological underpinnings of disease phenotypes 

and highlighting new research directions. In addition, EMR-linked 

genetic data may add clinical context to our growing knowledge of 

genomic diversity.

METHODS

Methods and any associated references are available in the online 

version of the paper.

Accession codes. dbGaP: Phs000360.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Study design. This study was performed in the eMERGE Network, a project 

sponsored by the National Human Genome Research Institute comprising 

five institutions (Group Health Cooperative, Marshfield Clinic, Mayo Clinic, 

Northwestern University and Vanderbilt University Medical Center) that each 

have DNA biorepositories linked to their EMR. Details of these biobanks and 

of the eMERGE Network have been published elsewhere14,36,37. All studies 

were approved by local Institutional Review Boards. Patients gave consent as 

part of the DNA biobanks at Group Health Cooperative, Marshfield Clinic, 

Mayo Clinic, Northwestern University; Vanderbilt uses an opt-out model 

as previously described and evaluated36,38. Biobank recruitment is nonran-

dom and based on clinic populations. Individuals with DNA linked to EMR 

records were selected for genome-wide genotyping based on being a case 

or control for one of five phenotypes (Supplementary Table 1); these data 

served as the genetic data for the initial GWAS. For the analyses reported 

here, 13,835 individuals passed quality control (QC) whose race was clas-

sified as “White” or “Caucasian” in the EMR or from self-reported data. 

The SNPs analyzed by PheWAS included all SNPs in the NHGRI Catalog,  

first downloaded on January 16, 2011. After development of the methods 

and phenotype categorization for performing PheWAS using billing and 

demographic data from the EMR, the catalog was updated to the April 17, 

2012 version and the analysis rerun. PheWAS phenotypes that matched or 

nearly matched with NHGRI Catalog phenotypes were considered repli-

cations. Catalog phenotypes that were continuous measures (e.g., weight) 

were matched to the nearest PheWAS phenotype when a suitable match was  

available (e.g., obesity). Following alignment of PheWAS phenotypes with 

NHGRI Catalog phenotypes, PheWAS analysis was performed for all 3,144 

SNPs available for testing (Supplementary Fig. 1).

Genotyping. Genotyping was performed at the Center for Genotyping and 

Analysis at the Broad Institute (for two eMERGE sites) and the Center for 

Inherited Disease Research at Johns Hopkins University (for the remaining 

three eMERGE sites) using the Human660W-Quadv1_A genotyping platform, 

consisting of 561,490 SNPs and 95,876 intensity-only probes on a total of 

13,835 EMR-identified European-American subjects across each of the five 

eMERGE sites. Genotypes were merged across the five sites and cleaned using 

the QC pipeline developed by the eMERGE Genomics Working Group39. This 

process includes evaluation of sample and marker call rate, gender mismatch 

and anomalies, duplicate and HapMap concordance, batch effects, Hardy-

Weinberg equilibrium (HWE), sample relatedness and population stratifica-

tion (using STRUCTURE40 and EIGENSTRAT41). Relatedness was determined 

based on identity by descent (IBD) estimates generated from the genome-wide 

genotype data in PLINK.

522,164 SNPs passed the following QC criteria: SNP call rate >95%, sample  

call rate >99%, minor allele frequency >0.01, 99.99% concordance rate in 

duplicates, unrelated samples only, and individuals of European-descent only 

(based on STRUCTURE analysis of >90% probability of being in the CEU 

cluster, which was derived from Utah residents with ancestry from northern 

and western Europe). We flagged all markers with HWE P < 1 × 10−4 for 

further evaluation post-analysis using standard criteria. Finally, we selected 

SNPs that were also in the NHGRI Catalog (as of April 17, 2012), which yielded 

3,144 SNPs (at any P-value); these were used for PheWAS analysis (described 

below). The QC and data analysis were performed using a combination of 

PLINK, PLATO and the R statistical package.

Organization of billing codes for PheWAS. In this study, we revised and 

expanded our earlier PheWAS phenotype categorization to a total of 1,645 

phenotypes identified from International Classification of Disease, Ninth revi-

sion, Clinical Modification (ICD9) codes. (Our initial PheWAS phenotype 

categorization included 744 phenotypes9.) The ICD9 coding system is divided 

into four components: diseases, signs and symptoms (“three digit” codes, 

001–999), external causes of injury (“E” codes), procedures (“two digit” codes 

00.0–99.9) and supplemental classifications (“V” codes). The prior PheWAS 

code groupings included only diseases, signs and symptoms (three digit) 

ICD9 codes9. We revised and expanded the PheWAS phenotypes by (i) adding  

V codes (commonly used to record personal histories of given diseases) and  

E codes (which refer to external causes of injury) to the PheWAS code mapping,  

(ii) redesigning the code system to be hierarchical, such that one phenotype 

could be a parent of another subphenotype (e.g., cardiac arrhythmias is a par-

ent of atrial fibrillation, atrial flutter and other arrhythmias), and (iii) including  

more granular phenotypes into the coding system (e.g., “type 1 diabetes with 

ketoacidosis”). Creation of hierarchical phenotypes included creation of pheno-

types not present in the ICD9 billing hierarchy, such as “inflammatory bowel 

disease” as the parent phenotype for “Crohn’s disease” and “ulcerative coli-

tis.” In this process, we were guided by the hierarchical organization of the 

Clinical Classifications Software (CCS) produced by the Agency for Healthcare 

Research and Quality42; the 2011 version of the CCS contains 727 phenotypes. 

The resulting PheWAS code group currently contains 1,645 phenotypes, 1,358 

of which had at least 25 cases (a prevalence of 0.18% in our data set) in the 

eMERGE cohort, our threshold for these analyses. The current version of the 

PheWAS codes, with ICD9 mappings and control groups, is available from 

http://knowledgemap.mc.vanderbilt.edu/research/content/phewas.

Replication of NHGRI Catalog associations using PheWAS phenotypes. 

The NHGRI Catalog was downloaded and parsed into a local database. We 

selected all SNP-phenotype associations that contained (i) SNPs that were 

present and passed QC in our genotyping platform and (ii) phenotypes that 

can be represented in the PheWAS phenotypes, and attempted to replicate 

these by PheWAS analysis. We did not analyze phenotypes occurring in fewer 

than 25 eMERGE patients, and we did not impute the genetic data before 

aligning with catalog SNPs.

Two authors (L.B. and J.C.D.), working together, mapped each NHGRI 

Catalog phenotype to a PheWAS phenotype using review of the original 

papers and data supplements. NHGRI Catalog phenotypes were divided 

into continuous (e.g., weight, height, laboratory values) and binary traits  

(e.g., disease status). Because many phenotypes studied in the NHGRI 

Catalog are traits (such as height or C-reactive protein levels) that are not  

represented by the current PheWAS phenotype definition, NHGRI Catalog 

traits were mapped into similar corresponding traits and classified into one of 

four match types: (i) exact match (binary traits that match a PheWAS disease); 

(ii) PheWAS phenotypes related to a catalog continuous trait (e.g., obesity for 

catalog traits “body mass index” or “waist circumference”; iron-deficiency 

anemia for catalog trait “serum iron levels”); (iii) PheWAS phenotypes that 

were either broader or narrower than their NHGRI Catalog counterparts 

(e.g., Alzheimer’s disease for Alzheimer’s subtypes); (iv) catalog phenotypes 

that lack corresponding PheWAS phenotypes (e.g., hair and eye color, height, 

medication response phenotypes, age at menopause). The complete listing of 

NHGRI Catalog diseases and their associated PheWAS phenotypes are found 

in Supplementary Table 3.

For replication analysis, we considered only those SNPs that were associ-

ated with at least one phenotype at P ≤ 5 × 10−8 in the NHGRI Catalog, were 

tested in a population that contained individuals of European ancestry, and 

had phenotypes testable in the list of PheWAS phenotypes (e.g., height is not 

a PheWAS phenotype at the current time as it is not a billable diagnosis; see 

above); 673 SNPs met these criteria. Each SNP-phenotype association test was 

run independently with PLINK43 using logistic regression adjusted for age, 

gender, site (e.g., Vanderbilt, Marshfield Clinic, etc.), and the first three prin-

cipal components as calculated by EIGENSTRAT, using ancestry informative 

markers chosen from the entire set of GWAS SNPs41. Analysis was performed 

assuming an additive genetic model. These data were aggregated and analyzed 

using Perl scripts and the R statistical package. To count as a replication, a 

phenotype had to have P ≤ 0.05 and a consistent direction of effect. Directional 

consistency was tested for using the listed allele in the NHGRI Catalog and 

review of the original papers for those associations for which an allele was 

not listed or was unclear in the catalog. The direction of effect was obtained 

from the primary analysis in all but 5 of the 215 possible replicated associa-

tions (those with P < 0.05); we considered these 5 associations, with unknown 

directions of effect, replicated.

Phenome-wide analysis to detect novel associations. We combined the entire 

cohort of self-identified European American individuals identified across the 

five eMERGE sites (n = 13,835 individuals) into one analysis. To define dis-

eases, we queried all ICD9 codes from the respective EMRs from the five 

eMERGE sites. The PheWAS software then used these ICD9 codes to classify 
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each person as having one of the 1,358 possible clinical phenotypes belong-

ing to >25 patients in the populations (as noted above). For each disease, the 

PheWAS code defined relevant control groups for each disease or finding, 

such that patients with related diseases do not serve as controls for that disease 

(e.g., a patient with Graves disease cannot serve as a control for an analysis 

of thyroiditis).

We have previously found that the positive predictive value for some algo-

rithms to establish a diagnosis from EMR data is improved by requiring the 

presence of multiple instances of disease-associated ICD9 codes44. For exam-

ple, to be considered a case for tuberculosis, a patient is required to have 

at least two ICD9 codes in the ranges of 10–18 (tuberculosis infections of 

different sites), 137 (late effects of tuberculosis) or V12.01 (personal history 

of tuberculosis). Accordingly, for the present study, we used a threshold of 

relevant ICD9 codes on two distinct days to establish that person as a “case” 

for a given phenotype. Controls are patients without any ICD9 codes in the 

corresponding control range; thus, patients with a single ICD9 case code are 

excluded for the analysis as neither a case nor a control. Each SNP-phenotype 

association test was run independently with PLINK43, using logistic regression 

adjusted for age, gender, site (e.g., Vanderbilt, Marshfield Clinic), and the first 

three principal components as calculated by EIGENSTRAT, using ancestry 

informative markers as above41. Analysis was performed assuming an additive 

genetic model. These data were aggregated and analyzed using Perl scripts and 

the R statistical package.

Categorization of PheWAS results. All PheWAS associations at P < 4.6 × 

10−6 not in the NHGRI Catalog were manually reviewed by three authors 

(J.R.F., L.B. and J.C.D.) to categorize them as: (i) a catalog replication (“rep-

licated”), (ii) a known finding not in the NHGRI Catalog or in LD with a 

SNP known to be associated with that disease (“known”), (iii) a phenotype 

association related to a known finding (“related”; for example, “disorders 

of lipoid metabolism” is a parent phenotype of “hyperlipidemia”) or (iv) a 

previously unreported finding. Categorizing related findings is particularly 

useful because of the hierarchical nature of the PheWAS phenotypes: if a 

‘child’ phenotype (e.g., “atrial fibrillation”) is associated with a SNP, the ‘par-

ent’ phenotype (“cardiac dysrhythmias”) may also be associated. To look for 

known associations, we reviewed the NHGRI Catalog and queried for the 

SNP in PubMed. We also generated a list of SNPs in LD using SNAP45 and 

searched for these. SNP-phenotype associations not found in any of these 

steps were considered previously unreported and reviewed by three authors 

(L.B., J.R.F. and J.D.).

Replication analysis for actinic keratosis, seborrheic keratosis and non-

melanoma skin cancer. We sought to replicate seven SNP-phenotype asso-

ciations identified by PheWAS in an independent population with previous 

GWAS-level genotyping; this population consisted of 7,406 individuals derived 

from the Vanderbilt EMR-linked DNA biobank (BioVU) with data from 

Illumina OMNI 1M or 5M BeadChips. There is no overlap between these 

subjects and those included in the Vanderbilt eMERGE data set used for the 

primary analysis. QC on this set was performed as above. For analysis of vari-

ants in IRF4, HERC2, CDK10, CDK5RAP1 and TYR, all 7,406 were eligible. 

TERT rs2853676 is not assayed on the OMNI 5M platform, and no suitable 

SNPs in strong LD passed QC; for this reason, 5,515 patients (all genotyped on 

the OMNI 1M) were used for the TERT analysis with seborrheic keratosis.

Natural language processing was used to identify cases through extraction 

of pathology results for each diagnosis and recognition of these diagnoses from 

the physician-maintained problem list, which is unstructured text. Phenotype 

algorithms based on natural language processing allowed us to divide the 

nonmelanoma skin cancer phenotype into the more specific phenotypes and 

squamous cell carcinoma; ICD9 codes did not distinguish between basal cell 

carcinoma and squamous cell carcinoma until 2012. Controls were selected 

among the population of genotyped patients who did not have a diagnosis, 

by ICD9 code, for actinic keratosis, seborrheic keratosis, basal cell carcinoma 

or squamous cell carcinoma. To evaluate algorithm-positive predictive value,  

50 randomly selected cases and 50 randomly selected controls were reviewed, 

in a random order, by a physician not associated with algorithm develop-

ment to validate accuracy of the determinations. The physician was blinded to 

the algorithmic determination. Review criteria to certify a true case required 

presence of pathology results, a dermatologist assertion of the diagnosis, or a 

primary care physician asserting the diagnosis with treatment and date data 

(indicative of past or outside dermatologist involvement). The genetic asso-

ciation analysis was performed using logistic regression assuming an additive 

genetic model adjusted for age and sex.

ROC curve analysis. Using all SNPs with at least one adequately powered 

association (beta > 0.8), we created a reference standard of associations to 

perform ROC analysis (Supplementary Fig. 3). We restricted the list of  

phenotypes to those PheWAS phenotypes also studied in the NHGRI Catalog 

at the time of this study. True positives were any phenotype association with 

that SNP that was either directly mentioned in the NHGRI Catalog, or was 

in LD (r2 > 0.8) with another SNP in the Catalog that was associated with the 

phenotype. We selected as true negatives any PheWAS phenotype studied in 

the NHGRI Catalog and not associated with the SNP or a SNP in LD. PheWAS 

phenotypes not studied in the NHGRI Catalog were considered neither a true 

positive nor true negative, as there was no reference standard by which to 

evaluate them. This resulted in a total of 2,146 SNP phenotype associations 

evaluated for 29 SNPs. An ROC curve was generated using the –log(P-value) 

as the threshold variable.

Statistical analysis. The primary outcome for this analysis was the extent of 

replication of known findings in the NHGRI Catalog that achieved genome-

wide significance (P < 5 × 10−8) in a prior GWAS and for which we were 

adequately powered to detect a difference. For this analysis, we used P = 0.05 to 

determine significance of a replication, and tested for directional consistency 

with the original trait (see above). For binary traits recorded in the NHGRI 

Catalog, we determined our power to replicate a known association based on 

the minor allele frequency taken from the eMERGE population, the expected 

effect size (i.e., odds ratio) taken from the largest effect size for that associa-

tion in the NHGRI Catalog, and the number of cases of that phenotype in the 

eMERGE population (using the PheWAS-defined phenotypes). All sample 

size calculations were based on 80% power. We set alpha at 0.05, given that 

each of the tested replications has been previously established at genome-wide 

significance in the NHGRI Catalog. Power was calculated using Quanto46.

To test the probability of replicating X out of Y tested NHGRI Catalog 

associations at alpha = 0.05, we calculated based on the probability of drawing 

P-values randomly from a normal distribution with at least X of them having 

P ≤ 0.05 (X being the number of replicated associations). Thus, the probability 

of getting X SNP-phenotype associations replicated (P ≤ 0.05) out of Y tested 

SNP-phenotype associations is: 

P X C Y X P P
X Y X

( ) ( , )* *( )= − −
1

where P = 0.05 and C(Y,X) represents the number of combinations among 

Y items selecting X. The calculation was performed using the R pbinom 

method.

Our second outcome was identification of new phenotype associations. 

The threshold for significance to determine new associations was estab-

lished using an FDR of 0.10, calculated using the Benjamini & Hochberg47 

method using the R p.adjust method. (A Bonferroni correction for all tested  

associations would be P = 0.05/1,358/3,144 = 1.2 × 10−8.) All tests of associa-

tion were performed with PLINK as indicated above using logistic regression 

adjusted for age, sex and the first three principal components. All reported 

P-values for both discovery and replications assumed a two-sided analysis.

To test for heterogeneity among SNPs and phenotypes with similar asso-

ciations (in Fig. 4), we calculated the variation across SNPs and across each 

phenotype as I2 using METAL48. We compared both the different phenotypes 

across the same SNP (to test whether SNPs demonstrated differential effects 

on different phenotypes) and the same phenotype across different SNPs  

(to test whether different SNPs had different influences on a phenotype). I2 is 

calculated using the following formula: 

I Q df Q2
100= −%*( )/

Where Q is Cochran’s heterogeneity statistic and df is the degrees  

of freedom.
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