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Abstract. The success of discrimination between normal and inflamed
parenchyma of thyroid gland by means of automatic texture analysis is
largely determined by selecting descriptive yet simple and independent
sonographic image features. We replace the standard non-systematic pro-
cess of feature selection by systematic feature construction based on the
search for the separation distances among a clique of n pixels that min-
imise conditional entropy of class label given all data. The procedure is
fairly general and does not require any assumptions about the form of
the class probability density function. We show that a network of weak
Bayes classifiers using 4-cliques as features and combined by majority
vote achieves diagnosis recognition accuracy of 92%, as evaluated on a
set of 741 B-mode sonographic images from 39 subjects. The results sug-
gest the possibility to use this method in clinical diagnostic process.

1 Introduction

Hashimoto’s lymphocytic thyroiditis, one of the most frequent thyropathies, is
a chronic inflammation of the thyroid gland [21]. The inflammation in the gland
changes the structure of the thyroid tissue. These changes are diffuse, affecting
the entire gland, and can be detected by sonographic imaging.

The advantages of using sonographic imaging are obvious. However, in clinical
praxis the assessment of the diffuse processes is difficult [16, 19] and the diagnosis
is made only qualitatively from the size of the gland being examined, from the
structure and echogenicity of its parenchyma, and from its perfusion. In making
an overall evaluation of a sonogram, the physician uses her/his clinical experience
without giving any quantifiable indexes which are reproducible.

Early studies of automatic texture analysis of thyroid gland [10] were limited
to the comparison of grey-level histograms of different diagnoses. Later works
involved mainly localised changes (e.g., nodules, tumours and cysts) in thyroid
tissue [6, 12, 13]. Our final goal is quantitative assessment of the diffuse processes
associated with chronic inflammations. This is facilitated by recent developments
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in imaging technology that considerably improved the quality of sonograms,
mainly of subsurface organs such as thyroid gland.

This paper focuses on diagnosis recognition problem rather than on finding
quantitative indexes measuring the degree of inflammation. Classification is a
much simpler task, since it requires less training data. If properly chosen, the
classification methods generalise to regression methods.

In the first stage of our project we showed that local texture properties of
sonographic B-mode images measured by the first-order texture statistic are
independent of the location in the image and thus are suitable for tissue clas-
sification [15]. Further step of our research focused on the selection of a subset
of co-occurrence matrix features suitable for classification [17]. In [18] we tried
to use a large set of texture features based on co-occurrence matrices combined
with features proposed by Muzzolini et al. [14]. As there was no way to sys-
tematically explore all possible features to find the best-suited, we turned our
attention towards methods that do not require classical features.

This paper is concerned with the following principal questions: What are the
simplest texture features that are most efficient in distinguishing between normal
tissue and the chronic inflammation process in thyroid gland by means of texture
analysis? Can these features be found in a systematic way?

The approach we take avoids the standard heuristic and non-systematic pro-
cess of descriptive feature selection. The texture feature of our choice is nothing
but a small subset of untransformed image pixels. All such possible features
differ in how many pixels are involved. They are all parameterised by the sepa-
ration vectors among the pixels. The search for the optimal feature can thus be
done in a systematic way. It is implemented as a simple exhaustive search for
the optimum separation distances in a clique of s sampling pixels. The search is
performed in a space of dimension 2(s−1) and minimises the conditional entropy
between class label and data. This systematic feature construction procedure is
fairly general and does not require any assumptions about the form of the class
probability density function.

2 Systematic Feature Construction

On the image grid we define a system of data sampling variables by a set of
translation rules according to [8]. Each data sampling variable holds the value
of an individual image pixel. Their range is thus a discrete set. The translation
rules define the mutual positional relationship among the sampling variables and
can be represented by a rectangular mask as illustrated in Fig. 1. Let C be class
label variable and D be a system of s data sampling variables. We say certain
vector d of dimension s is a data sample if it is obtained by placing a sampling
mask at some position in the image and reading out the image values in the order
defined by the order of the corresponding translation rules. The mask must only
be placed such that no image pixel is used more than once in this data collection
procedure. The position of the mask shown in Fig. 1 defines a data sample of
d = [3, 7, 5].
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Fig. 1. A system of three sampling variables (shad-
ed) defined on image grid and represented by the
sampling mask (thick rectangle). The triple has a
base variable corresponding to translation rule (0, 0)
(upper left corner of the mask) and two more vari-
ables defined by translation rules (3, 1) and (1, 2),
respectively. Numbers are image values
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Conditional entropy H(C | D) tells us how much information in bits is miss-
ing in all image data about the class we want to determine:

H(C | D) = −
n∑

i=1

p(C,D) log p(C | D) , (1)

where n is the number of samples collected from all data, p(·) is probability, and
log(·) is the dyadic logarithm. If H(C | D) = 0 the data contain unambiguous
information about the class, i.e. there is some (unknown) function f such that
C = f(D). If H(C | D) = H(C) the data contain no information about the
class. It is not difficult to prove that

B =
H(C | D)

c log c
(2)

is an upper bound on Bayesian classification error (of a sample), where c is the
number of classes. No classifier can achieve worse error. For the definition of
Bayesian error see, e.g. [4].

A sampling system is equivalent to object feature in the classical recognition
literature [4]. There is no known efficient way to systematically generate all
possible object features. In sampling systems the situation is quite different.
Since a sampling system of s variables is defined by 2(s − 1) parameters, it is
possible to find an optimum system for a given recognition problem. We suggest
the optimality of a sampling system should be measured by B. It is easy to
evaluate B for given discrete data in O(s n log n) time, where n is the data size.
The advantage of using entropy is that the resulting optimal sampling system
is not biased by any systematic or random artefacts (patterns) in sonographic
images.

3 Experiments

The principal goal of the experiments was not to design an efficient classifier
with good generalisation properties, it was merely to estimate the sufficiency of
our data for the classification task, estimate the smallest number of sampling
variables needed, and obtain a good estimate of the classification accuracy that
can be achieved. By classification we mean automatic diagnosis recognition given
a set of sonographic scans collected for an individual.
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We collected data from 37 subjects, 17 of them had normal thyroid (class
N) and 20 had Hashimoto’s lymphocytic thyroiditis (class LT). The diagnosis
was confirmed by clinical examination, elevation of level of antibodies against
thyroid gland and by fine needle aspiration biopsy, which are standard diagnostic
criteria. Typically, 10 images of the longitudinal cross-section of the left lobe and
10 images for the right lobe were acquired. Twenty images per subject were found
sufficient to suppress data acquisition noise. We did not distinguish between the
left and right lobe scans in this experiment, since the observed changes are
supposed to be diffuse, affecting the entire gland.

Sonographic imaging system (Toshiba ECCO-CEE, console model SSA-340A,
transducer model PLF-805ST at frequency 8 MHz) was used to acquire input
images. The system settings were kept constant during data collection. We re-
duced the original 8-bit image resolution to 5 bits. Reductions to 4 up to 6 bits
showed very similar results but the computational time needed to compute B
differed significantly, especially for large sampling systems.

Typical images of our two classes at full resolution are shown in Fig. 2. Note
that the variability of the LT class is much greater. This is due to the fact that
chronic inflammations of thyroid gland can be divided into several nosologic
units [9].

Fig. 2. Typical longi-
tudinal cross sections
of the thyroid gland
in four different
subjects. Skin is the
topmost white struc-
ture. The classes are
N (normal) and LT
(Hashimoto’s lym-
phocytic thyroiditis).
The outline roughly
delineates the gland
and is the region
from which data was
considered. Image
size is 250 × 380
pixels

N LT

LT LT

Since the changes in the gland are diffuse it is possible to use global textural
characteristics within each image region corresponding to the thyroid gland tis-
sue. Automatic segmentation of such regions is complex and is not the subject of
this paper. An interactive tool was used to delineate the boundary of the gland.
See Fig. 2 for the result of this manual segmentation.
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3.1 Evaluation of B from Data

For a given sampling system, the maximum possible number of non-overlapping
samples was collected from the thyroid region in each image. Each individual
sample was assigned class label (N, LT). A collection of such samples from all
images of a subject formed a data set representing that subject’s thyroid. All
data from all subjects together with the corresponding class labels in each sample
formed one large data-system with s data variables D and one class variable C.
This data system was then reduced to discrete probability function by aggregat-
ing equal states and estimating the probability p(C,D) of each of the states as its
relative frequency in the dataset [8]. The probability p(C,D) was subsequently
used to evaluate B using (2).

3.2 Full Search in Low-Dimensional Space

For given s we first constructed optimal sampling system by exhaustive search
for the minima of B over the space of s−1 separation variables. We have chosen
only vertical and horizontal separations since these are the two natural inde-
pendent image directions: Namely, the vertical direction is the ultrasonic wave
propagation direction. In our experiments we always found a unique global min-
imum for B for given s. Within the separation search range of [0, 30]s there were
other minima with close values of B as well, however.

Once the optimum sampling system was found, the corresponding probabil-
ity density functions p(C |N) and p(C |LT ) were used in a network of weak
Bayes classifiers whose structure is shown in Fig. 3. All classifiers use the same
two probability density functions. Each of them classifies one independent (i.e.
non-overlapping) texture sample defined by the sample mask. Their outputs are
then combined by majority vote to determine the final class label (i.e. the most
probable subject diagnosis). The number of classifiers used to determine one final
class label per subject is not constant and depends on the number of data avail-
able for each subject (the number of images and the size of the thyroid region).
It generally decreases with increasing s as there are usually less independent
samples that can be collected. In our case it varied between about 250 000 for
s = 1 and 15 000 for s = 8.

For the networked classifier we evaluated the re-substitution error R, which
measures the ability of features to describe the entire training dataset, and the
leave-one-out error L, which is related to the generalisation capability of the
classifier. Both errors are evaluated on the set of 37 subjects, not just individual
images or samples (the resolution of the experiment is thus 100/37 ≈ 2.7%).
See [4] for the definition of R and L. Note that B is an upper bound on sample
recognition error, not the diagnosis classification error. In a properly designed
classifier, however, smaller sample recognition error results in smaller object
recognition error [4] (as long as it is smaller than 0.5).

The experimental results are shown in Tab. 1. Each sampling system Ss is
represented by the set of translation rules. Along with the Bayesian error upper
bound B, the leave-one-out classification error L, and the re-substitution error
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Fig. 3. Classifier structure

R we also show false negatives F− (inflamed state not recognised), and false
positives F+ (normal state misclassified). It holds that L = F− + F+. We can
see that the system for s = 4 is the first one in complexity that is able to
fully describe the training set (its re-substitution error is zero). We can also
see that the false negative rate F− is always higher than the false positive rate
F+. This is probably related to the fact that the LT class has richer structure
than the N class. The simplest explanation is that the LT class is represented by
several subclasses in our data and has thus multi-modal probability distribution
function. We observed this property in our earlier experiments as well [18].

Table 1. Recognition results for optimal sampling systems for given s. The experiment
resolution is 2.7%

s system Ss B L R F− F+

1 (0, 0) 25.3% 8.1% 8.1% 8.1% 0%

2 (0, 0), (11, 0) 19.9% 10.8% 8.1% 5.4% 5.4%

3 (0, 0), (11, 0), (0, 34) 16.6% 13.5% 10.8% 8.1% 5.4%

4 (0, 0), (7, 0), (15, 0), (0, 32) 14.2% 8.1% 0% 5.4% 2.7%

We can see that the leave-one-out error L increases initially and then drops
back to the 8.1% level. This suggests an important part of information about
class is present in higher-dimensional features. The relatively good results in
leave-one-out error L for the simplest sampling system may be due to the fact
that the simplest classifier has a good generalisation property. This observation is
consistent with reports of successful classification of sonographic textures using
one-dimensional histograms [6, 10].

Figure 4 shows images for the three misclassified cases using sampling system
S4. The sonographic texture in the two false negatives still exhibits some non-
uniformity suggesting the model S4 may not be sufficient. The false positive
image (far right) seems to be influenced by acoustic shadows below the superficial
hyperechogenic structures (arrow). In all three misclassifications, the assigned
class label probability was near to the undecidability level of 0.5, namely it was
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0.48 for the two LT cases and 0.498 for the N case. There were three more class
label probabilities below 0.6 in the correctly classified diagnoses. Thus, with S4

the total of just six cases belonged to the correct class with probability smaller
than 0.6. For comparison, with S1 there were nine such cases.

LTs misclassified as Ns (F−) N misclassified as LT (F+)

Fig. 4. Images misclassified using S4

Sampling systems larger than s = 4 were not considered because of pro-
hibitively long computational time needed to search through the high-dimensional
space. For higher dimensions we used approximate search as described next.

3.3 Approximate Search in High-Dimensional Space

In this experiment we did not search the entire parameter space to find the
optimum sampling variable configuration. Instead, a higher-order system Ŝn+1

was constructed from Ŝn by adding one optimal translation rule at a time, while
the translation rules in Ŝn remained fixed. To distinguish systems found by
optimal and sub-optimal search we denote them as Si and Ŝi, respectively.

Each new translation rule was found by minimising a one-parametric bound
B(x) for system Ŝn−1 ∪ (x, 0), where x was the only free variable. The variable
range was limited to the interval of [0, 30]. Since the full search experiment
results suggest that sampling variables defined by vertical translations are more
relevant for our recognition task and since it is also the principal direction in the
sonographic image, we used only vertical translations in this experiment. The
search begun with the simplest system Ŝ1 =

{
(0, 0)

}
. The order in which the

optimal translation rules were added was (11, 0), (17, 0), (5, 0), (20, 0), (14, 0),
(7, 0), (2, 0). The largest system we tested was thus Ŝ8 comprising of all eight
translation rules.

The results of the search are shown in Tab. 2. The first system that is able to
fully describe the training set, Ŝ5, has one variable more than the fully descriptive
system in the previous experiment. This shows that the approximate search is
quite efficient and finds systems close to those that are optimal. Note that the
leave-one-out error is larger in this set of classifiers because of the false negative
component of the error. This suggest the horizontal direction plays some role
after all and should be accounted for as well.
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Table 2. Recognition results for approximately optimal sampling systems Ŝs

system B L R F− F+

Ŝ1 = S1 25.3% 8.1% 8.1% 8.1% 0.0%

Ŝ2 = S2 19.9% 10.8% 8.1% 5.4% 5.4%

Ŝ3 17.3% 10.8% 8.1% 8.1% 2.7%

Ŝ4 15.1% 10.8% 2.7% 8.1% 2.7%

Ŝ5 12.2% 10.8% 0.0% 8.1% 2.7%

Ŝ6 7.2% 10.8% 0.0% 8.1% 2.7%

Ŝ7 2.8% 8.1% 0.0% 2.7% 5.4%

Ŝ8 0.7% 8.1% 0.0% 0.0% 8.1%

The leave-one-out recognition accuracy remains at the 92% level for sys-
tems above 6 sampling variables. Larger systems would probably result in over-
fitting [4]. For completeness, in S8, the total of four cases belonged to the correct
class with probability below 0.6 (cf. the results reported in the previous section).

Note that the trend of the F− error is exactly opposite to that of the F+.
The F− = 0 means that the Hashimoto’s lymphocytic thyroiditis was always
recognised and F+ = 0 means that normal condition was always recognised.
This means that low-order features capture the N class well, while the high-
order features capture well the structure of the LT class. The residual errors of
8.1% suggest the existence of partial class overlap in feature space, which is in
agreement with observations made by Mailloux et al. [10].

Our next goal is to collect more data to see whether the achieved classification
accuracy is low due to the small size of our dataset, due to large class overlap,
or due to poor discriminability of our features.

3.4 Comparison with Other Sonographic Texture Recognition
Results

We are not aware of any published results that would discriminate between
normal and chronically inflamed thyroid parenchyma based solely on sonographic
texture analysis. However, other types of tissue were discriminated successfully
as shown in the following brief overview.

Hirning et al. report 85% success in detection of nodular lesions in thyroid
using the 90-percentile of one-dimensional histogram as a feature [6]. Muller
et al. report 83.9% diagnostic accuracy in distinguishing malignant and benign
thyroid lesions based on three texture features [13]. Ariji et al. report 96.9%
diagnostic accuracy in the diagnosis of Sjogren’s syndrome in parotid gland using
a combination of spectral feature and standard deviation features [1]. Cavouras et
al. report 93.7% classification accuracy for distinguishing normal and abnormal
livers (cirrhosis, fatty infiltration) using twenty two features [2]. Horng et al.
report 83.3% classification accuracy for distinguishing normal liver, hepatitis
and cirrhosis using two-dimensional histograms defined on sonographic image
gradient [7]. Mojsilovic et al. report 92% classification accuracy in detecting
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early stage of liver cirrhosis using wavelet transform [11]. Sujana et al. report up
to 100% classification accuracy in distinguishing liver lesions (hemangioma and
malignancy) using run-length statistics and neural network [20]. Chan reports
94% classification accuracy in images of unspecified tissue [3].

Although the results of these methods are not comparable since they were
applied to very different tissues and the classification error was evaluated using
different statistical methods, the overview suggests our features have good dis-
criminatory power as compared to features used in similar recognition problems
using B-mode sonographic images.

4 Conclusions

Our results show that it is possible to achieve good discrimination (92%) of
chronically inflamed thyroid tissue from normal thyroid gland by means of low-
dimensional texture feature vector. The vector is constructed from a sample of
just four pixel values. The four pixels are separated by certain translation vectors
that are found by a simple optimisation procedure. Of all possible feature vectors
it minimises the conditional entropy of class label given all collected data and
is the smallest-dimension vector that achieves zero re-substitution error. This
optimality property guarantees the best utilisation of available data and the
best generalisation properties of a classifier using the features. Note that our
features have no explicit intuitive meaning as standard features often do.

The results suggest that the information related to diagnosis can be ex-
tracted well from high-quality sonographic images. There is thus a possibility
to calculate quantitative characterisation of the chronic inflammatory processes
in thyroid gland, which the human visual system is not capable to achieve. In
clinical diagnostic process this characterisation enables objective reproducibility
of sonographic findings. This facilitates the assessment of changes in the thyroid
tissue in follow-up examinations of the same subject made by different physi-
cians.
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