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Increasing evidence suggests that the presence of mobile ions in perovskite solar cells (PSCs)

can cause a current–voltage curve hysteresis. Steady state and transient current–voltage

characteristics of a planar metal halide CH3NH3PbI3 PSC are analysed with a drift-diffusion

model that accounts for both charge transport and ion vacancy motion. The high ion vacancy

density within the perovskite layer gives rise to narrow Debye layers (typical width ∼2 nm),

adjacent to the interfaces with the transport layers, over which large drops in the electric

potential occur and in which significant charge is stored. Large disparities between (I) the

width of the Debye layers and that of the perovskite layer (∼600 nm) and (II) the ion

vacancy density and the charge carrier densities motivate an asymptotic approach to solving

the model, while the stiffness of the equations renders standard solution methods unreliable.

We derive a simplified surface polarisation model in which the slow ion dynamics are replaced

by interfacial (non-linear) capacitances at the perovskite interfaces. Favourable comparison is

made between the results of the asymptotic approach and numerical solutions for a realistic

cell over a wide range of operating conditions of practical interest.
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1 Introduction

Since the first use of methylammonium lead tri-halide perovskite as a sensitizer in a

dye-sensitized solar cell [15], and its subsequent incorporation into a novel thin film

solar technology as a bulk solar absorber [14, 17], the efficiency of perovskite solar cells

(PSCs) has increased extremely rapidly from around 3% to above 20% [6], a level that is

comparable to the standard crystalline silicon devices. This increase, along with advances
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2 N. E. Courtier et al.

Figure 1. (Top) Band diagram showing that holes preferentially move from the perovskite to the

HTL and electrons to the ETL. (Bottom) Schematic of a planar PSC showing photogeneration and

transport of electrons and holes.

in the material properties and stability of PSCs, makes this area of photovoltaic research

a very hot topic [22, 38].

Typically, PSCs contain a three-layer architecture consisting of a layer of semicon-

ducting perovskite absorber sandwiched between a semiconducting hole-transport layer

(HTL) and a semiconducting electron-transport layer (ETL), see Figure 1. These transport

layers are also referred to as selective or extraction layers or, alternatively, electron- and

hole-blocking layers. A common pair of hole- and electron-transport materials are Spiro-

MeOTAD (2,2′7,7′-tetrakis-(N,N-di-p-methoxyphenyl amine)-9,9′-spirobifluorene, here re-

ferred to as spiro) and titanium dioxide (TiO2), respectively. Absorption of light occurs

predominantly within the perovskite layer and is associated with the generation of an

exciton which, due to its weak binding energy (∼50 meV) [16], rapidly dissociates into a

free electron in the conduction band, and a hole in the valence band, of the perovskite.

These charge carriers move both in response to random thermal excitations (diffusion)

and to internal electric fields (drift). The hole- and electron-transport materials are chosen

such that their band energies give rise to a built-in electric field across the perovskite

that separates the charge carriers. The field drives holes towards the HTL and electrons

towards the ETL, generating a current at biases between zero and open circuit. Further-

more, the conduction band energy in the HTL is significantly above that in the perovskite,

so that a potential barrier exists to the entry of electrons into this material from the

perovskite. Similarly, the valence band energy in the ETL is significantly below that in

the perovskite, so that a potential barrier exists to the entry of holes into this material

from the perovskite.

An unusual feature of PSCs is their long timescale transient behaviour occurring on

the order of tens of seconds. This behaviour is exemplified by so-called current–voltage

hysteresis [35] whereby apparent hysteresis loops are observed in current–voltage (J –V )

curves obtained by sweeping the voltage across a cell, from high to low and back again,

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956792518000207
Downloaded from https://www.cambridge.org/core. University of Portsmouth Library, on 25 Apr 2018 at 10:23:27, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956792518000207
https://www.cambridge.org/core


A surface polarisation model for planar perovskite solar cells 3

and measuring the current as a function of voltage. From a practical point of view,

this hysteresis has led to some unfortunate consequences, including inflated reports of

power conversion efficiencies (PCEs) given that PCEs are often calculated from a current–

voltage sweep. Long timescale transient behaviour has also been observed in dark current

transients (whereby the cell is first held in the dark, then the applied voltage is suddenly

changed and the resulting current measured) [23]. More recently, very long timescale

transients lasting many hours have been observed in cell efficiency [9]. These decays in

PCE can be reversed by allowing the cell to recover in the dark. Various explanations

have been proposed for these transient behaviours, including (a) large trap state densities

close to the interfaces with the transport layers, (b) slow ferroelectric polarisation of the

perovskite material and (c) the motion of iodide (I−) vacancies within the perovskite

material [35]. As discussed in Richardson et al. [28], it is now widely accepted that

the only one of these mechanisms capable of explaining the data is iodide vacancy

motion.

Various approaches may be used to model PSCs ranging from atomistic density func-

tional theory (DFT) simulations, to drift-diffusion models of charge carrier and ion

motion, to lumped parameter device models (equivalent circuits). DFT calculations, while

perhaps the most fundamental approach, are so computationally intensive that they are

incapable of describing the behaviour of a full cell. In practice, they are used to obtain

estimates of macroscopic quantities, such as ion vacancy densities and mobilities, from the

atomistic structures of the materials forming the device [10]. In contrast, drift-diffusion

models, which are applicable on the nanometre length scale and upward, describe the

motion of electrons, holes and ion vacancies. Such models have been presented and solved

in a number of works [5, 9, 13, 21, 23, 28, 30, 34, 40]. However, it is notable that, with the

exception of two [23, 28], all of these works use parameter values that are very far from

realistic. This may be ascribed to the extreme numerical stiffness of the problem owing

to very narrow (∼2 nm) Debye (boundary) layers that form as a result of ion accumula-

tion/depletion at the edges of the perovskite layer. In order to overcome this difficulty,

Richardson et al. [28] adopted a combined numerical and asymptotic approach, in which

the electrical properties of the Debye layers are modelled by a non-linear surface (Debye

layer) capacitance, based on estimates for the equilibrium ion vacancy density and mobil-

ity obtained from DFT calculations performed by Eames et al. [10]. The purpose of that

work was to demonstrate that experimental J –V hysteresis data could be explained by

the motion of ion vacancies in the perovskite layer and so the derivation of the asymptotic

solution was not given there.

The aim of this paper is to systematically derive the asymptotic approach used in

the earlier work by Richardson et al. [28] and validate it against numerical solutions

to the full model. A similar approach has been used for (i) asymptotic derivations of

equivalent circuit models from drift-diffusion models [11,12,32] (in the context of organic

solar cells, PSCs and bipolar silicon devices, respectively); (ii) a matched asymptotic

analysis of np-diodes [24]; (iii) asymptotic derivations of the standard ‘regional’ models

of semiconductors from a drift-diffusion model [31]; (iv) multidimensional models of bulk

heterojunction solar cells [3,29]; and (v) the asymptotic analysis of quantum drift-diffusion

models [2]. Subsequent to Richardson et al. [28], Ravishankar et al. [26] published a

heuristic model similar to the surface capacitance model used in this earlier work, which
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4 N. E. Courtier et al.

they term a surface polarisation model. We argue that the systematic derivation of such

models from the underlying drift-diffusion equations, as here, has the significant advantage

of directly relating the surface capacitances to the device physics.

This work is set out as follows. In Section 2, we formulate the drift-diffusion model

for a PSC, non-dimensionalise and estimate the model parameters. In Section 3, we use

formal asymptotic methods, based on the parameter estimates made in Section 2, to derive

a hierarchy of simplified models to the full PSC model including the surface polarisation

model of Ravishankar et al. [26]. In Section 4, the results of the simplified models are

compared to numerical solutions of the full PSC model and finally, in Section 5, we draw

our conclusions.

2 Problem formulation

Here, we consider a perovskite absorber layer, sandwiched between an ETL and an HTL

(typically TiO2 and spiro, respectively). We make the assumption that the transport layers

are sufficiently highly doped that they are effectively equipotential across their width and

take the same potential as their respective contacts. In the perovskite, in line with DFT

calculations on its chemical structure [10], we assume there exists a high density of mobile

anion vacancies, in addition to the charge carriers. The resulting dimensional model for

the perovskite layer (0 < x < b), following earlier work [28], is outlined below.

Dimensional model

Conservation of holes (density p) and conduction electrons (density n) is described by

∂p

∂t
+

1

q

∂jp
∂x

= G− R, jp = −qDp

(
∂p

∂x
+

p

VT

∂φ

∂x

)
,

∂n

∂t
− 1

q

∂jn
∂x

= G− R, jn = qDn

(
∂n

∂x
− n

VT

∂φ

∂x

)
, (2.1)

where G is the photo-generation rate; R(n, p) is the bulk recombination and thermal

generation rate (henceforth abbreviated to recombination rate); φ is the electric potential;

jn and jp are electron- and hole-currents, respectively; and VT = kT/q is the thermal

voltage. Similar equations for the conservation of positively-charged anion vacancies

(density P ) and negatively charged cation vacancies (density N) take the form

∂P

∂t
+

∂Fp

∂x
= 0, Fp = −D+

(
∂P

∂x
+

P

VT

∂φ

∂x

)
,

∂N

∂t
+

∂Fn

∂x
= 0, Fn = −D−

(
∂N

∂x
− N

VT

∂φ

∂x

)
, (2.2)

where Fp (and Fn) are the fluxes of the positive (and negative) ion vacancies (as opposed

to the current fractions carried by these species). Both sets of equations couple to Poisson’s

equation for the electric potential

∂2φ

∂x2
=

q

ε
(N − P + n− p) . (2.3)
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A surface polarisation model for planar perovskite solar cells 5

Boundary conditions at the edges of the perovskite, x = 0 (the interface with the ETL)

and x = b (the interface with the HTL) take the form

n = n0

φ =
Vbi−Vap

2

jp = −qRl

Fn = 0

Fp = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

x = 0,

p = p0

φ = −Vbi−Vap

2

jn = −qRr

Fn = 0

Fp = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

x = b, (2.4)

where Vap is the applied voltage; Vbi is the built-in potential; Rl and Rr are the interfacial

charge recombination rates on x = 0 and x = b, respectively; and the carrier densities on

the interfaces are given by the expressions (see e.g., Nelson [20])

p0 = gv exp

(
μ̂p − EFd

kT

)
, n0 = gc exp

(
EFa

− μ̂n

kT

)
.

Here, gc and gv are the effective density of states in the conduction and valence bands

of the perovskite, respectively; μ̂n and μ̂p are the perovskite conduction and valence band

energies, respectively. In addition, we model the highly doped ETL and HTL as metals

in which EFd
, the HOMO energy level of the HTL (Spiro), and EFa

, the conduction band

energy of the ETL (TiO2), play the roles of the Fermi levels in these materials. These

equations are supplemented by initial conditions, which we choose as follows to ensure

charge neutrality,

p|t=0 = p0 , n|t=0 = n0 , N|t=0 = N0 , P |t=0 = N0 . (2.5)

The built-in voltage

This quantity can be found from (2.1) with boundary conditions (2.4) by noting that, at

equilibrium, the photo-generation rate, applied voltage and electron- and hole-currents

are all zero (G = 0, Vap = 0 and jp = jn = 0). The equilibrium solutions for n and p have

the form

p = A exp

(
− φ

VT

)
, n = B exp

(
φ

VT

)
,

in which the constants A and B are determined by the boundary conditions such that

p = p0 exp

(
− φ

VT

− Vbi

2VT

)
, n = n0 exp

(
φ

VT

− Vbi

2VT

)
.

Furthermore, since the rate of thermal generation and recombination must be equal

(R = 0) at equilibrium (see e.g., (2.7)), we require np = n2
i . It follows that

Vbi = VT log

(
n0p0

n2
i

)
, (2.6)

which with the parameter estimates in Table 1, turns out to be 1V ≈ 39VT .
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6 N. E. Courtier et al.

Table 1. Parameters for the device described in Section 2.2, where ε0 is the permittivity

of free space and DoS is an abbreviation for density of states. Here, α is calculated from

Loper et al. [18] based on light wavelength of 585 nm (close to the peak absorption of the

perovskite layer). Unless stated otherwise, the parameters are for the perovskite layer.

Symbol Description Value Source

T Temperature 298 K

Fph Incident photon flux 9.5 × 1020 m-2s-1 [18, 28]

α Absorption coefficient 6.1 × 106 m-1 [18]

b Width 1.5 − 6 × 10−7 m [17, 25]

Vbi Built-in voltage 1 V

μ̂n Conduction band level −3.7 eV [33]

ĝc Conduction band DoS 8.1 × 1024 m-3 [4]

ĝv Valence band DoS 5.8 × 1024 m-3 [4]

μ̂p Valence band level −5.4 eV [33]

Dn Electron diffusion coefficient 1.7 × 10−4 m2s-1 [36]

Dp Hole diffusion coefficient 1.7 × 10−4 m2s-1 [36]

D+ Vacancy diffusion coefficient 2.4 × 10−16 m2s-1 [10, 28]

N0 Vacancy density 1.6 × 1019 cm-3 [41]

εp Permittivity 24.1ε0 [4]

τn Electron pseudo-lifetime 3 × 10−12 s [28]

τp Hole pseudo-lifetime 9 × 10−10 s [28]

gc TiO2 conduction band DoS 8.1 × 1024 m-3 [4]

gv Spiro valence band DoS 5.8 × 1024 m-3 [4]

EFa TiO2 Fermi level −4.0 eV [33]

EFd Spiro Fermi level −5.0 eV [33]

Recombination and photo-generation

At the radiation intensities associated with sunlight, the bulk recombination rate within

the perovskite, R, is believed to be predominantly trap assisted (although at higher

radiation intensities bimolecular recombination becomes significant) [37]. It is therefore

appropriate to model bulk recombination by the Shockley–Read–Hall rate equation (see

e.g., Nelson [20] Section 4.5.5)

R =
np− n2

i

τpn + τnp + k3
, (2.7)

where τn and τp are the pseudo-lifetimes of conduction electrons and holes, respectively,

and k3 is a constant related to the pseudo-lifetimes and trap state energy level (typically

negligible to the other terms in the denominator of (2.7) when the cell is under illumina-

tion). Furthermore, Stranks et al. [37] suggest that bulk recombination is hole dominated

(τp � τn), an assumption which is in line with that made in Richardson et al. [28].

There is still no consensus on the relative importance of interfacial recombination (at

the interfaces between the perovskite and the transport layers) in comparison to bulk

recombination although we note that this may be sample dependent. For example, de

Quilettes et al. [8] note that recombination within the perovskite occurs predominantly
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A surface polarisation model for planar perovskite solar cells 7

at crystal boundaries, which implies the magnitude of bulk recombination is strongly

dependent upon the perovskite structure.

The photo-generation rate, G, is assumed to follow the Beer–Lambert law of light

absorption; with light entering the device through the ETL (TiO2). This has the form

G = Fphα exp (−αx) , (2.8)

where Fph is the incident photon flux and α is the light absorption coefficient of the

perovskite.

2.1 Non-dimensionalisation

Dimensionless variables (denoted by a star) are introduced by rescaling (i) space with the

width of the perovskite layer; (ii) voltages with the thermal voltage; (iii) charge carrier

densities with the typical photo-generated charge density, Π0 (see (2.10)); (iv) current

densities with the typical photo-generated current density, qFph; and (v) ion densities with

the typical ion density, N0. The rescaling reads

x = bx∗, φ = VTφ
∗, Vap = VTΦ

∗,

t = τiont
∗, p = Π0p

∗, n = Π0n
∗,

jp = qFphjp
∗, jn = qFphjn

∗, P = N0P
∗,

N = N0N
∗, Fp =

D+N0

b
F∗

p , Fn =
D+N0

b
F∗

n ,

G =
Fph

b
G∗, R =

Fph

b
R∗, Rl,r = FphR

∗
l,r . (2.9)

Here, Ld is the Debye length calculated on the basis of the ion vacancy density and τion
is the characteristic timescale for ion motion defined, respectively, by

Ld =

(
εVT

qN0

)1/2

, τion =
LDb

D+
.

Furthermore, we take Π0 to be the characteristic charge carrier density required to remove

the photo-generated charge in the absence of an electric field

Π0 =
Fphb

D̂
, (2.10)

where D̂ is a typical carrier diffusivity. The non-dimensionalisation gives rise to the

following dimensionless quantities that characterise the system:

ν =
D+b

D̂Ld

, κp =
Dp

D̂
, κn =

Dn

D̂
, n̄ =

n0

Π0
, p̄ =

p0

Π0
,

γ =
b2

D̂τp
, Δ =

D−
D+

, Ni =
ni

Π0
, λ =

Ld

b
, δ =

Π0

N0
,

Φbi =
Vbi

VT

, Υ = αb, ε =
τn

τp
, K3 =

k3

Π0τp
. (2.11)
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8 N. E. Courtier et al.

The dimensionless problem

The system of equations obtained by applying the rescaling (2.9) to the variables in

(2.1)–(2.8) is

ν
∂p∗

∂t∗
+

∂j∗p
∂x∗

= G∗ − R∗, j∗p = −κp

(
∂p∗

∂x∗
+ p∗

∂φ∗

∂x∗

)
,

ν
∂n∗

∂t∗
− ∂j∗n

∂x∗
= G∗ − R∗, j∗n = κn

(
∂n∗

∂x∗
− n∗

∂φ∗

∂x∗

)
,

∂P ∗

∂t∗
+ λ

∂F∗
p

∂x∗
= 0, F∗

p = −
(

∂P ∗

∂x∗
+ P ∗ ∂φ∗

∂x∗

)
,

∂N∗

∂t∗
+ λ

∂F∗
n

∂x∗
= 0, F∗

n = −Δ

(
∂N∗

∂x∗
−N∗ ∂φ∗

∂x∗

)
,

∂2φ∗

∂x∗2
=

1

λ2

[
N∗ − P ∗ + δ

(
n∗ − p∗

)]
, (2.12)

n∗ = n̄

φ∗ =
Φbi − Φ∗

2
j∗p = −qR∗

l

F∗
n = 0

F∗
p = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

x∗ = 0,

p∗ = p̄

φ∗ = −Φbi − Φ∗

2
j∗n = −qR∗

r

F∗
n = 0

F∗
p = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

x∗ = 1, (2.13)

p∗ = p̄, n∗ = n̄, N∗ = 1, P ∗ = 1 at t∗ = 0. (2.14)

The dimensionless recombination and generation rates (for a device under constant

illumination) are given by

R∗(n∗, p∗) = γ

(
n∗p∗ −N2

i

n∗ + εp∗ + K3

)
, G∗ = Υ exp(−Υx∗) . (2.15)

Henceforth, we drop the star superscript from the dimensionless variables.

2.2 Parameter estimates for real devices

A list of parameter estimates obtained from the literature is supplied in Table 1. Note that

Fph, τn, τp and D+ are in line with the range of values found in the literature but have been

specifically chosen to give good agreement to the experimental J–V curves presented by

Richardson et al. [28]. Based on this data, the dimensionless parameters, corresponding
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A surface polarisation model for planar perovskite solar cells 9

to a cell with perovskite width b = 600 nm, are

λ = 2.4 × 10−3, ν = 5.8 × 10−10, δ = 2.1 × 10−7,

κn = κp = 1, Δ = 0, ε = 3.3 × 10−3,

p̄ = 0.30, n̄ = 20, Ni = 8.6 × 10−9,

γ = 2.4, K3 = 8.6 × 10−9, Υ = 3.7 . (2.16)

While, for a cell with perovskite width b = 150 nm, they remain unchanged except that

λ = 1.0 × 10−2, ν = 1.4 × 10−10, δ = 5.2 × 10−8,

p̄ = 1.2, n̄ = 82, Ni = 3.4 × 10−8,

γ = 0.15, K3 = 3.5 × 10−8, Υ = 0.92 .

For the range of possible perovskite layer thicknesses considered, it always holds that

δ � λ � 1 and this observation motivates the asymptotic solution to the model considered

in the next section.

3 Asymptotic simplification of the model (δ � λ � 1)

Here, we assume dimensionless parameter sizes consistent with (2.16) and in particular

require that δ � λ � 1. In this scenario, the problem for the anion vacancy density and

potential (P and φ) decouples from that for the charge carrier densities (n and p) so that

a very good estimate of φ can be obtained by ignoring the contributions of n and p in the

last equation of (2.12). We shall further assume that the cation vacancies are effectively

immobile on the timescales of interest, reflected in the choice of Δ = D−/D+ = 0. This

assumption, coupled to equations (2.12) and initial conditions (2.14), imply that the cation

vacancy density remains constant with N ≡ 1.

3.1 The ion problem

A good approximation to the potential can be obtained from the ion vacancy dependent

equations in (2.12)–(2.14) at leading order, i.e.,

∂P

∂t
+ λ

∂Fp

∂x
= 0, Fp = −

(
∂P

∂x
+ P

∂φ

∂x

)
,

∂2φ

∂x2
=

1

λ2
(1 − P ) , (3.1)

with

φ|x=0 =
Φbi − Φ

2
, Fp|x=0 = 0,

φ|x=1 = −Φbi − Φ

2
, Fp|x=1 = 0, P |t=0 = 1. (3.2)

Since λ � 1, these equations can be further approximated by using asymptotic boundary

layer theory, in a similar vein to Richardson et al. [27]. In the limit λ → 0, the solution can
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10 N. E. Courtier et al.

Figure 2. Schematic representation of the Debye layers and the solution for the electric

potential, φ.

be subdivided into three regions consisting of a bulk (or outer) region which is separated

from the two boundaries by boundary layers of width O(λ), see Figure 2. As is usual in

this type of problem, these boundary layers are termed either Debye layers or double

layers (we opt for the former usage).

Bulk region

Away from the boundaries (i.e., for x � λ and 1− x � λ), the variables P , Fp and φ can

be expanded, in powers of λ and δ, as follows:

P = 1 + · · · , Fp = F (o)
p,0 + · · · , φ = φ

(o)
0 + · · · . (3.3)

Substituting these expansions into (3.1), and assuming δ/λ � 1, gives, at leading order,

∂F (o)
p,0

∂x
= 0, F (o)

p,0 = −∂φ(o)
0

∂x
.

Note that correction terms in the expansions of P and φ are O(δ) and O(δ/λ), respectively.

These arise from the presence of the O(δ) charge carrier terms in Poisson’s equation (last

of (2.12)) and this is why the expansion breaks down if the value of either n or p becomes

comparable to O(λ/δ). It follows that φ(o)
0,xx = 0 and hence that

φ
(o)
0 = W−(t) (1 − x) + W+(t)x, (3.4)

for arbitrary functions of time W−(t) and W+(t). It follows, on substituting into (3.4), that

the leading order ion flux is given by

F (o)
p,0 = W−(t) −W+(t). (3.5)
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A surface polarisation model for planar perovskite solar cells 11

The Debye layers

The asymptotic solution in the Debye layer about x = 0 is obtained by rescaling space in

the governing equations (3.1) and (3.2) via

x = λζ ; (3.6)

and substituting the asymptotic expansions

P = P
(d)
0 (ζ, t) + · · · , Fp = F (d)

p,0 (ζ, t) + · · · , φ = φ
(d)
0 (ζ, t) + · · · , (3.7)

into the rescaled equations to obtain the leading order problem. The solution to which is

given in the appendix and can be summarised as follows: (A) the leading order potential,

φ
(d)
0 (ζ, t), and vacancy distribution, P (d)

0 (ζ, t), are both quasi-steady throughout the Debye

layer, (B) the vacancy distribution is in quasi-equilibrium and so is Boltzmann distributed

and (C) the potential satisfies a modified version of the Poisson–Boltzmann equation. The

solution to this problem can be written in the form

P
(d)
0 (ζ, t) = exp(−θ(ζ,V−(t))) ,

φ
(d)
0 (ζ, t) = θ(ζ,V−(t)) + W−(t) , (3.8)

where W− is the potential at the left-hand side of the bulk, to which φ
(d)
0 matches as

ζ → +∞, and V−(t) is the potential drop across the Debye layer (see Figure 2). The

function θ(ζ,V−) is defined by the solution θ(z,V) to the generic modified Poisson–

Boltzmann problem

∂2θ

∂z2
= 1 − e−θ, θ|z=0 = −V , θ → 0, z → ∞. (3.9)

Similarly, the asymptotic solution in the Debye layer about x = 1 is obtained by

rescaling space in the governing equations (3.1) and (3.2) using the transformation

x = 1 − λξ ; (3.10)

and substituting the asymptotic expansions

P = P
(D)
0 (ξ, t) + · · · , Fp = F (D)

p,0 (ξ, t) + · · · , φ = φ
(D)
0 (ξ, t) + · · · , (3.11)

into the resulting equations and solving at leading order. Once again this process is

described in detail in the appendix. As in the other Debye layer, the leading order

potential φ(D)
0 (ξ, t) and vacancy distribution P

(D)
0 (ξ, t) can be written in the form

P
(D)
0 (ξ, t) = exp(−θ(ξ,V+(t))) ,

φ
(D)
0 (ξ, t) = θ(ξ,V+(t)) + W+(t) , (3.12)

where W+ is the potential at the right-hand side of the bulk (to which φ
(D)
0 matches as

ξ → +∞), V+(t) is the potential drop across this Debye layer (see Figure 2) and θ(ξ,V+(t))

is once again a solution to the problem (3.9).
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12 N. E. Courtier et al.

In order to fully determine the leading order solutions in both Debye layers and the

bulk region, it is necessary to solve for the time-dependent functions V−, W−, V+ and

W+. The requirement that the leading order solutions in the Debye layers, (3.8) and (3.12),

satisfy the potential boundary conditions in (3.2) gives

W−(t) − V−(t) =
Φbi − Φ(t)

2
, W+(t) − V+(t) = −Φbi − Φ(t)

2
. (3.13)

Charge conservation within the Debye layers

A further two conditions on these four functions can be obtained by matching the flux

of vacancies into the Debye layers with the leading order expansion of the vacancy

conservation equations in the Debye layers. This leads to solvability conditions (described

in appendix) which can be interpreted in terms of global conservation of charge within

the Debye layers. Since the leading order solutions for the vacancy densities within the

Debye layers are quasi-steady, the total (dimensionless) charge per unit area within each

Debye layer, Q, can be related to the potential drop across the layer, V , in the form of

a non-linear capacitance relation. Here, the charges per unit area contained within each

Debye layer (Q− in that about x = 0 and Q+ in that about x = 1) are defined, in terms

of the local Debye layer variables ζ and ξ, by

Q− =

∫ ∞

0

(P − 1) dζ , Q+ =

∫ ∞

0

(P − 1) dξ, (3.14)

and, as shown in the appendix, are related to the potential drops across the Debye layers

(V− and V+, respectively) via the capacitance relations

Q− = Q(V−(t)) , Q+ = Q(V+(t)) , (3.15)

where the function Q(V) is defined by

Q(V) = sign(V)
(
2
(
eV − 1 − V

))1/2
. (3.16)

This relation is plotted in Figure 3.

Furthermore, since vacancies (and hence charge) are conserved, the rate of change of

the total charge per unit area within the Debye layers must equal the flux of (positively

charged) vacancies flowing into each layer from the bulk region. Since the vacancy flux

in the bulk region, F (o)
p,0 , is spatially independent, and given by (3.5), this observation

corresponds to the conditions

dQ−
dt

= W+(t) −W−(t) ,
dQ+

dt
= W−(t) −W+(t).

Alternatively, on eliminating W+ and W− in favour of V+ and V−, we have the equivalent

conditions

dQ−
dt

= − [Φbi − Φ(t) + V−(t) − V+(t)] ,

dQ+

dt
= Φbi − Φ(t) + V−(t) − V+(t), (3.17)
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A surface polarisation model for planar perovskite solar cells 13

Figure 3. Charge density in the Debye layer, Q, versus the potential drop across it, V , defined by

(3.16), or equivalently (3.19).

which can be solved in conjunction with (3.15) and (3.16). Adding these two equations

together and integrating with respect to t implies that the total charge in the Debye

layers is conserved, i.e., Q−(t) + Q+(t) is constant. This is to be expected given that

the predominant mobile charge carriers are the positive vacancies which cannot leave

the perovskite region. Furthermore, since the net charge arising from both positive and

negative vacancies will initially always be zero, it remains so for all time, i.e.,

Q−(t) = −Q+(t). (3.18)

At this stage, we can choose either to solve an ODE for V+(t) or one for Q+(t). Since

neither of these problems admit exact solution, we opt to solve for Q+ because this is

preferable from a numerical point of view. We do this by noting that the inverse of (3.16)

is

V(Q) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− loge

(
− 1

LambertW0(− exp(−(Q2/2+1)))

)
for Q < 0,

loge
(
−LambertW−1(− exp(−(Q2/2 + 1)))

)
for Q > 0,

(3.19)

where LambertW0(·) and LambertW−1(·) are the 0’th and −1’st branch of the Lambert

W function. On substituting the above functional relation in (3.17), together with (3.18),

we obtain a single ODE for Q+(t)

dQ+

dt
= Φbi − Φ(t) + V(−Q+) − V(Q+) . (3.20)

The solution to (3.20) may be used to obtain the leading order bulk potential via (3.4),

that is,

φ
(o)
0 (x, t) = ( 1 − x)

(
V(−Q+(t)) + 1

2
[Φbi − Φ(t)]

)
+x

(
V(Q+(t)) − 1

2
[Φbi − Φ(t)]

)
. (3.21)
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14 N. E. Courtier et al.

Remark

The dimensional surface charge density (in the Debye layers), Q(dim), is related to its

non-dimensional counterpart, Q, by

Q(dim) = qλbN0Q.

The uniformly valid approximation to φ

We can now write down a uniformly valid approximation to φ that is valid throughout

the bulk and both Debye layers:

φ ∼ (1 − x)

(
V(−Q+(t)) +

1

2
[Φbi − Φ(t)]

)
+ x

(
V(Q+(t)) − 1

2
[Φbi − Φ(t)]

)

+θ
(x

λ
,V(−Q+(t))

)
+ θ

(
1 − x

λ
,V(Q+(t))

)
, (3.22)

where the function θ(z,V) is defined implicitly in ( 15) in the appendix. The corresponding

uniformly valid asymptotic approximation for the anion vacancy density, P , is

P ∼ exp
(
−θ

(x

λ
,V(−Q+(t))

))
+ exp

(
−θ

(
1 − x

λ
,V(Q+(t))

))
− 1 . (3.23)

3.2 Asymptotic approximation to the charge carrier equations

As we demonstrate in Section 4, the potential is well-approximated by the solution

to the ion problem (3.1) and (3.2) and is almost entirely unaffected by the carrier

distributions. Furthermore, since the Debye layers are extremely thin, the effects of both

photo-generation and recombination within these layers are negligible so that, from (2.12),

the electron and hole currents are to a good approximation spatially independent across

these layers,

j(d)
p ≈ j(d)

p (t) , j(d)
n ≈ j(d)

n (t) , j(D)
p ≈ j(D)

p (t) , j(D)
n ≈ j(D)

n (t) .

Furthermore, in these narrow regions, electron and hole densities are in approximate

quasi-thermal equilibrium. In particular, in the Debye layers close to x = 0 and x = 1,

respectively,

∂n(d)

∂ζ
∼ n(d) ∂φ(d)

0

∂ζ
,

∂p(D)

∂ξ
∼ −p(D) ∂φ(D)

0

∂ξ
.

Referring to the boundary conditions (2.13), we find that

n(d) ∼ n̄ exp

(
φ

(d)
0 − 1

2
(Φbi − Φ)

)
near x = 0 ,

p(D) ∼ p̄ exp

(
−φ

(D)
0 − 1

2
(Φbi − Φ)

)
near x = 1 .
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A surface polarisation model for planar perovskite solar cells 15

For the purposes of predicting the output current of the device, we need only determine

the carrier concentrations within the bulk region. Matching conditions on the bulk carrier

problems (for n and p) are obtained from the far-field behaviour of the Debye layer

solutions, namely,

n(d) → n̄ exp(V−(t)) as ζ → +∞ ,

p(D) → p̄ exp(−V+(t)) as ξ → +∞ .

The appropriate boundary conditions on the bulk carrier densities are thus

n(o) = n̄ exp(V−(t))

j(o)
p = −Rl

}
x = 0+,

p(o) = p̄ exp(−V+(t))

j(o)
n = −Rr

}
x = 1−. (3.24)

The corresponding equations for the carrier densities in the bulk, as obtained from (2.12),

are, on taking the physically appropriate limit ν → 0,

∂j(o)
p

∂x
= G− R(n(o), p(o)) , j(o)

p = −κp

(
∂p(o)

∂x
− p(o)E

(o)
0

)
,

∂j(o)
n

∂x
= −G + R(n(o), p(o)) , j(o)

n = κn

(
∂n(o)

∂x
+ n(o)E

(o)
0

)
, (3.25)

where E
(o)
0 (t) is the leading order bulk electric field defined by E

(o)
0 (t) = −∂φ(o)

0 /∂x and,

from (3.21), is given by

E
(o)
0 (t) = V−(t) − V+(t) + Φbi − Φ(t). (3.26)

Hence, the asymptotic approximation to the charge carrier problem can be found from

the solution of (3.24) and (3.25) in which the electric field term, E
(o)
0 (t), depends, via

(3.26), on the solution Q+(t) to the ion problem, through the relations V− = V(−Q+)

and V+ = V(Q+) (where the function V(·) is defined in (3.19)). Usually, the solution will

have to be obtained numerically because of the non-linearity of the recombination term.

Nonetheless, numerically solving this reduced problem is considerably less challenging than

directly tackling (2.12)–(2.14) because it excludes the Debye layers, over which the solution

varies very rapidly. Finally, we note that the net current density j(o)(t) = j(o)
n (x, t)+ j(o)

p (x, t)

is independent of the spatial variable x and so can be found simply by evaluating the

sum of the electron and hole current densities at any point in the domain.

3.3 An analytic solution in the limit ε → 0 with zero interfacial recombination

It is notable that the parameter ε = τn/τp is typically small (we estimate, on the basis of

earlier work [28], ε ≈ 3.3 × 10−3), while the other parameters in the SRH recombination

term (2.15), Ni and K3, are both very small. These observations lead us to set Ni ≡ 0,

K3 ≡ 0 and to investigate the small ε limit. In which case, provided that p/n is not large,

R(n, p) can be approximated by

R(n, p) ∼ γp. (3.27)

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956792518000207
Downloaded from https://www.cambridge.org/core. University of Portsmouth Library, on 25 Apr 2018 at 10:23:27, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956792518000207
https://www.cambridge.org/core


16 N. E. Courtier et al.

If we restrict our interest to the case where interfacial recombination is negligible (i.e., if

we take Rl ≡ 0 and Rr ≡ 0), it follows that the equation for the hole density decouples

from that for the electron density (see (3.25)) and can be reformulated as the following

linear equation for p(o):

∂j(o)
p

∂x
= Υ exp(−Υx) − γp(o) ,

∂p(o)

∂x
− p(o)E

(o)
0 = −

j(o)
p

κp
.

These may be solved by eliminating j(o)
p from the above to obtain a second-order constant

coefficient linear inhomogeneous equation for p
(o)
0 , namely,

∂2p(o)

∂x2
− E

(o)
0

∂p(o)

∂x
− γp(o)

κp
= −Υ exp(−Υx) .

This can be rewritten in the form

∂2p(o)

∂x2
− (β1(t) + β2(t))

∂p(o)

∂x
+ β1(t)β2(t)p

(o) = −d exp(−Υx) , (3.28)

where

β1(t) =
E

(o)
0 (t)

2
+

(
(E(o)

0 (t))2 + 4γ/κp

)1/2

2
,

β2(t) =
E

(o)
0 (t)

2
−

(
(E(o)

0 (t))2 + 4γ/κp

)1/2

2
,

d =
Υ

κp
. (3.29)

On noting that E(o)
0 (t) = β1(t) + β2(t), the boundary conditions (3.24) can be stated as

∂p(o)

∂x
− p(o)(β1(t) + β2(t))

∣∣∣∣
x=0

= 0 ,

p(o)|x=1 = p̄ exp(−V+(t)) . (3.30)

The solution to (3.28) and (3.30) is

p(o)(x, t) = − de−Υx

(Υ + β1(t))(Υ + β2(t))
+ A(t)eβ1(t)x + B(t)eβ2(t)x , (3.31)

where

A(t) =
Â(t)

D(t)
, B(t) =

B̂(t)

D(t)
, D(t) = β1(t)e

β1(t) − β2(t)e
β2(t) ,

Â(t) = β1(t)p̄ exp(−V+(t)) −
d
(
eβ2(t)(β1(t) + β2(t) + Υ ) − β1(t)e

−Υ
)

(Υ + β1(t))(Υ + β2(t))
,

B̂(t) = −β2(t)p̄ exp(−V+(t)) −
d
(
eβ1(t)(β1(t) + β2(t) + Υ ) − β2(t)e

−Υ
)

(Υ + β1(t))(Υ + β2(t))
. (3.32)
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A surface polarisation model for planar perovskite solar cells 17

An expression for the total current in the device

An expression for the hole current density j(o)
p is found by substituting the solution (3.31)

for p(o) into (3.25); this gives

j(o)
p = −κp

(
de−Υx (Υ + β1(t) + β2(t))

(Υ + β1(t))(Υ + β2(t))
− β2(t)A(t)eβ1(t)x − β1(t)B(t)eβ2(t)x

)
. (3.33)

The total current J(t) = j(o)
p (x, t)+j(o)

n (x, t) is determined from the condition that j(o)
n (1, t) =

0, which thus implies that J(t) = j(o)
p (1, t). It follows that

J(t) = −κp

(
de−Υ (Υ + β1(t) + β2(t))

(Υ + β1(t))(Υ + β2(t))
− β2(t)A(t)eβ1(t) − β1(t)B(t)eβ2(t)

)
. (3.34)

Asymptotic solution for the bulk electron density

In order to monitor whether this asymptotic solution breaks down, it is useful to derive

an asymptotic expression for the bulk electron density, n(o), while recalling that we require

p(o)/n(o) � ε in order for the validity of the expansion. The equations and boundary

conditions for n(o) are, at leading order,

∂n(o)

∂x
+ (β1(t) + β2(t))n

(o) =
1

κn
(J(t) − j(o)

p ) ,

n(o)|x=0 = n̄ exp(V−(t)) , (3.35)

in which we once again write E
(o)
0 = β1 +β2 and where j(o)

p is given by (3.33). The solution

to this problem is

n(o) = n̄eV−(t)−(β1(t)+β2(t))x +
J(t)

κnE
(o)
0

(
1 − e−(β1(t)+β2(t))x

)

+D(t)
(
e−Υx − e−(β1(t)+β2(t))x

)
+ G(t)

(
eβ1(t)x − e−(β1(t)+β2(t))x

)
+H(t)

(
eβ2(t)x − e−(β1(t)+β2(t))x

)
, (3.36)

where time-dependent functions D, G and H are given by

D(t) =
κp

κn

(
d(Υ + β1(t) + β2(t))

(β1(t) + β2(t) − Υ )(Υ + β1(t))(Υ + β2(t))

)
,

G(t) = − κpβ2(t)A(t)

κn(2β1(t) + β2(t))
,

H(t) = − κpβ1(t)B(t)

κn(β1(t) + 2β2(t))
. (3.37)

4 Comparison between numerical and asymptotic solutions to the model

In this section, we compare the results obtained from (i) a numerical solution to the full

model, (2.12)–(2.14), to those obtained from (ii) a combined asymptotic/numerical ap-

proach, in which the ion problem is solved asymptotically as in Section 3.1, and from (iii)
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18 N. E. Courtier et al.

the special case described in Section 3.3, which is entirely based on asymptotic approxima-

tions. In particular, we show that the results from (ii) the combined asymptotic/numerical

approach, adopted in an earlier work [28], compare extremely favourably to (i) numerical

solution of the model.

4.1 Numerical methods

In approach (i), we use the method of lines. A detailed description of the numerical

scheme is given by Courtier et al. [7], here, we restrict ourselves to a brief outline. The

spatial derivatives in equations (2.12) are treated using a finite difference approach that is

second-order accurate in space, both on the internal and boundary points, and chosen in

such a way that conservation of species is also exact up to second order. After application

of the finite difference approximations, the problem is reduced to a system of differential

algebraic equations (DAEs) in which the ODEs arise from the evolution equations for

P , n, and p, in (2.12), and the algebraic equations are a result of Poisson’s equation for

the potential. Solving systems of DAEs presents a challenging numerical problem, which

we tackle using the ode15s routine in MATLAB [19]. Owing to rapid changes of the

solution curves within the narrow Debye layers, we find that the problem is sufficiently stiff

to require non-uniform grid spacing and the additional precision offered by Advanpix’s

Multiprecision Computing Toolbox [1].

In approach (ii), the system of equations requiring numerical treatment is that for the

charge carriers in the bulk, (3.24) and (3.25). Having taken the asymptotic limits δ, λ

and ν → 0, the remaining problem is a second-order boundary value problem (BVP).

Crucially, since asymptotic expressions have been derived for the narrow Debye layers,

only the solution in the bulk needs to be resolved numerically. This problem exhibits

significantly reduced stiffness and, as a result, a straightforward application of the bvp4c

routine in MATLAB [19] suffices.

4.2 Results

In Figures 4–7, we show results for a device characterised by the parameters given in

Table 1 with the perovskite layer width equal to 600 nm, corresponding to the set of

dimensionless parameters given in (2.16). All numerical calculations are performed on a

spatial grid consisting of 800 Chebyshev points.

Figures 4–6 show the internal state of a cell at five equally spaced values of time during

a variation of the applied voltage, in a scenario in which the cell is abruptly illuminated at

t = 0 s having been preconditioned in the dark with Vap = Vbi. For Figure 4, the applied

bias is varied smoothly from Vap = Vbi at t = 0 s to Vap = 0.8 V at t = 10 s (precisely,

Vap = Vbi − 0.2 tanh (t)/ tanh (10)). Plots show solutions at t = 2, 4, 6, 8, 10 s. For Figure 5,

the applied bias is instantaneously decreased from Vap = Vbi to Vap = 0 V at t = 0 s and

held there for 4 s. Plots show solutions at t = 0.8, 1.6, 2.4, 3.2, 4.0 s. Finally, for Figure 6,

the applied bias is varied linearly from Vap = Vbi at t = 0 s to Vap = 1.25 V at t=10 s.

Plots are for t = 2, 4, 6, 8, 10 s.

In Figure 7, comparison is made between current–voltage (J –V ) curves calculated using

all three approaches and which model the experimental data presented by Richardson
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Figure 4. (a) Anion vacancy density, (b) electric potential, (c) electron concentration and (d) hole

concentration profiles across the perovskite layer of a cell during a smooth decrease of applied bias

from Vap = Vbi to 0.8 V. Insets focus on the left-hand (TiO2/perovskite) boundary. Arrows indicate

the direction of increasing time; black solid lines represent (i), the full numerical solutions, pink

dashed lines represent (ii), the combined asymptotic/numerical approach and green circles represent

(iii), the uniformly-valid asymptotic expansions from the fully asymptotic approach.

et al. [28]. In that paper, data is provided for two cells; here, we opt to model ‘cell 2’

and choose the colour scheme of Figure 7 for consistency with Figure 7(b) from [28].

The cell is preconditioned for 5 s at 1.2 V in the light before the J–V curve is measured.

The current is calculated at equally spaced intervals in time as the applied voltage is

varied at a constant rate from 1.2 V (forward bias) to 0 V (short-circuit) and back;

the four different scan rates are 50 mVs−1, 100 mVs−1, 250 mVs−1 and 500 mVs−1.

In panel (a), solutions calculated using (i) the fully numerical (solid lines) and (ii) the

combined asymptotic/numerical approach (dashed lines) are shown. Note that both of

these methods calculate currents based on the full SRH recombination rate, (2.7). While

in panel (b), solutions from (iii) the fully asymptotic approach are shown.

The agreement between the asymptotic and numerical results for electric potential and

ion vacancy density presented in Figures 4–6 is extremely close in all cases. This suggests

neglecting the effects of charge carriers (electrons and holes) on the electric potential is, in

the physically pertinent regime considered here, a very good approximation. Agreement

between the asymptotic and numerical results for the charge carrier densities (n and p) is
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Figure 5. As for Figure 4 but for a fast evolution in applied bias from Vap = Vbi to 0 V.

very good but exhibits some relatively minor discrepancies, particularly, in the case of the

rapid transient (Figure 5).

The current-voltage curves produced in Figure 7, which follow typical experimental

protocols, show minimal deviation between asymptotic and numerical results and go a

long way to validating the approach we have adopted here as a useful tool in the study

of these devices.

Estimates for the size of the typical ion vacancy density, N0, in a PSC vary and, while

our value is based on a reputable density functional calculation [10], we should allow for

considerable variations in this quantity. In particular, it is interesting to ask the question

of whether the asymptotic model we have derived still provides a good description of

the physics in the case where N0 is significantly smaller than our original estimate of

1.6 × 1019 cm−3. In order to investigate this possibility, we consider the case where

N0 = 1.6× 1017 cm−3 and compare solutions obtained using each of the three methods in

the case of a voltage transient identical to the one investigated earlier in Figure 4. As can

be seen in Figure 8, the agreement between the solution to the asymptotic model and the

numerical solution of the full model is still extremely good despite λ being 10 times larger

than in the original calculations (here, λ = 2.4× 10−2). This indicates that the asymptotic

approach taken in this work is robust with respect to significant variation in the size of

the ion vacancy density N0 and in particular is applicable to the range of ion vacancy

densities commonly encountered in the literature.
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Figure 6. As for Figure 4 but for a slow increase in applied bias from Vap = Vbi to 1.2 V.

4.3 Discussion

We have looked at three approaches to solving the drift-diffusion model (2.12)–(2.14).

Approach (i) is fully numerical and involves solution of the full problem. In contrast,

in approach (ii) (used previously [28]), we formally take the limits λ → 0 (small Debye

length) and δ → 0 (charge carrier concentration negligible in comparison to ion vacancy

concentration). The comparison between the results of these two approaches is extremely

favourable, as illustrated by the very small discrepancies in the J–V curves calculated

using both approaches, for a range of scan rates, in Figure 7(a).

The other main approximations to the drift-diffusion model that we make use of are

the quasi-steady carrier limit, ν → 0 and the approximation of SRH recombination by

hole dominated monomolecular recombination, ε → 0. The former limit (ν → 0) and its

use, or otherwise, makes negligible difference to the results obtained. The latter, however,

is frequently problematic, despite the very small value of ε (= 1/300) we use in the

simulations. This slightly surprising result is best illustrated by the significant differences

between J–V curves calculated using the fully numerical method (solid curves in Figure

7(a)) and those calculated using the fully asymptotic method in the limit ε → 0 (Figure

7(b)). Where there are significant differences between the two approaches this can be

ascribed to strong spatial variations in charge carrier concentrations across the cell,
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Figure 7. Comparison of solutions for J–V curves at four different scan rates: 500 mVs−1, blue

with crosses; 250 mVs−1, cyan with circles; 100 mVs−1, green with diamonds; and 50 mVs−1, red

with triangles. Arrows show the direction of the voltage sweep.

resulting in regions where n � O(ε p) so that the approximation of R(n, p) in (2.15) by

R(n, p) ≈ γp no longer holds.

5 Conclusion

In this work, we outlined a model for charge carrier transport and ion vacancy motion in

a tri-layer planar PSC (previously discussed in Richardson et al. [28]). Using parameters

extracted from the literature, we were able to identify two key small dimensionless

parameters that characterise the model: λ, which gives the ratio of the Debye length in

the perovskite to the width of perovskite layer, and δ, the ratio of the typical charge

carrier (electron and hole) densities to the typical ion vacancy density. Based on the small

size of these parameters, we performed an asymptotic analysis of the model which showed

that: (a) the problem for the ion vacancy density and the electric potential is almost

completely independent of the charge carrier densities and (b) the decoupled problem

for ion vacancies and electric potential is well-approximated by the solution to a single

first-order ODE that describes the evolution of charge in the Debye layers (at the edge

of the perovskite) in terms of the current through a resistor and a non-linear capacitor in

series. In dimensional form, this simplified model states that the charge (per unit area) in

the right-hand Debye layer, Q+, evolves according to the equation

dQ+

dt
=

qD+N0

VT

(
Vbi − V − V(Q+) + V(−Q+)

b

)
, (5.1)

where the term in the brackets is the (uniform) electric field in the perovskite bulk (away

from the Debye layers) and V(Q) is the inverse to the non-linear capacitance relation

Q(V) =
εpVT

Ld

sign(V)

[
2

(
exp(V/VT ) − 1 − V

VT

)]1/2

. (5.2)
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Figure 8. Equivalent to Figure 4 but for a cell with a lower vacancy density of 1.6 × 1017 cm−3.

A good approximation to the full model can then be obtained by solving this much

simplified problem for ion vacancy density and electric potential and using the resulting

electric potential as an input into the charge carrier equations. The resulting model can

sensibly be termed a surface polarisation model of charge transport because it describes

the effect on the current in a cell of the polarisation of the perovskite layer, as ionic charge

is transported from one of its surfaces to the other. In general, the simplified problem that

we are left to solve for the charge carrier densities is non-linear and so requires numerical

solution. However, in contrast to the problem for the ion vacancies and potential, it is

non-stiff and so this is not usually problematic. Moreover, parameter estimates suggest

that the Shockley–Read–Hall recombination term in the charge carrier equations can

be well-approximated by monomolecular hole dominated recombination (R(n, p) ≈ γp).

This allows the charge carrier equations to be linearised and, in turn, solved analytically.

Where this is the case, an asymptotic solution to the entire model can be obtained from

the solution to the single first-order ODE discussed above.

In order to test the validity of the asymptotic method used to solve this model, we

compared our asymptotic results to the results of a numerical solution of the full model.

The latter was conducted using a recently developed numerical procedure [7] that is

able to accurately solve the full model in realistic parameter regimes. Where we used a

combined asymptotic/numerical approach (solving for the ion vacancy distribution and

electrical potential using the asymptotic model and solving for the charge carrier densities
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and currents numerically), we found extremely good agreement to the full numerical

solution. In the case where we additionally linearised the charge carrier equations and

solved them analytically, the comparison to the full numerical solution, while still good,

was less impressive.

The physics of PSCs is still far from fully understood and in order to improve this

situation, it is vital that drift-diffusion models and their solution techniques continue to

be developed. One obvious, and important, extension to the model discussed here is the

explicit inclusion of charge transport in the electron- and hole-transport layers on either

side of the perovskite. Such an extension will be able to elucidate how the choice of these

layers affects the cell’s transient behaviours. In particular, this extended model could be

used to investigate cell architectures giving rise to so-called low hysteresis behaviour and

would also be better able to account for interfacial recombination, see, for example [5,39].

Here, we assume cation vacancies are immobile, which is justified by the relatively short

timescales. However, it is believed that mobile methylammonium vacancies can lead to

slow (over the timescale of many hours) but reversible changes in efficiency [9].
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Appendix Solution for P and φ in the Debye layers

In the bulk region, we obtain a solution for the leading order vacancy density P
(o)
0 and

potential φ
(o)
0 , given by P

(o)
0 = 1 and φ

(o)
0 = W−(t)(1 − x) + W+(t)x. These expressions

satisfy the potential boundary conditions but in general cannot satisfy the flux boundary

conditions, see (3.2). In order to resolve this seeming paradox, we need to account for

narrow boundary layers (Debye layers) of width O(λ) about x = 0 and x = 1.
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Debye layer about x = 0

Considering first the Debye layer about x = 0, we use the rescaling (3.6) to rewrite the

governing equations (3.1) and (3.2) in terms of the rescaled spatial variable ζ, yielding the

boundary layer equations:

∂P

∂t
+

∂Fp

∂ζ
= 0 , Fp = −1

λ

(
∂P

∂ζ
+ P

∂φ

∂ζ

)
, ( 1)

∂2φ

∂ζ2
= 1 − P , ( 2)

φ|ζ=0 =
Φ− Φbi

2
, Fp|ζ=0 = 0 , P |t=0 = 1 . ( 3)

The expansions for P , φ and Fp proceed as in (3.7) so that to leading order in ( 1), we

obtain the following equation for P
(d)
0 :

∂P (d)
0

∂ζ
+ P

(d)
0

∂φ(d)
0

∂ζ
= 0 ,

This has the solution

P
(d)
0 = exp

(
W (t) − φ

(d)
0

)
, ( 4)

for some as yet undetermined function of time, W (t).

Matching to the outer

In order for the leading order Debye layer solution to match to the leading order outer

solution, through (3.3) and (3.4), we require

P
(d)
0 → 1 , φ

(d)
0 → W−(t) , ζ → +∞ . ( 5)

Applying the matching condition ( 5) to the solution ( 4) determines a relation between

the arbitrary functions W (t) = W−(t) motivating us to eliminate one of them by writing

P
(d)
0 = exp

(
W−(t) − φ

(d)
0

)
. ( 6)

On substituting this expression into ( 2) balanced at leading order, we find

∂2φ
(d)
0

∂ζ2
= 1 − exp

(
W−(t) − φ

(d)
0

)
, ( 7)

which satisfies boundary conditions obtained from the leading order terms in ( 3) and

from ( 5), namely

φ
(d)
0 |ζ=0 =

Φbi − Φ

2
, φ

(d)
0 → W−(t) , ζ → +∞ . ( 8)

The corresponding expansion for the total charge per unit area in the left-hand Debye
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layer, Q− (defined in (3.14)) is

Q− = Q−,0 + · · · ,

and, by substituting this into (3.14), we obtain

Q−,0 =

∫ ∞

0

(
exp

(
W (t) − φ

(d)
0

)
− 1

)
dζ . ( 9)

We can reformulate the problem for φ
(d)
0 , given by ( 7) and ( 8), in a generic form by

writing

φ
(d)
0 (ζ, t) = θ(ζ,V−(t)) + W−(t) , ( 10)

where V−(t) represents the potential gained across the Debye layer, i.e., V− = [φ(d)
0 ]∞0

(note that with this definition θ = − loge P
(d)
0 ). It is then straightforward to show that the

function θ(z,V) must satisfy the generic modified Poisson–Boltzmann problem

∂2θ

∂z2
= 1 − e−θ , ( 11)

θ|z=0 = −V−(t) , θ → 0 as z → +∞ . ( 12)

Furthermore, in order that φ(d)
0 |ζ=0 = 1

2
(Φbi − Φ),

W−(t) =
Φbi − Φ

2
+ V−(t) . ( 13)

Thus, if we are able to determine V−(t), we can determine the unknown function W−(t)

in the leading order outer solution for the potential in (3.4).

It is straightforward to obtain a first integral to the autonomous equation ( 11) in the

standard fashion by multiplying by θz and integrating with respect to z. This yields, on

applying the far-field condition ( 12), the expression

∂θ

∂z
= sign(V)

√
2

(
θ + e−θ − 1

)1/2
, ( 14)

where the −sign(V) is to account for the fact that if V < 0 (V > 0) the gradient of θ must

be negative (positive). We can integrate ( 14) once more to obtain a relation for z as a

function of θ which reads

z = Z1 (θ) −Z1(−V) for V > 0 with θ < 0 ,

z = Z2 (θ) −Z2(−V) for V < 0 with θ > 0 ,
( 15)

where

Z1(θ) = 1√
2

∫ θ

−1
dw

(w+e−w−1)1/2
with θ < 0 ,

Z2(θ) = 1√
2

∫ 1

θ
dw

(w+e−w−1)1/2
with θ > 0 .

( 16)
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Characterising the capacitance of the Debye layer

We now seek to relate Q−,0, as given in ( 9), to V−. We note that

Q−,0 =

∫ ∞

0

(
e−θ − 1

)
dζ ,

which we can rewrite as

Q−,0 =

∫ 0

−V−

e−θ − 1

θζ
dθ .

On substituting for θζ from ( 14) and writing θ = −V this integral transforms to

Q−,0 =
sign(V−)√

2

∫ V−

0

eV − 1

(eV − V − 1)1/2
dV .

This integral can be further transformed by the substitution M(V) = eV − V − 1 to the

exact integral

Q−,0 =
sign(V−)√

2

∫ M(V−)

0

1

M1/2
dM ,

which yields the following exact relation between Q−,0 and V−:

Q−,0 = sign(V−)
(
2(eV− − V− − 1)

)1/2
. ( 17)

This relation is plotted in Figure 3, from which it can be seen that Q−,0 is a single valued

function of V−. Hence, given the Debye layer charge density, Q−,0, we can invert to find

the potential jump across the Debye layer, V−. This motivates us to consider the evolution

of Q−,0(t) as charge (in the form of positively charged vacancies) flow out into (or in

from) the bulk region.

A solvability condition on Q−,0(t)

It remains to determine the evolution of V−(t). This can be done by tracking the charge

build up in the Debye layer through the leading order expansion of the positively charged

vacancy conservation equation ( 1),

∂P (d)
0

∂t
+

∂F (d)
p,0

∂ζ
= 0 , ( 18)

and the boundary conditions

F (d)
p,0 |ζ=0 = 0 , F (d)

p,0 → F (o)
p,0 |x=0 as ζ → +∞ . ( 19)

These conditions are obtained from the leading order expansion of ( 3b) and from

matching to the leading order outer solution as ζ → +∞, respectively. By writing ∂P (d)
0 /∂t

as (∂/∂t)(1 − P
(d)
0 ), integrating ( 18) between ζ = 0 and ζ = ∞ and applying the flux
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boundary conditions ( 19), we obtain the solvability condition

dQ−,0

dt
= −F (o)

p,0 |x=0 . ( 20)

The Debye layer about x = 1

The analysis of this right-hand layer proceeds in a similar fashion to the left-hand Debye

layer presented above. We introduce the rescaled spatial variable ξ, defined in (3.10), and

then expand as follows:

P = P
(D)
0 (ξ, t) + · · · , Fp = F (D)

p,0 (ξ, t) + · · · ,
φ = φ

(D)
0 (ξ, t) + · · · , Q+ = Q+,0(t) + · · · .

Following an analogous series of steps to the analysis of the left-hand layer, we find that

P
(D)
0 = exp

(
W+(t) − φ

(D)
0

)
, ( 21)

and that the leading order potential satisfies the problem

∂2φ
(D)
0

∂ξ2
= 1 − exp

(
W+(t) − φ

(D)
0

)
,

φ
(D)
0 |ξ=0 = −Φbi − Φ

2
,

φ
(D)
0 → W+(t) as ξ → ∞ . ( 22)

The solution to this problem is very similar to that for φ
(d)
0 (ζ, t) being given by

φ
(D)
0 (ξ, t) = θ(ξ,V+(t)) + W+(t) , ( 23)

where V+(t) = [φ(D)
0 ]∞ξ=0 is the jump in potential across the right-hand Debye layer and

the function θ(·, ·) is (as before) a solution to ( 11) and ( 12); in other words, one can make

the transformation ζ → ξ and V− → V+ in θ(ζ,V−) both here and in the implicit solution

for θ given in ( 15). In addition, it follows from the condition that φ(D)
0 |ξ=0 = − 1

2
(Φbi −Φ)

that

W+(t) = −Φbi − Φ

2
+ V+(t) . ( 24)

In a similar manner to that described above, we determine a relation between Q+,0 and

V+ which is identical to ( 17) and reads

Q+,0 = sign(V+)
(
2(eV+ − V+ − 1)

)1/2
. ( 25)

Once again, a solvability condition may be derived from the problem for the leading

order anion vacancy density, namely,

∂P (D)
0

∂t
−

∂F (D)
p,0

∂ξ
= 0 , ( 26)
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F (D)
p,0 |ξ=0 = 0 , F (D)

p,0 → F (o)
p,0 |x=1 as ξ → +∞ . ( 27)

The solvability condition we obtain on integrating this system is the following evolution

equation for Q+,0(t):

dQ+,0

dt
= F (o)

p,0 |x=1 . ( 28)
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