
SIAM J. SCI. COMPUT. c© 2006 Society for Industrial and Applied Mathematics
Vol. 27, No. 6, pp. 1948–1980

SYSTEMATIC DERIVATION OF JUMP CONDITIONS FOR THE
IMMERSED INTERFACE METHOD IN THREE-DIMENSIONAL

FLOW SIMULATION∗

SHENG XU† AND Z. JANE WANG†

Abstract. In this paper, we systematically derive jump conditions for the immersed interface
method [SIAM J. Numer. Anal., 31 (1994), pp. 1019–1044; SIAM J. Sci. Comput., 18 (1997), pp.
709–735] to simulate three-dimensional incompressible viscous flows subject to moving surfaces. The
surfaces are represented as singular forces in the Navier–Stokes equations, which give rise to discon-
tinuities of flow quantities. The principal jump conditions across a closed surface of the velocity, the
pressure, and their normal derivatives have been derived by Lai and Li [Appl. Math. Lett., 14 (2001),
pp. 149–154]. In this paper, we first extend their derivation to generalized surface parametrization.
Starting from the principal jump conditions, we then derive the jump conditions of all first-, second-,
and third-order spatial derivatives of the velocity and the pressure. We also derive the jump con-
ditions of first- and second-order temporal derivatives of the velocity. Using these jump conditions,
the immersed interface method is applicable to the simulation of three-dimensional incompressible
viscous flows subject to moving surfaces, where near the surfaces the first- and second-order spa-
tial derivatives of the velocity and the pressure can be discretized with, respectively, third- and
second-order accuracy, and the first-order temporal derivatives of the velocity can be discretized
with second-order accuracy.

Key words. immersed interface method, immersed boundary method, Cartesian grid methods,
jump conditions, three-dimensional Navier–Stokes equations, singular force

AMS subject classifications. 76D05, 76M20, 65M06

DOI. 10.1137/040604960

1. Introduction. Blood flow in the heart [23, 24, 25], aquatic animal locomotion
[10, 15], bird and insect flight [31, 32, 3, 8, 9, 13], and flow passing a compliant
wall [35, 6, 14, 4] are examples of fluid dynamics problems where it is essential to
understand the coupling between moving surfaces and fluids. A main difficulty in
direct numerical simulation of these problems is to accurately and efficiently resolve
the moving surfaces and their effects on the fluids.

Cartesian grid methods, for example [28, 5, 30, 22, 21], avoid mesh regeneration
and allow for fast flow solvers, and thus have the advantage of simplicity and efficiency
for this type of problem. The immersed boundary method is a robust Cartesian grid
method. It was originally proposed by Peskin [23, 24] and later further developed
in [29, 26, 27, 16]. In this method, the moving surface of an immersed object is
parametrized by a set of Lagrangian points comoving with a fluid. The relative posi-
tions of the Lagrangian points determine a singular force distribution on the surface
based on the solid model of the object. The communication between the surface and
the fluid is achieved through the spreading of the singular force and the interpolation
of the surface velocity using discrete Dirac δ functions. The method has been applied
to a wide variety of problems [10, 11, 25, 1, 37].

The initial implementations of the immersed boundary method were only first-
order accurate in space due to the use of grid-dependent discrete Dirac δ functions.

∗Received by the editors March 9, 2004; accepted for publication (in revised form) April 28, 2005;
published electronically February 3, 2006.

http://www.siam.org/journals/sisc/27-6/60496.html
†Department of Theoretical and Applied Mechanics, Cornell University, Ithaca, NY 14853 (sx12@

cornell.edu, jane.wang@cornell.edu).

1948

JUMP CONDITIONS FOR 3D NAVIER–STOKES FLOWS 1949

Beyer and LeVeque [2] examined the accuracy of the method for the one-dimensional
diffusion equation and found that additional terms for the discrete approximation of
the Dirac δ function are sometimes necessary in order to achieve second-order accu-
racy, but it is unclear how to maintain the second-order accuracy by incorporating
additional terms in fluid dynamics problems of higher dimensions. Although a for-
mally second-order immersed boundary method was proposed [16], it is second-order
accurate only if the Dirac δ function is replaced by a grid-independent smooth func-
tion; in practice, it is still first-order accurate. Realizing that only the divergence-free
portion of the singular force contributes to the temporal evolution of the velocity, and
that the projection of discrete Dirac δ functions onto a divergence-free space may be
computed analytically, Cortez and Minion [7] devised the blob projection immersed
boundary method, which displays the formally fourth-order convergence rate of their
background flow solver. However, the analytical form of the projection depends on the
velocity boundary conditions imposed on a computational domain. Thus the method
may be limited to particular boundary conditions in simple geometries. It is also
unclear how accurately the pressure can be recovered.

Motivated by the goal of eventually obtaining second-order accuracy in Peskin’s
immersed boundary method, LeVeque and Li [18, 19] have developed the immersed
interface method (IIM). The IIM was originally proposed for elliptic equations [18] and
Stokes equations [19]. Later, it was extended to one-dimensional nonlinear parabolic
equations [33], Poisson equations with Neumann boundary conditions [34, 12], and
two-dimensional incompressible Navier–Stokes equations [20]. The key idea of the
IIM, which is also its main difference from the immersed boundary method, is to
incorporate the known jump conditions of a solution and its derivatives into finite
difference schemes in the neighborhood of the discontinuities arising from the Dirac
δ function. For fluid dynamics problems with moving surfaces, the coupling between
the moving surfaces and the fluids is now translated into the incorporation of the
jump conditions.

If necessary jump conditions are known, the IIM can achieve second-order or even
higher-order accuracy. The two-dimensional Navier–Stokes simulations by Li and Lai
[20] using the IIM have indicated fully second-order accuracy for the velocity and
nearly second-order accuracy for the pressure in the infinity norm. Solutions computed
by the IIM are sharper across surfaces than those computed by the immersed boundary
method. Furthermore, the IIM shows better conservation of the mass enclosed by a
no-penetration surface.

Like any other method, the IIM has its limitations. For instance, the current IIM
applies only to flows with closed smooth surfaces, as seen in its presentation later
in this paper. Both the IIM and the immersed boundary method also inherit the
shortcomings of fixed Cartesian grid methods. For example, thin boundary layers
developed along a moving boundary and fine geometric details can be adequately
resolved only if the uniform computational mesh is fine enough. It should also be
noted that, for many bio-fluid dynamics problems, the computation of the singular
force distribution is a modeling process, and improvement in the accuracy of the IIM
or the immersed boundary method cannot eliminate modeling errors.

The applicability of the IIM depends on whether the necessary jump conditions
are all known. The principal jump conditions across a closed surface of the velocity,
the pressure, and their normal derivatives have been derived by Lai and Li [17] for
three-dimensional incompressible viscous flows. The main contribution of our paper
is to derive for the IIM the necessary jump conditions of flow variables and their

1950 SHENG XU AND Z. JANE WANG

derivatives to achieve a given-order discretization accuracy in three-dimensional flow
simulation. Other contributions include generalized Taylor expansion, which is the
basis for devising finite difference schemes for the IIM; a generalized Gauss theorem,
which serves as the basic tool in the derivation of the principal jump conditions;
the principal jump conditions in generalized surface parametrization, which bring the
flexibility to parametrize a singular surface in practical applications; and the jump
conditions of temporal derivatives, which are required to achieve first-order or higher-
order temporal discretization accuracy.

The content of the paper is organized as follows. In section 2, the governing
equations are described; they are the starting point for the derivation of the prin-
cipal jump conditions. In section 3, the principal jump conditions are derived. In
section 4, finite difference schemes with jump conditions incorporated are presented.
In sections 5 and 6, the required spatial and temporal jump conditions are derived.
A simple example is also provided in section 6 to address the proper discretization of
temporal derivatives. In section 7, the possibility of improving the IIM to arbitrarily
high-order discretization accuracy is discussed.

Since the original submission of this paper, we have implemented and tested the
IIM in two-dimensional flow simulations with jump conditions obtained from our
theoretical derivation below. Please refer to Xu and Wang [36] for the full numeri-
cal implementation and the test results. The test results serve in part to verify our
derivation in the current paper. We have also progressed on the development of a
three-dimensional code. We hope to provide the three-dimensional results soon.

2. Governing equations. Incompressible Navier–Stokes equations subject to
singular force are

ρ

(
∂ui

∂t
+ uj ∂u

i

∂xj

)
= − ∂p

∂xi
+ μ

∂2ui

∂xj∂xj
+ F i,(2.1)

∂ui

∂xi
= 0,(2.2)

where xi(i = 1, 2, 3) is in Cartesian coordinates, t is time, ρ is fluid density, ui is
velocity, p is pressure, μ is dynamic fluid viscosity, and F i is the singular force. Taking
the divergence of momentum equation (2.1) and applying continuity condition (2.2)
gives the Poisson equation for pressure p as

∂2p

∂xi∂xi
=

∂F i

∂xi
− ∂

∂xi

(
ρ
∂ui

∂t
+ ρuj ∂u

i

∂xj

)
.(2.3)

We consider the situation that the singular force is applied on the closed surface of
an immersed object, and we call the surface singular surface S. Referring to Figure 2.1,
singular force F i is given by

F i =

∫
S
f i(α1, α2, t)δ(x − X(α1, α2, t))dα1dα2,(2.4)

in which x := (x1, x2, x3) is the Cartesian coordinates, X(α1, α2, t) := (X1, X2, X3)
is the coordinates of the singular surface, δ(x−X(α1, α2, t)) is the three-dimensional
Dirac δ function, f i(α1, α2, t) is force density, and α1 and α2 are two Lagrangian
parameters which parametrize the singular surface at a reference time. We assume

JUMP CONDITIONS FOR 3D NAVIER–STOKES FLOWS 1951

2α

x3

2τ

3α

1α

x2

x1

1τ

S

n

X

Fig. 2.1. Cartesian coordinates xi(i = 1, 2, 3) and curvilinear coordinates αi(i = 1, 2, 3). α1

and α2 are two Lagrangian parameters which parametrize the singular surface S at a reference time.
X is the coordinates of the singular surface. τ1, τ2, and n are respectively the two tangential vectors
and the normal vector at X.

that f i(α1, α2, t) is a smooth function of α1, α2, and t. Mathematically, F i can be
regarded as a distribution function with the property∫

Ω

F idΩ =

∫
Ω∩S

f i(α1, α2, t)d(Ω ∩ S),

where Ω can be a volume or a surface.

3. Principal jump conditions. We now derive the principal jump conditions

of the velocity, ui, the pressure, p, and their normal derivatives, ∂ui

∂n and ∂p
∂n , across

the singular surface, S.

We assume that the velocity, the pressure, and their derivatives are piecewise
smooth with discontinuities only at the singular surface. The singular surface, S :
X = (X1, X2, X3), is assumed geometrically regular and orientable. For every point
on the surface, the parametrization by α1 and α2 generates a rank-two matrix⎛

⎜⎜⎝
∂X1

∂α1

∂X2

∂α1

∂X3

∂α1

∂X1

∂α2

∂X2

∂α2

∂X3

∂α2

⎞
⎟⎟⎠.

The row vectors in the above matrix are two independent tangential vectors at the
point (see Figure 2.1)

τ1 := (τ1
1 , τ

2
1 , τ

3
1) =

(
∂X1

∂α1
,
∂X2

∂α1
,
∂X3

∂α1

)
,

τ2 := (τ1
2 , τ

2
2 , τ

3
2) =

(
∂X1

∂α2
,
∂X2

∂α2
,
∂X3

∂α2

)
.

A unit normal vector can be expressed by

n := (n1, n2, n3) =
τ1 × τ2
‖τ1 × τ2‖

=
τ1 × τ2

J ,

1952 SHENG XU AND Z. JANE WANG

where ‖ · ‖ denotes the length of a vector and J := ‖τ1 × τ2‖; see Figure 2.1. In
Cartesian coordinates, n = (n1, n2, n3) = (n1, n2, n3), where ni(i = 1, 2, 3) is a con-
travariant component and ni(i = 1, 2, 3) a covariant component.

Proposition 3.1. For a flow defined by (2.1) and (2.2), the velocity, ui, is finite
and continuous at the immersed singular surface, S; i.e.,

[ui] = 0,(3.1)

where [·] denotes a jump as [·] := (·)X+ − (·)X− , with X+ representing the point at
the side of S in the direction of normal n and X− the point at the other side.

Continuity equation (2.2) assures only the continuity of the normal velocity com-
ponent across the singular surface. In our applications, the singular surface is a physi-
cal boundary immersed in an incompressible viscous fluid. No-slip and no-penetration
conditions on this physical boundary require the velocity to be continuous across the
singular surface and the singular surface to move with the local flow velocity, as
expressed mathematically by Proposition 3.1.

Corollary 3.2.[
∂ui

∂t
+ uj ∂u

i

∂xj

]
=

[
∂ui

∂t

]
+ uj

[
∂ui

∂xj

]
= 0.(3.2)

Proof. A jump condition is a function of the time t and the surface coordinates
X(α1, α2, t), i.e., [·] = [·] (X, t). Differentiating (3.1) with respect to time t gives

d[ui](X, t)

dt
=

dui(X+, t)

dt
− dui(X−, t)

dt

=
∂ui(X+, t)

∂t
+

∂ui(X+, t)

∂xj

dXj+

dt

−
(
∂ui(X−, t)

∂t
+

∂ui(X−, t)

∂xj

dXj−

dt

)

=

[
∂ui

∂t
+

∂ui

∂xj

dXj

dt

]
= 0.

From Proposition 3.1, we have dXj+

dt = dXj−

dt = uj . Thus, the result follows.
The notion of a jump condition, [·], commutes with a differentiation, and we can

therefore write the function form of a jump condition as [·(X, t)] to carry out the
differentiation hereafter.

To derive the other principal jump conditions, we need to generalize Gauss’s
theorem. Gauss’s theorem in the usual form reads∫

V

∂Gi

∂xi
dV =

∮
A
GiNidA,

where A is a regular and positively oriented closed surface, V is the region enclosed by

A, and Ni is a normal to A. It is required that the function Gi and its divergence ∂Gi

∂xi

be continuous over A and V. We generalize Gauss’s theorem to relax these continuity
restrictions.

Theorem 3.3 (generalized Gauss theorem). If Gi and ∂Gi

∂xi are continuous over
A and V except that Gi has finite jumps or a singularity of the Dirac δ function type
at the singular surface S enclosed in V, then∫

V

∂Gi

∂xi
dV =

∮
A
GiNidA.(3.3)

JUMP CONDITIONS FOR 3D NAVIER–STOKES FLOWS 1953

The proof of Theorem 3.3 is given in Appendix A.
Lemma 3.4. For a flow defined by (2.1) and (2.2), the jump conditions across

singular surface S of pressure p and normal velocity derivative ∂ui

∂n satisfy

[p] =
fknk

J ,(3.4) [
∂ui

∂n

]
=

(fknk)n
i − f i

μJ .(3.5)

Equation (3.4) states that the normal force on the singular surface is balanced
by the difference of the pressure force across the singular surface, and (3.5) states
that the tangential force on the singular surface is balanced by the difference of the
shear force across the singular surface. Below, we prove Lemma 3.4 through the force
balance on a control volume. The same results were obtained by Lai and Li [17] by
using the test function method.

Proof. Take an infinitesimal area, δS = J δα1δα2, on singular surface S, which
corresponds to an infinitesimal area, δα1δα2, in the parameter space. Translate δS in
the directions of n and −n by ε/2, and denote the swept region δV. Integrating (2.1)
over δV and letting ε → 0 yields

lim
ε→0

∫
δV

ρ

(
∂ui

∂t
+ uj ∂u

i

∂xj

)
dV = lim

ε→0

∫
δV

∂

∂xj

(
−pδij + μ

∂ui

∂xj

)
dV + lim

ε→0

∫
δV

F idV,

(3.6)

where δij is the Kronecker symbol. Applying (2.2) and the Reynolds transport theo-
rem, the left-hand side of (3.6) becomes

lim
ε→0

∫
δV

ρ

(
∂ui

∂t
+ uj ∂u

i

∂xj

)
dV = lim

ε→0

∫
δV

(
∂ρui

∂t
+

∂ρuiuj

∂xj

)
dV = lim

ε→0

d

dt
(ρuiδV) = 0.

Applying our generalized Gauss theorem to the first term on the right-hand side of
(3.6) yields

lim
ε→0

∫
δV

∂

∂xj

(
−pδij + μ

∂ui

∂xj

)
dV = lim

ε→0

∫
δS

nj

[
−pδij + μ

∂ui

∂xj

]
dS

=

(
−[p]ni + μ

[
∂ui

∂xk

]
nk

)
δS.

The last term in (3.6) is

lim
ε→0

∫
δV

F idV = lim
ε→0

∫
S

∫
δV

f i(α1, α2, t)δ(x − X(α1, α2, t))dVdα1dα2

= f i(α1, α2, t)δα1δα2.

Thus,(
−[p]ni + μ

[
∂ui

∂xk

]
nk

)
δS + f i(α1, α2, t)δα1δα2 = 0

⇒ −[p]ni + μ

[
∂ui

∂xk

]
nk

= −f i(α1, α2, t)

J .

1954 SHENG XU AND Z. JANE WANG

Multiplying ni above and applying the facts that nkni + τkτi + bkbi = δki (where
δki is the Kronecker symbol, and n, τ , and b are mutually orthogonal unit vectors),
∂ui

∂xi = 0, and [∂u
i

∂τ] = [∂u
i

∂b] = 0 (from [ui] = 0), we obtain

[p] =
f ini

J ,

μ

[
∂ui

∂xk

]
nk =

−f i

J + [p]ni ⇒
[
∂ui

∂n

]
=

(fknk)n
i − f i

μJ .

Now we use the test function method to derive the jump condition of the nor-
mal pressure derivative, ∂p

∂n , across the singular surface with generalized surface
parametrization. To prepare for the derivation, we first introduce a coordinate trans-
formation (see Figure 2.1) between Cartesian coordinates xi(i = 1, 2, 3) and curvilin-
ear coordinates αi(i = 1, 2, 3) as

xi = xi(α1, α2, α3),

αi = αi(x1, x2, x3),

where α3 is a new coordinate with x(α1, α2, α3 = 0, t) = X(α1, α2, t) corresponding
to the singular surface, S, and α3 is chosen to satisfy

∂x(α1, α2, α3 = 0, t)

∂α3
= n.

It can be shown that

∇α3 = n,

where ∇ is the gradient operator in the Cartesian coordinate system. Let f̃ i be a
contravariant component of the forcing density vector in the curvilinear coordinate
system. It is related to f i through

f̃ i =
∂αi

∂xj
f j ,

where ∂αi

∂xj satisfies

∂xk

∂αi

∂αi

∂xj
= δkj ,

in which δkj is the Kronecker symbol and ∂xk

∂αi can be written in a matrix form on the
singular surface S as

CT
1 :=

⎛
⎝ τ1

1 τ2
1 τ3

1

τ1
2 τ2

2 τ3
2

n1 n2 n3

⎞
⎠

T

,(3.7)

where superscript T denotes the transposition of a matrix. As the determinant of C1

is |C1| = n · (τ1 × τ2) �= 0, C1 is nonsingular.
Lemma 3.5. The jump condition of normal pressure derivative ∂p

∂n across the
singular surface is [

∂p

∂n

]
=

1

J

(
∂f̃1

∂α1
+

∂f̃2

∂α2

)
.(3.8)

JUMP CONDITIONS FOR 3D NAVIER–STOKES FLOWS 1955

Proof. Take control volume Vs so that Vs is a layer with thickness ε containing
singular surface S. Denote the surface of Vs by A. Multiplying a smooth test function,
φ(x), by (2.3) and then integrating over Vs with ε → 0 yields

lim
ε→0

∫
Vs

φ
∂2p

∂xi∂xi
dV = lim

ε→0

∫
Vs

φ
∂F i

∂xi
dV − lim

ε→0

∫
Vs

φ
∂

∂xi

(
ρ
∂ui

∂t
+ ρuj ∂u

i

∂xj

)
dV.

(3.9)
With Theorem 3.3, the term on the left-hand side of (3.9) can be written as

lim
ε→0

∫
Vs

φ
∂2p

∂xi∂xi
dV = lim

ε→0

∫
Vs

(
∂

∂xi

(
φ
∂p

∂xi

)
+ p

∂2φ

∂xi∂xi
− ∂

∂xi

(
p
∂φ

∂xi

))
dV

=

∫
S

(
φ

[
∂p

∂xi

]
ni − [p]

∂φ

∂xi
ni

)
dS

=

∫
S

(
φ

[
∂p

∂n

]
− [p]

∂φ

∂n

)
J dα1dα2.

Due to Theorem 3.3, the first term on the right-hand side of (3.9) becomes

lim
ε→0

∫
Vs

φ
∂F i

∂xi
dV = lim

ε→0

∫
Vs

∂(φF i)

∂xi
dV − lim

ε→0

∫
Vs

F i ∂φ

∂xi
dV

= − lim
ε→0

∫
Vs

F i ∂φ

∂xi
dV = −

∫
S
f i(α1, α2, t)

∂φ

∂xi
dα1dα2

= −
∫
S

(
f̃1 ∂φ

∂α1
+ f̃2 ∂φ

∂α2
+ f · n∂φ

∂n

)
dα1dα2

=

∫
S
φ

(
∂f̃1

∂α1
+

∂f̃2

∂α2

)
dα1dα2 −

∫
S
f · n∂φ

∂n
dα1dα2.

In the last step above, we used the fact that the singular surface is closed. With (3.2),
the last term on the right-hand side of (3.9) becomes

lim
ε→0

∫
Vs

φ
∂

∂xi

(
ρ
∂ui

∂t
+ ρuj ∂u

i

∂xj

)
dV

= lim
ε→0

∫
Vs

∂

∂xi

(
φρ

∂ui

∂t
+ φρuj ∂u

i

∂xj

)
dV − lim

ε→0

∫
Vs

∂φ

∂xi

(
ρ
∂ui

∂t
+ ρuj ∂u

i

∂xj

)
dV

=

∫
S
φρ

([
∂ui

∂t

]
+ uj

[
∂ui

∂xj

])
nidS − lim

ε→0

d

dt

∫
Vs

(
∂φ

∂xi
ρui

)
dV = 0.

Plugging the equalities for the three terms back into (3.9) and applying (3.4) gives

∫
S
φ

([
∂p

∂n

]
J − ∂f̃1

∂α1
− ∂f̃2

∂α2

)
dα1dα2 = 0.

Because φ is arbitrary, we have[
∂p

∂n

]
J − ∂f̃1

∂α1
− ∂f̃2

∂α2
= 0,

which ends the proof.

1956 SHENG XU AND Z. JANE WANG

We have by now derived all the principal jump conditions. They are

[ui] = 0,(3.10)

[p] =
fknk

J ,(3.11) [
∂ui

∂n

]
=

(fknk)n
i − f i

μJ ,(3.12)

[
∂p

∂n

]
=

1

J

(
∂f̃1

∂α1
+

∂f̃2

∂α2

)
.(3.13)

4. Finite differencing in the IIM. The fundamental idea of the IIM in a flow
simulation is to incorporate jump conditions in finite differencing at discontinuities
caused by the singular force. A finite difference scheme has its usual form if its stencil
does not cross the singular surface. If its stencil crosses the singular surface, it contains
additional terms. The additional terms are composed of the jump conditions and
are referred to the jump contribution to the finite difference scheme hereafter. To
determine the form of the jump contribution in a finite difference scheme, we follow
generalized Taylor expansion for a piecewise smooth function, which is given below
as a lemma.

Lemma 4.1 (generalized Taylor expansion). Assume function g(z) has discon-
tinuity points of the first kind at z1, z2, . . . , zm in (z0, zm+1), z0 < z1 < z2 < · · · <
zm < zm+1, and g(z) ∈ C∞(z0, z1) ∪ (z1, z2) ∪ · · · ∪ (zm, zm+1). g(z) can be either
continuous or discontinuous at z0 and zm+1. Let [g(n)(zl)] = g(n)(z+

l)− g(n)(z−l)(n =
1, 2, . . . ; l = 1, 2, . . . ,m). Then

g(z−m+1) =

∞∑
n=0

g(n)(z+
0)

n!
(zm+1 − z0)

n +

m∑
l=1

∞∑
n=0

[g(n)(zl)]

n!
(zm+1 − zl)

n.(4.1)

Proof. Taylor expansion for g(n)(z−l) about z+
l−1 yields

g(n)(z−l) =

∞∑
β=0

g(n+β)(z+
l−1)

β!
(zl − zl−1)

β .

With the use of the binomial theorem, we thus find that

∞∑
n=0

g(n)(z−l)

n!
(zm+1 − zl)

n =

∞∑
n=0

∞∑
β=0

g(n+β)(z+
l−1)(zl − zl−1)

β

n!β!
(zm+1 − zl)

n

=

∞∑
γ=0

γ∑
β=0

g(γ)(z+
l−1)

(zl − zl−1)
β(zm+1 − zl)

(γ−β)

β!(γ − β)!

=

∞∑
γ=0

g(γ)(z+
l−1)

γ!
(zm+1 − zl−1)

γ .

With g(n)(z+
l−1) = g(n)(z−l−1) + [g(n)(zl−1)], thus

∞∑
n=0

g(n)(z−l)

n!
(zm+1 − zl)

n =

∞∑
n=0

g(n)(z−l−1)

n!
(zm+1 − zl−1)

n(4.2)

+

∞∑
n=0

[g(n)(zl−1)]

n!
(zm+1 − zl−1)

n.

JUMP CONDITIONS FOR 3D NAVIER–STOKES FLOWS 1957

With g(n)(z+
m) = g(n)(z−m) + [g(n)(zm)], Taylor expansion for g(z−m+1) at z+

m yields

g(z−m+1) =

∞∑
n=0

g(n)(z+
m)

n!
(zm+1 − zm)n

=

∞∑
n=0

g(n)(z−m)

n!
(zm+1 − zm)n +

∞∑
n=0

[g(n)(zm)]

n!
(zm+1 − zm)n.

Using recursion (4.2) repeatedly above gives the desired result.
Corollary 4.2. The Taylor expansion for g(z+

0) about z−m+1 is

g(z+
0) =

∞∑
n=0

g(n)(z−m+1)

n!
(z0 − zm+1)

n +

m∑
l=1

∞∑
n=0

−[g(n)(zl)]

n!
(z0 − zl)

n.(4.3)

Jump conditions at the singular surface enter a finite difference scheme in the
neighborhood of the singular surface. The form of the finite difference scheme can
be found by applying Lemma 4.1 and Corollary 4.2. Here, we construct central finite
difference schemes for first-order and second-order derivatives in the situation where
there is a discontinuity point ξ between stencil points xi−1 and xi and a discontinuity
point η between stencil points xi and xi+1. If there are more discontinuity points in
the stencil, they can easily be included in a similar manner.

Lemma 4.3 (generalized central finite differences). Let xi+1 − xi = xi − xi−1 =
h > 0 and xi−1 < ξ < xi ≤ η < xi+1. Suppose that u(x) is infinitely smooth except at
discontinuity points of the first kind ξ and η. Further, u(x) can be either continuous
or discontinuous at xi+1 and xi−1. Then

du(x−
i)

dx
=

u(x−
i+1) − u(x+

i−1)

2h
(4.4)

+
1

2h

(
2∑

n=0

−[u(n)(ξ)]

n!
(xi−1−ξ)n−

2∑
n=0

[u(n)(η)]

n!
(xi+1 − η)n

)
+ O(h2),

d2u(x−
i)

dx2
=

u(x−
i+1) − 2u(xi) + u(x+

i−1)

h2
(4.5)

− 1

h2

(
3∑

n=0

−[u(n)(ξ)]

n!
(xi−1−ξ)n+

3∑
n=0

[u(n)(η)]

n!
(xi+1 − η)n

)
+ O(h2).

Other finite difference schemes with different orders can also be constructed based
on Lemma 4.1 and Corollary 4.2, but the number of jump conditions sets an upper
limit on the order of accuracy, as stated in the following proposition.

Proposition 4.4. The highest order of a finite difference scheme for u(n)(x) with
a stencil containing a discontinuity point ζ is m − n + 1, where m is the maximum
number for known jump conditions [u(l)(ζ)] (l = 0, 1, 2, . . . ,m).

Navier–Stokes equations (2.1), (2.2) and pressure Poisson equation (2.3) have first-
and second-order spatial derivatives. According to Proposition 4.4, to discretize the
first-order spatial derivatives with second-order accuracy or the second-order spatial
derivatives with first-order accuracy near the singular surface, the jump conditions
of the velocity, the pressure, and their first- and second-order spatial derivatives are
needed. To discretize the first-order spatial derivatives with third-order accuracy
or the second-order spatial derivatives with second-order accuracy near the singular

1958 SHENG XU AND Z. JANE WANG

surface, the jump conditions of their third-order derivatives are needed as well. All
these spatial jump conditions are derived in section 5.

If the singular surface is moving, there will be jumps in the temporal derivatives
of the velocity at a grid point whenever the surface crosses that grid point. Suppose
that the singular surface passes the grid point at time t1, t2, . . . , tm between time t0
and tm+1; then

ui(tm+1) =

∞∑
n=0

∂nui(t0)

∂tn
(tm+1 − t0)

n

n!
+

m∑
l=1

∞∑
n=0

[[
∂nui(tl)

∂t

]]
(tm+1 − tl)

n

n!
,(4.6)

where [[·]] denotes a jump at time t as [[·]] := (·)t+ − (·)t− . Equation (4.6) follows
directly from Lemma (4.1). Thus, to achieve first-order accuracy when discretizing
∂ui

∂t in (2.1), we need
[[
ui
]]

and
[[
∂ui

∂t

]]
; to achieve second-order accuracy, we also need[[

∂2ui

∂t2

]]
. All these temporal jump conditions are derived in section 6.1.

It should be noted that the spatial convergence rate of a simulation even in terms
of the infinity norm can be of the same order as the numerical scheme away from a sin-
gular surface, even though the discretization of some derivatives in the Navier–Stokes
equations and the pressure Poisson equation is of lower order accuracy near the singu-
lar surface. Examples can be found in Li and Lai [20] and Xu and Wang [36], where,
with second-order central finite difference discretization of all spatial derivatives away
from a singular surface, a simulation had second-order spatial convergence rates in
terms of the infinity norm for both the velocity and the pressure, even though the
discretization of the Laplace operator was only first-order accurate near the singular
surface.

5. Jump conditions of spatial derivatives. The spatial jump conditions of
velocity ui and pressure p are given in (3.10) and (3.11). In this section we present
how to derive the spatial jump conditions of all the first-, second-, and third-order
velocity and pressure derivatives:

[
∂ui

∂xj

]
,

[
∂p

∂xj

]
;

[
∂2ui

∂xj∂xk

]
,

[
∂2p

∂xj∂xk

]
;

[
∂3u

∂xi∂xj∂xk

]
,

[
∂3p

∂xi∂xj∂xk

]
;

where u is used to represent the velocity vector and a superscript (i, j, or k) takes a
value 1, 2, or 3 in three-dimensional simulation.

5.1. Jump conditions
[

∂ui

∂xj

]
and

[
∂p
∂xj

]
. Differentiate (3.10) with respect to

αm (m = 1, 2) to obtain

∂[ui]

∂αm
=

[
∂ui

∂xk

∂Xk

∂αm

]
=

∂Xk

∂αm

[
∂ui

∂xk

]
= 0.(5.1)

Write (3.12) as

[
∂ui

∂n

]
= nj

[
∂ui

∂xj

]
=

(fknk)n
i − f i

μJ .(5.2)

JUMP CONDITIONS FOR 3D NAVIER–STOKES FLOWS 1959

Combining (5.1) and (5.2) gives

C1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂ui

∂x1

∂ui

∂x2

∂ui

∂x3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎛
⎜⎜⎜⎜⎝

0

0

(fknk)n
i − f i

μJ

⎞
⎟⎟⎟⎟⎠,(5.3)

where
[...] denotes a jump for a column vector, and where the nonsingular coefficient

matrix C1 is defined in (3.7). From (5.3), jump conditions of first-order velocity
derivatives can be solved.

Similarly, jump conditions of first-order pressure derivatives are found to satisfy

C1

⎡
⎢⎢⎢⎢⎢⎢⎣

∂p

∂x1

∂p

∂x2

∂p

∂x3

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂

∂α1

(
f ini

J

)
∂

∂α2

(
f ini

J

)

1

J

(
∂f̃1

∂α1
+

∂f̃2

∂α2

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,(5.4)

from which, jump conditions of first-order pressure derivatives can be solved.

5.2. Jump conditions
[

∂2ui

∂xj∂xk

]
and

[
∂2p

∂xj∂xk

]
. Differentiating equation (5.1)

with respect to αn (n = 1, 2), we have

∂2[ui]

∂αm∂αn
=

[
∂2ui

∂xj∂xk

∂Xj

∂αn

∂Xk

∂αm
+

∂ui

∂xk

∂2Xk

∂αm∂αn

]
= 0

⇒ ∂Xj

∂αn

∂Xk

∂αm

[
∂2ui

∂xj∂xk

]
= − ∂2Xk

∂αm∂αn

[
∂ui

∂xk

]
.(5.5)

Differentiating (3.12) with respect to αm (m = 1, 2), we have

∂

∂αm

[
∂ui

∂n

]
=

[
∂2ui

∂xj∂xk

∂Xk

∂αm
nj +

∂ui

∂xj

∂nj

∂αm

]
=

∂

∂αm

(fknk)n
i − f i

μJ

⇒ nj ∂X
k

∂αm

[
∂2ui

∂xj∂xk

]
=

∂

∂αm

(fknk)n
i − f i

μJ − ∂nj

∂αm

[
∂ui

∂xj

]
.(5.6)

With (3.2), equation (2.1) yields

[
ρ

(
∂ui

∂t
+ uj ∂u

i

∂xj

)]
= −

[
∂p

∂xi

]
+ μ

[
∂2ui

∂xj∂xj

]
= 0.(5.7)

1960 SHENG XU AND Z. JANE WANG

Combining (5.5), (5.6), and (5.7) gives

C2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂2ui

∂x1∂x1

∂2ui

∂x1∂x2

∂2ui

∂x1∂x3

∂2ui

∂x2∂x2

∂2ui

∂x2∂x3

∂2ui

∂x3∂x3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

∂

∂α1

(fknk)n
i − f i

μJ
∂

∂α2

(fknk)n
i − f i

μJ
1

μ

[
∂p

∂xi

]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.8)

−

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂2X1

∂α1∂α1

∂2X2

∂α1∂α1

∂2X3

∂α1∂α1

∂2X1

∂α2∂α2

∂2X2

∂α2∂α2

∂2X3

∂α2∂α2

∂2X1

∂α1∂α2

∂2X2

∂α1∂α2

∂2X3

∂α1∂α2

∂n1

∂α1

∂n2

∂α1

∂n3

∂α1

∂n1

∂α2

∂n2

∂α2

∂n3

∂α2

0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂ui

∂x1

∂ui

∂x2

∂ui

∂x3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

where C2 is

C2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

τ1
1 τ

1
1 τ1

1 τ
2
1 + τ2

1 τ
1
1 τ1

1 τ
3
1 + τ3

1 τ
1
1 τ2

1 τ
2
1 τ2

1 τ
3
1 + τ3

1 τ
2
1 τ3

1 τ
3
1

τ1
2 τ

1
2 τ1

2 τ
2
2 + τ2

2 τ
1
2 τ1

2 τ
3
2 + τ3

2 τ
1
2 τ2

2 τ
2
2 τ2

2 τ
3
2 + τ3

2 τ
2
2 τ3

2 τ
3
2

τ1
1 τ

1
2 τ1

1 τ
2
2 + τ2

1 τ
1
2 τ1

1 τ
3
2 + τ3

1 τ
1
2 τ2

1 τ
2
2 τ2

1 τ
3
2 + τ3

1 τ
2
2 τ3

1 τ
3
2

τ1
1n

1 τ1
1n

2 + τ2
1n

1 τ1
1n

3 + τ3
1n

1 τ2
1n

2 τ2
1n

3 + τ3
1n

2 τ3
1n

3

τ1
2n

1 τ1
2n

2 + τ2
2n

1 τ1
2n

3 + τ3
2n

1 τ2
2n

2 τ2
2n

3 + τ3
2n

2 τ3
2n

3

1 0 0 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

:=

⎛
⎜⎜⎜⎜⎜⎜⎝

C11
2 C12

2 C13
2 C14

2 C15
2 C16

2

C21
2 C22

2 C23
2 C24

2 C25
2 C26

2

C31
2 C32

2 C33
2 C34

2 C35
2 C36

2

C41
2 C42

2 C43
2 C44

2 C45
2 C46

2

C51
2 C52

2 C53
2 C54

2 C55
2 C56

2

C61
2 C62

2 C63
2 C64

2 C65
2 C66

2

⎞
⎟⎟⎟⎟⎟⎟⎠
.(5.9)

Nonsingularity of coefficient matrix C2 is proved in Appendix B, and the right-hand
side of (5.8) is known from (5.3). Thus, from (5.8), jump conditions of all second-order
velocity derivatives can be found.

JUMP CONDITIONS FOR 3D NAVIER–STOKES FLOWS 1961

With the use of Poisson equation (2.3) for the pressure, jump conditions of all
second-order pressure derivatives can be found in the similar way to satisfy

C2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂2p

∂x1∂x1

∂2p

∂x1∂x2

∂2p

∂x1∂x3

∂2p

∂x2∂x2

∂2p

∂x2∂x3

∂2p

∂x3∂x3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂2

∂α1∂α1

(
f ini

J

)
∂2

∂α2∂α2

(
f ini

J

)
∂2

∂α1∂α2

(
f ini

J

)

∂

∂α1

(
1

J
∂f̃1

∂α1
+

1

J
∂f̃2

∂α2

)

∂

∂α2

(
1

J
∂f̃1

∂α1
+

1

J
∂f̃2

∂α2

)

−ρ

[
∂ui

∂xj

∂uj

∂xi

]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.10)

−

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂2X1

∂α1∂α1

∂2X2

∂α1∂α1

∂2X3

∂α1∂α1

∂2X1

∂α2∂α2

∂2X2

∂α2∂α2

∂2X3

∂α2∂α2

∂2X1

∂α1∂α2

∂2X2

∂α1∂α2

∂2X3

∂α1∂α2

∂n1

∂α1

∂n2

∂α1

∂n3

∂α1

∂n1

∂α2

∂n2

∂α2

∂n3

∂α2

0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎢⎢⎣

∂p

∂x1

∂p

∂x2

∂p

∂x3

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Note that

[
∂ui

∂xj

∂uj

∂xi

]
= 2

(
∂ui

∂xj

)
S+

[
∂uj

∂xi

]
−
[
∂ui

∂xj

] [
∂uj

∂xi

]

= 2

(
∂ui

∂xj

)
S−

[
∂uj

∂xi

]
+

[
∂ui

∂xj

] [
∂uj

∂xi

]
,

and
(
∂ui

∂xj

)
S+ or

(
∂ui

∂xj

)
S− can be interpolated from the known velocity field which is

used to solve pressure Poisson equation (2.3). The interpolation scheme is given in Xu
and Wang [36]. From (5.10), jump conditions of all second-order pressure derivatives
can be solved.

5.3. Jump conditions
[

∂3u
∂xi∂xj∂xk

]
and

[
∂3p

∂xi∂xj∂xk

]
. Differentiate (5.5) with

respect to αl (l = 1, 2) and obtain

1962 SHENG XU AND Z. JANE WANG

∂3[u]

∂αl∂αm∂αn
= 0 ⇒ ∂Xj

∂αn

∂Xi

∂αl

∂Xk

∂αm

[
∂3u

∂xi∂xj∂xk

]

= − ∂3Xi

∂αl∂αm∂αn

[
∂u

∂xi

]
(5.11)

−
(

∂2Xk

∂αl∂αm

∂Xj

∂αn
+

∂2Xk

∂αl∂αn

∂Xj

∂αm
+

∂2Xj

∂αm∂αn

∂Xk

∂αl

)[
∂2u

∂xj∂xk

]
.

As (l,m, n) = (1, 1, 1), (2, 2, 2), (1, 1, 2), or (2, 2, 1), we have four equations for
[

∂3u
∂xi∂xj∂xk

]
.

Differentiate (5.6) with respect to αl (l = 1, 2) and obtain

∂2

∂αl∂αm

[
∂u

∂n

]
=

∂2

∂αl∂αm

(fknk)n − f

μJ ⇒ nj ∂X
i

∂αl

∂Xk

∂αm

[
∂3u

∂xi∂xj∂xk

]

=
∂2

∂αl∂αm

(fknk)n − f

μJ − ∂2nj

∂αl∂αm

[
∂u

∂xj

]
(5.12)

−
(

∂nj

∂αm

∂Xk

∂αl
+ nj ∂2Xk

∂αl∂αm
+

∂nj

∂αl

∂Xk

∂αm

)[
∂2u

∂xj∂xk

]
.

As (l,m) = (1, 1), (2, 2), or (1, 2), we have three other equations. Since a superscript

(i, j, or k) can take values 1, 2, or 3, the number of unknowns
[

∂3u
∂xi∂xj∂xk

]
is ten.

Three additional equations need to be found. Differentiating (2.1) with respect to xk

(k = 1, 2, 3) and applying (3.2), we find

[
∂3u

∂xj∂xj∂xk

]
=

1

μ

[
∂

∂xk
∇p

]
+

ρ

μ

([
∂2u

∂t∂xk

]
+

[
∂uj

∂xk

∂u

∂xj

]
+ uj

[
∂2u

∂xj∂xk

])
,

(5.13)

which provides three additional equations if
[

∂2u
∂t∂xk

]
is known. Jump conditions[

∂2u
∂t∂xk

]
are derived in section 6.1. Thus, combining (5.11), (5.12), and (5.13) gives a

10 × 10 system for ten unknowns
[

∂3u
∂xi∂xj∂xk

]
.

To simplify the system, let

dj
lm =

∂Xi

∂αl

∂Xk

∂αm

[
∂3u

∂xi∂xj∂xk

]
,(5.14)

and denote the right-hand sides of (5.11) and (5.12) as rnlm (n = 1, 2) and r3
lm,

respectively. Then, we can rewrite (5.11) and (5.12) as

C1

⎛
⎜⎜⎝

d1
lm

d2
lm

d3
lm

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

r1
lm

r2
lm

r3
lm

⎞
⎟⎟⎠,

from which we can solve dj
lm (j = 1, 2, 3) since C1 is nonsingular. After dj

lm is solved,

JUMP CONDITIONS FOR 3D NAVIER–STOKES FLOWS 1963

we can combine (5.14) and (5.13) to obtain a simplified system as

C3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂3u

∂x1∂x1∂x1

∂3u

∂x1∂x1∂x2

∂3u

∂x1∂x1∂x3

∂3u

∂x1∂x2∂x2

∂3u

∂x1∂x2∂x3

∂3u

∂x1∂x3∂x3

∂3u

∂x2∂x2∂x2

∂3u

∂x2∂x2∂x3

∂3u

∂x2∂x3∂x3

∂3u

∂x3∂x3∂x3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d1
11

d1
22

d1
12

d2
11

d2
22

d2
12

d3
11

d3
22

d3
12

d4
11

d4
22

d4
12

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,(5.15)

where

C3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C11
2 C12

2 C13
2 C14

2 C15
2 C16

2 0 0 0 0
C21

2 C22
2 C23

2 C24
2 C25

2 C26
2 0 0 0 0

C31
2 C32

2 C33
2 C34

2 C35
2 C36

2 0 0 0 0
0 C11

2 0 C12
2 C13

2 0 C14
2 C15

2 C16
2 0

0 C21
2 0 C22

2 C23
2 0 C24

2 C25
2 C26

2 0
0 C31

2 0 C32
2 C33

2 0 C34
2 C35

2 C36
2 0

0 0 C11
2 0 C12

2 C13
2 0 C14

2 C15
2 C16

2

0 0 C21
2 0 C22

2 C23
2 0 C24

2 C25
2 C26

2

0 0 C31
2 0 C32

2 C33
2 0 C34

2 C35
2 C36

2

1 0 0 1 0 1 0 0 0 0
0 1 0 0 0 0 1 0 1 0
0 0 1 0 0 0 0 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,(5.16)

with matrix elements defined in (5.9) and

d4
11 =

1

μ

[
∂

∂x1
∇p

]
+

ρ

μ

([
∂2u

∂t∂x1

]
+

[
∂uj

∂x1

∂u

∂xj

]
+ uj

[
∂2u

∂xj∂x1

])
,

d4
22 =

1

μ

[
∂

∂x2
∇p

]
+

ρ

μ

([
∂2u

∂t∂x2

]
+

[
∂uj

∂x2

∂u

∂xj

]
+ uj

[
∂2u

∂xj∂x2

])
,

d4
12 =

1

μ

[
∂

∂x3
∇p

]
+

ρ

μ

([
∂2u

∂t∂x3

]
+

[
∂uj

∂x3

∂u

∂xj

]
+ uj

[
∂2u

∂xj∂x3

])
.

To obtain a unique solution to (5.15) we need to show rank(C3) = 10, which is done
in Appendix C.

1964 SHENG XU AND Z. JANE WANG

Similarly, with the use of Poisson equation (2.3), we can obtain an equation system

for
[

∂3p
∂xi∂xj∂xk

]
as

C3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂3p

∂x1∂x1∂x1

∂3p

∂x1∂x1∂x2

∂3p

∂x1∂x1∂x3

∂3p

∂x1∂x2∂x2

∂3p

∂x1∂x2∂x3

∂3p

∂x1∂x3∂x3

∂3p

∂x2∂x2∂x2

∂3p

∂x2∂x2∂x3

∂3p

∂x2∂x3∂x3

∂3p

∂x3∂x3∂x3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D1
11

D1
22

D1
12

D2
11

D2
22

D2
12

D3
11

D3
22

D3
12

D4
11

D4
22

D4
12

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,(5.17)

in which

Dj
lm =

∂Xi

∂αl

∂Xk

∂αm

[
∂3p

∂xi∂xj∂xk

]
,(5.18)

with j = 1, 2, 3 and (l,m) = (1, 1), (2, 2), or (1, 2), and

D4
11 = − ∂ρ

∂xi

([
∂2ui

∂t∂x1

]
+ uj

[
∂2ui

∂xj∂x1

]
+

[
∂uj

∂x1

∂ui

∂xj

])

− ∂ρ

∂x1

[
∂uj

∂xi

∂ui

∂xj

]
− 2ρ

[
∂uj

∂xi

∂2ui

∂xj∂x1

]
,

D4
22 = − ∂ρ

∂xi

([
∂2ui

∂t∂x2

]
+ uj

[
∂2ui

∂xj∂x2

]
+

[
∂uj

∂x2

∂ui

∂xj

])

− ∂ρ

∂x2

[
∂uj

∂xi

∂ui

∂xj

]
− 2ρ

[
∂uj

∂xi

∂2ui

∂xj∂x2

]
,

D4
12 = − ∂ρ

∂xi

([
∂2ui

∂t∂x3

]
+ uj

[
∂2ui

∂xj∂x3

]
+

[
∂uj

∂x3

∂ui

∂xj

])

− ∂ρ

∂x3

[
∂uj

∂xi

∂ui

∂xj

]
− 2ρ

[
∂uj

∂xi

∂2ui

∂xj∂x3

]
.

JUMP CONDITIONS FOR 3D NAVIER–STOKES FLOWS 1965

If fluid density ρ is a constant, we have

D4
11 = − 2ρ

[
∂uj

∂xi

∂2ui

∂xj∂x1

]
,

D4
22 = − 2ρ

[
∂uj

∂xi

∂2ui

∂xj∂x2

]
,

D4
12 = − 2ρ

[
∂uj

∂xi

∂2ui

∂xj∂x3

]
.

We solve Dj
lm from

C1

⎛
⎜⎜⎝

D1
lm

D2
lm

D3
lm

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

R1
lm

R2
lm

R3
lm

⎞
⎟⎟⎠,

where Rn
lm (n = 1, 2) and R3

lm are

Rn
lm =

∂3

∂αl∂αm∂αn

(
f ini

J

)
− ∂3Xi

∂αl∂αm∂αn

[
∂p

∂xi

]

−
(

∂2Xk

∂αl∂αm

∂Xj

∂αn
+

∂2Xk

∂αl∂αn

∂Xj

∂αm
+

∂2Xj

∂αm∂αn

∂Xk

∂αl

)[
∂2p

∂xj∂xk

]
,

R3
lm =

∂2

∂αl∂αm

(
1

J
∂f̃1

∂α1
+

1

J
∂f̃2

∂α2

)
− ∂2nj

∂αl∂αm

[
∂p

∂xj

]

−
(

∂nj

∂αm

∂Xk

∂αl
+ nj ∂2Xk

∂αl∂αm
+

∂nj

∂αl

∂Xk

∂αm

)[
∂2p

∂xj∂xk

]
.

6. Jump conditions of temporal derivatives. When singular surface S is
passing a fixed point x∗ in space at time t∗, using X∗ to denote the point on S
which coincides with the point x∗, for flow quantity ψ, we have the following relation
between [[ψ(X∗, t∗)]] = (ψ)t∗+ − (ψ)t∗− and [ψ(X∗, t∗)] = (ψ)S+ − (ψ)S− :

[[ψ]] =

{
[ψ], u(x∗) · n(X∗) < 0,
−[ψ], u(x∗) · n(X∗) > 0.

(6.1)

If u(x∗) · n(X∗) = 0, we can approximate temporal derivatives at x∗ by those at

X∗|S+ or X∗|S− with [[·]] = 0. Thus, instead of deriving
[[
ui
]]
,
[[
∂ui

∂t

]]
, and

[[
∂2ui

∂t2

]]
,

we turn to deriving [ui],
[
∂ui

∂t

]
, and

[
∂2ui

∂t2

]
. We also need to derive

[
∂2ui

∂t∂xk

]
, which

appears in the right-hand side of (5.13). The spatial jump condition of velocity, [ui],
is already given in (3.10).

Note that we need interpolation to obtain t∗ and jump conditions evaluated at t∗

in simulation practice. The interpolation procedures are given in Xu and Wang [36].

6.1. Jump conditions
[

∂ui

∂t

]
,
[

∂2ui

∂t2

]
, and

[
∂2ui

∂t∂xk

]
. From (3.2), we directly

have [
∂ui

∂t

]
= −uj

[
∂ui

∂xj

]
.(6.2)

1966 SHENG XU AND Z. JANE WANG

Differentiating (6.2) with respect to t, we have[
∂2ui

∂t2

]
= −2uj

[
∂2ui

∂t∂xj

]
−
[
∂uj

∂t

∂ui

∂xj

]
− ujuk

[
∂2ui

∂xj∂xk

]
− uk

[
∂uj

∂xk

∂ui

∂xj

]
,(6.3)

where
[

∂2ui

∂t∂xk

]
also appears on the right-hand side of (5.13).

Differentiating (6.2) with respect to αl (l = 1, 2), we obtain

∂Xk

∂αl

[
∂2ui

∂t∂xk

]
=

∂Xk

∂αl

([
∂ui

∂xj

∂uj

∂xk

]
+ uj

[
∂2ui

∂xj∂xk

])
.(6.4)

Differentiating (3.5) with respect to time t, we obtain

nk

[
∂2ui

∂t∂xk

]
=

d

dt

(fknk)n
i − f i

μJ − dnk

dt

[
∂ui

∂xk

]
− nkuj

[
∂2ui

∂xk∂xj

]
.(6.5)

Denote the right-hand side of (6.4) by rilt (l = 1, 2) and the right-hand side of (6.5)
by ri3t . Combining (6.4) and (6.5) then gives

C1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂2ui

∂t∂x1

∂2ui

∂t∂x2

∂2ui

∂t∂x3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎛
⎜⎜⎝

ri1t

ri2t

ri3t

⎞
⎟⎟⎠,(6.6)

from which we can solve
[

∂2ui

∂t∂xk

]
.

6.2. A numerical example. Here, we implement the IIM in a one-dimensional
linear wave equation with a moving singular source. This simple example is designed
to illustrate the necessity of including temporal jump conditions in the discretization
of temporal derivatives. We also examine the convergence property of the IIM in this
example.

The system has the following form:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂u

∂t
+ a

∂u

∂x
= c(t)δ(x−X(t)), X(t) = bt, L ≤ x ≤ R,

u(x, 0) = g(x),

∂u(L, t)

∂x
= 0,

where a and b are constants satisfying a > 0 and a �= b. The analytical solution to
the problem is

u(x, t) = g(x− at) +
h(x− bt) + h(at− x)

2(a− b)
c

(
x− at

b− a

)
,

where h(x) is the step function.
Integrating the wave equation with respect to x from X−(t) to X+(t), the jump

condition of u at x = X(t) can be obtained as

[u] =
c(t)

a− b
,

JUMP CONDITIONS FOR 3D NAVIER–STOKES FLOWS 1967

where [·] = (·)X+ − (·)X− . Following the procedure described in sections 5 and 6.1,
we have derived the jump conditions at the singular source x = X(t):

[u] =
c(t)

a− b
,

[
∂u

∂x

]
= − 1

(a− b)2
dc(t)

dt
,

[
∂2u

∂t∂x

]
= 0,

[
∂2u

∂x2

]
= 0,

[[u]] = − c(t)

a− b
,

[[
∂u

∂t

]]
= − a

(a− b)2
dc(t)

dt
,

[[
∂2u

∂x∂t

]]
= 0,

[[
∂2u

∂t2

]]
= 0,

where [[·]] = (·)t+ − (·)t− . At the wave front generated by the singular source, i.e., at
x = X(0)+ at, the solution is continuous but unsmooth, and the corresponding jump
conditions are

[u] = 0,

[
∂u

∂x

]
=

1

(a− b)2
dc(t)

dt
,

[
∂2u

∂t∂x

]
= 0,

[
∂2u

∂x2

]
= 0,

[[u]] = 0,

[[
∂u

∂t

]]
=

a

(a− b)2
dc(t)

dt
,

[[
∂2u

∂x∂t

]]
= 0,

[[
∂2u

∂t2

]]
= 0.

The Crank–Nicolson method is used to discretize the problem on a uniform mesh:(
un+1
i − un

i

Δt
+ CTn

i

)
+

a

2

((
un
i+1 − un

i−1

2Δx
+ CXn

i

)

+

(
un+1
i+1 − un+1

i−1

2Δx
+ CXn+1

i + CXTn
i

))
= 0,

where n denotes a time layer, i an interior grid point, Δt a time step, Δx a space
step, CT the jump contribution in the finite difference of the temporal derivative, CX
the jump contribution in the finite difference of the spatial derivative, and CXT the
jump contribution to keep the second-order temporal accuracy of the Crank–Nicolson
scheme. The jump contributions CT , CX, and CXT are caused by the unsmoothness
of the solution. We calculate CT and CX according to generalized Taylor expansion
to achieve O((Δt)2) and O((Δx)2) accuracy of the finite differences. The calculation
of CXT originates from the following generalized Taylor expansion:

(
∂u

∂x

)n+1

=

(
∂u

∂x

)n

+

(
∂2u

∂x∂t

)n

Δt +

([[
∂u

∂x

]]
+

[[
∂2u

∂x∂t

]]
Δt

)
+ O(Δt)2.

If there is a grid point I satisfying Xn < xI ≤ Xn+1 from time layer n to time
layer (n + 1), then we let xI = X((n + β)Δt), 0 < β ≤ 1, and compute CTn

i and
CXTn

i as

⎧⎨
⎩CTn

I = − 1

Δt

(
[[u]] +

[[
∂u

∂t

]]
(1 − β)Δt +

1

2

[[
∂2u

∂t2

]]
(1 − β)2(Δt)2

)
,

CTn
i = 0, i �= I.

and ⎧⎨
⎩CXTn

I = −
([[

∂u

∂x

]]
+

[[
∂2u

∂x∂t

]]
Δt

)
,

CXTn
i = 0, i �= I.

1968 SHENG XU AND Z. JANE WANG

0
1

2
3

4
5

6

−6
−4

−2
0

2
4

6
0

1

2

3

4

5

t
x

u

Fig. 6.1. Comparison between the numerical solution (solid lines) and the analytical solution
(dashed lines, hidden by solid lines). For the numerical solution, Δx = 0.02 and CFL = 2Δt

Δx
= 0.4.

Otherwise, we have CTn
i = 0 and CXTn

i = 0 for any grid point i. If xI−1 ≤ Xn < xI

at time n, then we can compute CXn
i as⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

CXn
I = − 1

2Δx

(
[u] +

[
∂u

∂x

]
(xI−1 −Xn) +

1

2

[
∂2u

∂x2

]
(xI−1 −Xn)2

)
,

CXn
I−1 = − 1

2Δx

(
[u] +

[
∂u

∂x

]
(xI −Xn) +

1

2

[
∂2u

∂x2

]
(xI −Xn)2

)
,

CTn
i = 0, i �= I, I − 1.

Similarly, we can compute CXn+1
i . At the outlet x = R of the domain, an upwind

finite difference scheme is used to approximate the spatial derivative, and the cor-
rection CX takes a different form. We also treat the effect of the discontinuity at
x = X(0) + at in the same way.

The results presented below are for a = 2, b = 1, c(t) = t, L = −6, R = 6, and

g(x) = e−2(x+2)2 . Figure 6.1 shows the numerical solution and the analytical solution
at times t = 0, 1, 2, . . . , 6. After time t = 6, the initial wave, the singular source,
and the wave generated by the singular source have all exited from the domain. The
IIM produces the sharp jumps in the numerical solution and the correct wave-source
interaction.

To check the accuracy of the numerical scheme near the singular source, we look
at the solutions at time t = 2, when the position of the singular source is at x = 2.
As spatial resolution changes, Figure 6.2(a) shows the change of the infinity norm of
the error based on the analytical solution. For each spatial resolution, a very small
time step corresponding to CFL = 2Δt

Δx = 0.002 is used to ensure that the temporal
discretization error is negligible compared with the spatial one. Second-order accuracy
in space is indicated in Figure 6.2(a), as expected.

In order to check temporal accuracy, we obtain an accurate reference solution
by using a very small time step corresponding to CFL = 0.002. We compute the
numerical solution using different time steps with the same spatial resolution Δx =
0.05 as a reference. By subtracting the reference solution from a numerical solution

JUMP CONDITIONS FOR 3D NAVIER–STOKES FLOWS 1969

10
−3

10
−2

10
−1

10
−4

10
−3

10
−2

10
−1 (a)

Δ x
10

−4
10

−3
10

−2
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

(b)

Δ t

Fig. 6.2. The infinity norm of the error as a function of (a) spatial resolution with CFL = 0.002
and (b) temporal resolution with Δx = 0.05. Open circles: numerical error with the jump contribu-
tion CXT , x-marks: numerical error without the jump contribution CXT , solid lines: second-order
accuracy, dashed lines: first-order accuracy.

−6 −4 −2 0 2 4 6
−0.5

0

0.5

1

1.5

2

2.5

3

x

(a)

−6 −4 −2 0 2 4 6
−2

−1

0

1

2

3

4

5

x

(b)

Fig. 6.3. The effect of the jump contributions in the temporal discretization. Results (a) with
temporal jump contributions, (b) without temporal jump contributions. The results are for t = 2
with Δx = 0.1 and CFL = 0.4. Solid lines: numerical results, dashed lines: analytical results,
dash-dotted lines: difference between numerical and analytical results.

calculated using the same space step but a different time step, we cancel out the
spatial discretization error and obtain the temporal error. The results are plotted
in Figure 6.2(b). Second-order accuracy in time is seen. If the jump contribution
CXT is not included, only first-order accuracy in time can be achieved, as seen in
Figure 6.2(b).

Figure 6.3(a) compares the numerical and analytical results at time t = 2 with
Δx = 0.1 and CFL = 0.4. The amplitude of the jump contribution CT has the
same order as the jump contribution CX when Δt is of the same order as Δx. If the
jump contribution CT is not included, a numerical result can be totally wrong, as
also shown in Figure 6.3(b).

As the velocity can be piecewise smooth across a singular surface in a viscous
flow, jump contributions in the discretizations of the temporal terms in Navier–Stokes
equations can be nonzero. If they are of the same order as the leading ones in spatial
discretizations, the inclusion of the jump contributions in the temporal discretizations
may be necessary. The moving interface problem simulated by Li and Lai [20] is

1970 SHENG XU AND Z. JANE WANG

an exception. They considered the relaxation of a perturbed two-dimensional balloon
immersed in an incompressible viscous fluid. The tangential force along the balloon
surface is always zero in their case, so the velocity is smooth in both space and time,
though the pressure is not. The jump contributions in temporal discretizations are
always zero in this case. Recently, we designed an oscillating Taylor–Couette flow
to look at the effect of jump contributions for temporal discretization on temporal
convergence rate and temporal accuracy [36]. We found that the effect is very small.
Whether this is true in general remains to be investigated.

7. Discussion. Naturally, we ask whether we can improve discretization accu-
racy in the IIM to arbitrarily high order for three-dimensional incompressible Navier–
Stokes flows. We can derive equations for jump conditions by differentiating the
principal jump conditions with respect to the Lagrangian parameters and differenti-
ating the governing equations with respect to the Cartesian coordinates, as presented
in sections 5 and 6.1. To examine this possibility, we need to know whether the
number of derived equations is enough for unknown jump conditions and whether the
equation system has a unique solution.

Regarding the number of equations and unknowns, we introduce a lemma.
Lemma 7.1. Paint m indistinctive balls with n different colors. Each ball has

to be painted with one and only one color. The number of different nonordered color
combinations for the m balls is

Hn
m =

m∑
k1=0

k1∑
k2=0

k2∑
k3=0

· · ·
kn−3∑

kn−2=0

kn−2∑
kn−1=0

H1
kn−1

,(7.1)

with Hi
0 = 1 and H1

i = 1, where i is a positive integer.
Proof. Paint k1 (k1 = 0, 1, 2, . . . ,m) balls using the same color. There are n − 1

colors and m − k1 balls left. Therefore, for a particular value of k1, the number of
different outcomes is Hn−1

m−k1
. Summing Hn−1

m−k1
over all possible values of k1 yields

Hn
m =

m∑
k1=0

Hn−1
m−k1

=

m∑
k1=0

Hn−1
k1

.(7.2)

Using recursion (7.2) repeatedly, the lemma follows.
If we want the discretization accuracy of the second-order velocity and pressure

derivatives to be order of m − 1 (m ≥ 2) in Navier–Stokes flow simulation, we need
jump conditions of all velocity and pressure derivatives of order m. In a simula-
tion of space dimension n, the number of unknown jump conditions of the velocity
derivatives of order m is Hn

m. Differentiating (3.10) with respect to the Lagrangian
parameters can provide Hn−1

m equations for the unknowns, differentiating (3.12) can
provide Hn−1

m−1, and differentiating (2.1) with respect to the Cartesian coordinates
and then subtracting the resulting equation at S− from that at S+ can give Hn

m−2

equations. For closure, we require

Hn−1
m + Hn−1

m−1 + Hn
m−2 ≥ Hn

m.

The same requirement applies to the unknown jump conditions of the pressure deriva-
tives of order m.

In three-dimensional simulations, n = 3, H2
m = m + 1, and H3

m = (m+1)(m+2)
2

according to (7.1). Hence, we have

H2
m + H2

m−1 + H3
m−2 = H3

m;

JUMP CONDITIONS FOR 3D NAVIER–STOKES FLOWS 1971

that is, the number of equations is equal to the number of unknowns, supposing Hn
m−2

jump conditions for temporal derivatives in the equations (for example,
[

∂2ui

∂t∂xk

]
in

(5.13) in the case when m = 3 and n = 3) are known. The equation system may have
a unique solution, which may be verified by induction with the use of the method given
in Appendix C. However, the Hn

m−2 jump conditions for the temporal derivatives are
not directly available. We need to find equations for them too. As shown in section 6.1,
a unique solution to the required temporal-derivative jump conditions can be obtained
when m = 3. When m > 3, it is not clear whether a unique solution can be found.
Thus with the method that we present in this paper for deriving jump conditions,
ascending the discretization accuracy to arbitrarily high order is not achievable in the
IIM for three-dimensional Navier–Stokes flows.

Appendix A. Proof of Theorem 3.3. First consider the situation in which
Gi has finite jumps at S. If necessary, smoothly extend S so that it cuts V into two
separated regions. Form a banded region Vs which encloses S with surface S+

ε/2 at

one side of S and S−
ε/2 at the other, where S+

ε/2 and S−
ε/2 are away from S by a small

distance ε
2 . Thus, ∫

Vs

∂Gi

∂xi
dV =

∫
S

∫ + ε
2

− ε
2

∂Gi

∂xi
drdS,

where r = (x − XdS) · n with XdS representing a fixed point at the infinitesimal
surface dS and n normal at XdS pointing to side S+

ε/2. Denote the region between

S+
ε/2 and S as V1 and the region between S−

ε/2 and S as V2. Analytically extend Gi

in region V1 to region V2, and name the extended function Gi
1. Analytically extend

Gi in region V2 to region V1, and name the extended function Gi
2. Introduce step

function h(r) as

h(r) =

{
0, r < 0,
1, r > 0.

Then,∫
S

∫ + ε
2

− ε
2

∂Gi

∂xi
drdS =

∫
S

∫ + ε
2

− ε
2

∂(h(r)Gi
1 + h(−r)Gi

2)

∂xi
drdS

=

∫
S

∫ + ε
2

− ε
2

∂(Gi
2 + h(r)(Gi

1 −Gi
2))

∂xi
drdS

=

∫
S

∫ + ε
2

− ε
2

(
h(r)

∂Gi
1

∂xi
+ h(−r)

∂Gi
2

∂xi
+

∂h(r)

∂xi
(Gi

1 −Gi
2)

)
drdS

=

∫
V1

∂Gi
1

∂xi
dV +

∫
V2

∂Gi
2

∂xi
dV +

∫
S

∫ + ε
2

− ε
2

∂h(r)

∂xi
(Gi

1 −Gi
2)drdS.

With ∂h(r)
∂xi = δ(r)ni, where δ(r) is the Dirac δ function, we thus have

lim
ε→0

∫
Vs

∂Gi

∂xi
dV =

∫
S

∫ + ε
2

− ε
2

δ(r)ni[Gi]drdS =

∫
S
ni[Gi]dS,

where [·] denotes a jump calculated by (·)S+ − (·)S− . Here S+ represents S+
ε/2(ε → 0),

and S− represents S−
ε/2(ε → 0).

1972 SHENG XU AND Z. JANE WANG

Vs divides V into three regions: Vs itself, V+, and V−, where V+ and S+ are at
the same side of S and V− and S− are at the same side. Hence, as ε → 0,∫

V

∂Gi

∂xi
dV =

∫
V+

∂Gi

∂xi
dV +

∫
V−

∂Gi

∂xi
dV +

∫
Vs

∂Gi

∂xi
dV

=

∮
A
GiNidA +

∫
S+

(−niG
i)dS +

∫
S−

niG
idS +

∫
S
ni[G

i]dS =

∮
A
GiNidA,

which completes the proof for the first situation that Gi has finite jumps at S.
The second situation, in which Gi has a singularity of Dirac δ function type, can

be proved by treating the Dirac δ function as a weak limit of a hat function and then
using the result from the first situation.

Appendix B. Nonsingularity of C2. By writing the third row of C2 twice
and then rearranging rows, we expand C2 to Ce

2 as follows:

Ce
2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

τ1
1 τ

1
1 τ1

1 τ
2
1 + τ2

1 τ
1
1 τ1

1 τ
3
1 + τ3

1 τ
1
1 τ2

1 τ
2
1 τ2

1 τ
3
1 + τ3

1 τ
2
1 τ3

1 τ
3
1

τ1
1 τ

1
2 τ1

1 τ
2
2 + τ2

1 τ
1
2 τ1

1 τ
3
2 + τ3

1 τ
1
2 τ2

1 τ
2
2 τ2

1 τ
3
2 + τ3

1 τ
2
2 τ3

1 τ
3
2

τ1
1n

1 τ1
1n

2 + τ2
1n

1 τ1
1n

3 + τ3
1n

1 τ2
1n

2 τ2
1n

3 + τ3
1n

2 τ3
1n

3

τ1
1 τ

1
2 τ1

1 τ
2
2 + τ2

1 τ
1
2 τ1

1 τ
3
2 + τ3

1 τ
1
2 τ2

1 τ
2
2 τ2

1 τ
3
2 + τ3

1 τ
2
2 τ3

1 τ
3
2

τ1
2 τ

1
2 τ1

2 τ
2
2 + τ2

2 τ
1
2 τ1

2 τ
3
2 + τ3

2 τ
1
2 τ2

2 τ
2
2 τ2

2 τ
3
2 + τ3

2 τ
2
2 τ3

2 τ
3
2

τ1
2n

1 τ1
2n

2 + τ2
2n

1 τ1
2n

3 + τ3
2n

1 τ2
2n

2 τ2
2n

3 + τ3
2n

2 τ3
2n

3

1 0 0 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We can rewrite Ce
2 as

Ce
2 = Ce

1C
∗
2 =

⎛
⎝ C1 0 0

0 C1 0
0 0 1

⎞
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

τ1
1 τ2

1 τ3
1 0 0 0

0 τ1
1 0 τ2

1 τ3
1 0

0 0 τ1
1 0 τ2

1 τ3
1

τ1
2 τ2

2 τ3
2 0 0 0

0 τ1
2 0 τ2

2 τ3
2 0

0 0 τ1
2 0 τ2

2 τ3
2

1 0 0 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

As C1 is nonsingular, Ce
1 is also nonsingular with inverse

(Ce
1)−1 =

⎛
⎝ C−1

1 0 0
0 C−1

1 0
0 0 1

⎞
⎠.

Thus, if rank(C∗
2) = 6, then C2 is nonsingular. We present two methods to show

rank(C∗
2) = 6.

B.1. Method I. As τ1 �= 0, one of τ1
1 , τ2

1 , or τ3
1 must be nonzero. Through

row and column permutations, C∗
2 can be transformed to one of the following two

matrices:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

τ2
1 τ3

1 τ1
1 0 0 0

0 τ2
1 0 τ3

1 τ1
1 0

0 0 τ2
1 0 τ3

1 τ1
1

τ2
2 τ3

2 τ1
2 0 0 0

0 τ2
2 0 τ3

2 τ1
2 0

0 0 τ2
2 0 τ3

2 τ1
2

1 0 0 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

τ3
1 τ2

1 τ1
1 0 0 0

0 τ3
1 0 τ2

1 τ1
1 0

0 0 τ3
1 0 τ2

1 τ1
1

τ3
2 τ2

2 τ1
2 0 0 0

0 τ3
2 0 τ2

2 τ1
2 0

0 0 τ3
2 0 τ2

2 τ1
2

1 0 0 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

JUMP CONDITIONS FOR 3D NAVIER–STOKES FLOWS 1973

Both have the same structure and similar element ordering as C∗
2 . Therefore, we

suppose τ1
1 �= 0 and need to work on only this case.

Using elementary operations, we can transform C∗
2 to C∗∗

2 as

C∗
2 → C∗∗

2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 0 1
0 τ1

1 0 τ2
1 τ3

1 0
0 0 τ1

1 0 τ2
1 τ3

1

0 0 0 −s3 −2τ2
1 τ

3
1 −s2

0 0 0 0 e f
0 0 0 0 g h
0 0 0 0 N3 −N2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

with the following definitions:

s2 = τ1
1 τ

1
1 + τ3

1 τ
3
1 ,

s3 = τ1
1 τ

1
1 + τ2

1 τ
2
1 ,

N2 = τ3
1 τ

1
2 − τ3

2 τ
1
1 ,

N3 = τ1
1 τ

2
2 − τ1

2 τ
2
1 ,

e = (τ2
2 τ

3
1 + τ2

1 τ
3
2)s3 − 2τ2

1 τ
3
1 d3,

f = d2s3 − d3s2,

g = N2s3 + 2τ2
1 τ

3
1N

3,

h = s2N
3,

where

d2 = τ1
1 τ

1
2 + τ3

1 τ
3
2 ,

d3 = τ1
1 τ

1
2 + τ2

1 τ
2
2 .

If N2 = N3 = 0, then as τ1
1 �= 0,

τ1 · (τ1 × τ2) = τ1
1N

1 + τ2
1N

2 + τ3
1N

3 = 0 ⇒ N1 = 0 ⇒ τ1 × τ2 = 0,

where N1 = τ2
1 τ

3
2 − τ2

2 τ
3
1 . This is impossible. Thus, one of N2 and N3 must be

nonzero. Suppose N3 �= 0. By elementary operations, we can transform C∗∗
2 to⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 τ1

1 0 τ2
1 τ3

1 0
0 0 τ1

1 0 τ2
1 τ3

1

0 0 0 −s3 −2τ2
1 τ

3
1 −s2

0 0 0 0 N3 −N2

0 0 0 0 0 N3f + N2e
0 0 0 0 0 N3h + N2g

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Since

N3h + N2g = τ1
1 τ

1
1 ‖τ1 × τ2‖2 �= 0,

we can conclude that rank(C∗∗
2) ≥ 6. Supposing N2 �= 0, we can similarly show

rank(C∗∗
2) ≥ 6. Ce

2 is expanded from C2, and thus rank(Ce
2) ≤ 6. Therefore,

rank(Ce
2) = rank(C∗

2) = rank(C∗∗
2) = 6. The proof is completed. This proof gives a

way to solve (5.8).

1974 SHENG XU AND Z. JANE WANG

B.2. Method II. As τ1 × τ2 �= 0, there exist matrices Pr and Pc such that

Pr

(
τ1
1 τ2

1 τ3
1

τ1
2 τ2

2 τ3
2

)
Pc = T,

where Pr is a 2 × 2 elementary matrix, Pc is a 3 × 3 elementary matrix without

permutation operations, and T =
(

e1t e2t e3t
e1b e2b e3b

)
is one of

(
1 0 0
0 1 0

)
,

(
1 0 0
0 0 1

)
,

(
0 1 0
0 0 1

)
.

Construct elementary matrices Er and Ec as

Er =

(
Pr 0
0 I5×5

)
, Ec =

(
Pc 0
0 I3×3

)
,

where In×n denotes an n × n unit matrix. With a series of actions by permutations
and Er and Ec, C

∗
2 can be transformed as follows:

C∗
2 → Er

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

τ1
1 τ2

1 τ3
1 0 0 0

τ1
2 τ2

2 τ3
2 0 0 0

0 τ1
1 0 τ2

1 τ3
1 0

0 τ1
2 0 τ2

2 τ3
2 0

0 0 τ1
1 0 τ2

1 τ3
1

0 0 τ1
2 0 τ2

2 τ3
2

1 0 0 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Ec =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

e1
t e2

t e3
t 0 0 0

e1
b e2

b e3
b 0 0 0

0 τ1
1 0 τ2

1 τ3
1 0

0 τ1
2 0 τ2

2 τ3
2 0

0 0 τ1
1 0 τ2

1 τ3
1

0 0 τ1
2 0 τ2

2 τ3
2

1 0 0 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

→ Er

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

τ1
1 τ2

1 τ3
1 0 0 0

τ1
2 τ2

2 τ3
2 0 0 0

e2
t 0 0 e1

t e3
t 0

e2
b 0 0 e1

b e3
b 0

0 0 τ2
1 0 τ1

1 τ3
1

0 0 τ2
2 0 τ1

2 τ3
2

0 1 0 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Eb =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

e1
t e2

t e3
t 0 0 0

e1
b e2

b e3
b 0 0 0

e2
t 0 0 e1

t e3
t 0

e2
b 0 0 e1

b e3
b 0

0 0 τ2
1 0 τ1

1 τ3
1

0 0 τ2
2 0 τ1

2 τ3
2

0 1 0 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

→ Er

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

τ1
1 τ2

1 τ3
1 0 0 0

τ1
2 τ2

2 τ3
2 0 0 0

0 e3
t 0 e1

t e2
t 0

0 e3
b 0 e1

b e2
b 0

e3
t 0 0 e2

t 0 e1
t

e3
b 0 0 e2

b 0 e1
b

0 0 1 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Ec =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

e1
t e2

t e3
t 0 0 0

e1
b e2

b e3
b 0 0 0

0 e3
t 0 e1

t e2
t 0

0 e3
b 0 e1

b e2
b 0

e3
t 0 0 e2

t 0 e1
t

e3
b 0 0 e2

b 0 e1
b

0 0 1 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

As matrix T takes different choices, the last matrix above correspondingly takes⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 1 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 0 1
1 0 0 0 0 0
0 0 1 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 1 0 0
1 0 0 0 0 0
0 0 1 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Thus, rank(C∗
2) = 6.

JUMP CONDITIONS FOR 3D NAVIER–STOKES FLOWS 1975

Appendix C. rank(C3) = 10. Expand C3 to Ce
3 as

Ce
3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C11
2 C12

2 C13
2 C14

2 C15
2 C16

2 0 0 0 0
C31

2 C32
2 C33

2 C34
2 C35

2 C36
2 0 0 0 0

C31
2 C32

2 C33
2 C34

2 C35
2 C36

2 0 0 0 0
C21

2 C22
2 C23

2 C24
2 C25

2 C26
2 0 0 0 0

0 C11
2 0 C12

2 C13
2 0 C14

2 C15
2 C16

2 0
0 C31

2 0 C32
2 C33

2 0 C34
2 C35

2 C36
2 0

0 C31
2 0 C32

2 C33
2 0 C34

2 C35
2 C36

2 0
0 C21

2 0 C22
2 C23

2 0 C24
2 C25

2 C26
2 0

0 0 C11
2 0 C12

2 C13
2 0 C14

2 C15
2 C16

2

0 0 C31
2 0 C32

2 C33
2 0 C34

2 C35
2 C36

2

0 0 C31
2 0 C32

2 C33
2 0 C34

2 C35
2 C36

2

0 0 C21
2 0 C22

2 C23
2 0 C24

2 C25
2 C26

2

1 0 0 1 0 1 0 0 0 0
0 1 0 0 0 0 1 0 1 0
0 0 1 0 0 0 0 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

If rank(Ce
3) = 10, then rank(C3) = 10.

Define a corner block

Cc
3 :=

⎛
⎜⎜⎝

C11
2 C12

2 C13
2 C14

2 C15
2 C16

2

C31
2 C32

2 C33
2 C34

2 C35
2 C36

2

C31
2 C32

2 C33
2 C34

2 C35
2 C36

2

C21
2 C22

2 C23
2 C24

2 C25
2 C26

2

⎞
⎟⎟⎠,

and decompose Cc
3 as

Cc
3 =

⎛
⎜⎜⎝

τ1
1 τ

1
1 τ1

1 τ
2
1 + τ2

1 τ
1
1 τ1

1 τ
3
1 + τ3

1 τ
1
1 τ2

1 τ
2
1 τ2

1 τ
3
1 + τ3

1 τ
2
1 τ3

1 τ
3
1

τ1
1 τ

1
2 τ1

1 τ
2
2 + τ2

1 τ
1
2 τ1

1 τ
3
2 + τ3

1 τ
1
2 τ2

1 τ
2
2 τ2

1 τ
3
2 + τ3

1 τ
2
2 τ3

1 τ
3
2

τ1
1 τ

1
2 τ1

1 τ
2
2 + τ2

1 τ
1
2 τ1

1 τ
3
2 + τ3

1 τ
1
2 τ2

1 τ
2
2 τ2

1 τ
3
2 + τ3

1 τ
2
2 τ3

1 τ
3
2

τ1
2 τ

1
2 τ1

2 τ
2
2 + τ2

2 τ
1
2 τ1

2 τ
3
2 + τ3

2 τ
1
2 τ2

2 τ
2
2 τ2

2 τ
3
2 + τ3

2 τ
2
2 τ3

2 τ
3
2

⎞
⎟⎟⎠

:= L1R1 =

⎛
⎜⎜⎝

τ1
1 0 τ2

1 0 τ3
1 0

τ1
2 0 τ2

2 0 τ3
2 0

0 τ1
1 0 τ2

1 0 τ3
1

0 τ1
2 0 τ2

2 0 τ3
2

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

τ1
1 τ2

1 τ3
1 0 0 0

τ1
2 τ2

2 τ3
2 0 0 0

0 τ1
1 0 τ2

1 τ3
1 0

0 τ1
2 0 τ2

2 τ3
2 0

0 0 τ1
1 0 τ2

1 τ3
1

0 0 τ1
2 0 τ2

2 τ3
2

⎞
⎟⎟⎟⎟⎟⎟⎠
.

Through permutations, we can transform Cc
3 as

Cc
3 → L∗

1R
∗
1 :=

⎛
⎜⎜⎝

τ2
1 0 τ3

1 0 τ1
1 0

τ2
2 0 τ3

2 0 τ1
2 0

0 τ2
1 0 τ3

1 0 τ1
1

0 τ2
2 0 τ3

2 0 τ1
2

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

τ2
1 τ3

1 τ1
1 0 0 0

τ2
2 τ3

2 τ1
2 0 0 0

0 τ2
1 0 τ3

1 τ1
1 0

0 τ2
2 0 τ3

2 τ1
2 0

0 0 τ2
1 0 τ3

1 τ1
1

0 0 τ2
2 0 τ3

2 τ1
2

⎞
⎟⎟⎟⎟⎟⎟⎠

1976 SHENG XU AND Z. JANE WANG

or

Cc
3 → L∗∗

1 R∗∗
1 :=

⎛
⎜⎜⎝

τ3
1 0 τ2

1 0 τ1
1 0

τ3
2 0 τ2

2 0 τ1
2 0

0 τ3
1 0 τ2

1 0 τ1
1

0 τ3
2 0 τ2

2 0 τ1
2

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

τ3
1 τ2

1 τ1
1 0 0 0

τ3
2 τ2

2 τ1
2 0 0 0

0 τ3
1 0 τ2

1 τ1
1 0

0 τ3
2 0 τ2

2 τ1
2 0

0 0 τ3
1 0 τ2

1 τ1
1

0 0 τ3
2 0 τ2

2 τ1
2

⎞
⎟⎟⎟⎟⎟⎟⎠
.

Since L1, L
∗
1, and L∗∗

1 have the same structure and similar element ordering, and so
do R1, R

∗
1, and R∗∗

1 , we suppose τ1
1 �= 0 and need to work on only this case.

As τ1
1 �= 0 and τ1 × τ2 �= 0, there exists matrix P such that(

τ1
1 τ2

1 τ3
1

τ1
2 τ2

2 τ3
2

)
P = T,

where P is a 3 × 3 elementary matrix without permutation operations and T =(
e1t e2t e3t
e1b e2b e3b

)
is one of

(
1 0 0
0 1 0

)
,

(
1 0 0
0 0 1

)
.

Construct elementary matrix E as

E =

(
P 0
0 I3×3

)
.

With a series of actions by permutations and E, Cc
3 can be transformed as follows:

Cc
3 = L1R1 → L1R1E = L1

⎛
⎜⎜⎜⎜⎜⎜⎝

e1
t e2

t e3
t 0 0 0

e1
b e2

b e3
b 0 0 0

0 τ1
1 0 τ2

1 τ3
1 0

0 τ1
2 0 τ2

2 τ3
2 0

0 0 τ1
1 0 τ2

1 τ3
1

0 0 τ1
2 0 τ2

2 τ3
2

⎞
⎟⎟⎟⎟⎟⎟⎠

→

⎛
⎜⎜⎝

τ2
1 0 τ1

1 0 τ3
1 0

τ2
2 0 τ1

2 0 τ3
2 0

0 τ2
1 0 τ1

1 0 τ3
1

0 τ2
2 0 τ1

2 0 τ3
2

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

τ1
1 τ2

1 τ3
1 0 0 0

τ1
2 τ2

2 τ3
2 0 0 0

e2
t 0 0 e1

t e3
t 0

e2
b 0 0 e1

b e3
b 0

0 0 τ2
1 0 τ1

1 τ3
1

0 0 τ2
2 0 τ1

2 τ3
2

⎞
⎟⎟⎟⎟⎟⎟⎠

:= L2R2 → L2R2E = L2

⎛
⎜⎜⎜⎜⎜⎜⎝

e1
t e2

t e3
t 0 0 0

e1
b e2

b e3
b 0 0 0

e2
t 0 0 e1

t e3
t 0

e2
b 0 0 e1

b e3
b 0

0 0 τ2
1 0 τ1

1 τ3
1

0 0 τ2
2 0 τ1

2 τ3
2

⎞
⎟⎟⎟⎟⎟⎟⎠

→

⎛
⎜⎜⎝

τ3
1 0 τ1

1 0 τ2
1 0

τ3
2 0 τ1

2 0 τ2
2 0

0 τ3
1 0 τ1

1 0 τ2
1

0 τ3
2 0 τ1

2 0 τ2
2

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

τ1
1 τ2

1 τ3
1 0 0 0

τ1
2 τ2

2 τ3
2 0 0 0

e3
t 0 0 e2

t 0 e1
t

e3
b 0 0 e2

b 0 e1
b

0 e3
t 0 e1

t e2
t 0

0 e3
b 0 e1

b e2
b 0

⎞
⎟⎟⎟⎟⎟⎟⎠

JUMP CONDITIONS FOR 3D NAVIER–STOKES FLOWS 1977

:= L3R3 → L3R3E = L3

⎛
⎜⎜⎜⎜⎜⎜⎝

e1
t e2

t e3
t 0 0 0

e1
b e2

b e3
b 0 0 0

e3
t 0 0 e2

t 0 e1
t

e3
b 0 0 e2

b 0 e1
b

0 e3
t 0 e1

t e2
t 0

0 e3
b 0 e1

b e2
b 0

⎞
⎟⎟⎟⎟⎟⎟⎠

:= L4R4.

When

T =

(
e1
t e2

t e3
t

e1
b e2

b e3
b

)
=

(
1 0 0
0 1 0

)
,

we continue to transform Cc
3 as

L4R4 =

⎛
⎜⎜⎝

τ3
1 0 0 τ2

1 0 τ1
1

τ3
2 0 0 τ2

2 0 τ1
2

0 τ3
1 0 τ1

1 τ2
1 0

0 τ3
2 0 τ1

2 τ2
2 0

⎞
⎟⎟⎠ →

⎛
⎜⎜⎝

τ1
1 τ2

1 τ3
1 0 0 0

τ1
2 τ2

2 τ3
2 0 0 0

0 τ1
1 0 τ2

1 τ3
1 0

0 τ1
2 0 τ2

2 τ3
2 0

⎞
⎟⎟⎠E

=

⎛
⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 τ1

1 0 τ2
1 τ3

1 0
0 τ1

2 0 τ2
2 τ3

2 0

⎞
⎟⎟⎠ →

⎛
⎜⎜⎝

τ1
1 τ2

1 τ3
1 0 0 0

τ1
2 τ2

2 τ3
2 0 0 0

0 0 0 1 0 0
1 0 0 0 0 0

⎞
⎟⎟⎠E

=

⎛
⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
1 0 0 0 0 0

⎞
⎟⎟⎠ →

⎛
⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0

⎞
⎟⎟⎠.

When

T =

(
e1
t e2

t e3
t

e1
b e2

b e3
b

)
=

(
1 0 0
0 0 1

)
,

we continue to transform Cc
3 as

L4R4 =

⎛
⎜⎜⎝

τ3
1 0 0 τ2

1 0 τ1
1

τ3
2 0 0 τ2

2 0 τ1
2

τ1
1 τ2

1 τ3
1 0 0 0

τ1
2 τ2

2 τ3
2 0 0 0

⎞
⎟⎟⎠ →

⎛
⎜⎜⎝

τ1
1 τ2

1 τ3
1 0 0 0

τ1
2 τ2

2 τ3
2 0 0 0

0 0 τ1
1 τ2

1 τ3
1 0

0 0 τ1
2 τ2

2 τ3
2 0

⎞
⎟⎟⎠E

=

⎛
⎜⎜⎝

1 0 0 0 0 0
0 0 1 0 0 0
0 0 τ1

1 τ2
1 τ3

1 0
0 0 τ1

2 τ2
2 τ3

2 0

⎞
⎟⎟⎠ →

⎛
⎜⎜⎝

τ1
1 τ2

1 τ3
1 0 0 0

τ1
2 τ2

2 τ3
2 0 0 0

0 0 0 1 0 0
1 0 0 0 0 0

⎞
⎟⎟⎠E

=

⎛
⎜⎜⎝

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
1 0 0 0 0 0

⎞
⎟⎟⎠ →

⎛
⎜⎜⎝

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0

⎞
⎟⎟⎠.

Combining all the row-operating elementary matrices as a 4 × 4 elementary matrix
Ec

r and all the column-operating elementary matrices as a 6 × 6 elementary matrix
Ec

c , we can write transformations to Cc
3 as

Cc
3 → Ec

rC
c
3E

c
c =

⎛
⎜⎜⎝

1 0 0 0 0 0
0 γ1 γ2 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0

⎞
⎟⎟⎠,

where (γ1, γ2) equals (1, 0) or (0, 1).

1978 SHENG XU AND Z. JANE WANG

Construct elementary matrices Qr and Qc as

Qr =

(
Ec

r 0
0 I11×11

)
, Qc =

(
Ec

c 0
0 I4×4

)
.

With a series of actions by permutations, Qr and Qc, Ce
3 can be transformed as

follows:

Ce
3 → QrC

e
3Qc =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0
0 γ1 γ2 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 C11

2 0 C12
2 C13

2 0 C14
2 C15

2 C16
2 0

0 C31
2 0 C32

2 C33
2 0 C34

2 C35
2 C36

2 0
0 C31

2 0 C32
2 C33

2 0 C34
2 C35

2 C36
2 0

0 C21
2 0 C22

2 C23
2 0 C24

2 C25
2 C26

2 0
0 0 C11

2 0 C12
2 C13

2 0 C14
2 C15

2 C16
2

0 0 C31
2 0 C32

2 C33
2 0 C34

2 C35
2 C36

2

0 0 C31
2 0 C32

2 C33
2 0 C34

2 C35
2 C36

2

0 0 C21
2 0 C22

2 C23
2 0 C24

2 C25
2 C26

2

1 0 0 1 0 1 0 0 0 0
0 1 0 0 0 0 1 0 1 0
0 0 1 0 0 0 0 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

→ · · · →

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0
0 γ1 γ2 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 γ2 0 0 0 0 0 γ1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
γ2 0 0 0 0 0 0 γ1 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 1 0 1
0 0 0 0 1 0 1 0 1 0
1 0 0 1 0 1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

When (γ1, γ2) equals (1, 0) or (0, 1), it can be seen that the rank of the last matrix
above is 10. Thus rank(C3) = rank(Ce

3) = 10.

REFERENCES

[1] K. M. Arthurs, L. C. Moore, C. S. Peskin, E. B. Pitman, and H. E. Layton, Modeling
arteriolar flow and mass transport using the immersed boundary method, J. Comput. Phys.,
147 (1998), pp. 402–440.

[2] R. P. Beyer and R. J. Leveque, Analysis of a one-dimensional model for the immersed
boundary method, SIAM J. Numer. Anal., 29 (1992), pp. 332–364.

[3] J. M. Birch and M. H. Dickinson, Spanwise flow and the attachment of the leading-edge
vortex on insect wings, Nature, 412 (2001), pp. 729–733.

[4] D. M. Bushnell, J. N. Hefner, and R. L. Ash, Effects of compliant wall motion on turbulent
boundary layers, Phys. Fluids A, 20 (1977), pp. s31–48.

JUMP CONDITIONS FOR 3D NAVIER–STOKES FLOWS 1979

[5] D. Calhoun, A Cartesian grid method for solving the two-dimensional streamfunction-vorticity
equations in irregular regions, J. Comput. Phys., 176 (2002), pp. 231–275.

[6] P. W. Carpenter, C. Davies, and A. D. Lucey, Hydrodynamics and compliant walls: Does
the dolphin have a secret?, Current Science, 79 (2000), pp. 758–765.

[7] R. Cortez and M. Minion, The blob projection method for immersed boundary problems, J.
Comput. Phys., 161 (2000), pp. 428–453.

[8] M. H. Dickinson, F. O. Lehmann, and S. P. Sane, Wing rotation and the aerodynamic basis
of insect flight, Science, 284 (1999), pp. 1954–1960.

[9] C. P. Ellington, C. van den Berg, A. P. Willmott, and A. L. R. Thomas, Leading-edge
vortices in insect flight, Nature, 384 (1996), pp. 626–630.

[10] L. J. Fauci and C. S. Peskin, A computational model of aquatic animal locomotion, J. Comput.
Phys., 77 (1988), pp. 85–108.

[11] A. L. Fogelson and C. S. Peskin, A fast numerical method for solving the three-dimensional
Stokes’ equations in the presence of suspended particles, J. Comput. Phys., 79 (1988),
pp. 50–69.

[12] A. L. Fogelson and J. P. Keener, Immersed interface methods for Neumann and related
problems in two and three dimensions, SIAM J. Sci. Comput., 22 (2000), pp. 1630–1654.

[13] S. N. Fry, R. Sayaman, and M. H. Dickinson, The aerodynamics of free-flight maneuvers in
Drosophila, Science, 300 (2003), pp. 495–498.

[14] M. Gad-El-Hak, Compliant coatings: The simpler alternative, Experimental Thermal and
Fluid Science, 16 (1998), pp. 141–156.

[15] M. O. Kramer, The dolphin’s secret, Journal of American Society for Naval Engineering, 73
(1961), pp. 103–107.

[16] M.-C. Lai and C. S. Peskin, An immersed boundary method with formal second-order accuracy
and reduced numerical viscosity, J. Comput. Phys., 160 (2000), pp. 705–719.

[17] M.-C. Lai and Z. Li, A remark on jump conditions for the three-dimensional Navier–Stokes
equations involving an immersed moving membrane, Appl. Math. Lett., 14 (2001), pp. 149–
154.

[18] R. J. LeVeque and Z. Li, The immersed interface method for elliptic equations with discon-
tinuous coefficients and singular sources, SIAM J. Numer. Anal., 31 (1994), pp. 1019–1044.

[19] R. J. LeVeque and Z. Li, Immersed interface methods for Stokes flow with elastic boundaries
or surface tension, SIAM J. Sci. Comput., 18 (1997), pp. 709–735.

[20] Z. Li and M.-C. Lai, The immersed interface method for the Navier–Stokes equations with
singular forces, J. Comput. Phys., 171 (2001), pp. 822–842.

[21] A. Mayo, The fast solution of Poisson’s and the biharmonic equations on irregular regions,
SIAM J. Numer. Anal., 21 (1984), pp. 285–299.

[22] A. McKenney, L. Greengard, and A. Mayo, A fast Poisson solver for complex geometries,
J. Comput. Phys., 118 (1995), pp. 348–355.

[23] C. S. Peskin, Flow patterns around heart valves: A numerical method, J. Comput. Phys., 10
(1972), pp. 252–271.

[24] C. S. Peskin, Numerical analysis of blood flow in the heart, J. Comput. Phys., 25 (1977),
pp. 220–252.

[25] C. S. Peskin and D. M. McQueen, A three-dimensional computational method for blood flow
in the heart I. Immersed elastic fibers in a viscous incompressible fluid, J. Comput. Phys.,
81 (1989), pp. 372–405.

[26] C. S. Peskin and B. F. Printz, Improved volume conservation in the computation of flows
with immersed elastic boundaries, J. Comput. Phys., 105 (1993), pp. 33–46.

[27] A. M. Roma, C. S. Peskin, and M. J. Berger, An adaptive version of the immersed boundary
method, J. Comput. Phys., 153 (1999), pp. 509–534.

[28] D. Russell and Z. J. Wang, A Cartesian grid method for modeling multiple moving objects
in 2D incompressible viscous flow, J. Comput. Phys., 191 (2003), pp. 177–205.

[29] C. Tu and C. S. Peskin, Stability and instability in the computation of flows with moving im-
mersed boundaries: A comparison of three methods, SIAM J. Statist. Comput., 13 (1992),
pp. 1361–1376.

[30] H. S. Udaykumar, R. Mittal, P. Rampunggoon, and A. Khanna, A sharp interface Carte-
sian grid method for simulating flows with complex moving boundaries, J. Comput. Phys.,
174 (2001), pp. 345–380.

[31] Z. J. Wang, Vortex shedding and frequency selection in flapping flight, J. Fluid Mech., 410
(2000), pp. 323–341.

[32] Z. J. Wang, Two dimensional mechanism for insect hovering, Phys. Rev. Lett., 85 (2000),
pp. 2216–2219.

1980 SHENG XU AND Z. JANE WANG

[33] A. Wiegmann and K. P. Bube, The immersed interface method for nonlinear differential
equations with discontinuous coefficients and singular sources, SIAM J. Numer. Anal., 35
(1998), pp. 177–200.

[34] A. Wiegmann and K. P. Bube, The explicit-jump immersed interface method: Finite differ-
ence methods for PDEs with piecewise smooth solutions, SIAM J. Numer. Anal., 37 (2000),
pp. 827–862.

[35] S. Xu, D. Rempfer, and J. Lumley, Turbulence over a compliant surface: Numerical simu-
lation and analysis, J. Fluid Mech., 478 (2003), pp. 11–34.

[36] S. Xu and Z. J. Wang, An immersed interface method for simulating the interaction of a fluid
with moving boundaries, J. Comput. Phys., to appear.

[37] L. Zhu and C. S. Peskin, Simulation of a flapping flexible filament in a flowing soap film by
the immersed boundary method, J. Comput. Phys., 179 (2002), pp. 452–468.

