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A system atic  proc edure is developed for the design of adaptive regulation 

and trac king schemes for a c lass of feedback linearizable nonlinear system s. T he 

c oordinate-free geom etric  conditions, which c harac terize this c lass of system s, nei­

ther restric t the loc ation of the unknown param eters, nor c onstrain the growth 

of the nonlinearities. Instead, they require tha t the nonlinear system  be tra ns ­

form able into the so-called pure-feedback form. W hen this form  is “stric t” , the 

proposed scheme guarantees global regulation and trac king properties. T his re ­

sult substantially enlarges the class of nonlinear system s for which global stabi­

lization can be ac hieved. Apa rt from  the geom etric  c onditions, this paper uses 

simple analytic a l tools, fam iliar to m ost c ontrol engineers.
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1 Introduc tion

Most of the researc h a c tivity on adaptive c ontrol of nonlinear system s [ 1-15]  is still focused 

on the full-sta te  feedback case [ 1-13] , although output-feedbac k results are beginning to 

appear [14,15] . T he full-sta te  feedback case continues to be a challenge because of the severe 

restric tions of the two c urrently available types of schemes: the uncertainty-constrained 

schemes [ 1,2 ,3 ,4 ,10,11]  restric t the location of unknown parameters, and the nonlinearity- 

constrained schemes [ 5,6,7,8,9,12]  im pose restric tions on the type of nonlinearities.

T he system s to which uncertainty-constrained schemes can be applied m ay c ontain all 

types of sm ooth nonlinearities and are fully c harac terized by c oordinate-free geom etric  condi­

tions [2,3,11] , which, unfortunately, are quite restric tive. On the other hand, the applic ability 

of nonlinearity-constrained schemes is restric ted by c oordinate-dependent growth conditions 

on the nonlinearities, which m ay exc lude even c ertain linear system s [13]. T he nonlinearity- 

c onstrained schemes based on the “ Control Lyapunov Function” approac h [6,7,8], are ap­

plicable to the c lass of system s for which a L yapunov func tion with prespec ified growth 

properties is known. U nfortunately, the existenc e of such a L yapunov func tion can not be 

asc ertained a priori.

T he new adaptive c ontrol scheme developed in this paper combines the m ain advantages 

of earlier schemes without m ost of their disadvantages. It signific antly extends the class of 

nonlinear system s for which adaptive c ontrollers can be system atic ally designed. At each step 

of the new design proc edure, the change of c oordinates is interlac ed with the c onstruc tion of 

a param eter update law. T he m ain idea of this nonlinear proc edure evolved from  an early 

linear result of F euer and Morse [16].

Am ong the advantages of the new scheme are its c onc eptual c la rity and wide applic ability. 

Its stability proof, based on a straig htforward L yapunov argum ent, is pa rtic ularly simple. 

T he c oordinate-free geom etric  c onditions, c harac terizing the class of system s to which the 

new scheme is applic able, neither restric t the loc ation of the unknown param eters, nor con­

strain the growth of the nonlinearities. Instead, they require tha t the nonlinear system  be 

transform able into the so-called pure-feedback form. F urtherm ore, in the case of system s

3



transform able into the m ore restric tive strict-feedback form , the new adaptive scheme guar­

antees global regulation and trac king properties. T his is now the broadest c lass of nonlinear 

system s for whic h an adaptive c ontrol scheme can be system atic ally designed to ac hieve 

global regulation or trac king without growth c onstraints.

T he presentation is organized as follows: F irst, we address the regulation problem . In 

Sec tion 2 we c harac terize the class of single-input nonlinear system s to which the new scheme 

is applic able. T he design proc edure is presented in Sec tion 3, and the simple proof of stability 

is given in Sec tion 4. In Sec tion 5 we give the c onditions under which the sta bility of the 

closed-loop system  is global. T he design proc edure is ex tended to m ulti-input system s in 

Sec tion 6 . T hen, in Sec tion 7, we use the design proc edure to solve the trac king problem  

for a class of input-output linearizable system s with ex ponentially stable zero dynam ics. 

In Sec tion 8 we illustra te  this proc edure on some “benc hm ark” exam ples, and discuss its 

properties in c om parison with previous results. F inally, some concluding rem arks are given 

in Sec tion 9. T he reader unfam iliar with differential geom etric  results for nonlinear system s 

can follow the presentation starting  with Sec tion 3 and then om itting  P ropositions 5.3, 6.1 

and 7.3.

2 T he Class of N onlinear System s

T he adaptive regulation problem  will first be solved for single-input feedback linearizable 

system s tha t are linear in the unknown param eters:

C — /o(() + T A M O  +
t=i

<7o(C) + 10 * 9 i( ( )
t=i

u , (2.1)

where (  G JRn is the state, u G JR is the input, 6 =  [0l5 . . .  , 0 P]T is the vec tor of c onstant 

unknown param eters, and / ,-, 0 <  i < p , are sm ooth vec tor fields in a neighborhood of

the origin Ç =  0 with / ,(0 ) =  0 , 0 <  i <  p, g (0 ) ^  0 .

T he design of the adaptive scheme assumes tha t the system  (2.1)  can be transform ed 

into the pure-feedbac k form  via  a param eter-independent diffeom orphism . N ecessary and 

suffic ient c onditions for the existence of such a diffeom orphism  are given in the following  

proposition.

4



P ro p o s it io n  2 . 1 . Consider a parameter-independent diffeomorphism z =  4>{(), with =  

0, that transforms, in a neighborhood B z of the origin, the system (2.1) into the so-called 

pure-feedback form

¿i =  z2 + 0T7i  (21,22)

¿2 =  z3 +  0T72(* i, z2, z3)

i (2 .2)

¿ n—1 =  Zn *t* 6  7n—\( z\,  • • • 5 Zn)

Zn =  7<>(2) +  0T7n(2) +  [/?o(* ) +  0TP(zj\ U ,

with

7.( 0)  =  0 , 0 <  z <  n , /?o(0 ) ^ 0 . (2.3)

Such a diffeomorphism exists if and only if the following conditions are satisfied in a neigh­

borhood U of the origin:

(i) F e e d b a c k lin e a riz a t io n  c o n d itio n .  The distributions

Ç* =  span { # 0, adfog0, . . . ,  ad)Qg0}  , 0 <  i < n -  1 (2.4)

are involutive and of constant rank i +  1 .

0 0  P u re - fe e d b a c k  c o n d itio n .

9i e

1 < i< p .  (2.5)

[ x ji ]  e  s i+ \ v x e g j , 0 < j < «  — 2 ,

P ro o f.  Sufficiency. As proved in [17], c ondition (i) is suffic ient for the existenc e of a 

diffeom orphism  z =  </>(£) tha t transform s the system

C = M O  + flfo(C)ti, /o(0) = 0  , flfo(O) Ï  0  (2.6)

into the system

¿i =  Z{+1 , 1 <  i <  n — 1

Zn = 7oW  + A) W «, (2.7)
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with

7o(0) =  0 ,  /3o(0) /  0 .  

H ence, in the c oordinates of (2.7)  we have

fo{<t> (* ) )  =  fa  ••• Znlo(z)\

=  [0 ... 0 (3o{z )\t

r i i d dy =  span , 0 <  i <  n — 1 .

(2.8)

(2.9)

(2.10)

( 2. 11)
„ 9zn’ ' "  ’ dz„_;

B ecause o f ( 2 .11) ,  the pure-feedback c ondition ( 2.5) , expressed in the z-c oordinates, states 

that

* 6 span{ i } ’
l < t < p .  (2 .12 )

d _

dzj
J . G spam

d Z n ' " '  dzj-1 

B ut (2 .12)  can be equivalently rewritten as

, 2 <  j  < n ,

/ n \ f 7i(*i) ^

*(*)) =
0

\ f t W  /

. M r \ z ) )  =

72 (21,22)

7n—l,i(2i, • • • , 2n)

 ̂ , • • • , 2n) J

, 1 < i< p .  ( 2 .13)

F urtherm ore, since 0( 0)  =  0 and / ,(0) =  0 ,1 <  i <  p, we conlude from  ( 2.13)  tha t

7 j( 0 )  =  0 , 1 < j < n .  ( 2 .14)

Com bining (2.9) , ( 2 .10 ) ,  ( 2 .13)  and ( 2 .14 ) ,  we see tha t in the ^-coordinates the system  ( 2 .1)  

becomes (2 .2 ).

Necessity. If there exists a diffeom orphism  £ =  0 ( f)  tha t transform s (2.1)  into (2.2) , one 

can direc tly verify tha t the c oordinate-free conditions (i) and (ii) are satisfied for the system

(2 .2 ), and hence for the system  (2 .1). □

R e m a rk  2 .2 .  T he “extended-m atc hing” c ondition, introduc ed in [2,3] and used in [1] in 

the equivalent form  of a “strong linearizability” c ondition, is a spec ial case of the “pure- 

feedbac k” condition (2.5) . T his is easily seen by noting tha t if the system  (2 .1)  satisfies the

6



feedback linearization c ondition (2.4)  and the extended-m atc hing c ondition

9i e  g ° ,  fi 6  g \  i < i< p ,  ( 2 . i5 )

then it is transform able into the pure-feedbac k form  (2 .2 ) with 7 * =  0 , . . . ,  7„_2 =  0 . □

3 Adaptive Scheme Design

T he conditions of P roposition 2.1 give a precise geom etric  c harac terization of the class of 

nonlinear system s to which the new adaptive scheme is applic able. We now design the new 

adaptive scheme for system s of the form  (2 .2 ):

k  =  zi+1 +  0T7 ; ( 2i , . . . ,  Zi+1) , 1 <  i <  n -  1

zn =  ' yo ( z )  + 0T-fn(z) + [ p o { z )  + 0T(3(z) u ,

(3.1)

with

7.( 0)  =  0 ,  0 <  z <  n , / ?o(0) ^  0 . (3.2)

R ecall tha t 0 is the vec tor of unknown param eters, and 70, (30, and the c om ponents of ¡3 and 

7 ,-, 1 <  i <  n, are sm ooth nonlinear func tions in B z, a neighborhood of the origin z =  0.

Using an idea sim ilar to those exploited by F euer and Morse [16] for adaptive c ontrol of 

linear system s, the design proc edure interlac es, at each step, a change of c oordinates with 

the c onstruc tion of a param eter update law. N ot only is the design proc edure system atic  

and c onc eptually c lear, but also the stability proof is a straig htforward L yapunov argum ent. 

T he new. adaptive scheme for the system  (3.1)  is designed step-by-step as follows:

Step 0 . Define x\ =  zi,  and denote by c i, c2, . . . ,  Cn c onstant coeffic ients to be chosen later.

»

Step 1 . Starting  with

Xi =  z2 +  ffT7i( zi,z2) , (3-3)

let $1 be an estim ate of 6 and define the new sta te  x2 as

x2 =  c1x 1 + z2 + # ?7 i(zi, z2) . (3.4)

7
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Substitute  (3.4)  into (3 .1)  to obtain

x\ =  -c \x x +  x2 +  {0 -  ^i )T7 i (21, 2:2)

=  -C1X1 + x2 +  {0 — ^i) Ttu1( x i, x 2, ^ i ) . (3.5)

T hen, let the update law for the param eter estim ate dx be

^1 =  xx wx{xx,x2,tix)- (3.6)

Step 2 . Using the definitions for 27 , x2 and t?i, write x2 as

¿2 =  Cx[-CxXx +  x2 + (6 -tix ) TWx{xx,x2,fii)\+ Z 3 + 0T~f2{zx,z2,z3)

+ x 1w1( x 1, x2, ^i )T7 i (2i , ¿2) +

-
23 +  ^TT2(^1, ^2, ^3)] +  ^ 2(^1, x2, I?i) +  0Ti{;2(x1, x 2,tf1) .(3.7)

L et 9 2 be a new estim ate of 9 and define the new sta te  x3 as

d j 

dz2
x3 =  c2x2 +  [ 1 +  [23 +  1̂ 72(21, 22, 23)]

+ ^ 2(^1, ^2,^ l)  +  #2 02 (®1, ^2,^ l)  •

Substitute (3.8)  into (3.7)  to obtain

(3.8)

X2 =  -C 2X2 +  X3

+  ( 0 - t f 2 ) T il>2(xx,x2,# x) +  f l  +  72(01, 22,^3)

=  - C 2X2 +  X3 +  (0 -  1?2)T^ 2(^ 1, * 2,^ 3, l?i,l?2) • 

T hen, let the update law for the new estim ate 9 2 be

l) 2 =  X2 W2(x1,X2,X3,^1,l)2)-

(3-9)

(3.10)

Step i (2 <  i <  n — 1) Using the definitions for X j , . . . ,  x , and i? i, . . . ,  r?,_ i, express the

derivative of X{ as

t ^ 7 i
X. = 1 +

T ^7*-l

d z {
Zi+X +  0Tji( z x , . . . , z i+i)

+Vi(x!, . . . , Xi, 1?!, . . . , l?,_i) +  0T ^i(x 1, . . . , Xi, t?i, . . . , l?t_i) . ( 3 .11)
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L et I?,- be a new estim ate of 6 and define the new sta te  x t+1 as

xi+i =  c{Xi - f I 1 + . .  f  i  +  d i 1 d r - 1 Zi+i +  7i(zh  • • • 5 zi+i)
dz2J  V •“ dzi ,

+V>.-(®1, . • •, x t-, i91? . . . ,  . . . ,  a;,-, i? ! , . . . ,  . ( 3.12)

Substitute (3 .12)  into ( 3 .11)  to obtain

X{ = — C{Xi + Xi+i + [9 — tfj)T r/ >i+ (1 + t ^ 7 i

’l  +  C x ^ l T . '

— CiXi ~f" “l“ (̂  »̂) W { ( xi, . . . , SJj'-j-i, , • • • •> ) •

T hen, let the update law for ??,• be

tii =  (®1 5 • • * 5 * t̂+l 5 »• • • 5 ^*) •

(3.13)

(3.14)

Step n. Using the definitions for x i , . . . ,  xn and i? i, . . . ,  $ n_ i,  express the derivative of xn

as

*» = (1+^ £ ) ' " (1+ Ci% r)  [a w +o w ]«
+(^n(x , 1?1, . . . ,  n_ i)  +  0T^ri(x, 1?1, . . . ,  tfn_ i ) . (3.15)

L et dn be a new estim ate of 0 and define the c ontrol u as

1

u =

where

# 7 i

CnXn ipn (3.16)

* M . , • • • A )  =  11 +  ^  ] • • • ( i  +  C x 9 7 " -'1 1 ■ -aT
dzn

Substitute (3 .16)  into (3 .15)  to obtain

dzn
’o(z) +  0Tnf}(z) . ( 3 .17)

¿n  —  ^ -n^ n ”1” ^ n )
0"+(1+^£ )---(1+ e i^ r ) /?(z)u

— Cn37n +  (0 ^n) ^n(^ 5 ^1 ? • • • ? ^n) 5 (3.18)

where (3 .16)  is used in the definition of wn. F inally, let the update law for the estim ate  

T?n b e

i?n =  xn wn(x ,tiu . . . , i?n) . (3.19)

9
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T he above steps c om plete the form al developm ent of the new design proc edure. Its 

feasibility and the stability of the resulting  c losed-loop system  are analyzed in the next 

section.

4 F easibility and Stability

T he above design proc edure has introduc ed a set of new c oordinates X\, . . . ,  xn defined by

Xi

In order to  ensure that the proc edure is feasible , we c onstruc t in P roposition 4 .1 an estim ate

T  C iRn(1+p) of the feasibility region such tha t for all (z, $ 1, . . . ,  tfn) 6  T  the c oordinate 

change ( 4 .1)  is one-to-one, onto, continous and has a continuous inverse, and the denom inator 

in (3 .16)  is nonzero.

P ro p o s it io n  4 . 1.  Let B z be defined as in Proposition 2.1 and B # C Mp be an open set 

such that

Then, the set T  — B z x  B$ is a subset of the feasibility region.
0

P ro o f.  Obvious, since (4.2)  and (4.3)  guarantee tha t in B z x  J5J (4 .1)  is uniquely solvable

(4.2)

(4.3)

for z and the denom inator in ( 3 .16)  is nonzero. □

R e m a rk  4 .2 .  T he nonglobal nature of the feasibility region is not due to the adaptive 

scheme, because, even when the param eters 6 are known, the feedback linearization of the

system  (3.1)  can only be guaranteed for 9 (E Be, with Be C Mp an open set such that

(4.4)

(4.5)
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In the feasibility region, the adaptive system  resulting  from  the design proc edure can be 

expressed in the ^-c oordinates as

¿1 =  - c x ^ i +  x2 +  {0 -

Xn—\ — ^n—l^-n—1 d* Xn d" (0 $n— l)  ^ n— • • • ) 5 ^1) • • • j $ n—l)  (4.6)

Xn — Cn3Jn d" (0 1?n) ^1 5 • • • 5 ^n)

$,• =  X{ W i( x, l?i, . . . , I?,*) , 1 < 2 < n .

T he sta bility properties of this system  are now established using the quadratic  L yapunov 

func tion

V(x, * „ . . . , * , )  =  i * Tx  +  I  ¿ ( f l  -  * ) T (*  -  * )  • (4.7)

(4.8)

T he derivative of . . . ,  tfn) along the solutions of (4.6)  is

V =  [ctx- +  (<9 -  tft)T (x ti<;t- -  ¿¿)] +
i=i t=i

n n—1

=  ~ Y j c i x l  +  •

i= i t=i

At this point we can choose the coeffic ients C\, . . . ,  cn tha t were left free in the design proc e ­

dure. T he choice cz >  2, for all i =  1, . . .  , n, guarantees tha t V is negative semidefinite:

V < -IMI2.

T his proves the uniform  sta bility of the equilibrium

(4.9)

£  =  0 , di — 6 , 1 < i < n (4 .10)

of the adaptive system  (4.6} . To give an estim ate ft of the region of a ttra c tion of this 

equilibrium , we note tha t ft m ust be a subset of our estim ate T  of the feasibility region. L et 

ft(c )  be the invariant set of (4.6)  defined by { V  <  c } , and let c* be the largest c onstant c 

such tha t ft(c )  C T . T hen, an estim ate ft of the region of a ttra c tion is

ft =  ft(c* )  =  { ( x ,T ?!, . .  . ,i?n)  : V ( x , t ? ! , . .  . , t fn) <  c*} , c* =  arg sup { c }  . ( 4 .11)
n(c )  c r
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R e m a rk  4 .3 .  It can be expec ted tha t the above estim ate is not the tig htest possible one, 

because the choice of the unity gains in the update laws was m ade for sim plic ity. W ith  some 

a priori knowledge about the shape of T , different adaptation gains can be found so tha t il 

is m axixized by a better fit of T . □

N ext, we use the invarianc e theorem  of L aSalle to establish tha t for all initia l conditions 

. . . ,  ’dn)t=o £  the adaptive system  (4.6)  has the following regulation properties:

lim  a:(£ ) =  0 , lim x(t)  =  0 , lim  $ , ( i)  =  0 , 1 <  i <  n . (4* 12)
t— MX) t— >00 t— ►oo

In order to return to the original c oordinates £ , we note tha t,  because of (4.2) , the solution 

z2 =  • • • =  zn =  0 o f the system  of equations

Zi+I +  0T7i(O> * 2, • • •, 2*+i) =  0 , 1 <  i < n -  1 ,  ( 4 .13)

is unique in B z x  B$, and tha t 2t- , l <  i < n can be expressed as sm ooth func tions of

1 <  i <  n using ( 4 .1) .  Combining these fac ts with ( 4 .12 ) ,  we obtain

lim  Z\(t) =  0 , lim  ¿i(t)  =  0 , 1 < i < n . (4-14)
t— ►oo t— »oo

Using an induc tion argum ent, it is now shown tha t Z{(t) —» 0 as t —> oo, 1 <  i < n:

•  F or ¿ =  1, we have Z i ( t )  — > 0 as t — > oo.

• F or i =  k , 2 < k < n, we assume tha t Z j{ t) — ► 0 as t —*■ oo, 1 <  j  <  k — 1. T hen, from

( 4.14)  we have

lim zk-i{ t)  =  lim  { zk+1 +  6>T7 fc_ 1(21, . . . , ^ _ 1, 2:fc) }  =  0 ,  ( 4 .15)

and from  the uniqueness of solutions of (4 .13)  we conclude tha t zk(t) —► 0 as t —»• oo.

H ence, z(t)  ->  0 as t —* oo. F inally, since z =  4>(() is a diffeom orphism  with 0( 0)  =  0, 

regulation is ac hieved in the original c oordinates nam ely

lim ( ( t)  =  0 .  ( 4 .16)

T he above fac ts prove the following result:
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T h e o re m  4 .4 .  When the design procedure of Section 3 is applied to a system of the form 

(2.1) that satisfies conditions (i) and (ii) of Proposition 2.1, the resulting adaptive system  

has a stable equilibrium at £ =  0, =  9, 1 <  i <  n, whose region of attraction includes the

set 0  defined in (4.11). F urthermore, regulation of the state  ( ( t) is achieved:

lim  CW =  0 ,
I—>oo

for all initial conditions in 0 .

5 Global Stability

T here are strong theoretic al and prac tic al reasons for investigating  whether the stability 

properties of an adaptive system  can be m ade global in the space of the states and param ­

eter estim ates. System s with a finite region of a ttrac tion m ay not possess a wide enough 

robustness m argin for disturbanc es, unm odeled dynam ic s, and other m odel im perfec tions. 

F urtherm ore, for nonglobal results it is usually hard to find nonc onservative verifiable esti­

m ates of the region of attrac tion.

Another aspec t of the global stability issue is the com parison of the proposed adaptive  

c ontroller with its determ inistic  c ounterpart, tha t is, the c ontroller tha t would be used if the 

param eter vec tor 9 were known. Suppose tha t for all values of 9 there exists a determ inistic  

c ontroller tha t achieves global stabilization and regulation of the system . If, with 9 unknown, 

the proposed adaptive c ontroller does not achieve the same global stability, this loss is c learly 

due to adaptation.

T he sta bility result of T heorem  4.4 is not global, but, as pointed out in R em ark 4.2, this 

is not due to adaptation. F or pure-feedbac k system s, global sta bility m ay not be ac hievable 

even with 9 known. We now consider “stric t-feedbac k” system s for which a g lobally stabiliz ­

ing c ontroller exists when 9 is known, and prove tha t our adaptive scheme guarantees global 

sta bility when 9 is unknown.

In order to c harac terize the class of “stric t-feedbac k” system s, we use the following as­

sum ption about the part of the system  (2 .1) tha t does not c ontain unknown param eters:

(4 .17)

□
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A s s u m p tio n  5 . 1 .  There exists a g lo b a l diffeomorphism z =  with (¡>(0) =  0, that

transforms the system

C =  / o(C) +  0o(C)u, (5 .1)

into the system

¿i =  Zi+i , 1 <  i <  ra — 1

¿n =  70(2 ) +  Æo(;z)u, (5.2)

with

7o(0) =  0 , # >(*) ±  0 V* G ITT . (5.3)

R e m a rk  5 .2 .  T he local existenc e of such a diffeom orphism  is equivalent to the feedback 

linearization c ondition (2.4) . H owever, at present there are no nec essary and suffic ient c on­

ditions tha t can verify the global validity of this assum ption. Suffic ient conditions for As ­

sum ption 5.1 are given in [18], while nec essary and suffic ient conditions for the case where 

/30(z) =  const, can be found in [19,20] . □

P ro p o s it io n  5 .3 .  Under Assumption 5.1, the system (2.1) is globally diffeomorphically 

equivalent to the “strict-feedback” system

¿i =  zi+1 +  0T7 ,-(z i , . . . , z ,-), 1 <  i <  n — 1

Zn =  70(2 ) +  0Tln(z)  +  (do(z)u ( 5.4)

if and only if the following condition holds globally:

Str ic t - fe e d b a c k  c o n d itio n .

9i =  0 ,

[X Ji] G Gj , VX E Qj , 0 < j < n - 2 ,

with Qi, 0 <  j  < n — 1, as defined in (2.4).

1 <  z <  p , (5.5)

P ro o f.  T he proof is very sim ilar to tha t of P roposition 2 .1.  F irst note tha t bec ause of the  

assum ptions tha t the diffeom orphism  z =  is global and tha t /30(z) ^  0 Vz 6  JRn, the

14



distributions Cp , 0 <  j  < n —1 , are globally defined and can be expressed in the ¿-c oordinates 

as

Qx =  span
a

0 <  i <  n — 1 . (5.6)
dzn ' ’ dzn_i j  ’

To prove the suffic iency pa rt of the proposition, note tha t if the pure-feedbac k c ondition 

(2.5)  of P roposition 2.1 is replac ed by the stric t-feedbac k c ondition (5.5) , then (2 .12)  and 

(2 .14)  are replac ed by

9i =  0 ,

d z i 1 '
6  span

d d
1 <  2 <  P  . (5.7)

dzn ’ dzj j  ’ 

T hus, the expression for fi((f>~1(z)) in (2 .13)  becomes

2 <  j  <  n ,

/

W 1« )  =

7 i , i ( ^ i )

7 2 , i ( ZU Z2)

7 n —l, t( ^ li  • • • ? ^n—l )

V 7n,* ( ^l>  • • • > Z n) )

1 <  2 <  p  . (5.8)

□T he nec essity part is again straightforward.

T he above proposition gives a geom etric  c harac terization of the class of system s for which 

the following global properties can be achieved.

T h e o re m  5 .4 .  Under the conditions of Proposition 5.3 the stability and regulation results 

of T heorem 4.4 become g lo b a l,  i.e., they are valid for any initial conditions in Q = ffin(1+pK

P ro o f.  W hen the adaptive design proc edure ( 3 .3) -( 3 .19)  is applied to the system  (5.4) , then 

for all G 1RP, 1 <  i <  n, the change of c oordinates (4 .1)  is one-to-one, onto, continuous 

and has a c ontinuous inverse, and the c ontrol (3 .16)  is well defined, since

d l i

d z { + 1
( r̂) =  0 , (3(z) =  0 , fio(z) ^  0 V z£ lR n. (5.9)

H ence ( 4 .2 ) - ( 4 .3 )  are trivia lly satisfied on T  =  Bz x  B% =  Mn 1̂+P\ and from  ( 4 .11)  we 

conclude tha t f1 =  ]Rn 1̂+p\ □
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6 M ulti-input System s

T he design proc edure of Sec tion 3 can be easily ex tended to m ulti-input nonlinear system s 

of the form

C =  / o(f)  +
*=i j= i

so(C) + ¿ # ¡4 ( 0
i=l

uj y

with

/ «(o) =  0 , 0 <  i <  p , rank Go(0 ) =  m  , Go =  [ pj. . .  g™], 

that can be transform ed into

(6.1)

( 6 . 2 )

¿i =  4 + i +  0T4  ( « } . •••.  zh-ki+2. • • -.  * r .  • • • > z£ .-* ,+ s)  » i <  » <  - 1m

zk, =  7o(* )  +  ö 7 ^ ( 4  +  

with

iT

ßo (z) + i2 e‘ßi(z)
e=i

u , 1 <  j  <  m , (6.3)

(6.4)7 / (0 ) =  0 , 0 <  2 <  k j , 1 <  j  <  m , det B o(0 ) ^  0 , 

where £ 0 =  , / ?™]T , and E JL i kj =  n.

P ro p o s it io n  6 . 1.  T here exists a parameter-independent diffeomorphism z =  0(C), with 

0(0)  =  0, valid in a neighborhood Bz of the origin, that transforms the system (6.1) into 

the system (6.3) if and only if the following conditions are satisfied in a neighborhood of the 

origin:

(i) F e e d b a c k lin e a riz a t io n  c o n d itio n .  The distributions

Q' =  span [g J0, adfogJ0, . . . ,  ad'fogJ0, 1 <  j  <  m }  , 0 <  i < n -  1

are involutive and of constant rank r,-, with rn_1 =  n.

(ii) P u re - fe e d b a c k  c o n d itio n .

9i €  Q°, 1 < j < m ,

(6.5)

[ X Jt]  6  Çk+1, V X 6 Ç k , 0 <
1 <  2 <  p . (6.6)
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P ro o f.  As proved in [21,22] , c ondition (i) is nec essary and suffic ient for the existenc e of a 

diffeom orphism  z — $(( )  such tha t in the ¿-c oordinates we have

M4> * (* ))  =  [ 4  • • • 4 , - i  7¿( * )  • • • z?  • • • zL - i  7 ” (2 )] 

G0(4>-\z)) =  [ o . . . o ^ ( z ) . .  . 0 . .  .o/ ?™ (z)]T

Qx =  span
d d

■, 1 <  j  <  m  > , 0 < i < n — 1 .
d z k j  ’ ' "  ’ d z j b j - i

It is now a  tedious but straig htforward task to verify tha t c ondition (ii) is equivalent to

(6.7)

(6.8)

(6.9)

' ( 2 )) =  [ O -.-O 0' ,i( z ) . . .O .. .O / 3 " ) ( z ) ] T , l < t < p ,  1 < J <

7 i, . ( 2i > 4 .  • • •, 2i" , • • ■, 2)

m (6.10)

7 ¡ t „ i ( 2 )

/  1 ~1 _m m l
7l,*Vzl » • ’ • ’ zk\-km+‘2'> • ' - ’ Z\ ’ Z2 /

7?m,.(2 )

1 <  2 <  p (6.11)

□

T he design proc edure for the system  (6.3)  is the following:

Steps 0 through (n — m ): Apply steps 0 through (kj — 1) of the single-input proc edure to 

the first (kj — 1) equations of each of the m subsystem s of (6.3) , to obtain the system :

M =  ~ 4 xJi +  ®J+i +  (<? 7 ? ! , . . . , ^ _ i ) , c j > 2 ,

i - i

£ =  — 1) +  1 <  i <  & j , 1 <  j  <  m
p= i

tit =  x j . . .  ,# * ) , l < ^ < n  — m (6 .12 )

’ <  '
—

# o ( z , 1 ? 1 ,  • • • , tin -m )  +  l? l ,  • . . , ^ n - m ) ^

~rn
L J

t'= l

+ $(S, 01, • • • , l?n-m) +  V^T(a:, #1, . . . , $ n —rn)@ ,
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where

Bi(z, i? i , . . . ,  l9n_m) —

1 + •  •• f i + / r T ( 4

. ( 6 .13)

Step n — m  +  1: L et ^„-m+ i be a new estim ate of 9 and define the c ontrol u as

n T —1

U =
A 1 m „m

Ck1Xk1 ‘ ’ * CkmXkmB q ( .2,  1? 1, . • • , m )  “t" ^  ] B j( z ,  9 l , . . . , i^n—m ) ^ n —7n+ l,t

t'= l

-$(x,tfl,...,tfn_m) - W T ( x , 9 i , . . .,^n-m)^n-m+l} , 4, > 2 > 1 <  j  <  171. (6 .14)  

Substitute (6 .14)  into ( 6 .12)  and rewrite the last m equations of ( 6 .12)  as

d

dt

4, 4,

X IL
L  J 4L  Km Km J

11 ’ 4, 4,

c f  X™
L  Km Km J

4* { W  - f  B\U . . . B pU] | (9 — i? n - m + l)

+  ^ n - m + l ( ^ ,  ^ 1 ,  • • . , t fn - m + l) ( 0  ~  ^ n - m + l)  , (6.15)

where (6 .14)  was used in the definition of VFn_ m+1. F inally, let the update law for the 

estim ate i?n_ m+i be

9 n —m + l — t o+ 1 j ^ 1»  • • • » ^ n —m + l)

Xk i

L
L  Km J

(6 .16)

N ote tha t this proc edure will again be feasible only in a c ertain feasibility region, which
p

can be defined as the region in which the m atrix  B  =  B0 +  ^  is invertible.
i= i

T he sta bility properties of the resulting  c losed-loop system  are analogous to those listed in 

T heorem  4.4, and can be sim ilarly established using the L yapunov func tion

n—m + l1 -j n—m + i

V( x , t fi , . . . , t f„ _ m+1) =  - x Tx  +  -  J 2  (0 — ^ .)T (^ — ^.)- (6 .17)
» = 1
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7 A Global T racking R esult

We now turn  our attention to the trac king  problem  for a class of input-output linearizable 

system s c harac terized by struc tura l Conditions analogous to those in P ropositions 2.1 and 5.3. 

E very regulation result in Sec tions 2 - 5  has its trac king c ounterpart. F or brevity, we restric t 

our presentation to the trac king version of the global regulation result in Sec tion 5. T he 

c ounterparts of nonglobal regulation results can be obtained using the same L yapunov func ­

tion argum ent as in this sec tion to determ ine an invariant set in whic h asym ptotic  trac king  

is guaranteed.

Consider the nonlinear system

C =  / o ( 0  +  E * .7 i( C )  +  a > ( 0 «  (7.1)

y =  M O  *

where f  £  JRn is the state, u £  IR is the input, y £  M is the output, 9 — [ $ i , . . . ,  0P]T is the 

vec tor of c onstant unknown param eters, h is a sm ooth func tion on Mn with h(0 ) =  0 , and 

the vec tor fields g0, / ,-, 0 <  i <  p, are sm ooth on lRn with g(Q 0 ,  V(  £  iRn, / ,(0) =  0,

0 <  i <  p. We first form ulate the input-output c ounterpart of Assum ption 5.1:

A s s u m p tio n  7 . 1.  There exist n — p smooth functions <f>i((), p +  1 <  i <  n, such that the 

change of coordinates
zi =  h(Q 
z2 =  Lfoh(C)

3̂ =  L % h(0

*P =  L ^ h (  0  
^  =  M O   ̂ P + l < i  < n

is a g lo b a l diffeomorphism z =  that transforms the system

C =  / o(O +  0o(C)w 

y =  H O
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into the special normal form

ii  =  z2

Zp-i =  zp (7 .4 )

if  =  T oW +  A ( * ) u

i x =  $o{ y, zr)

7o(0)  =  l £ A ( 0 ) - 0 ,  $ o( 0 ,0 )  =  0 (7.5)

A (* )  =  L n L Z 'K C )  i0 V*  €  JR " . 

R e m a rk  7 .2 .  In order for (7.3)  to be locally equivalent to (7 .4) , it is nec essary and suffic ient 

that the following conditions hold in a neighborhood of the origin (  =  0 :

L90L)Qh =  0 ,  0 <  i < p — 2 (7.7)

K L f i ' m  *  0 (7-8)

Q* is involutive and of c onstant rank i - f 1 ,  0 < i < p — 1 .  (7-9)

T he suffic iency of these conditions is a consequence of P roposition 10 in [23]. T he nec essity

can be easily established by verifying  tha t ( 7 .7 ) - ( 7 .9 )  hold in the c oordinates of (7.4) . H ow­

ever, at present there are no nec essary and suffic ient c onditions tha t can verify the global 

validity of this assum ption. □

We are now ready to form ulate the input-output c ounterpart of P roposition 5.3:

P ro p o s it io n  7 .3 .  Under Assumption 7.1, the system (7.1) is g lobally diffeomorphically 

equivalent to the “strict-feedback” normal form

¿i =  Zi+i +  0T7»'(2i > • • • ,Zi,zr) , 1 <  i <  p -  1

zp =  'yo(z) +  0Tj p(z) +  Po(z)u ( 7 .10)

¿ r =  $o ( y , 2r) +  £ 0i$ i( y , * r)
t = i

y =  zx ,

if and only if the following condition holds globally:
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Str ic t - fe e d b a c k  c o n d itio n .

[X ,fi\ V X e g i ,  0 1 ( 7 .11)

with 0 <  j  < p — 1, as defined in (2.4).

P ro o f.  T he proof follows c losely tha t of P roposition 5.3. F irst,  bec ause of the assum ptions 

tha t the diffeom orphism  z =  0 ( ( )  defined in (7.2)  is global and tha t (30(z) ^  0 Vz E IRn, the 

distributions ÇP , 0 < j  <  p —1 , are globally defined and can be expressed in the z-c oordinates 

as

J d dg  =  span , 0 <  * <  p -  1.

T he suffic iency follows from  the fac t tha t,  by ( 7 .11)  and ( 7 .12 ) ,

± ,

d z jJ \

( d 5  1
E span < —— , . . . ,  —— >, 2 <  j  <  p , 1 <  * <  p •

dz. dzj

(7 .12)

(7 .13)

T hus, the expression for /,•(</> * (z))  is

(  h , i { z \ ’>z T )  \

7 2 , t ( Z l , 2 2 , 2 r )

M r\ z ) )  =
1p-\,i(z\t • • • ? zp-li z*)

~1p,i(zx, . . . , z p,z T)
H z u z r )

l < i < p. (7 .14)

□T he nec essity part is again straig htforward.

R e m a rk  7 .4 .  To obtain the input-output c ounterpart of P roposition 2 .1,  one just needs to 

replac e c ondition (2.4)  (feedback linearization condition) of P roposition 2.1 with conditions 

( 7 .7 ) - ( 7 .9 )  and condition (2.5)  (pure-feedback condition) with

9i € S ° ,

€  ç j+ 1, v x e g i ,
1 <  2 <  p (7.15)

□

As in m ost trac king problem s, we need an assum ption about the sta bility of the zero- 

dynam ics of ( 7 .10) :
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A s s u m p tio n  7 .5 .  The zT-subsystem of (7.10) has the bounded-input-bounded-state (BIBS) 

property with respect to y as its input.

It was shown in [9, P roposition 2.1]  tha t the following c onditions are suffic ient for As ­

sum ption 7.5 to be satisfied:

(i)  the zero dynam ics of (7 .1)  are globally ex ponentially stable, and

v

(ii) the vec tor field $  =  $ 0 +  in (7 .10)  is g lobally L ipschitz in z.

i = i

H owever, they are too restric tive for our purposes. F or exam ple, the system  zr =  — (zT)3 +  y2 

violates both these conditions, but is easily seen to satisfy Assum ption 7.5. On the other 

hand, for nonglobal results it is c onvenient to use the assum ption of ex ponential stability of 

the zero dynam ic s in order to estim ate the region of a ttrac tion using a c onverse L yapunov 

theorem .

T he c ontrol objec tive is to force the output y of the system  (7.1)  to asymptotically track 

a known referenc e signal yT(t), while keeping all the c losed-loop signals bounded.

A s s u m p tio n  7 .6 .  The reference signal yr(t) and its first p derivatives are known and 

bounded.

To ac hieve the asym ptotic  trac king objec tive, the design proc edure presented in Sec tion 3 

is m odified as follows:

Step 0 . Define

Xi =  Z i - y T. ( 7.16)

Step 1. Starting  with

¿ i =  +  <9T7 i (2i , zr) -  yr , (7.17)

let be an estim ate of 0 and define the new sta te x2 as

x2 =  CiXi +  z2 +  tf?7i(zi,z*) ~  Vr

=  CiXi + z 2 +  t fi wi ( z i , z r , yr) - y T, >  2 .  {7.18)
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Substitute (7 .18)  into (7 .17)  to obtain

¿ 1  = - c xx x + x2 + (0 -  ^i)TWi(zi, Vx) 

T hen, let the update law for the param eter estim ate be

= x 1w1(x1,z r,;/ T) .

(7 .19)

(7.20)

Step 2. Using the definitions for xi, x2 and write x2 as

¿2 = C\[ C\X\ + x2 + (9 -  l91)Tw1(x1,z \ yr)} +  z3 +  9T-f2(zl , z2, zT) 

+ xlw1(x1,zT,yr)i:~f1(zu zT) + 1?̂

, ^ 7 i ( z u z * )

dzl
$ o ( * i , 2 r )  +  ' % 2 0 i $ i ( z 1 , z r )

t = i

-  Vx

( 7 .21)=  Z3 +  V>2(X 1,X2, ZT, 0 1, Vt , tir, Hr) +  6TW2(xu  *2, Zr, l>lt J/r , yr) .

L et i92 be a new estim ate of 9 and define the new sta te  x3 as 

x3 =  c2x2 + z3 +  ip2( x i,x 2,z r,d l ,yT,yT,yx) +  tilw2( x i,x 2,z Tid-L^^yr) , c2 >  2 . (7.22)  

Substitute (7.22)  into (7 .21)  to obtain

X2 = - c 2x 2 +  x3 +  (0 -  '92) t w 2( x 1, x 2, 2r , r?!, t/r, yr ) , (7.23)

T hen, let the update law for the new estim ate d2 be

=  x2 w2(xl ,x 2,zT,til ,yT,yT) . (7.24)

Step i (2 <  i < p — 1) Using the definitions for Z j , . . . , ^  and i? i, . . . ,  express the 

derivative of X{ as

ii =  zi+i +  <pi(xu  . . . , Xi, zr,tf i , . . . ,  fli-u yr,  • • •, yil) )

+ 6TWi(xu . . . ,  Xi, zr , 1? ! , . . . ,  yr, • • •, 2/ il_1)) • (7.25)

L et i9,- be a neiu estim ate of 9 and define the new sta te  x t+i as

Z t + l CiXi + 2 t+i + v?i(a?i,. . . ,  Xi, zT,tii , . . . ,  yr, . . . ,  y[l))

+ tijwi(x  i , . . . ,  x t-, 2r , i? i , . . . ,  i,  2/r, • • •,  2/ i‘_1)) , c , - > 2 .  (7.26)
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Substitute (7.26)  into (7.25)  to obtain

x{ =  -CiXi +  xi+1 +  (0 -  1} ) . (7.27)

T hen, let the update law for ti{ be

tit =  x t ii;1( x i , . . . , a ; i , 0 r , i ? i , . . . , i 9 t_ i , yr , . . . , y i ," 1)) . (7.28)

Step p. Using the definitions for x x, . . . ,  xn and t9l9 . . . ,  i?p_ i,  express the derivative of xn as

Xp =  (30(z)u  T ^ P(* î? • • • j 'E'pi z i t ii, . . . ,  tip_i, yr, . . . ,  )̂

T 9 Wpî xi , . . . ,  xp, z , i? i, . . . ,  tip_i,  yr , . • • ? yj. )̂ •

L et tfp be a new estim ate of 9 and define the c ontrol u as

u = -CpXp-Vp-ti^Wp  , cp >  2 .
M z)

Substitute (7.30)  into (7.29)  to obtain

ip — CpXp +  (0 tip} 'Wpî xi, . . . ,  Xp,  ̂ . . . ,  tip—i,  i/r , . . . ,  ŷ . )̂

F inally, let the update law for the estim ate tip be

!?„ =  Xpw,(xu  . . . ,  xp, zr,t ) , , . . . ,

(7.29)

(7.30)

(7.31)

(7.32)

As was the case in the regulation result of Sec tion 5, the assum ptions of P roposition 7.3 

guarantee tha t the design proc edure ( 7 .16 ) —(7.32)  is g lobally feasible. T he resulting  closed- 

loop adaptive system  is given by

xi =  - c xxi +  x 2 +  (0 -  ti1)Tw1(x1,z \ yr)

Xp-1 =  -Cp-iXp-i +  Xp +  (0 -  tip-i)TWp-i(xi, .. . . , ® p_ i , z r , t ? i , . . . , i ? p_ i , yr , . .

Xp =  CpX p T  ($ tip) wp( æi, . . . ,  «£pj 2 î ■. . . , ^p_l,  2/ r, - * * , 2/ iP_1)) (7.33)

¿r =  * 0( y , ; O  +  £ f t S i ( y , * r)
t=i

î),‘ — X{ W{( X̂i, . . . , X{ , 2 , . . . , î?t_l 5 2/r? • • • ? 2t f - 1)) ,  1 < * < P

V =  xi +  yT.
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T he sta bility and trac king properties of (7.33)  will be established using the quadratic  

func tion

Vt(xi i , . . . , # , )  =  H  +  (<9 — — ^¿)1 . (7.34)
z  t = i

T he derivative of Vt along the solutions of (7.33) , with c,- >  2, 1 <  i <  p, is

Vt =  -  E  [cix l +  (0 -  -  i?,-)] +  E  x *x *+1
i=i *=i
p p-1

= - E °ix2i + E .̂+i
t=i t=i
p

< - J 2 x*̂  °- (7-35)
í=i

T his proves tha t Vt is bounded. H ence x it . . . , x p and . . . ,  dp are bounded. T he bound­

edness of Xi and yr implies tha t y is bounded. Com bining this with Assum ption 7.5 proves 

that zT is bounded. T herfore, the sta te  vec tor of (7.33)  is bounded. T his fac t, combined 

with Assum ption 7.6, implies the boundedness of z, £ and u. T hus, the derivatives ¿ i , . . . ,  xp 

are bounded. N ow (7.34)  and (7.35)  im ply tha t Vt is bounded and integrable. Moreover, 

the boundedness of a q , . . . ,  xp and x\t. . . txp implies tha t Vt is bounded. H ence, Vt —> 0 as 

t —► oo, whic h, combined with (7 .35) , proves tha t

hm  Xi(t) =  0 , 1 <  i <  p . (7.36)

In partic ular, this means tha t asym ptotic  trac king is achieved:

lim  Xi(t) =  lim  [y(t) -  t/r (i)]  =  0 .  (7.37)t ÔO t ÔO

T hese result's are sum m arized as:

T h e o re m  7 .7 .  Under Assumptions 7.1, 7.5 and 7.6, and the strict-feedback condition (7.11), 

the adaptive design procedure (7.16)-(7.32), applied to the nonlinear system (7.1), yields 

global asymptotic tracking and boundedness of all the closed-loop signals. □

8 Discussion and E xamples

W ith the help of two simple exam ples, we now discuss some of the m ain features of the new 

adaptive scheme. T he first exam ple illustrates the system atic  nature of the design proc edure,
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while the second one compares the stability properties of the new scheme with those of the 

nonlinearity-c onstrained scheme of [9].

E x a m p le  8 .1 ( R e g u la t io n ) .  We first consider a “benc hm ark” exam ple of adaptive non­

linear regulation:

¿1 =  z2 +  0z\
¿2  =  ¿3  ( 8 . 1 )

z3 =  u ,

where 6 is an unknown c onstant param eter. T his system  violates both the geom etric  con­

ditions of the schemes proposed in [1,2,3]  and the growth assum ptions o f [5,6,9,12] . In fac t, 

the only available global result for this exam ple was obtained in [7].

T he system  (8.1)  is already in the form  of (5.4)  with /?0 =  1. H ence, this system  satisfies 

the c onditions of T heorem  5.4, which guarantees tha t the point z =  0, =  i92 =  ^3 =  0

is a g lobally stable equilibrium  of the adaptive system . M oreover, for any initia l conditions 

2 (0 ) €  7R3, ( i?i(0 ), ^2(0 ), ^3(0 )) €  iR3, the regulation of the sta te  z(t)  is ac hieved:

lim  z(t)  =  0 . (8-2)
t—►00

T he design proc edure of Sec tion 4, applied to ( 8 .1) ,  is as follows:

Step 0. Define — Z\.

Step 1. L et be an estim ate of 0 and define the new sta te  x 2 as

x 2 =  2x\ -f z2 +  9 i x l . (8.3)

Substitute  (8.3)  into (8.1)  to obtain

¿1 =  —2x i + x2 x\{6 — $ i ) . (8.4)

T hen, let the update law for $1 be

¿ i = x 3 . (8.5)

Step 2 . Using (8.3)  and (8.5) , write x2 as

¿2 =  2 ( z 2 +  Oz^) 4- z3 + î i 2 x i ( z 2 9 zj) 4- x \. (8-6)
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L et 0 2 be a new estim ate of 6, and define the new sta te

x3 =  2x 2 +  2 (z2 4- tM i )(1 +  0 i®i)  +  x\ +  z3 (8.7)

Substitute (8.7)  into (8 .6 ) to obtain

¿2 =  ~ 2z 2 +  ^3 +  2x1(1 +  0 13 1)(0 -  0 2) (8.8)

T hen, let the update law for 0 2 be

¿2 =  2x 2x \(1 +  ^ i^ i) (8.9)

Step 3. Using ( 8 .3) ,  (8.5) , (8.7)  and (8 .8 ), write ¿ 3 as

¿3 =  2 - 2x 2 +  x3 +  2^1 (1 +  ti\Xi)(9 -  0 2)] +  2 z3 +  2z\d2(z2 +  0z\)

-\-2z \x 2x \(1 + i?!̂ )] (1 + 0i£i) +  2(̂ 2 +  $ 2 * 1) +  i?i(z2 +  0*?)

+ 5x ?( z2 +  0z\) +  U .

L et 0 3 be a new estim ate of 0, and define the c ontrol u as

(8.10)

u =  —2x 3 — 2 —2 z 2 + X 3 +  2x\(l +  0 i3 i) ( 0  — $ 2)] ~  2 z3 -+■ 2^ii92(^2 T 0Zi ) 

+2z\x 2x \(1 +  i?ia?i)] (1 +  0 ia?i) -  2 (z2 +  i92z?) [3 * +  0 i (22 +  0z\)

—bx\(z2 +  0z\). (8 -11)

Substitute ( 8. 11)  into (8 .10)  to obtain

¿3 = - 2^3 + 2xJ(l+  20x3!)+ 4zii?2+  2tfi(22 +  iMi)*? +  5a:i (# -  ̂ 3) • (8.12)

F inally, let the param eter update law for 0 3 be

0 3 =  x3 2x { ( l +  2tiiXi)  +  4 ^ 0 2  +  2 0 \(z2 +  ^2Z{)z{  +  53 * (8.13)

T he resulting  adaptive system  is
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¿X = —2xi - \ - x2 +  x l (0  — 'd1)

¿2 =  -2 x 2 + x 2 +  2x\(l +  -  ti2)

¿3 = —2x  ̂+ 2x1(1 +  iM i)  + 4z iI?2 + 2i?i (z2 + $2z\)z\ +  (0 -  ^3 )

¿1 =  x\

0 2 =  2a;2a;J( l +  ^i^x)

¿3  =  £ 3 2x J ( l  +  ^ 1X1) +  4zf02 +  201(z2 +  d2z\)z\ +  5x i] •

Using the L yapunov func tion

1

(8 .14)

v  =  _ x\ + x2 + x3 + {6 — i?x) + [0 — $2) + (0 — $3)' •(8.15)

it is straig htforward to establish the above m entioned global sta bility properties. □

E x a m p le  8 .2  ( T ra c kin g ) .  Consider now the problem  in which the output y of the nonlinear 

system

(8.16)

¿1 =  Z2 +  0z\
¿2 =  It +  Z3

¿3 =  -Z3 +  y
y =  *1 ,

is required to asym ptotic a lly trac k the referenc e signal yT =  0.1 s int.

F or the sake of c om parison, let us first solve this problem  using the scheme of [9]. T his 

scheme em ploys the c ontrol

u =  - z 3 +  fci(*x -  yT) +  k2(z2 +  0xz\ -  yT) +  yT -  20iz xz2 -  202z\ , 

where 0lt 02, the estim ates of 9, 92, respec tively, are obtained from  the update laws:

e l £ l  \  e l { 2
0,  = 9o =

(8.17)

(8 .18)
i +  i? +  f! l +  fl +  i l '

Using a relative-degree-two stable filter M (s), the variables e i,  fi ,  £2 in ( 8 .18 )  are defined as

ei =  y - y r +  u> - 0xfx -  02( 2 (8 .19)

6 =  M (s) \2z x z 2 +  k 2z ^ (8 .20 )

6 = M(s )[2z*\ (8 .2 1)

U1 — M (s)  ^x 2̂ x̂ 2̂ T  k 2z f j +  02 ^2^i)]  . (8 .22 )
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Sim ulations of this system  were perform ed with

M (s)  =  , 6 =  1 , h  =  - 6 , h  =  - 5 ,  (8.23)

and all the initia l conditions zero, exc ept for ^(O.), which was varied between 0 and 0.45. 

T he results of these sim ulations are shown in F ig. 1. T he response of the c losed-loop system  

is bounded for ^i(O) suffic iently sm all, tha t is, for 2i( 0) <  0.45. H owever, for larger 2i ( 0 ), 

the response is unbounded. T his behavior is c onsistent with the proof of T heorem  3.3 

in [9], which guarantees boundedness for all initial c onditions only under a global L ipschitz 

assum ption. In the above system , the presence of the term  z\ leads to the violation of this 

assum ption.

T he unbounded behavior in F ig. 1 is avoided by the new scheme, which results in a 

globally stable adaptive system . T his is illustrated by sim ulations in F ig. 2. T he design 

proc edure of Sec tion 7, applied to the system  ( 8 .16 ) ,  results in the change of c oordinates

x i — zi ~  Vt

x2 =  2 (zi -  yT) +  z2 +  i z\ -  yT,

the c ontrol

u =  - z 3 -  3x 2 -  2 (z2 +  tf2z ? ) ( l +  ^ 1^1) -  x iA  +  2yr +  yr , (8.25)

and the update laws

=  x\z\ , =  2x2z\(l +  d\Xi) . (8.26)

□

T he above exam ple illustrates an obvious advantage of the new scheme in the case of 

stric t-feedbac k system s: it guarantees global sta bility for all types of sm ooth nonlinearities. 

Its advantages are less obvious, but still im portant, in the case of pure-feedbac k system s, 

when the feedbac k linearization is not global. In this case, the new scheme provides an 

estim ate of the region of a ttrac tion, which is not the case with the schemes of [5,9,12] . On the  

other hand, the schemes of [1 ,6] g uarantee loc al results and give sta bility region estim ates for 

larger c lasses of system s than the scheme presented in this paper. In the case of pure-feedbac k 

system s, it would be of interest to  com pare the sizes of stability regions obtained with

(8.24)
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different schemes. Another signific ant task would be to  c om pare their robustness properties. 

H owever, such tasks are beyond the scope of this paper.

9 Conclusions

T he results of this paper have advanc ed in several direc tions our ability to  c ontrol nonlinear 

system s with unknown c onstant param eters. T he most signific ant progress has been made 

in solving the global adaptive regulation and trac king  problem s. T he class of nonlinear 

system s for which these problem s can be solved system atic ally is now much larger than ever 

before. T he stric t-feedbac k c ondition prec isely c harac terizes the class of system s for which 

the global results hold with any type of sm ooth nonlinearities. F or the broader c lass of 

system s satisfying the pure-feedbac k condition, the regulation and sta bility results m ay not 

be global, but are g uaranteed in regions for which a priori estim ates are given. It is c ruc ial 

that the loss of globality, when it occurs, is not due to adaptation, but is inherited from  

the determ inistic  pa rt of the problem . All these results are obtained using a step-by-step 

proc edure which, at each step, interlac es a change of c oordinates with the c onstruc tion of 

an update law. Apa rt from  the geom etric  c onditions, this paper uses simple analytic al tools, 

fam iliar to m ost c ontrol engineers.
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