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Abstract 

We investigate protocols for aathenticated exchange of messages between two 
parties in a communication network. Secure authenticated exchange is essential for 
network security. It is not difficult to design simple and seemingly correct solutions 
for it,  however, many such 'solutions' can be broken. We give some examples of 
such protocols and we show a useful methodology which can be used to break many 
protocols. In particular, we break a protocol that is being standardized by the 1.50. 

We present a new authenticated exchange protocol which is both provably secare 
and highly ef ic ienf  and practical. The security of the protocol is proven, based on an 
assumption about the the cryptosystem employed (namely, that it is secure when 
used in CBC mode on a certain message space). We think that this assumption 
is quite reasonable for many cryptosystems, and furthermore it is often assumed 
in practical use of the DES cryptosystem. Our protocol cannot be broken using 
the methodology we present (which waa strong enough to catch all protocol flaws 
we found). The reduction to the security of the encryption mode, indeed captures 
the non-existence of the exposures that the methodology catches (specialized to the 
actual use of encryption in our protocol). Furthermore, the protocol prevents chosen 
plaintext or ciphertext attacks on the cryptosystem. 

The proposed protocol is efficient and practical in several aspects. First, it uses 
only conventional cryptography (like the DES, or any privately-shared one-way 
function) and no public-key. Second, the protocol does not require synchronized 
clocks or counter management. Third, only a small number of encryption operations 
is needed (we use no decryption), all with a single shared key. In addition, only 
three messages are exchanged during the protocol, and the size of these messages 
is minimal. These properties are similar to existing and proposed actual protocols. 
This is essential for integration of the proposed protocol into existing systems and 
embedding i t  in existing communication protocols. 

1 Introduction 

The extensive use of open networks and distributed systems poses increasing threats  t o  
the security of communications and oDerations involvina end-users and network com- 
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ponents 1291. One essential function for achieving security in a network is a mechanism 
to reliably authenticate the exchange of messages between two communicating parties. 
Such an authenticated exchange allows the establishment of the fact that the exchange 
of messages have passed via the other (legal) party, which provides to each party some 
weak proof of the identity of the other party (in some sense). This operation further en- 
ables various applications on top of it, e.g., verifying that a fresh session key agreement 
is taken place between the legal parties. 

The basic idea of cryptographic authentication is to authenticate a message from A 
to B we use a challenge which B previously sent to A.  Usually, A cryptographically 
combines the challenge with the authenticated message, and B verifies this combination. 
These cryptographic operations are done usually, and in our protocol, using conven- 
tional cryptosystem such as DES, with a key known to both parties. (Alternately, the 
cryptographic operations may use public key cryptosystems [19], Digital signatures [22], 
or Zero-Knowledge based methods [ lo ,  111, but these alternatives require much more 
processing.) 

Since the key changes quite rarely, the challenge should ideally be different in every 
authentication instance (and from security standpoint it better be “random”). There are 
three alternative techniques to guarantee that the challenge is different. First, the chal- 
lenge may be derived from a real-time clock reading; this is called time-Jtamp challenge. 
Second, the challenge may be a counter that is incremented after each operation. Third, 
the challenge may be selected randomly from a huge space; this is called a nonce  challenge. 
We concentrate on nonce-based methods which does not require clock synchronization or 
consistent counter maintenance, both of which are difficult to maintain especially when 
dealing with parallel sessions. (Note that, if desired, a nonce can be replaced by a counter 
value or the time-stamp, we assume a good random source is generating the nonces in 
use). 

1.1 Scenario and attacks 

We consider two parties A and B which share a key to a ‘secure’ cryptosystem E.  The 
parties execute possibly many instances of the protocol, where each instance is an au- 
thenticated exchange independent of the other instances (exchanges can be executed in 
parallel and in an interleaving fashion, representing multiple connections between “par- 
ties” in an open network environment). Whenever a party completes an instance, it 
marks the instance as either accept (for successful authentication) or otherwise reject. 
The goal is that instances marked as accept were really an exchange of messages with a 
specific instance of the protocol at  the other party. An  error-jree history, is one in which 
if one takes the history of all instances in both parties except rejected instances, the re- 
maining accepted instances match ezac t ly ,  except, maybe, for some last messages being 
still in transit. Note that this captures that indeed accepted instances indeed “passed” 
via the other party. 

An attacker on such a protocol can be intuitively described as a third party who has  
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no access to the key. However, the attacker h a s  access to past legal communication. In 
addition, the attacker is able to start or interfere in the middle of such protocol instances 
many times. The  attacker tries that a party will mark an instance as “accept” incorrectly. 
Namely, without the other legal party recording this instance (so that the exchange is 
not recorded correctly). This captures the fact that the adversary is able to fool one side 
into accepting an exchange without the other party being actually involved. 

Note that the attacker may adaptively send any message to both parties, initiate new 
instances of the protocol, and intercept messages sent by the parties. We do not impose 
response-time constraints on these actions. As noted above, in real networks, two parties 
that share a key may often initiate many instances simultaneously. 

Our definition of correctness does not prevent the attacker from acting as a ‘relay’ 
between the two parties (by being in the middle). This is equivalent to cutting the 
communication lines after or just before the last message of the instance (and then 
taking the role of the legal party). However, this does not contradict the authentication 
of the exchange of the messages. Note that the requirement is that the exchange be 
authenticated, and not the parties themselves. Also, an attacker that removes messages 
on links between the parties only creates a long delay in the execution of the instance, and 
the correctness (and authentication) is preserved, thus, we d o  not consider such attacks. 

We investigate both one-way and two-way authenticated exchange protocols. The 
difference is in the requirements in executions where messages are exchanged correctly 
between the two parties. In one-way protocols, it  is sufficient that one party marks accept; 
in two-way protocols we require both parties to mark accept. In most one-way protocols, 
only the initiator of the protocol accepts, and therefore these protocols are not applicable 
to most tasks. We discuss one-way protocols mainly in order to simplify the discussion 
of two-way protocols. 

1.2 Related Works 

Many works dealing with authentication in networks combine the issues of key distri- 
bution with the issues of authentication. These works avoid our assumption that the 
two parties share a secret key. They use a n  entity, trusted by all network processors, 
called usually a key distribution center (KDC). The KDC initially shares a secret key 
with each of the two parties. These protocols are called three party protocob, and have 
been studied extensively, e.g. in (23, 2, 9, 24, 5, 28, 17, 3, 181. Aiso, most oi these pro- 
tocols, e.g. [17, 23, 281, use long messages which makes them unsuitable for low network 
layers (where the field size devoted to security overhead should be small). Some require 
synchronized clocks, e.g. [23, 281, or counters, e.g. [17]. While some others require heavy 
computations such public key cryptography [18]. 

Two-party protocols received less attention in the literature, despite their application 
in many networks. Some works achieve this by using public-key cryptography, e.g. [19,21]. 
With a public-key cryptosystem, each party only has to know or verify the public key of 
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the other party, and there is no need to share secret keys. However, for reasons such as 
efficiency we want to use only private key cryptosystems (specifically, we believe that the 
block size of public-key and the computation involved with it are too large an overhead 
for frequent authentication of entities). The basic published proposal using private key 
that we have found is the I S 0  proposed standard (161, which we break in this paper. 

Many practical authentication protocols were proposed without a convincing proof of 
(or argument for) security. We prove the security of our protocol by showing how one can 
successfully forge CBC-mode encryption using the cryptosystem, given an  attacker that 
breaks the protocol using this cryptosystem. Since cryptosystems, e.g. DES, are usually 
considered to be provide secure CBC-mode, it is reasonable to consider the protocol quite 
secure. This is basically an application of the basic method of proof used in many of the 
recent works in cryptography, originating e.g. in [25, 261. 

A different method of analyzing the security of protocols was presented in [5, 11 and 
used in other works (e.g., [6, 15)). This method applies formal logic to state assump 
tions and analyze the properties of protocols. This innovative approach enables better 
comparison of protocols, often revealing critical weaknesses or possible improvements, 
aa was successfully done for several protocols in  [ 5 ]  and in subsequent works. However, 
the proofs of security obtained using this logic depends on assumptions which concern 
the protocol itself, not only the specific cryptosystem. Furthermore, the assumptions and 
the analysis view the cryptographic primitive (cryptosystem) as secure in a very ideal- 
ized sense which is obviously much stronger than that of any candidate cryptosystem, 
our approach is to try to quantify the relationship between the cryptosystem and the 
protocol in a complexity-theoretic sense. Also, the axiomatic system may assume certain 
mode of use of the system and certain basic believes which may or may not exist in real 
environments (thus, again, assumptions may be too strong). 

For example, one common assumption in logic-of-authentication is that if A and B 
share a secret key and A receives a message encrypted using that key with source field B,  
then A believes that B sent that message. This basically means that it is impossible to 
find an encrypted strings with a specific source field, without knowing the key. However, 
if the space of messages is small (say we encrypt one bit using half of the ciphertexts as 
zero and half as one as in “probabilistic encryption” [14)), by guessing enough strings, 
the attacker can find such an encryption. Also note that the assumption makes use of a 
property of the protocol, i.e. the use of a source field in the message. Hence, the logic 
cannot be used for protocols which do not follow several implicit requirements (but it 
may be extendable?). In particular, the protocols we investigate cannot be analyzed using 
this logic, since they combine the identity of the sender within the message, rather than 
having a separate field. This was  required in  order to use short messages, which in turn is 
essential for integration into existing systems. I t  seems that the combination of the logic 
approach with approaches like we take here (computational-complexity and reducing the 
properties of protocols to basic properties of cryptographic tool) is a useful research 
direction. 

The present work addresses only the exchange of a single message in each instance. 
Obviously, in many applications we need to exchange reliably many messages, preserving 



the order between them. ,4 solution to this problem was  presented in  [12] ,  however it 
uses longer messages since it concatenates random fields into them. It seems possible to 
combine our results and [12) and provide a solution which does not increase the amount 
of bits communicated. 

1.3 Objectives and Results 

The goal of this work is to design two-way authentication protocols that are provably 
secure yet remain realistic, efficient and simple. We require that security be proven (a- 
suming that the cryptosystem used in the protocol is secure in some reasonable sense). 
Indeed, the protocol we present is secure if the cryptosystem may be used to generate 
secure CBC-encryption (on some message space). While we define this concept and as- 
sumption in this paper, it nevertheless appears to be an assumption made, implicitly, in 
many systems which employ cryptosystems such as DES in CBC mode to encrypt or to 
generate hash or ‘fingerprint’ also called MAC (Message Authentication Code). 

Another security requirement is to prevent the attacker from using strong cryptanaly- 
sis techniques. In particular, we prevent chosen ciphertext attacks, which enable powerful 
methods such as the differential cryptanalysis [4]. 

The non-security requirements are all motivated by the need to present alternative to 
existing and proposed insecure protocols such as [16]. Such insecure protocols are already 
designed into systems (using existing flows of messages). It is very difficult to replace 
them by secure protocols which have significantly higher requirements, are substantially 
less efficient or behave very differently. This motivated the following requirements, all of 
which we meet: 

Nonce-based protocol, not requiring either synchronized clocks or stable counters. 
(The use on nonce implies the possibility of using time or counter value, but vice 
versa is not true). 

The protocol uses short messages, to be usable in low layers of the network where 
messages often have fixed sizes. 

Only one key is shared between the two parties, and only this key is used with 
the cryptosystem. This is both for compatibility with existing systems and to save 
loading time and secure storage requirements. 

Any secure cryptosystem may be used (in fact, we do not require decryption, SO a 

Only three flows are used in the protocol. 

A small number of encryption operations (3) is made by each party. 

6 No context information is used, but the simple fact that “different parties have 
different names”. (No use is made of assumptions like: order of names, number of 
key owners, temporal constraints, sequential mode of operation, and SO on). 

secure one-way (or random) function suffices). 
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Note that by avoiding decryption, it may become easier to obtain governments ap- 
proval for the (international) use and the export of the protocol. A well-defined interface 
t o  an encryption-only device/system suffices. 

For simplicity, we only include the cryptographic data fields in  the protocols. 

2 One Way Authentication 

2.1 A trivial, but insecure, one way protocol 

One-way authentication is simply “authenticated acknowledgment”, namely a protocol 
to let the sender of a message know that it was received, Figure 1 shows a trivial one 
way authentication protocol. This protocol may be used to authenticate B to A (right 
hand side) or to authenticate A to B (left hand side). Here, N1 is a nonce generated by 
B (or A )  and E(N1) is the value of N1 enciphered by E.  The idea is that since only A 
and B can decipher, then when B sends E(N1) and gets it deciphered, it believes that 
A was the one who deciphered. 

decipher N1 

verify N1 

A B 

decipher N I  

verify N1 

Figure 1: Trivial and insecure one way protocol 

We now demonstrate an attack on this protocol. Party A tries to authenticate a 
message to B. A n  attacker X intercepts the first flow (i.e. E(N1))  sent by A to B. The 
attacker wishes to pretend to be B,  although it cannot decipher E(N1) directly. However, 
the attacker uses A itself to perform this decryption. For this purpose, the attacker starts 
a second instance with A ,  pretending to be B starting the protocol. (In figure 2 we use a 
different kind of arrows to distinguish between instances.) We named this kind of attack a 
parallel s e s s i o n  attack, and we say that A served as an oracle to the attacker. In addition, 
notice that the protocol exposes the key to chosen-ciphertext attacks. Using it with e.g. 
Rabin cipher system [25] is insecure. 
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A x 

Figure 2:  Parallel session at tack on the simple one-way protocol 

2.2 A Secure One-way Authentication Protocol 

We now modify the protocol of figure 1 slightly, to  make it a secure one-way protocol. 
The  weakness of the protocol of figure 1 is tha t  the same key is used for two different 
purposes: verification ofA and verification of B. One trivial solution is t o  use two different 
keys, one for each purpose. However, recall that  we allow just  one key. In addition, the 
challenging party controlled the entire ciphertext t o  be decrypted in the protocol, which 
made chosen-ciphertext a t tacks possible. 

T h e  solution to the first problem is to  use the same key, but in two different ways (for 
A and B) .  Basically, we implement two different encryption functions E A  and EB using 
just one function E. We d o  this by combining the encryption E ( m )  of plaintext message 
m, with the  identity of the processor ( A  or  B ) .  In addition, we make the  response more 
complex than merely opening a ciphertext. 

The  security of this scheme relies on what we may call the  ‘pseudo-independence’ 
of E A ( ~ )  E B ( ~ ) ,  and E ( m )  ( to  be explained in the definition below). As an example 
for operations tha t  are  not  ‘pseudo-independent’ the reader is encouraged t o  break the 
protocol with E A ( ~ )  = E ( A  + m) and E ~ ( r n )  = E ( B  + m), where + stands for Lhe bit- 
wise exclusive or operation over the strings. Intuitively these operations are ‘dependent’ 
since given rn, it is easy t o  find m‘ so that  A + m is identical to B + m‘. We need a more 
secure way of combining the identity and and m. 

Such ‘secure combination’ of values is assumed t o  hold for the fingerprint produced 
by the CBC mode of DES o r  any good block cipher (also when produces only last block 
called MAC, given S = a, b ,  c then M A C ( S )  = E(c+(b+E(a)) ) ,  in the context of af ixed 
length messages and when the first field is chosen a t  random and the rest is fixed or  a 
fixed function of dependent on this initial choice. T h e  exact context is important  for our 
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assumption to be reasonable. MAC is considered secure i n  many cases, and furthermore, 
in  our context, the two common attacks on MAC calculations do not apply. The first 
attack is the birthday attack (71 when the message space is cut into two parts and using 
the known birthday paradox, a new message is found with some much larger probability 
(rather than being order of 1 / n  for n = 2', it becomes I/fi). The second attack is a 
splay attack, where given two strings S1 = 6 1 ,  b a ,  ..., b, and S2 = cl, c2,  ..., c,, and their 
MAC'S: MAC(S1) = E(bn + (E(b,-l + ...( E(bl ) ) . . ) ) ) ,  and similarly MAC(&), one can 
manipulate and get the following string 

S' = b l ,  b z ,  ..-, b,, ( M A C ( S 1 )  + ci}, CZ, ..., C, 

and notice that M A C ( & )  = M A C ( S ' )  so we h a v e  a new string and its MAC. 

We now present a formal notion of the security usually attributed to the C B C  mode 
fingerprint [13]. This notion is sufficient to show the security of the selection of E A ,  EB 
below. We present it in the context of a general size block-cipher (size I )  as is customary 
in complexity theory. It is assumed (for practice) that length of 64 bits DES (or 128) 
already provides strong enough security. 

Definition 2.1 A cryptosystem E : ( 0 ,  l}' -+ (0, I}' is depth-2 CBC secure if the 
following holds. Select arbitrary: 

two different identities A , B  E (0, l}'. 

a smal l  set of chosen messages CHOSEN c ( 0 , l ) '  (size p o l y ( 1 ) ) .  

A n  eficient algoriihm ATTACKER. 

Randomly select a key f o r  E f o r  blocks of size I ,  a n d  two strings w , x  E (0, l}', 

R u n  ATTACKER o n  inputs x, E ( B  + E ( x ) ) ,  E ( A  + E ( w ) ) ,  E(B  + E ( w ) )  a n d  
let attacker choose CHOSEN,  a s  long a s  x $ CHOSEN (note that E(B+E(x))  was 
given t o  the attacker). Get E ( A  + E ( z ) ) ,  E ( B  + E ( z ) )  for  every z E CHOSEN.  The 
probability that ATTACKER produces either w o r  E ( A  + E ( x ) )  is negligible (smaller 
than inverse polynomial in  1 ) .  

Lemma 1 If E i s  a depth-2 C B C s e c u r e  cryptosystern then the selection E A ( ~ )  = E ( A +  
E ( m ) )  a n d  E B ( ~ )  = E ( B  + E ( m ) )  gives a secure one-way authentication protocol. 

The proof reduces all on-line (and replay and off-line) attacks to the adversary at- 
tacking the CBC mode as above. It captures any cryptographic attempt to produce the 
answer to the challenge in some feasible way with some non-negligible probability (as 
long as the assumption is correct and the query power of the attacker in its definition 
does not enable the attack). Note that the definition above captures both, the security 
of the exact challenge in  a protocol where the challenge is decryption as in the protocol 
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above, as well as an attack on a dual protocoi where the challenge involves encryption 
(in the CBC mode) of a challenge (which is just a plaintext w ) .  

If the assumption would have been that the message space encrypted under CBC is 
not (m,  A ) ( m ,  8) given all random m’s, but actually (ni, A+rn)(m, B+m), then a similar 
assumption about CBC on this message space could be postulated. This message space 
incremes the variability of the second block of the strings (and we call it the var iab i l i t y  
heuriJltcs, which combines ciphertext chaining with plaintext chaining mode). 

2.3 Two-way authentication is not simply twice one-way! 

A natural proposition for a two-way authentication protocol is to combine two appli- 
cations of a secure one-way authentication protocol, i.e. to use the one-way protocol to 
authenticate each party to the other. We show this simple two-way protocol in figure 
3. The second flow in figure 3 simply sends in parallel both the second flow of the first 
application and the first flow of the second application. 

I A  3 

Figure 3: Combination of two runs of one-way authentication 

We now show why this protocol is not a secure two way authentication protocol. Ba- 
sically the same kind of message is used in the first flow and in the second flow. Therefore, 
an attacker can initiate a few sessions and as a result can successfully impersonate one 
of the parties by supplying the third flow: It gets the value of the third flow from a legal 
party in the second flow. This attack is demonstrated in figure 4. 

3 A Technique for Breaking Protocols 

We have broken many protocols suggested during this investigation. In most cases it wits 
done as follows: we searched for the values the attacker had to send, then we search for 
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Figure 4: An attack on two-way authentication by twice one-way 

a session in which a honest party could send this value (or a response from which the 
value can be derived by an  easy computation). 

The list can, of course, be used in order to check a candidate protocol. Of course, 
a protocol not broken by this method may still be breakable by some other method. 
However, all the  a i tacts  we found on protocols can be found using this list. Section 4 
presents such an attack. Postulating an exact assumption about the underlying c r y p  
tosystem which captures the fact that using various activations of the protocol in any 
context and attacking the protocol directly using cryptanalysis, is the core of our security 
proof. 

Example 3.1 Consider the attact oJjigure 4. In order to attaet the sess ion with B ,  
called the attacksession, the attacker X started another session with A ,  called a reference 
session. In the reference session X sent to A exactly the same  challenge, E(B+E(N2)) , ) ,  
as X got in  thk attact session. 

In general, the attacker can send something that depends on the attack session in a 
more subtle way. For example, change the protocol in such a way that the challenge in 
the first flow is XORed with the name of the sending party. That is: A + E ( A  + E ( N i ) ) ,  
while the rest of the protocol remains without change. To break this protocol x would 
need to send in the reference session the rnezsage A + E ( B  + E(NZ)),  although in the 
attack session it receives E ( B  + E(N2)).  

The method is, therefore, to try to compute any of the response to challenge flows 
required to in an attack session, using the flows available in  reference sessions (computing 
in any feasible way in polynomial time is allowed). Since we are going to assume that 
the responses to challenges include an encryption of a truly random field in each and 
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every instance in  the context of our cryptosystem, combining useful (for attack) infor- 
mation from various reference session is impossible (since these pieces of information are 
‘independent’. Thus, reference sessions are not combined, but rather used individually. 
The method, therefore, uses one reference session and one attack session. Notice that 
there are only three types of reference sessions to consider (R1:  A starts with B; Rz: X 
starts with A;  RH: X starts with B) .  There are only two types of attack sessions ( A l :  X 
intercepts a call; Az: X starts a call). We illustrate R3 and A 1  in figure 5 where given 
c1 message, attacker produces a reference message C; to get back a response ci from 
which i t  attempts to deduce Cz required as a response in  the attack session. 

A X 

drop session 

A X 

Figure 5: Reference session R3 (left) and attack session A1 (right). 

4 Attack on IS0  Protocol 

Figure 6: IS0 standard proposed protocol 

Due to lack of space, this version contains only one example of an attack. In Figure 6 
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we show a protocol proposed as a standard for “Entity Authentication Using Symmetric 
Techniques” by the IS0 [IS]. It seems that the designer of this protocol have realized 
the problem of using the same flow in both directions, and thus the challenges in the 
different directions are different. 

The reader may exercise now by breaking this protocol, directly by experimentation 
or by applying the approach presented in the previous section. The attack we found is 
shown in  figure 7. Notice that B is impersonated while not even being present in the 
communication. 

Figure 7: An attack on the IS0 protocol 

This attack is generated by the technique presented in section 3, as follows. We use 
attack session A1 and reference session R3. The attacker uses the second flow of R3 to 
be the second flow of A]. 

5 A Secure Two-way Authentication Protocol 

5.1 Avoiding Security Weaknesses 

We have tried to identify and avoid the security weaknesses of other protocols. The at- 
tacker cannot directly perform the cryptographic operations required to generate the 
response to a given challenge, since the key is secret and we made the protocol strong in 
the sense that it is defined over random instances and does not expose da ta  for attacks 
(such aa chosen message, say). However, the attacker may attempt to generate the re- 

I 
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sponse by using the the services of a legal party by applying an instance of the protocol 
itself. This implies several requirements from the protocol: 

The attacker should not be able to use either party as an  'oracle'. In particular, the 
protocol should never perform a cryptographic operation on inputs which may be 
completely selected by the attacker. Instead, in every cryptographic operation, there 
should be at least one field which is selected randomly by a honest party. We achieve 
this by having a random field selected by the party performing the cryptographic 
operation. This ensures "pseudo-independence" of responses in various sessions 
(and combination of many reference sessions). This also prevents the protocol from 
being a source for chosen plaintext/ciphertext attacks. 

e We have to prevent parallel session attacks like the one shown in figure 2. Hence, it 
should be infeasible to compute the responses of one party from possible responses 
of the other party without knowing the key. In  particular, the responses of A should 
differ from the responses of B.  To achieve this, the identity of the party is a part 
of the response. 

We have to prevent interleaving attacks, like the one shown in figure 4. Hence, 
it should be infeasible to compute the responses of one flow of the protocol from 
available other flows (possibly of other instances of the protocol). To achieve this, 
each of the flows is different (independent, in some sense). 

The different fields in the message should be cryptographically separated, i.e. the 
attacker cannot control one field through another field. This is necessary to support 
the security function of each field, e.g. to prevent attacks as described in example 
3.1. We achieve this, while keeping the message short, by sending a MAC (or CBC 
encryption) of the concatenation of all the fields. 

5.2 A secure protocol 

In  figure 8 we present a secure two-way authentication protocol, following the design 
considerations presented above. In order to find a secure protocol, we follow the secu- 
rity considerations above. Then, we tried to break the protocol using the methodology 
presented in section 3. 

During this evolutionary development, we realized that it is very helpiui ior the prc- 
tocol to use the well established CBC mode of the DES [13], Namely, it seems good to 
use expressions of the form E(a + E(b + E(c) ) ) ,  where some of c ,  b and a are random 
values and others are constants or constants exclusive-ored with random values. The 
protocol in figure 8 follows from this form for the expressions combined with the security 
considerations presented above. 

The proof of the security of this protocol relies heavily on an assumption about the 
security of the CBC mode. This assumption is an extension of the depth-2 CBC assump 
tion presented in section 2.2. The assumption first asserts that producing something like 
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I A  B 

Figure 8: A secure two party authentication protocol 

a response on the second message given N1 is impossible given many choices of other chal- 
lenges. Then, the assumption also takes care of the independence of the two encryptions 
used in the second and third flow of the protocol (a3 explained in the next paragraph). 
The proof actually reduces the general attack on a session to a direct violating of the 
CBC-encryption mode on the message space, thus capturing directly the hardness of 
attacks along the lines of the search methodology above on the protocol above. Both 
the proof and the exact assumption are omitted from this abstract. We just outline the 
properties achieved. 

Notice that the response on the second flow includes a random data field Nz, SO 
these responses in different instances are ‘pseudo-independent’, and there is no exposure 
to chosen plaintext attack. The response in the second flow is independent from the 
response on the third flow. We, indeed, assume that given E ( B  + E ( w ) ) ,  for a constant 
B,  it is hard to produce E ( w )  (which is an assumption equivalent to assuming one can get 
m from E(m). If this is possible with non-negligible probability, then the depth-2 CBC 
assumption does not hold. Note further that our m in turn is of the form E ( N z + E ( N i ) )  
for known N1, N2 and getting it is, in turn, also equivalent to a violation of the depth-2 
CBC. Thus, we actually build on a previous assumption in this extension. Therefore, 
we can jnstiiyingly assume that encryptions done by A at the third-flow response are 
independent from those done by B on the second response (and vice versa). 

Note that this protocol is optimal in  ail of the efficiency criteria, except for requiring 
three encryptions. The third encryption assures further strength of the method against 
possible statistical attacks (like birthday attacks- it isolates every block of plaintext of 
a given fixed format). 

Also note that the use of CBC encryption is extendible in case more fields are needed 
to be hashed in the messages, e.g. information to be exchanged and authenticated or 
longer names (as long M the format is determined once and for d. 

As a further improvement we suggest the protocol of figure 9. This is the previously 
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A B 

Figure 9: Heuristically improved protocol 

mentioned variability heuristics. Heuristically, we change the third block in the plaintext 
of the response of the second flow from B to B + Nl to increase the variability of this 
block. The security of this protocol seems to be stronger since the attacker cannot collect 
many pairs of the form E ( B  + m), m for a fixed B. 

Similar improvement is achieved if the name of E is long (say, mandatorily contains 
two blocks B1 and Bz and the second flow computes E(B1 + E(Bz + E(Nz + E(N1))));  
however this introduces an additional encryption. This does not give the attacker any 
direct pair m,E(m) .  But this alternative still gives the attacker a collection of pairs 
forming a deterministic relation E(B1 + E(B2 + m)) and m, for fixed B1,Bz. We can 
combine the last two suggestions and add the variability heuristics here and get 

which seems to be the strongest combination. 

6 Open Questions 

The work presented a protocol which is shown to be as secure as its underlying block- 
cipher system in a CBC-mode. That is, this protocol encrypts only in the CBC mode 
over a plaintext space which includes a random block of a fixed size and fixed format. 
The CBC-encryptions and CBC-fingerprints, also called Message Authentication Code 
(MAC) (which was shown strong in our message space), are widely used in practice. 
Hence, this security assumption is accepted in practice, although we are not aware of 
it being formally defined so far. The obvious question is whether this assumption can 
be reduced to the security of a cryptosystem itself (or some weaker assumption). Say, 
can the security of the protocol be proven based solely on the assumption that we use a 
block-cipher which is (ideally) a random permutation. 

Another question concerns the methodology which we used while developing this 
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protocol. We used this methodology t o  check the protocol against a family of ‘interleaving’ 
attacks. An obvious challenge is to identify exactly the full generality of this family of 
attacks, and t o  prove tha t  the methodology, or some modification of it, ensures security 
against the  general set of attacks, based on any reasonable underlying encryption method 
(not necessarily our encryptions). 
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Appendix: an Exhaustive Search of Sessions’ Inter- 
leaving 

Let A i . j  {Ri.j} be the i th  flow of attack session A j  (Reference session R j }  in Figure 5 .  Assume 
further that the message in the first flow contains the challenge in the first message GI which is 
a function of N I ,  and possibly A and B. The message in the second flow containing the challenge 
C P :  a function of NP and A and B and C1 (and N I ) ,  etc. We deal with the attack session and 
at  least one other session. Thus let CI’ ,  (22’ N1’ and N z ’  be the values used in the other session, 
to distinguish between them and the value used in the attack session in question. 

The attacker can break the protocol if i t  can solve one of the equations below. (We have 
written just  N I ,  Na, but in fact the attacker may control only CI and C P ,  since it may not know 
N I  and N P . )  

Example 6.1 Ezample- in Figure 4 Equation 7 i J  solved frivially b y  the atiacker. I n  Ezample 
3.1 the attackers does a minor computation on Ca to obiain CI . 
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The Equations 

(1) A l . 2  = RI .3 ,  where Na is free and N I  # NI ' 
( 2 )  A1.2 = R1.2, where Nz is free and NI # NI' 

( 3 )  A1.2 = Rz.2,  where N I '  and N j  are free but N I '  cannot depend on Na' and NI' # 
Na' as this would be a trivial relay (observe and cut)  attack where X is just a passive 
observer between A and B ,  who have actually authenticated one another in real-time 

(4 )  A1.2 = R3.2, where N1' and Na' are free but N I '  cannot depend on Na' 
( 5 )  A2.3 = R1.3, where N1 is free but cannot depend on Na 

( 6 )  A2.3 = R1.2, where N1 is free but cannot depend on Na 

( 7 )  A 2 . 3  = R2.2, where N 1  is free but cannot depend on N2 and NI' is free but cannot 

( 8 )  A z . 3  = R3.2, where N I  is free but cannot depend on Na and N1' is free but cannot 

( 9 )  A1.3 = A2.2 ,  where N I  is  free but cannot depend on Na 

depend on Nz'  

depend on N1' 

The following example shows a case of a breakable protocol that  cannot be broken by the  
method as described so far. This is since the attacker does not send in the attack session the 
very same value it received in the reference session. Instead it receives a value, does some 
trivial operation and sends the result. The method can be generalized further to cope with this 
additional operation. However, in order to be sure that the protocol is indeed secure one should 
actually have a formal proof of security stating exactly the attacker's poser and reducing it to 
some statement about the underlying cryptosyatem, (also presented in this paper) rather than 
to be sure that one has coped with every possible attack. Still, we present the method ~d a 
very useful checking tool. An extension of the method should take into account derivation of 
responses based on easy calculations from reference sessions. Here is the example: 

Example 6.2 Let vs change the protocol of Flgure 4 slrghtly. Instead of sending NI in the 
second flow, the party  ( s a y  B )  sends NI XORed with the party  name ( E  4- NI) in the ezample 
of Figure 4 ) .  The rest of the algorithm remains the same. In particalar, in f h e  third POW Na 1s 
sent, rather than ( A  -t Na). 

In order lo break fhe  protocol we need now to change the attack in Frgure 4 slightly. The 
attacker who receives A + Nz from A in the second flow of the reference session needs to perform 
an easy cornputairon of XORing this with A to obtain the value Na i f  needs to send B .  
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