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Due to the advances in VLSI technology complete digital communication
systems can today be implemented on single application speci�c VLSI cir�
cuits� The optimum choice of implementation parameters� such as signal
wordlengths� is a critical design task since poor parameter choices can lead
to costly designs� On the other hand� the high number of parameters to be
selected span a large search space that is very di�cult to handle� We present
a new systematic approach to parameter selection in this paper and apply
this approach to the design optimization of a decoding system for a concaten�
ated coding scheme� Two convolutional codes are concatenated and both are
decoded by soft decision decoding� This is facilitated by means of soft output
decoding of the inner code� The performance of the scheme is better than
that of the well known standard code with �� states for moderate BER at
equivalent implementation cost� The proposed coding scheme is thus an at�
tractive alternative whenever high bit error rate performance is a prerequisite�
e�g� for digital HDTV transmission�

�� Introduction

It has been known for a long time that code concatenation can be an at�
tractive alternative to using a single code� The majority of the literature on
concatenated coding has however focused on concatenating either block codes
or an inner convolutional code and an outer block code ��	� This was due to
the fact that� �rstly� no decoders which provide soft outputs were available at
reasonable complexity for the inner processing step and� secondly� for block
codes e�cient codes and e�cient decoding algorithms based on hard quan�
tized input samples were already available for a long time� Convolutional
codes in conjunction with Viterbi decoding have been employed successfully
for the inner decoder wherever soft quantized values are available as input �
	�
while soft input decoding of block codes� with the notable exception of errors
and erasures decoding� is less common due to complexity� It has however
been noted that decoding schemes with a hard deciding inner decoder �hard
concatenating� can be improved if information about the decoding process is
passed between subsequent decoders �	���	�

A prominentmember of the class of soft output decoding algorithms is the Soft
Output Viterbi Algorithm �SOVA�� a modi�cation of the Viterbi algorithm�
which was developed by Hagenauer and H�oher ��	� The algorithm allows not
only the most likely path sequence to be found �as the Viterbi algorithm�
but in addition delivers a reliability value for each decoded bit� It has been
shown that the algorithm is well suited for VLSI implementation ����	 which



gives rise to further investigation of schemes employing SOVA� In this paper
we investigate a soft concatenated scheme for two convolutional codes which
employs SOVA for the inner and the Viterbi algorithm �VA� for the outer
decoding step� The decoder for the proposed coding scheme is naturallymore
complex to design than a single decoder� In particular� more implementation
parameters have to be selected� which has proved to be a di�cult task in VLSI
system design ��	� Special attention is thus paid in the course of the paper
to the problem of choosing the set of implementation parameters which leads
to the most e�cient VLSI implementation� A new systematic optimization
approach for the joint optimization of implementation parameters of digital
signal processing hardware is presented and applied to the proposed scheme�

�� System Outline and Performance

The goal of our work was to investigate whether soft concatenated Viterbi
coding is an alternative to a single convolutional code with respect to im�
plementation cost and performance� While in �	 schemes with rate ��� were
investigated� we decided to take the well known standard code with constraint
length K � � and rate r � ��
 �
	 as our benchmark� Due to implementation
cost� codes of rate ��
 �and K � �� were punctured ���	 and concatenated�
Figure � outlines the resulting transmission system�
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Figure �� System Outline

The simulated inner channel modulation scheme is BPSK and the SNR �gures
are given in energy per information bit versus single sided noise power spectral
density� Several schemes were investigated and Figure 
 shows the result for
concatenating punctured codes of constraint length K � � as compared to
our benchmark� The inner and outer code are derived from the same original
code which leads to implementation advantages�

The performance of the concatenated scheme improves if the inner code rate
approaches ��
 � The scheme with inner rate ri � ��� and outer rate ro � ���
equals the performance of the benchmark at bit error rate �BER� 
 � �����
whereas the scheme with ri � 
� and ro � �� is about ���dB worse�
We found no further improvement for inner code rates below ri � ��� with
punctured codes as listed in ���	� The concatenated schemes exhibit a
steeper overall characteristic and the best scheme provides approximately
���dB additional coding gain at BER � ���� compared to the benchmark
scheme �K � �� r � ��
�� Thus applications which require error rates below
���� are likely to bene�t from the scheme�



Figure �� Performance of Soft�Concatenated Viterbi Decoding �K���

�� Implementation Parameters

Of course Figure 
 tells only half the story if a VLSI implementation is consi�
dered� because the included results represent the pure algorithm performance
without considering the e�ect of implementation parameters such as limi�
ted wordlengths� Figure  gives an overview of our decoding path and the
most important implementation parameters� Note that puncturing masks
and constraint length are not mentioned since they are assumed to be �xed
in accordance with the performance results of Figure 
 for ri � ����
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Figure �� System Parameters

The blocks are the transition metric units �TMU�� add compare select units
�ACSU�� survivor memory units �SMU�� quantizers �Q� and the deinterleaver�
The �rst group of implementation parameters are the wordlengths of the
involved signals� Table � explains the notation of wordlengths in Figure �

We assume there are no additional quantizers in the basic blocks� Thus some
wordlengths can be derived from others� Consider the input and output of the
TMU of the outer decoder �TMUo�� The input is made up of decoded symbols



Wordlength Signal�s�

nin input samples

n�i branch metrics of inner ACS ��i�

n� path metric di�erences ���

ns quantized �� symbol reliability �L�

n�o branch metrics of outer ACS ��o�

� all decision bits and decoded symbols

Table �� Wordlengths and Signals

from the inner decoder �one bit� and reliability estimates with wordlength ns
which together form a bit metric of wordlength ns��� Since our original code
is of rate ��
� two of these metrics are required to calculate a branch metric
of wordlength ns� 
� The outer metric quantizer Qo provides the metrics �o
to the outer ACS �ACSUo� and may� if appropriate� reduce the wordlength
to a value n�o � ns � 
� The other group of parameters denote the sizes of
implementation structures� Table 
 below explains the notation�

Parameter Meaning

Di survivor depth of inner decoder

U update depth of inner decoder

R rows of deinterleaver

C columns of deinterleaver

Do survivor depth of outer decoder

Table �� Remaining Parameters

The update depth U is a parameter of the SOVA�SMU which a�ects the
quality of the reliability estimates L of the decoded bits� While the original
formulation of the SOVA requires the path comparison and update operation
for the depth of the SMU �Di in our case�� it has been shown that U can
be chosen signi�cantly smaller ��	� It becomes clear from the variety of para�
meters that parameter optimization� with the goal of �nding the overall best
implementation for a given acceptable performance loss� becomes a critical
task due to the large search space� In particular it is impossible to simulate
the performance for each possible parameter set� A tool for automatic op�
timization would thus need to automatically start simulations for parameter
sets that are determined by the optimization program ���	� The major disad�
vantages of such an approach are that� �rstly� relatively complex software is
required to run the optimization and the required simulations and� secondly�
no information about useful ranges of single parameters is provided�

To avoid these disadvantages� we base our design �ow on the assumption that
the overall implementation loss is the sum of implementation losses found for
varying a single parameter while the others remain �xed to a certain reference
parameter set� This allows an approximate picture of the design space to be
obtained with limited simulation e�ort� Although the above assumption often
provides a good approximation of the design space� the determined optimum
parameter set needs to be veri�ed with respect to the achieved performance�
If signi�cant di�erences to the expected result are found� further optimization



steps can be performed iteratively with the determined parameter set of the
previous iteration as the new reference parameter set�

The following section shows how we optimized our design� We started with the
unquantized design and very large setting of the structural parameters as the
reference parameter set� We then varied single parameters to determine the
equivalent implementation loss with respect to this parameter� Subsequently�
the optimum parameter set was determined based on the obtained data with
respect to implementation cost and veri�ed by simulation� The optimization
objective was to �nd the best solution �in terms of the area consumption of the
chip� which provides an implementation loss of less than ��
dB � The decoder
throughput was not within the scope of the optimization since this parameter
is usually prede�ned by the application� Furthermore� only the wordlength
of the branch metric in�uences this parameter and the dependency of the
throughput on this parameter is weak�

�� Simulation Data and Area Models

Since we deal with implementation losses in the range of ����dB special atten�
tion was paid to the problem of obtaining reliable data� To ensure su�cient
accuracy of the results of the Monte Carlo simulations� the simulation length
was adjusted to average over a minimum of ���� bit errors� The resulting
charts are su�ciently smooth� but one should keep in mind� that there is
some uncertainty� On the other hand� the optimization result has proved the
viability of the approach� All simulation results are given for SNR � dB� In
order to be able to optimize the parameters with respect to implementation
area� hardware architectures need to be selected and area models are requi�
red� However� the area models do not need to re�ect the complete area but
only those parts of the implementation architectures which are a�ected by
the parameters� This simpli�es the models considerably since several blocks
of our design are �xed by the choice of the constraint length�

We did not include the wordlengths n� and nin in the optimization process�
The wordlength of the metric di�erence n� is dependent on n�i and the
properties of the code and is thus not a free parameter� Since a TMU is a
cheap device in terms of area consumption� at the end of the optimization
process the input wordlength nin can be chosen su�ciently large� Thus� we
focused attention on the quantization of the branch metrics and the metric
di�erences provided by the inner ACSU� Table  summarizes the simulation
results in terms of the implementation loss� given in dB�

Wordlength Loss � n�i � Loss � ns� Loss � n�o �

� � �	�
 �

� �	�� �	��� �	�


� �	�� �	�� �	��


 �	��
 � �	���

Table �� Performance E�ect of the Quantizers

The wordlength of the metric di�erence ns in�uences big parts of the design
�deinterleaver and SOVA�SMU� and is discussed later on� The parameters
n�i and n�o a�ect mainly the ACSUs� since the quantizers Qi� Qo and the
TMUs are small devices� For the ACSUs area estimates were obtained by logic



synthesis from VHDL descriptions� All area results and formulas presented
below represent accumulated cell area multiplied by factors which account for
wiring� Since full�custom macros usually require less wiring overhead than
standard cells� the area of the used RAM blocks was multiplied by 
�� while
the standard cell area was multiplied by 
�� � The target technology was
the ��m CMOS standard cell technology from European Silicon Structures
�ES
�� Table � gives the area results for the inner and outer ACSU� The inner
ACSU is slightly bigger than the outer ACSU since the metric di�erences are
additional outputs of the inner ACSU� The synthesized ACSUs allow clock
speeds of approximately ��MHz�

n��i�o�
ACSUi �mm

�� ACSUo �mm��

� 
	� �	�

� �	�� 
	�


 �	� �	
�

Table �� Area of the ACSUs versus branch metric wordlengths

The SOVA�SMU is the most complex part of the design� We have chosen the
two�step architecture presented in ��	 as implementation architecture� The
SOVA�SMU is composed of a hard deciding register exchange SMU� delay
lines� path comparison unit and update unit� The area of a register exchange
SMU is roughly proportional to Di� The delay lines need to delay the decision
bits as well as the quantized metric di�erences by Di clock cycles� The area
is thus dominated by RAMs whose size is proportional to Di � �ns � ��� The
remaining units are roughly proportional to the parameter U � Optimization
was based on the following functions�

ADi
� KDi

� ����mm�
�Di � �����mm�

�Di � �ns � ��

AU � KU � �����mm�
� U ���

Note that we incorporated the �xed portion of the design in the constants
KDi

and Ku since they do not a�ect the optimization� Figures � and � give
actual simulation results for the parameters Di and U at SNR � dB�

Figure �� E�ect of Di Figure �� E�ect of U

The results comply with the results from ��	� Figures � and � give the simu�
lation results for deinterleaver parameters and outer survivor depth� Figure
� contains graphs for variable R with C very large and vice versa�



Figure �� E�ect of R and C Figure �� E�ect of Do

The �gure shows clearly that an asymmetric deinterleaver should be imple�
mented since R can be chosen much smaller than C� In addition a graph for
R variable and C � �� is included� The graph shows that� even in the case of
the deinterleaver� the independence assumption is good� although the graphs
for C � �� and very large C tighten for very low R� The required memory
and thus size of the RAM is obviously proportional to R �C � �ns � ���

Ail � Kil � ����
mm�
�R �C � �ns � �� �
�

For the outer SMU a block trace back architecture was chosen which is do�
minated by the required RAMs� The area is thus proportional to Do�

ASMU � KDo
� �����mm�

�Do ��

�� Parameter Optimization

We ran an exhaustive search to �nd the optimum parameter set from the base
data of Figures � � � in conjunction with the area models� As can be seen
from the �gures not all possible parameter settings were simulated� We thus
ran� in a second optimization phase� a search based on linear interpolated
performance data around the set of base data points to include the entire
solution space into the search� Table � shows the obtained optimum with
the consumed area portions according to the area models�

Unit�s� Parameter Value Loss Area �mm��

TMUi� Qi � ACSUi n�i 
 �	��
 �	�

ns � �	���

Q�� SOVA�SMU U �
 �	��� ��	�

Di 

 �	��

Deinterleaver R �
 �	��� ��	

C  �	���

TMUo� Qo � ACSUo n�o 
 �	��� �	�

SMUo Do � �	��
 �

all � � �	� 
�	�

Table �� Obtained parameter set



It becomes instantly clear from Table � that the parameter selection would
hardly be as e�cient without systematic optimization� Sixty percent of the
implementation loss of ��
dB was allocated to the parameter R of the dein�
terleaver which �nally consumed 
�� of the active core area of the chip� Note
that the constant factors of the area models are included in the above �gures
to give more realistic results� Another facet of the optimization is shown in
Table � where optimization results for various tolerable losses are given�

Di U R C Do n�i ns n�o Loss Area �mm��

�� �� �� ��� ��� 
 � 
 �	� ��



 �
 �� �  
 � 
 �	�
 
�



 �
 �
  � 
 � 
 �	� 
�	�


� �
 ��  ��� 
 � 
 �	�
 ��


� �� �� ��� ��� � � 
 �	� �


Table �� Maximum implementation loss versus area

This shows that performance can be traded versus area to a large extend which
was not expected initially� Around our target loss of ��
dB the parameter R
is mainly a�ected while other parameters come into play at more relaxed or
harder requirements� The e�ect of the parameter set of Table � was again
veri�ed by simulation� Figure � shows the result which� at an overall loss of
����dB at SNR � dB� matches the prediction very well�

Figure �� Veri�cation of the overall implementation loss

But even with a less precise result we would have been able to choose from the
parameter sets of Table � which would greatly reduce the parameter search
space� To compare we included a performance graph of a commercial decoder
for the reference code �taken from ��
	�� An honest comparison of the single
coder scheme versus the concatenated scheme requires an actual area result�
Although a detailed discussion of the implementation is beyond the scope of
this paper and no place and route was carried out for the design� we believe
that the estimates allow for realistic comparisons� This is because they include



actual results of fairly large building blocks and the global factors for wiring
were chosen pessimistically� This should su�ce as margin for the uncertainty
of the design completion� Including a pad ring in the estimate leads to a
die size of ��mm� ���m technology�� whereas the decoder for the reference
code ��
	 required ��mm� in ����m technology� This shows that the proposed
scheme is indeed competitive�

�� Conclusion

In this paper design considerations for a soft�concatenated Viterbi decoding
scheme have been presented� We have shown that the proposed scheme exhib�
its a better coding gain compared to the well known standard code with
�� states for bit error rates better than 
 � ����� The scheme is thus well
suited for high performance applications like HDTV� Furthermore� we have
presented an optimizationmethod which allows the systematical optimization
of the implementation parameters of digital signal processing hardware� We
tackled the problem of the large parameter space by separating the in�uence
of individual parameters� Since during optimization the performance e�ects
of parameter sets are determined by superposition of the individual e�ects� a
�nal performance veri�cation and possibly further iterations are required to
�nd the optimum� However� in our case the independence of the parameter
e�ects was found to be su�cient and iterative optimization was not required�
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