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Systematic discovery of mutation-specific synthetic
lethals by mining pan-cancer human primary tumor
data
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Two genes are synthetically lethal (SL) when defects in both are lethal to a cell but a single

defect is non-lethal. SL partners of cancer mutations are of great interest as pharmacological

targets; however, identifying them by cell line-based methods is challenging. Here we develop

MiSL (Mining Synthetic Lethals), an algorithm that mines pan-cancer human primary tumour

data to identify mutation-specific SL partners for specific cancers. We apply MiSL to

12 different cancers and predict 145,891 SL partners for 3,120 mutations, including known

mutation-specific SL partners. Comparisons with functional screens show that MiSL

predictions are enriched for SLs in multiple cancers. We extensively validate a SL interaction

identified by MiSL between the IDH1 mutation and ACACA in leukaemia using gene targeting

and patient-derived xenografts. Furthermore, we apply MiSL to pinpoint genetic biomarkers

for drug sensitivity. These results demonstrate that MiSL can accelerate precision oncology

by identifying mutation-specific targets and biomarkers.
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I
t is now common to sequence for somatic mutations in patient
tumours before treatment, but the identification of mutation-
specific therapies remains a pivotal challenge for precision

medicine. A particularly promising approach is to identify
alternative therapies that do not target the mutation directly.
For instance, a mutation may increase dependence on a second
gene that can be easily targeted instead. In this case, the mutation
and the second gene are called a synthetic lethal (SL) pair, since a
defect in either gene is compatible with cell viability, but defects
in both are lethal to the cell1,2, and the second gene is a SL partner
of the original mutation.

Large-scale functional screens in cell lines using short hairpin
RNA (shRNA)3–7, CRISPR8 or small-molecule libraries9 are
widely used for high-throughput identification of SL interactions.
While being a valuable technique to identify novel SL
interactions, these functional screens suffer from limitations.
Since experimental screens are usually performed in cell lines,
they can be negatively impacted by: (1) the limited representation
of newly discovered mutations in existing cell lines: for example,
the Cancer Cell Line Encyclopedia (CCLE) collection of 1,000 cell
lines contains no acute myeloid leukaemia (AML) cell line with
an oncogenic IDH1 mutation, even though the mutation is
present in 10% of AML patients10, and (2) the artificiality of
in vitro screening conditions11,12, which cannot fully capture
in vivo tumour evolution in the tumour microenvironment.
Furthermore, such screens may be limited by factors such as false
positive hits due to off-target effects13 and false negatives due to
limited coverage and incomplete gene knockdown in shRNA
screens, and false positives due to genomic instability in CRISPR
screens14,15.

New computational methods based on human primary
tumour data are needed to identify mutation-specific SL
partners to complement the limitations of existing cell line
screening methods. Current computational methods to detect SL
interactions use human orthologues of yeast SL interactions16,17,
protein–protein networks18 or metabolic network analysis19,20.
These approaches rely on incomplete data and/or network
models and data that are not fully representative of human
primary tumours. A recent computational method, called
DAISY21, used tumour genomic data and shRNA data from cell
lines to predict SL interactions. DAISY predicted a global network
of potential SL interactions in human cells and marks an
important advance in computational methods for predicting SL
interactions in cancer. However, DAISY primarily utilizes a small
number of inactivating (nonsense and frameshift) mutations and
uses shRNA data from existing cell lines as part of its inference
strategy, which means it will miss SL interactions that are false
negatives in shRNA screens caused either by incomplete genetic
knockdown or by inadequate representation of mutations in
existing cell lines.

To address these limitations, we have developed MiSL
(Mining Synthetic Lethals), a novel algorithm based on Boolean
implications mined from large pan-cancer patient data sets to
identify SL partners for specific cancer mutations in specific
cancer types. We validate MiSL by (1) showing concordance
between our predictions and mutation-specific SL partners
identified by existing Achilles screens and our own functional
screen, (2) finding known SL partners in AML and kidney
cancer, and (3) demonstrating same pathway enrichment of
the predicted SL partners, which is consistent with previous
work in yeast. We also demonstrate that MiSL solves two
problems that are directly translatable to clinical applications:
identifying novel mutation-specific SL interactions, in particular
IDH1 mutation and ACACA in AML, and pinpointing predictive
genetic biomarkers that can guide precise targeting of existing
therapies.

Results
The MiSL algorithm. MiSL is a computational pipeline to
identify candidate SL partners of mutations for subsequent
focussed experimental validation using high-throughput
pan-cancer primary tumour data sets (Fig. 1a). The starting point
is a mutation and a cancer type of interest. For the results here,
we utilized 12 cancer data sets from The Cancer Genome Atlas
(TCGA)22. Our underlying assumption is that, across multiple
cancers, SL partners of a mutation will be amplified more
frequently or deleted less frequently in primary tumour samples
harbouring the mutation, with concordant changes in expression.
The output of MiSL is a relatively short, high-quality list of
candidate SLs that must then be validated experimentally to find
the true SLs. The reported results are based on data from
approximately 3,000 primary tumour samples that are used to
identify candidate SL partners of each recurrent mutation in each
of the 12 cancer types (Supplementary Fig. 1a).

Given a mutation X and a cancer type of interest, the analysis
focusses on cancers in which X is present in at least 2.5% of the
samples. Next, genes are identified that have more copies in the
presence of a mutation as determined by: (1) preferred
amplification in the presence of the mutation (amplification
pipeline; Fig. 1b), or (2) deletion only in the absence of the
mutation (deletion pipeline; Fig. 1b). Boolean implications23,24

(statistical IF–THEN relationships) are used to efficiently extract
the required relationships from genomic data. For the
amplification pipeline, we search for cases where B is amplified
only in the presence of mutation X and thereby capture cases
where there is dependence on gene B in the presence of mutation
X. In other words, the logical statement ‘if gene B is amplified,
then mutation X is present’ holds for almost all samples. This
relationship is called a HI-HI Boolean implication (Fig. 1b,
Supplementary Fig. 1b). Similarly, for the deletion pipeline, we
search for cases where almost all the samples where B is deleted
are mutually exclusive with samples that have mutation X
and thereby capture cases where co-occurrence of deletions in
gene B and mutation X reflect a loss of fitness and hence are
under-represented in the tumour population. In other words,
the logical statement ‘if mutation X is present, then gene B is
NOT deleted’ holds for almost all samples. This is a HI-LO
Boolean implication with mutation X (Fig. 1b, Supplementary
Fig. 1c). To eliminate candidate genes that are passengers in
large chromosomal alterations, we require that gene B is
associated with concordant differential expression in samples
that have the copy number alteration (CNA) versus those that do
not in the included tumour types. Finally, the resulting gene set is
filtered to include only those genes that are differentially
overexpressed in the presence of the mutation versus the wild
type in the cancer of interest. This step eliminates genes that are
unlikely to be essential in the context of the cancer of interest and
the specific mutation and also eliminates some false positives
due to convergent evolution. Genes that satisfy all the
above-mentioned filters form the set of candidate SL partners
for a given mutation in a given cancer and will henceforth be
called the MiSL candidates of the mutation. Furthermore, a
mutation with a non-zero number of MiSL candidates will be
called MiSL-targetable.

MiSL identified candidate SL partners for 3,120 recurrent
mutations, which spans a large fraction (0.3–0.8) of recurrent
mutations in each of the 12 cancers (Fig. 1c). For the majority of
recurrent mutations in each cancer type, MiSL identified o50
candidate SL partners (Supplementary Fig. 1d, MiSL candidates
for each mutation and cancer type in Supplementary Data 1),
providing a focussed list of candidates for experimental testing.
Additionally, the MiSL candidates were robust to changes in the
P value thresholds of the various filters, since the majority of
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candidates were retained even when the P value thresholds were
halved (Supplementary Fig. 1e). Many MiSL-targetable mutations
had common MiSL candidates across different cancer types
(Supplementary Data 2). Out of the 1,084 mutations with MiSL
candidates in 41 cancer, 60% had common MiSL candidates
across multiple cancer types (Supplementary Fig. 1f), suggesting
that some mutation-specific SL partners are applicable
across different cancers. Finally, the majority of samples had
MiSL-targetable mutations, demonstrating the potential of the
method to find new treatment options for large numbers of
patients (Fig. 1d).

MiSL predictions are enriched for mutation-specific SL partners.
To assess the quality of predictions from MiSL, we compared its
candidates with SL partners identified using shRNA screens in cell
lines as these remain the most prevalent high-throughput approach
used to find SLs. This comparison does not assume that shRNA
screens find only true SL partners, only that their results are
probably better than random. Thus we would expect to see some
concordance between MiSL candidates and the results of such

screens. We compared MiSL results with shRNA knockdown data
for approximately 11,000 genes in 216 cell lines from Project
Achilles25. We focussed on colorectal cancer because it had the most
evaluable mutations (Supplementary Fig. 2a). A mutation was
considered evaluable if it was MiSL-targetable and present in more
than five cell lines in that cancer type, and there was sufficient
overlap between MiSL candidates for the mutation and genes for
which shRNA data were available. For the evaluable mutations,
which included APC, CSMD3, KRAS, PIK3CA and TP53
(Supplementary Fig. 2a), we compared MiSL predictions with the
results from Achilles (Fig. 2a). First, we performed a differential
analysis of the scores for each shRNA in mutated colorectal cancer
cell lines versus wild-type lines. A summary score was generated for
each gene by combining the differential analysis results of all
shRNAs targeting the gene. The genes were subsequently ranked
using these scores with more essential genes near the top of the list
(more details in Supplementary Methods). For the majority of the
evaluable mutations in colorectal cancer (Supplementary Fig. 2b),
enrichment analysis using gene set enrichment analysis (GSEA)26

revealed that MiSL candidates were preferentially ranked higher by
mutation-specific essentiality in colorectal cancer (Fig. 2b–d,
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Figure 1 | The MiSL algorithm. (a) Pipeline of MiSL algorithm: For a given mutation and a cancer of interest, the pipeline outputs a list of genes, which are

the candidate SL partners or MiSL candidates of the mutation in the cancer of interest. (b) Depiction of the various steps through the deletion pipeline and

amplification pipeline in MiSL. (c) Fraction of recurrent mutations with SL candidates in each of the 12 TCGA cancers. (d) Fraction of TCGA samples with

MiSL-targetable mutations in each of the 12 TCGA cancers.
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Supplementary Fig. 2c–e) and included statistically significant
results for APC (normalized enrichment score (NES)¼ 1.55,
P value¼ 0.003), KRAS (NES¼ 1.48, P value¼ 0.04) and PIK3CA
(NES¼ 1.35, P value¼ 0.03). This indicates that MiSL indeed
identifies mutation-specific SL partners in specific cancer types.
However, many of the candidates identified by MiSL were not
present in Achilles shRNA libraries, indicating that MiSL identifies
SL partners that large-scale screens miss.

Next, we sought to systematically investigate the MiSL
candidates for the IDH1 mutation in AML. We focussed on the
IDH1 mutation since we had previously developed an inducible
AML cell line that expresses mutant IDH1 (ref. 27), providing us
with an appropriate experimental system to test MiSL candidates.
We performed an independent shRNA library screen
(DECIPHER) for the IDH1 R132 mutation expressed in THP-1
cells using a doxycycline (Dox)-inducible promoter27 and
compared the shRNA predictions with MiSL candidates
(Fig. 2e). MiSL predicted 89 candidate SL partners for the
IDH1 mutation in AML (Supplementary Data 1, details of
pipeline steps in Supplementary Data 3). We used the
DECIPHER library for the shRNA screen, which covered 61
out of the 89 candidates. A gene was considered to be an SL
partner according to the shRNA screen, if at least two shRNA
hairpins targeting the gene produced a 420% reduction in
barcoded reads in the presence of mutant IDH1 (þDox) versus
the control (�Dox). Comparing the gene lists of shRNA SL
partners and the MiSL candidates for the IDH1 mutation in AML
produced a statistically significant overlap (P value¼ 0.01,
Fisher’s exact test, Fig. 2f), indicating that MiSL candidates
were enriched for genes whose knockdown resulted in
preferential cell death. Using a more stringent criterion for
determining shRNA SL partners (440% reduction in viability per
hairpin) also produced a statistically significant overlap with
MiSL candidates (P value¼ 0.004, Fisher’s exact test,
Supplementary Fig. 2f). Finally, for a majority of MiSL
candidates, the average scores of the two shRNA hairpins with
the most dropout in the presence of the mutation had a value
o1.0 (Fig. 2g), consistent with some degree of mutation-specific
synthetic lethality.

Most interestingly, MiSL identified BCL2L2 (Bcl-w) as a
candidate SL partner of the IDH1 mutation: IDH1 mutation
and BCL2L2 deletion were mutually exclusive (HI-LO Boolean
implication) in the TCGA data; BCL2L2 deletion resulted in
lowered expression, so BCL2L2 is unlikely to be a passenger
deletion; and BCL2L2 was differentially overexpressed in IDH1-
mutant compared to IDH1-wild-type AML (Fig. 2h). This is
noteworthy since a SL interaction between Bcl-2 family members
and IDH1 mutation in AML was recently identified and validated
using in vitro and xenograft models27, constituting an example of
a true mutation-specific SL partner emerging from the deletion
pipeline in MiSL (Fig. 1b). Similarly, the MiSL amplification
pipeline uncovered a previously known SL interaction: GLS as a
SL partner of the VHL mutation in kidney cancer. GLS was
selectively amplified only in the presence of the VHL mutation
(HI-HI Boolean implication), GLS amplification resulted in
increased expression of GLS, and GLS was differentially
overexpressed in VHL-mutant compared to VHL-wild-type
kidney cancer (Supplementary Fig. 2g). This prediction is
consistent with previous work that showed a selective in vivo
dependence on the glutaminase pathway for VHL mutants in
kidney cancer28. Additionally, our own experimental data using
VHL-deficient and isogenic VHL-restored RCC4 cell lines
confirmed that targeting GLS with siRNAs showed a significant
reduction in cell viability (Supplementary Fig. 2h). These data
indicate that mutual exclusion relationships with gene deletions,
as well as subset relationships with gene amplifications arise due

to synthetic lethality. Furthermore, the concordance between
MiSL predictions and shRNA data for different combinations of
mutations and cancers confirms that MiSL output is enriched for
mutation-specific SL partners in a specific tumour type.

We would also expect MiSL candidates to be enriched for the
same pathways as the mutation, since previous reports in yeast
have indicated that SL interactions often occur between genes
belonging to the same pathway or process29. SL interactions in
human cells are also known to occur between genes in the same
biological process, such as the relationship between BRCA1
mutations and poly ADP-ribose polymerase (PARP)1, both of
which are involved in DNA repair processes, or the recently
identified interaction between ARID1A and ARID1B30. We
therefore characterized MiSL predictions according to known
cellular pathways (based on Kyoto Encyclopedia of Genes and
Genomes31 or Gene Ontology32), to determine whether the MiSL
candidates of a mutation shared pathways with the mutated gene.
We use breast cancer as an illustrative example, where we found
that the MiSL candidates of five recurrent mutations were enriched
for genes in the same pathways as the respective mutations
(Supplementary Fig. 3a). Interestingly, MiSL candidates of BRCA1
mutation in breast cancer were significantly enriched for DNA
repair genes, including XRCC6 and FANCC, with P value¼ 0.006
(hypergeometric test, Supplementary Fig. 3a), consistent with the
clinically established SL interaction between inhibition of DNA
repair and BRCA1mut1,33. We also found same pathway
enrichment for other breast cancer mutations: ubiquitination
genes for MAP3K1mut (P value¼ 2.3� 10� 6), growth factor
signalling (specifically neurotrophin, including AKT signalling)
for PIK3CAmut (P value¼ 0.0002), ‘response to endogeneous
stimuli’ for GATA3mut (P value¼ 0.02), and adherens junction
genes for CDH1mut (P value¼ 0.02). Similarly, we observed
same pathway enrichment for multiple mutations in nine other
cancers (Supplementary Data 4). Furthermore, MiSL candidates
were enriched for druggable pathways as per DGidb34 in multiple
cancer types (Supplementary Data 5), suggesting that MiSL can
identify mutation-specific druggable SL pathways in each cancer
type.

We also noted that some MiSL candidates were shared by
multiple mutations and multiple cancers, suggesting that certain
genes are prone to synthetic lethality. We identified genes that
were MiSL candidates for 45% of the MiSL-targetable mutations
in each cancer type (cancer-specific recurrent MiSL candidates
Supplementary Fig. 3b) and also identified genes categorized as
MiSL candidates across cancer types (pan-cancer recurrent MiSL
candidates). Out of the 7,257 genes predicted to be a MiSL
candidate for at least one mutation in the 12 cancer types, 1,005
genes were candidates for Z1 mutations in at least 6 different
cancer types (Supplementary Data 6). We found pathways
enriched among cancer-specific and pan-cancer recurrent MiSL
candidates (Supplementary Data 6) including Krebs cycle, DNA
repair and Wnt pathway, suggesting that targeting these pathways
can provide new treatment options for many patient subgroups in
different cancers.

MiSL identifies a novel druggable target for IDH1 mutation.
Next, we sought to use MiSL to discover a novel and druggable
mutation-specific target. We focussed our efforts on the IDH1
mutation in AML, as an example of a high-frequency mutation
not represented in cell lines. We identified the druggable MiSL
candidates and tested reagents that inhibited the genes for
selective activity against IDH1 mutant AML (Fig. 3a,
Supplementary Fig. 4a). Seventeen out of the 89 MiSL candidates
for IDH1 mutation in AML were druggable using available
reagents in the clinic or under development. Dose–response IC50
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mutant (þDox) plated in 2 mM TOFA or DMSO in 0.5% serum, bars show s.d., P value¼0.0001. (e) Purified primary IDH1 mutant and IDH1 wild-type

AML blasts plated in increasing concentrations of TOFA. Sigmoidal dose–response IC50s were calculated and compared with Mann–Whitney U,

P value¼0.01. (f) Viable cell growth of THP-1 cells expressing IDH1 wild type (�Dox) or R132H mutant (þDox) transduced with scrambled or ACACA

shRNA lentivirus in 0.5% serum as in d. (g) Viable cell growth of THP-1-inducible IDH1 wild-type or R132H (þ /�Dox) cells transduced with lentiviral

pLENTICRISPR v2 targeting ACACA exon 4 versus non-ACACA targeted controls. (h) Growth of single clones from the same pLENTICRISPR v2 transduced

THP-1 cells as in g. (i) Primary IDH1 R132 mutant AML blasts were transduced with ACACA shRNA #1 or scrambled shRNA and transplanted into

immunodeficient NSG mice. Bone marrow at 12 weeks was analysed for human CD45þCD33þ RFPþ cells. Scatter plot shows absolute and average

percentage of hCD33þ RFPþ cells gated on human CD45þ engrafted cells (n¼ 3, non-targeting versus n¼ 5, shRNA#1, *Po0.05, Mann–Whitney).

Panels d and f–h show representative of three independent experiments using four biological replicates; Student’s t-test is used to calculate significance

with P values as shown.
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curves were generated in the presence (þ dox) and absence
(� dox) of IDH1-R132H in the inducible THP-1 cells27 for each
drug (Fig. 3b). We noted a selective reduction in cell viability with
the small molecule 5-(tetradecycloxy)-2-furoic acid (TOFA), a
selective competitive inhibitor of acetyl-CoA carboxylase 1
(ACACA)35, which MiSL predicted to be a SL partner of the
IDH1 mutation in AML: there was a strong HI-LO Boolean
implication between IDH1 mutation and ACACA deletions in the
pan-cancer TCGA data with zero overlap between the two events,
ACACA deletions resulted in lowered expression of ACACA, and
ACACA was differentially overexpressed in IDH1-mutant AML
compared to IDH1-wild-type AML (Fig. 3c). Importantly, no
difference in TOFA IC50 was observed in THP-1 cells transduced
with tet-on IDH1 wild type tested against the same panel
(Supplementary Fig. 4b). Pharmacological inhibition of ACACA
with TOFA (Fig. 3d) caused a reduction in cell growth in the
presence of IDH1 R132H (þ dox), but not in its absence (� dox,
P¼ 0.0001, Student’s t-test) or compared to IDH1 wild-type
induction consistent with the drug screen (þ dox, Po0.0001,
Student’s t-test). The growth defect of IDH1 R132H THP-1 cells
was noted at only 2 mM TOFA, at the lower end of the reported
IC50 range. Additionally, primary IDH1 R132-mutated purified
AML blasts showed a 1.5–2.0-fold increase in ACACA gene
expression compared to CD34þ hematopoietic stem and
progenitor cells (Supplementary Fig. 4c,d) and were selectively
sensitive to TOFA treatment compared to IDH1 wild-type AML
blasts (IC50 1.1 versus 6 mM, P value¼ 0.01, Mann–Whitney)
(Fig. 3e).

To specifically validate ACACA as a SL partner of IDH1
mutation, we used two orthogonal gene-targeting methods: First,
knockdown of ACACA with two independent shRNAs (Fig. 3f,
Supplementary Fig. 4e) caused a defect in cell growth in the
presence of IDH1 R132H (þ dox) but not in its absence (� dox)
or with scrambled shRNA (P value¼ 0.001, Student’s t-test,
shRNA#1 IDH1 R132H þ dox versus � dox; P value¼ 0.001,
Student’s t-test, shRNA#2 IDH1 R132H þ dox versus� dox).
Notably, shRNA#3 which did not show on-target activity for
ACACA (Supplementary Fig. 4e) also did not impair growth
(Supplementary Fig. 4f). Dox treatment alone on parental THP-1
cells showed no effect on cell growth (Supplementary Fig. 4g).
Second, THP-1 cells transduced with CRISPR/Cas9 targeting
exon 4 of ACACA (Supplementary Fig. 4h–k) showed a growth
defect in the presence of IDH1 R132H (P valueo0.001, Student’s
t-test) but not IDH1 wild type both as cell pools (Fig. 3g) and for
independent clones selected for the presence of indels (Fig. 3h,
Supplementary Fig. 4l). Finally, primary IDH1-mutant AML cells
transduced with shRNA#1 lentivirus targeting ACACA exhibited
reduced engraftment of red fluorescent protein (RFP)-positive
human CD45þCD33þ leukaemic cells compared to scrambled
non-targeting shRNA (P value¼ 0.025, Mann–Whitney) in
immunodeficient NSG xenografts (Fig. 3i, Supplementary
Fig. 4m).

Together, these data suggest that ACACA is a bona fide SL
partner for the IDH1 mutation in AML with direct clinical
implications. Additionally, this validates MiSL’s ability to identify
new mutation-specific SL partners that are cancer specific and
indicates that the methodology used here (Fig. 3a) can be used to
identify novel pharmacological targets.

MiSL identifies genetic biomarkers for targeted therapies.
Identification of predictive biomarkers for stratifying and
assigning patients to targeted therapies is an area of active
investigation in oncology36. Previous work has focussed on
developing predictive models using drug-sensitivity data from cell
lines37–39. MiSL provides an alternate synthetic lethality-based

approach to identify predictive biomarkers for targeted therapies.
Specifically, MiSL can identify mutations and/or CNAs in specific
cancers that are SL partners of the gene products inhibited by a
given drug (Fig. 4a), which then function as predictive genetic
biomarkers for the drug. To test this, we compared MiSL-based
predictions of sensitive cell lines with pharmacological data
available for the CCLE38, which spans data for 24 compounds
(targeted and cytotoxics) across 479 cell lines. To maximize the
number of cell lines with pharmacological data, we grouped
inhibitors of a target family, such as histone deacetylase (HDAC)
inhibitors. Next, we used DGidb34 to identify genes whose
products were inhibited by the drug(s). For example, for HDAC
inhibitors, DGidb identified 14 genes (Supplementary Fig. 5a).
MiSL then identified mutations and/or CNAs in each cancer
type that were SL partners of these inhibited genes. Specifically,
the genes inhibited by the drug were MiSL candidates of the
identified mutations and/or CNAs. Cell lines that harboured
these MiSL-identified biomarkers were predicted to be sensitive to
the inhibitor.

To identify ‘true’ sensitive cell lines, we used pharmacological
data for the drug in question. A cell line was considered to be
truly sensitive to a drug if it was in the first quartile of all tested
cell lines based on IC50 values for the drug. Based on drugs with
known target information as per DGidb and the number of ‘true’
sensitive cell lines, there were five evaluable target families:
mitogen-activated extracellular signal-regulated kinase (MEK),
HDAC, RTK, RAF, and EGFR (Supplementary Fig. 5b).
We found a statistically significant overlap between cell
lines that were predicted to be sensitive based on the presence
of MiSL-predicted biomarkers and those that were truly sensitive
for multiple target families (MEK, HDAC) (Fig. 4b,
Supplementary Data 7, Supplementary Fig. 5c), demonstrating
potential applicability of MiSL to identify predictive genetic
biomarkers. Notably, MiSL identified several genetic biomarkers
not represented in existing cell lines. These included LAMA3
mutations (lung squamous) and NOS1 mutations (breast cancer),
which were identified as MEK inhibitor-specific biomarkers, and
ST18 mutations (lung adenocarcinoma and ovarian cancer),
which were identified as HDAC inhibitor-specific biomarkers.

Next, we applied MiSL to identify predictive biomarkers for an
existing targeted drug that has clinical activity as monotherapy.
We focussed on MK-2206, a selective inhibitor of AKT1 in
clinical trials in solid tumours40,41. MiSL identified several
predictive biomarkers for MK-2206 (Fig. 4c), including PIK3CA
mutation in breast cancer, which was identified because PIK3CA
mutation and AKT1 deletion were mutually exclusive in
pan-cancer data, AKT1 deletion resulted in lowered expression
and AKT1 was overexpressed in PIK3CA-mutant breast cancer
(Supplementary Fig. 5d). To confirm MiSL’s prediction, we
treated a panel of PIK3CA mutant (MCF-7, T47D, CAL-148,
CAL-51) and PIK3CA wild-type (CAL-120, HCC-1806, HCC-38,
SKBR-7) breast cancer cell lines with MK-2206 in 5-day
cell viability assays (Fig. 4d) and colony-formation assays
(Supplementary Fig. 5e). Significantly, we found all
four PIK3CA mutated breast cancer cell lines were sensitive
to MK- 2206 (IC50o1 versus 415 mM, P value¼ 0.003,
Mann–Whitney) in both viability and colony assays (Fig. 4d,
Supplementary Fig. 5e) with increased cleaved PARP and
decreased phospho-PRAS40, S6K, 4EBP1 and BAD
(Supplementary Fig. 5f). MiSL also identified predictive
biomarkers for MK-2206 in other cancer types (Fig. 4c). Several
predictions involved mutations in genes functionally associated
with PIK3CA-AKT1 signalling (including PTENmut in kidney
cancer, LATS2mut in lung adenocarcinoma and PIK3CGmut in
uterine cancer), suggesting that the method identifies biologically
meaningful biomarkers (Fig. 4e). Further analysis indicated that
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Figure 4 | MiSL identifies predictive genetic biomarkers for existing targeted therapies. (a) Pipeline showing the use of MiSL to identify predictive

biomarkers for a drug. The predictive biomarkers could be gene-specific mutations or CNAs in a particular cancer. (b) Validation of MiSL biomarker

predictions using pharmacological data for CCLE cell lines. For a given target family (such as MEK or HDAC), cell lines from the CCLE that harbour the

biomarkers identified by MiSL were predicted to be sensitive, and cell lines in the first quartile (based on IC50 values) were considered to be

pharmacologically sensitive. Overlap analysis between the cell lines predicted to be sensitive by MiSL and the pharmacologically sensitive cell lines as per

IC50 data shows a statistically significant overlap (MEK inhibition—P value¼0.01; HDAC inhibition—P value¼0.003, Fisher’s exact test). (c) Predictive

biomarkers as identified by MiSL are listed for the AKT1 inhibitor MK-2206. Besides PIK3CA mutation in breast cancer, several mutations in colorectal,

lung adeno, kidney and uterine cancer were identified. (d) PIK3CA mutant (MCF-7, T47D, CAL-148, CAL-51) and PIK3CA wild-type (CAL-120, HCC-1806,

HCC-38, SKBR-7) breast cancer cells were plated in the presence of increasing concentrations of Akt1 inhibitor MK-2206 and viability was measured at

72 h using CellTiter-Blue. (e) Several of the altered genes are related to PIK3CA as per STRING protein–protein interaction analysis. (f) Fraction of samples

among the 12 TCGA cancers with MiSL-identified predictive biomarkers for the Akt1 inhibitor MK-2206.
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3–37% of TCGA samples in 5 different cancer types could be
matched to MK-2206 based on MiSL-predicted biomarkers
(Fig. 4f), demonstrating the potential of using MiSL to broaden
the indications of existing anticancer therapies and identify
patients who might benefit.

Discussion
A crucial challenge in precision medicine is the identification of
mutation-specific therapies for different cancers. We have
developed MiSL, a simple and scalable Boolean implication-
based computational method that analyses mutation, copy
number and gene expression data of primary tumours to identify
SL partners of specific mutations in specific tumour types.
Extensive validation for multiple mutation and cancer combina-
tions using both existing data and our own large-scale shRNA
data confirmed that MiSL is an in silico screen that enriches for
SL interactions (Fig. 2).

We envision MiSL as part of a larger process in which a
tractable list of candidate targets (say, 20–200) is first identified
computationally and then these targets are validated in depth.
We tested this vision by setting out to find a novel SL partner of
the IDH1 mutation in AML and succeeded by discovering that
ACACA is such a partner, validated in vitro and in vivo
(Fig. 3d–i). ACACA is one of very few purported SL partners of
recurrent tumour mutations to have been validated in vivo. This
finding could be relevant to other IDH1 mutant tumour types.
Besides AML, IDH1 mutation is present in 77% of lower-grade
glioma and 7% of glioblastoma in the 12 cancers we analysed.
MiSL also predicted ACACA to be a SL partner of the IDH1
mutation in glioma: along with the mutual exclusion between
IDH1 mutation and ACACA deletions in pan-cancer data,
ACACA was found to be overexpressed in glioma samples with
the IDH1 mutation as compared to IDH1 wild-type samples (P
value¼ 0.008, Student’s t-test). Given MiSL’s prediction in AML
and glioma and the positive validation of the IDH1mut-ACACA
SL relationship in AML, it seems plausible that IDH1mut-ACACA
SL relationship is valid in other IDH1 mutant tumours. Selective
inhibitors for acetyl CoA carboxylase are currently in develop-
ment for the treatment of several metabolic diseases42. Our results
suggest that they may have antiproliferative activity in IDH1
mutant cancers, including AML, glioma, secondary glioblastoma
and osteosarcoma. We have also shown that MiSL can be used
successfully in reverse, which is to identify predictive biomarkers
(mutations and/or CNAs) for existing targeted therapies in
specific tumour types (Fig. 4b,c), and experimentally validated a
MiSL-identified predictive biomarker, PIK3CA mutation in breast
cancer, for an existing targeted therapy, AKT1-inhibitor
MK-2206 (Fig. 4d).

Recently, a computational method termed DAISY21 has been
described that can predict SL interactions using tumour genomic
data and cell line shRNA data. MiSL has important differences
with DAISY, even though both methods identify an initial set of
candidates using tumour genomic data and apply subsequent
filtering to minimize false positives, leading to DAISY failing
to identify many of the SL interactions described here.
The differences can be understood by asking why DAISY does
not identify any of the SL interactions we have validated:
IDH1mut-BCL2/BCL2L2, VHLmut-GLS, IDH1mut-ACACA, and
PIK3CAmut-AKT1. DAISY’s first inference strategy, ‘genomic
survival of the fittest’, which looks for mutual exclusion, considers
a small number of inactivating mutations (nonsense and
frame-shift mutations), while MiSL handles all types of
mutations. Since IDH1 mutations are mainly missense
mutations, this step would fail to identify IDH1mut
interactions. The second inference strategy uses cell line shRNA

screens, which prevents DAISY from identifying SLs for recurrent
mutations that are not well represented in available cell lines or
for tumours for which very few cell lines have been isolated. This
DAISY step would miss all predictions related to the IDH1
mutations because IDH1 mutation is rarely present as an
endogenous mutation in cell lines. The third inference strategy
requires SL pairs to have correlated expression (measured by
Spearman correlation coefficient rZ0.5): this step would miss all
the interactions we validated as all these pairs fail this condition
(the Spearman correlation coefficient for each of these is o0.25).
This demonstrates that DAISY removes many true SL
interactions. We next sought to determine whether DAISY’s
predictions are enriched for mutation-specific SL partners for the
IDH1 mutation in AML. Towards that end, we reimplemented
DAISY using the first and third inference strategies (we excluded
the second inference strategy since it requires shRNA data not
available for the IDH1 mutation) and applied it to the IDH1
mutation. We compared the SL partners found by DAISY with
those identified in our shRNA screen for mutant IDH1 in AML
(Supplementary Fig. 6a) and found that there was no statistically
significant association between the two lists (Supplementary
Fig. 6b,c), indicating that DAISY’s predictions are not enriched
for IDH1mut SL partners in AML. In contrast, MiSL’s predictions
were highly enriched for IDH1mut SL partners in AML (Fig. 2f,
Supplementary Fig. 2f), demonstrating MiSL’s ability to identify
candidate mutation-specific SL partners that are enriched for true
positives in a cancer type.

MiSL has several important features that increase its applic-
ability to precision medicine. First, MiSL is ‘mutation-centric’ in
conception such that its focus on identifying SL partners of
recurrent somatic mutations lends itself directly to clinical
application. Increasingly, sequencing and somatic mutation data
for common mutations are available to the clinician for a given
patient’s tumour. A recent outcome analysis of 570 targeted
agents found that personalized therapy using a known genomic
biomarker had a higher response rate and prolonged overall
survival compared with a protein biomarker43, justifying a
‘mutation-centric’ approach. Second, MiSL does not require
functional data from cell lines, which allowed it to identify SL
partners for mutations, such as IDH1, that are not well
represented in cell lines. Additionally, the use of primary
tumour data allows MiSL to capture in vivo tumour
evolutionary relationships that may not be present in cell line
data. Our analysis demonstrates that mutual exclusion and subset
relationships between somatic mutation and CNAs in human
cancer could indeed arise due to synthetic lethality effects. By
using Boolean implications, which represent stringent statistical
mutual exclusion and subset relationships24, MiSL reduces the
number of false positives and enriches for true SL partners
(Fig. 2f, Supplementary Fig. 2f). MiSL also benefits from using
pan-cancer data: when a gene is mutated in multiple tumour
types, MiSL uses all available tumour types to infer SL partners of
the gene. For example, even though AML copy number data was
not included for our analysis (due to lack of availability), MiSL
identified candidate SL partners for AML mutations because
those mutations occurred in other tumour types. Finally, we note
that the three experimentally validated examples presented here
involve metabolic processes (PIK3CAmut-AKT1, IDH1mut-
ACACA; VHLmut-GLS), particularly pathways that are known
to be perturbed in cancer metabolism44. MiSL may be useful in
finding mutation-specific metabolic dependencies, which might
not be easily identifiable using cell line screens.

Several avenues of future investigation stem from this work.
It would be important to test ACACA inhibitors in other
IDH1 mutant cancers and design combination therapies for IDH1
mutant cancers using ACACA inhibitors and mutant-IDH1
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inhibitors (such as AG-120). Finally, it would be useful to extend
MiSL to identify SL combinations (gene pairs or groups), whose
combined knockdown would be deleterious with a particular
mutation.

Methods
Data preparation. MiSL uses data from 12 different TCGA cancers
(Supplementary Fig. 1a). For each of these cancers, we used the mutation, copy
number and gene expression data. The only exception is AML, where many
samples did not have copy number data. The starting point of our analysis is the
level 3 data downloaded from the TCGA website.

The processing of the level 3 TCGA data is:
Mutation. The mutation data specify the mutated genes and the mutation type

on a per sample basis. A Boolean variable is introduced for each mutated gene.
Boolean variables are also introduced for each type of mutated gene (such as
frame-shift deletions, missense mutations, nonsense mutations and splice site
mutations). For each sample, the Boolean variable associated with a given mutation
is set to high if the mutation associated with the variable is present and to low
otherwise.

Copy number alteration. The data for CNAs contain the segmented copy
number data for the tumour and normal samples. For both types of samples,
segments, where the absolute magnitude of the segment mean was 40.3, were
retained. Furthermore, only segments with Z5 markers were retained to remove
regions with low-confidence output. Next, for each tumour sample, the tumour-
specific alterations were determined by removing segments that had 450% overlap
with altered regions in the corresponding normal sample. The remaining segments
were used to find, in each tumour sample, the genes affected by a CNA. The hg19
assembly was used to identify the genes. Next, two Boolean variables are
introduced—one for gene amplification and another for gene deletion. For each
sample, the Boolean variables for amplification or deletion are high if the gene was
found to be amplified or deleted (absolute magnitude of segment 40.3).

Gene expression. For microarray data, the data was normalized using the
standard Robust Multi-chip Analysis algorithm45. For RNAseq data, the reads per
kilobase of exon per million reads mapped values were log transformed. RNAseq
data was primarily used for our analysis except for cases where there was limited
RNAseq data.

MiSL algorithm. Given a mutation X and a cancer type of interest, the MiSL
algorithm consists of the following steps: First, all the cancers in which the
mutation is present in at least 2.5% of the samples were identified. Next, genes were
identified that had more copies in the presence of a mutation as determined by
using Boolean implications23,24. Boolean implications between pairs of variables
were detected using a statistical test consisting of two parts: first, Fisher’s exact test
was used to test dependence, then sparseness of a specific quadrant was tested by
using a maximum-likelihood estimate of the error rate for the points in the sparse
quadrant. An implication was considered significant if the P value from the Fisher
test was less than a cutoff threshold (always o0.05) and the error rate was o0.1.
The cutoff was chosen to obtain an acceptable false discovery rate. In this work, the
cutoff was set such that the false discovery rate o0.05 (as calculated by the
procedure described in previous work24). The implication extraction procedure was
augmented for genomic alterations by adding artificial normal samples for the
HI-HI implication extraction. In both data sets, a few genomic alterations existed
that were present in almost all tumour samples. In order to find HI-HI implications
involving these alterations, artificial normal samples (which do not harbour the
mutations or CNAs) were added when deriving the implications between genomic
alterations. This was an acceptable procedure since, unlike DNA methylation or
gene expression, the mutations and chromosomal alterations were very likely to be
cancer specific because germline mutations and CNVs (copy number variations)
have been removed by TCGA.

A critical filtering step during the extraction of Boolean implications was to
exclude genes that are merely passengers in large chromosomal alterations. This
was done by restricting the search for Boolean implication for a particular
alteration to tumour types where the presence of the particular alteration resulted
in concordant changes in gene expression. A deletion in gene A was considered
to be a passenger in a tumour type if A was not differentially downregulated (as per
t-test with fold difference 41.2, P value o0.05) in samples with deletions in A
versus the remainder of the samples. Similarly, amplification in gene A was
considered to be a passenger in a tumour type if A is not differentially upregulated
in samples with amplification of A.

Finally, the resulting gene set was filtered to only include genes that are
differentially overexpressed in the presence of the mutation versus the wild type in
the cancer of interest (as per t-test, P value o0.05).

Code availability. The code and data used for MiSL are available at the Stanford
Digital Repository https://purl.stanford.edu/ny450yx7231.

Data availability. The data sets analysed in the study are available at the
Stanford Digital Repository (https://purl.stanford.edu/ny450yx7231). All data
generated during this study are included in this published article (and its
Supplementary Information files).

Comparison with Achilles colorectal data. For this analysis, shRNA data from
Project Achilles (downloaded from https://www.broadinstitute.org/achilles)25 was
used. The project used a library of 54,020 shRNAs targeting 11,194 genes using
individual shRNAs that were lentivirally delivered to the cells. The abundance of
the shRNAs was measured after the cells were propagated for 16 population
doublings or 40 days in culture, whichever came first, and compared to the initial
DNA plasmid pool. Subsequently, the data were normalized along with some
quality-control steps based on replicate reproducibility and a measure of the overall
distribution of shRNA normalized and logged read counts. The final output was a
shRNA summary score for each cell line for all the shRNA that passed the quality-
control steps. The shRNA summary score was defined to be log2-normalized ratio
of the raw read value for the shRNA divided by the total raw read value for the
replicates. Thus a lower shRNA summary score in a cell line implies greater
dependence on the gene in that cell line. The table of shRNA summary scores for
the 216 cell lines was the starting point of our analysis.

The first step in our analysis was to identify the evaluable mutations.
Evaluability of a mutation was assessed as follows: (i) there were 45 cell lines with
the mutation in the cancer type of interest, and (ii) there were 425 MiSL
candidates for the mutation in the cancer type of interest for which shRNA data
were available in Project Achilles. The former condition ensured we had enough
mutated samples in a cancer type and the latter condition was a necessary
requirement for our downstream analysis using GSEA, which requires the gene sets
to be 425.

For an evaluable mutation, the analysis was done as follows. The first step was
to filter out genes that had data for less than three shRNAs per gene. There were
10,967 genes that remained after the filtering. The goal was to rank the genes in
terms of essentiality in colorectal cancer cell lines with a specific mutation versus
wild-type samples. First, for each shRNA, a differential analysis was done using a
t-test. Subsequently, for each gene, the shRNA with the lowest P value is picked.
The score of the gene is equal to log10 (P value) weighted by the difference in
means between the two groups for that particular shRNA. Thus a gene that is more
essential is given a stronger positive score. The genes were ranked using the score.
GSEA was performed using GSEAPreranked from the GenePattern website46. For
GSEAPreranked, the number of permutations was set to 2,000. The ranked list of
genes was compared to the MiSL predictions for the same mutation in colorectal
cancer to perform enrichment analysis.

SL IDH1 shRNA screen for MiSL validation. The IDH1 WT and R132H-indu-
cible THP-1 cell lines were transduced with the DECIPHER 27K Pooled shRNA
lentivirus libraries Human Module 1 and 3 (Cellecta), as these modules overlapped
the most number of MiSL candidates. Each cell line used in the study was
obtained from ATCC or DSMZ and identity was confirmed using short tandem
repeat analysis (Bio-synthesis, Louisville, TX). Periodically cells were tested for
mycoplasma contamination using enzyme-linked immunosorbent assay-based
method (Roche Life Science, Indianapolis, IN). Each library contains 275,000
unique shRNA constructs targeting 5,043 human genes (approximately 5 or 6
redundant shRNAs per gene) in the pRSI9 shRNA expression vector. The vector
contains the following elements: (i) U6 RNA polymerase III promoter driving
shRNA expression, (ii) 18-nucleotide DNA barcode sequence and (iii) UbiC
promoter driving RFP expression to mark transduced cells. For each inducible cell
line, 12 million cells were transduced at an efficiency of 30–40% to ensure that
B90% of the transduced cells were single integrants according to the Poisson
distribution. The number of transduced cells was approximately 100-fold the
complexity of the library. Three days after transduction, each cell population was
divided into two flasks. Dox was added to one of the flasks at a concentration of
1 mg ml� 1 to induce expression of either wild-type or mutant IDH1R132H. The cells
were expanded and selected in culture for 12 additional days. During this period,
the number of transduced cells in each flask was maintained at 41,000-fold the
complexity of the library. After the selection period, the cells were centrifuged, and
genomic DNA was extracted using a QIAamp Blood DNA Maxi Kit (Qiagen,
Valencia, CA) and submitted to Cellecta, Inc. for bar code amplification,
high-throughput sequencing and deconvolution. Twenty million barcode reads
were performed for each sample.

The following method was used to identify SL hits from shRNA data. shRNA
constructs with o100 barcode reads in the THP-1 R132H no-Dox sample were
excluded for further analysis to minimize noise associated with inadequate baseline
representation. Genes with less than three redundant shRNA were excluded. The
remaining constructs that (i) had a 420% reduction in the number of reads in the
presence of Dox compared to the number of reads in the absence of Dox in THP-1
R132H cells and (ii) had a mean drop-out ratio of o0.6 in the presence of Dox
versus the absence of Dox were considered shRNA hits. Of the 8,189 genes in the
libraries, 776 were considered SL hits using this method.

Inhibition of GLS in VHL mutant cell lines. Paired RCC4 and RCC4þVHL
cells (2,000 cells per well) were plated in DMEM containing 1 mM of glutamine in
a 96-well plate. After 24 h, cells were treated with either 25 nM siGLS SMARTpool
or siControl SMARTpool (Dharmacon). Media was changed 24 h after siRNA
treatment; 48 h after changing the media, viability was determined using the
CellTiter-Glo Assay (Promega). Percentage of viable cells was determined by
normalizing the treatment to the different controls.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms15580

10 NATURE COMMUNICATIONS | 8:15580 | DOI: 10.1038/ncomms15580 | www.nature.com/naturecommunications

https://purl.stanford.edu/ny450yx7231
https://purl.stanford.edu/ny450yx7231
https://www.broadinstitute.org/achilles
http://www.nature.com/naturecommunications


Pathway enrichment. For pathway analysis, Kyoto Encyclopedia of Genes and
Genomes and Gene Ontology BP gene sets from the MSigDB website were used.
The MiSL candidates of a mutation X were said to be enriched for the same
pathway if the following criterion were satisfied: (1) the mutated gene belongs to a
pathway P, and (2) the MiSL candidates of X have a statistically significant overlap
(Po0.05) with the genes in P. To get as specific pathways as possible, all pathways
that had 4500 genes were removed. Furthermore, to remove redundant results,
certain pathways were filtered out according to the following criterion. If two
pathways P1 and P2 found the same overlapping set, the pathway with the larger
(worse) P value was removed. Similarly, if the overlap set for a pathway was
completely contained in the overlap set of another pathway, the first pathway was
removed.

Breast cancer cell lines. Breast cancer CAL-120 and CAL-51 cell lines were
cultured in DMEM; T47D, MCF-7, HCC-1806 and HCC-38 cells in Roswell Park
Memorial Institute (RPMI) 1640; CAL-148 were cultured in Minimum Essential
Media (MEM) supplemented with 1 mg per 100 ml EGF; and SKBR-7 cells were
cultured in DMEM/F12 medium. Medium was supplemented with 1% glutamine,
1% penicillin/streptomycin and 8% FCS or 16% FCS (CAL-148 and CAL-51 cells).

CellTiter-Blue viability assay. Breast cancer cells were seeded in a 384-well plate.
After 24 h, inhibitor was added to the medium in twofold serial dilutions using a
HP Direct Digital Dispenser. After 72 h of culture, CellTiter-Blue (Promega) was
added. The conversion of resazurin into resofurin was measured by using an
EnVision Multilabel Reader. Treatment with 10 mM phenyl arsenic oxide was used
as a baseline for viability.

Colony-formation assays. Breast cancer cells were seeded in six-well plates and
cultured both in the absence and presence of MK-2206 as indicated. All cells were
fixed with 4% formaldehyde and stained with 0.1% crystal violet when wells
containing untreated cells became confluent.

Protein lysate preparation and western blot analysis. Cells were lysed in RIPA
buffer containing 150 mM NaCl, 50 mM Tris pH 8.0, 1% NP-40, 0.5% sodium
deoxycholate and 0.1% SDS supplemented with protease inhibitors (Complete,
Roche) and phosphatase inhibitor cocktails II and III (Sigma) and boiled for 10 min
after addition of sample buffer (60 mM Tris pH 6.8, 5% glycerol, 1% SDS, 2%
b-mercaptoethanol, 0.02% bromophenol blue) before SDS gel electrophoresis
followed by western blotting. Primary antibody against HSP90 (SC-7947) was
purchased from Santa Cruz. Antibodies against acetyl CoA carboxylase 1 (#4190),
beta-actin (#4967), cl-PARP (#9542), p-AKT (#4060), p-PRAS40 (#2997), p-S6
(#2211), p-4EBP1 (#9456) and p-BAD (#5284) were from Cell Signaling. Secondary
antibodies were obtained from Bio-Rad Laboratories and Thermo Scientific.
Uncropped blots are shown in Supplementary Fig. 7.

Predicting genetic biomarkers with MiSL. For a given drug, the set of genes that
are inhibited by the drug using DGidb38 were identified. Assume that drug D
inhibits a set of genes S. Subsequently, MiSL was used to determine which genomic
alterations in a given cancer would be SL with the inhibition of each gene in S, say
gene Y. This involved looking for HI-LO implications with deletion of Y and HI-HI
implications with amplification in Y. Any alteration that was located in the same
chromosome as Y was removed from consideration to minimize false positives. The
search for implications was done in a pan-cancer manner in cancer types where
alteration in Y is not a passenger (as determined by gene expression analysis
described earlier). Subsequently, for each identified genomic alteration that had a
Boolean implication in the previous step, filtering was done to remove alterations if
gene Y was not overexpressed in the samples with the genomic alteration versus the
wild-type samples in each cancer of interest.

Comparing MiSL predictions with pharmacological data. The comparison
pipeline was as follows: Given a target for inhibition (such as HDAC), we
determined the drug (Panobinostat) that was used to inhibit it. Next, the genes that
were inhibited by the drug were identified using DGidb34. Subsequently, MiSL was
used to identify predictive biomarkers for the drug as described in the previous
section. Next, cell lines that had the predicted biomarkers (either mutations and/or
CNAs) were identified. This gave us the list of MiSL-identified sensitive cell lines.
The pharmacological data was used to identify ‘true’ sensitive lines. Cell lines of the
following tissue types—central nervous system, kidney, intestine, lung, ovary,
breast—were used, as the tissue types were common to both the TGCA cancers and
had pharmacological data. All cell lines that were in the first quartile based on IC50

values of all tested cell lines for the drug were deemed to be ‘truly’ sensitive.
A similar analysis was done when there were multiple drugs for a given target
(MEK and RAF).

AML druggability screen. THP-1 cell lines were cultured in RPMI supplemented
with 10% FCS, 100mg ml� 1 of penicillin and 100 mg ml� 1 of streptomycin
and 1 mg ml� 1 puromycin. ABT-199 was purchased from ChemieTek

(Indianopolis, IN). Cantharidin, digoxigenin, proscardillin, wortmannin,
SB203580, TOFA, IC 261 and vorinostat were all purchased from Sigma. ABT-737,
GSK-J4, GSK-126, G007-LK, MM-102, SKI-606 and JNK-IN-8 were purchased
from Sellekchem (Houston, TX). LB100 (HY-18597) was obtained from Med-
ChemExpress (MonMouth Junction, NJ). After 4 days of Dox induction (or control
without Dox), cells were plated in RPMI 20% foetal bovine serum at 2� 105 ml� 1

in 96-well plate with twofold dilutions of each drug performed in duplicate. At
72 h, cell viability was measured using a plate-reader after addition of 10% Presto
Blue Cell Viability Reagent (ThermoFisher Scientific) at emission fluorescence
590 nm. IC50 curves were calculated for each drug in the presence and absence of
Dox using GraphPad Prism 6.0 (dose response inhibition) and the difference in
IC50 was plotted as a percentage of control (no dox). For ACACA validation,
transduced THP-1 cells were induced with Dox for 3 days, then washed into low
serum RPMI (0.5%) and cultured at low cell density for 7 days þ /�TOFA before
cell growth was measured with Presto Blue on a plate reader.

Lentiviral expression vectors. Lentivirally transduced pools of cells were selected
in 1 mg ml� 1 puromycin. IDH1 wild type and R132H mutation were expressed in
the pTRIPZ (Open Biosystems) tet-inducible lentiviral vector with green fluor-
escent protein encoded in the same open reading frame by T2A peptide.

CRISPR short guide RNA design and cloning. A total of 20 bp oligonucleotide
sequences targeting exon 4 of the ACACA locus were designed using the Desktop
Genetics platform (Deskgen.com) and four target sequences were chosen based on
Rule Set Number 2. Annealed synthetic DNA oligos for each target sequence were
phosphorylated and cloned into pX330-U6-Chimeric_BB-CBh-hSpCas9 (gift from
Feng Zhang, Addgene plasmid #42230). In-del mutation frequency was measured
using TIDE (Tracking of Indels by Decomposition: https://tide.nki.nl) after
nucleofection of 106 K562 cells with 2 mg of plasmid DNA using the Amaxa
Nucleofector II, program T-016. Genomic DNA was isolated after 3 days in culture
and exon 4 of ACACA flanking the cut site was amplified using forward (TAGG
ATGCTAGGGAGGCAGA) and reverse (TGATGGCATCTGCTGGTAAA)
primers with annealing temperature of 61 �C. The sgRNA sequence with the
highest cutting efficiency (65%) (GGCTTGCACCTAGTAAAGCA) was cloned
into lentiviral LentiCRISPRv2_tagRFP vector (gift from Feng Zhang, Addgene
plasmid #52961).

Genome Oligonucleotide
sequence

On-target
activity

Cut position PAM Nuclease Indel

GRCh38.81 TTCTCAACGAG
ATTTCACTG

75 chr17 (þ 37,284,896:
� 37,284,896)

TGG spCas9 21

GRCh38.81 GGCTTGCACCT
AGTAAAGCA

63 chr17 (þ 37,284,940:
� 37,284,940)

GGG spCas9 65

GRCh38.81 AAGCGAGTAA
CAAATTCTGC

52 chr17 (þ 37,284,879:
� 37,284,879)

TGG spCas9 10

GRCh38.81 TGTCTCGGCC
CTGCTTTACT

41 chr17 (þ 37,284,943:
� 37,284,943)

AGG spCas9 18

Patient sample data. Primary bone marrow and peripheral blood AML
samples were obtained with informed consent according to institutional guidelines
(Stanford University Institutional Review Board No. 6,453 and No. 18,329).
Mononuclear cells from each sample were isolated by Ficoll separation and
cryopreserved in liquid nitrogen. All of the primary samples were tested for
mutations in FLT3, NPM1, IDH1 and IDH2 by the Stanford Anatomic Pathology
and Clinical Laboratories. IDH1/2 mutations were detected using SNaPshot
methodology (Life Technologies). ACACA gene expression was determined using
Taqman (Cat. #4,331,182, ThermoFisher) with GAPDH as a housekeeping control.
AML blasts were cultured in OPTIMEM with 10� 6 M hydrocortisone and
20 ng ml� 1 each of interleukin-3, granulocyte macrophages colony-stimulating
factor, granulocyte colony-stimulating factor, interleukin-6, stem cell factor, FLT3L
and thrombopoietin (Peprotech).

Animal care. All mouse experiments were conducted according to an Institutional
Animal Care and Use Committee-approved protocol (Stanford Administrative
Panel on Laboratory Animal Care no. 22,264) and in adherence to the US National
Institutes of Health’s Guide for the Care and Use of Laboratory Animals.

Xenograft of Primary AML. Freshly thawed primary AML samples were
transduced with lentivirus from pRSI9 DECIPHER shRNA expression vector
(Cellecta, Mountain View, CA) on retronectin for 16 h and then one million cells
were transplanted intravenously into 6-to-12-week-old NSG mice conditioned
with 200 rad of irradiation. Both female and male mice were used. All mouse
experiments were conducted according to an Institutional Animal Care and Use
Committee-approved protocol (Stanford Administrative Panel on Laboratory
Animal Care no. 22,264) and in adherence to the US National Institutes of Health’s
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Guide for the Care and Use of Laboratory Animals. Up to five mice were
transplanted for each treatment group if a sufficient amount of primary patient
material was available, giving enough power to see a statistical difference of 430%
Mann–Whitney U. A fewer number of mice were used if the sample was limiting.
Mice were randomized per block prior to engraftment with either scrambled or
ACACA shRNA. Investigators were not blinded to shRNAs transduced into AML
after engraftment. Only IDH1mut AML samples were used in the study.

Bone marrow engraftment analysis. Bone marrow cells were collected by
aspiration of the femur using a 27-gauge needle and stained for 30 min at 4 �C with
the following fluorophore-conjugated monoloncal antibodies: mTER199-PE-Cy5
(dilution 1:100; clone TER-199, eBioscience), mCD45-PE-Cy7 (dilution 1:50; clone
A20, eBioscience), hCD45-V450 (dilution 1:25; clone HI30, BD), and hCD33-APC
(dilution 1:25, clone WM53, BD). Viable cells were identified by propidium iodide
exclusion. The human leukaemic population was identified as mTER199� ,
mCD45� , hCD45þ and hCD33þ . Cells stably transduced with shRNA were
identified as RFPþ .

Construction of ACACA shRNA expression lentiviral vectors. The human
ACACA (GenBank accession code: NM_198834.2) shRNA target sequences were
selected using the BLOCK-iT RNAi Designer tool (Life Technologies). Knockdown
efficiency of ACACA shRNA constructs was determined by quantitative real-time
PCR and western blotting. A pair of DNA oligonucleotides containing the sense
target sequence followed by a loop sequence (50-TCAAGAG-30) and the reverse
complement of the sense sequence were synthesized and annealed at 50 mM in
annealing bugger (10 mM Tris-HCl pH 8.0, 50 mM NaCl, 1 mM EDTA) at 95 �C
for 10 min, followed by a slow cooling over 1 h to room temperature. The
double-stranded DNA template was then cloned into the pRSI9 DECIPHER
shRNA expression vector (Cellecta, Mountain View, CA) digested with BsbI.
The ACACA sequences targeted by shRNA vectors used in this study were
50-UGGCAUUGCAGCAGUGAAA-30(shRNA 1); and 50-UGGAAUGAUUGCUG
GAGAA-30 (shRNA 2). shRNA 3 50-GUGCUGGGACUGUGGAAUA-30 was not
found to be on-target.

Statistical data analysis. Unless otherwise stated, P values comparing two
means were calculated using the two-tailed unpaired Student’s t-test in Prism
version 6 (GraphPad Software, Inc. La Jolla, CA). For in vivo engraftment data,
non-parametric Mann–Whitney U-test was used. A P value o0.05 was considered
statistically significant. IC50 values were determined using the dose response
(inhibition) function in Prism version 6.0. The data were normalized and fitted
using a variable Hill Slope model.

Comparison with DAISY. Since the DAISY paper21 does not include any
predictions for missense mutations, we reimplemented DAISY as described in the
paper and applied it to the IDH1 mutation. As described in the paper, DAISY has
three inference strategies: (1) Genomic survival of the fittest, (2) shRNA-based
functional examination, and (3) pairwise gene co-expression. DAISY intersects the
predictions from these three inference strategies to determine its list of candidates
for a specific alteration. For steps 1 and 3, we used the same thresholds as outlined
in the Methods section in the paper. Since the IDH1 mutation is present in very few
cell lines (o2%), the shRNA-based functional examination cannot be done for this
particular mutation. Hence, we excluded step 2 from the analysis. Thus the list of
DAISY candidates for the IDH1 mutation was obtained by intersecting the results
from steps 1 and 3.

Data availability. All relevant data are available from the authors.
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