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Genetic analysis and engineering would greatly benefit from an 

improved understanding of how transcriptional regulatory elements 

are encoded in DNA. Evolutionary analysis and chromatin-state map-

ping have revealed myriad regulatory elements across the human 

genome1,2, but we are largely unable to explain why an element is 

active in a specific cell type or to predict the effect of a specific muta-

tion. Moreover, although synthetic regulatory elements can provide 

powerful tools for genetics, high-throughput screening and gene  

therapy3–5, our ability to engineer such elements is limited, particularly 

in mammalian systems, where directed evolution is generally imprac-

tical and traditional functional assays6 suffer from low throughput.

To enable systematic dissection and optimization of transcrip-

tional regulatory elements, we developed MPRA (Fig. 1). Briefly, we 

first synthesized tens of thousands of oligonucleotides7 that contain 

a library of regulatory elements, each coupled to a short tag. We used 

the oligonucleotides to generate a pool of plasmids, where each plas-

mid contains one of the regulatory elements, an optional invariant 

promoter, an arbitrary open reading frame (ORF) and an identifying 

sequence tag. We co-transfected these plasmids into cells, where 

active elements drive transcription of mRNAs containing the tags 

in their 3′ untranslated regions. To estimate their relative activities, 

we sequenced and counted the tags in the reporter mRNAs and the 

plasmids pools, and then took the ratios of these counts. In contrast 

to the synthetic saturation mutagenesis assay of ref. 8, which was 

based on in vitro transcription of linear DNA, MPRA is suitable for 

use in mammalian cells and therefore allows assaying regulatory 

activity in a more natural context. The resulting data are amenable 

to a variety of analyses, including high-resolution footprinting and 

quantitative modeling9.

As a proof of concept, we applied MPRA to study two inducible 

enhancers: a synthetic cAMP-regulated enhancer (CRE), which is 

widely used as a cellular cAMP sensor4, and the virus-inducible 

enhancer of the human interferon-β gene (IFNB, also known as 

IFNB1), which is one of the most comprehensively studied mamma-

lian regulatory elements10. These sequences represent two different 

enhancer architectures11. The synthetic CRE is a ‘billboard’ enhancer 

that contains multiple nonoverlapping binding sites for the cAMP-

responsive transcription factor CREB. In contrast, the IFNB enhancer 

contains overlapping binding sites for six different transcription  

factors that assemble into a highly cooperative ‘enhanceosome’.

In this report, we first establish that MPRA can accurately identify 

functional sequence features in both enhancers at nucleotide resolu-

tion. Next, we use MPRA data to train QSAMs9,12,13 that describe 

the activity of the enhancers in their induced or uninduced states.  
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Finally, we demonstrate that these QSAMs can be combined to iden-

tify mutations that increase enhancer inducibility (the ratio of induced 

versus uninduced activity).

RESULTS

Experimental design and mutagenesis strategies

We synthesized 142-mer oligonucleotide pools containing 87-nt CRE 

and IFNB enhancer variants, as well as 10-nt tags and various invari-

ant sequences required for cloning (Supplementary Fig. 1).

We tested two different mutagenesis strategies. The first was ‘single-

hit scanning’8 where we assayed ~1,000 specific enhancer variants, 

including all possible single substitutions, multiple series of consecu-

tive substitutions and small insertions at all positions (Supplementary 

Table 1). Each scanning variant was linked to 13 tags for a total of 

13,000 distinct enhancer-tag combinations. This redundancy provides 

parallel measurements for each variant, which can be used to both 

quantify and reduce the impact of experimental noise, including tag-

dependent bias (Supplementary Fig. 2). The second was ‘multi-hit  

sampling’9 where we assayed ~27,000 distinct enhancer variants 

(Supplementary Table 2), each linked to a single tag. These variants 

were constructed by introducing random nucleotide substitutions into 

the enhancers at a rate of 10% per position. Because the variants were 

designed in silico and then synthesized, they provided a uniform muta-

tional spectrum. This strategy is advantageous because each substitu-

tion is assayed in a larger fraction of the variants and the use of multiple 

substitutions enables detection of interactions; one disadvantage is that 

the measurements for individual variants are less accurate.

We cloned oligonucleotide pools synthesized according to both 

strategies into identical plasmid backbones, inserted a minimal TATA-

box promoter and a luciferase gene between the variants and tags, and 

transfected the resulting plasmid pools into human embryonic kidney 

(HEK293T) cells. To induce the CRE or IFNB enhancer, we treated 

the transfected cells with forskolin or infected them with Sendai 

virus, respectively. To estimate the relative activities of the enhancer 

variants, we sequenced 20–120 million PCR-amplified mRNA and  

plasmid tags from each transfection.

Assay validation

We validated the resulting data using several different approaches 

(Supplementary Fig. 3). First, we examined the distributions of plas-

mid tag counts. We found that the vast majority (≥99.6%) of the tags 

we designed were indeed present in each pool, and that their relative 

concentrations were similar (coefficient of variation, 0.45–1.0). This 

confirms we successfully generated high-complexity plasmid pools.

Second, we synthesized and transfected each of the two CRE plas-

mid pools twice. We found that the ~13,000 and ~27,000 pairs of 

mRNA-plasmid tag ratios obtained from the single- and multi-hit 

pools, respectively, were highly correlated (Pearson r2 = 0.61 and 0.67, 

least significant P < 10−100). The medians of the 13 tag ratios from 

each distinct variant in the replicate single-hit pools were even more 

similar (r2 = 0.89, P < 10−100). This indicates that MPRA is robust, 

and that the noise level can be controlled by adjusting the number of 

distinct tags linked to each distinct variant.

Finally, we subcloned 24 plasmids from each of two CRE pools and 

individually measured their luciferase expression levels after forsko-

lin treatment. We found a linear relationship between the MPRA- 

and luciferase-based activities for both pools (r2 = 0.45 and 0.75,  

P < 0.0002). This indicates that MPRA is directly comparable to  

traditional reporter assays.

Single-hit scanning

We began our analysis by attempting to dissect the two induced 

enhancers using the scanning mutagenesis data. We estimated the 

relative activity of each variant by comparing the median of its  

13 mRNA/plasmid tag ratios to the median ratio for tags linked to the 

corresponding wild-type enhancer8.

We first focused on the CRE, which contains two consensus CREB 

dimer binding sites (denoted as sites 1 and 4 in Fig. 2a) separated by 

two monomer sites (sites 2 and 3). We found that 154 of the 261 pos-

sible single substitutions significantly altered its activity (5% FDR), 

with the majority (79%) resulting in decreased activity (Fig. 2b and 

Supplementary Table 3). The substitutions that resulted in the 

largest decreases were in or immediately flanking the CREB sites. 

Substitutions in the promoter-proximal CREB site 4 had the largest 

effects, which is consistent with reports of the cAMP responsiveness 

of CREB sites being inversely correlated with their distance from a 

TATA-box14. Within the two dimer sites, substitutions in the central 

CGs were the most deleterious. This is consistent with biochemical 

data that show that this dinucleotide is critical for high-affinity CREB-

DNA interactions15.

AAAAAAAAA

AAAAAAAAA

AAAAAAA
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Variants
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Inert ORF

Tags

Co-transfect

Count mRNA tags 

Construct plasmid pool

or

Synthesize variants

Single-hit scanning 
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(13,000–
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456

817
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  32

700

Count 
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Figure 1 Overview of MPRA. Oligonucleotides containing enhancer 

variants coupled to distinguishing tags are first generated using 

microarray-based DNA synthesis. The variants and tags are separated by  

two common restriction sites (circles/squares). The oligonucleotides are PCR  

amplified from universal primer sites (not shown) and directionally cloned 

into a plasmid backbone. An invariant promoter-ORF segment is then 

inserted between the variants and tags by double digestion and directional 

ligation. The resulting reporter plasmid pool is co-transfected into a 

population of cells. The relative regulatory activities of the transfected 

variants are inferred by sequencing and counting their corresponding 

tags from the cellular mRNA and the transfected plasmid pool. See 

Supplementary Figure 1 for additional details.
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Substitutions at 47 of 61 positions outside 

of the CREB sites also caused significant 

(5% FDR), although generally more subtle,  

changes in activity. This may reflect the 

effects of cryptic non-CREB binding sites. 

In particular, two substitutions upstream of 

CREB site 1, as well as almost every substitu-

tion in a C-rich motif flanking CREB site 4,  

resulted in increased CRE activity. These 

substitutions may therefore cause either 

increased recruitment of activating factors 

or decreased recruitment of repressors.

Scanning the CRE with blocks of eight 

consecutive substitutions caused changes 

that were consistent with the single substitu-

tions, but often more deleterious (Fig. 2c and 

Supplementary Fig. 4). Notably, although 

most single substitutions in CREB site 1 had 

no detectable effects, the functional relevance 

of this site was clearly supported by the com-

bined effect of multiple substitutions.

Insertions of both 5 and 10 nt were well-tolerated at multiple posi-

tions between CREB sites 1 and 2 and between sites 3 and 4 (Fig. 2d and 

Supplementary Fig. 5). This implies that the CRE activity is not dependent 

on specific spacing or phasing between these sites. In contrast, insertions  

between sites 2 and 3 resulted in decreased activity, despite single substi-

tutions having small effects in the same region. This may reflect a direct 

interaction between proteins at these two sites, which was also suggested 

by a study of these sites in their natural context16.

We next focused on the IFNB enhancer, which is a 44-nt sequence 

containing overlapping, nonconsensus binding sites for an ATF-2/c-Jun 

heterodimer, two IRF-3 and two IRF-7 proteins, and a p50/RELA (NF-κB) 

heterodimer (Fig. 3a)10. We included a small amount of flanking genomic 

sequence, for a total length of 87 nt. We found that 83 of the 261 possible 

single substitutions altered the enhancer’s activity in virus-infected cells 

(5% FDR), and that almost all (92%) of these were within the 44-nt core 

(Fig. 3b and Supplementary Table 4). Scanning with consecutive substi-

tutions did not reveal any unambiguously functional sequences outside 

of this core (Fig. 3c and Supplementary Fig. 6).

Within the core, there were only nine positions where all alternate 

nucleotides could be introduced without affecting the enhancer’s 

activity. Strikingly, seven of these positions were in gaps between the 

5′- and 3′-halves of IRF sites, where these proteins primarily interact 

with the DNA backbone10. Insertions were also largely deleterious 

within the core (Fig. 3d and Supplementary Fig. 7). Both 5- and 

10-nt insertions were, however, tolerated between IRF-7 site 2 and 

the p50/RELA site, which is consistent with the absence of a known 

protein or interaction spanning this gap.

Finally, seven single substitutions within the core caused a signifi-

cant increase in activity (5% FDR). At least four of these would be 

predicted to increase the affinity of a protein-DNA interaction, by 

introducing a central CG into the ATF-2/c-Jun site (TGACATAG to 

TGACGTAG), changing the 3′-halves of IRF-3 site 1 or 2 to its con-

sensus (AAAA or GAGA to GAAA) or changing the NF-κB 5′ half-

site to a sequence specifically preferred by the p50 subunit (GGGAA 

to GGGGA)17. We note that introduction of such consensus sites are, 

however, likely to decrease the specificity of the enhancer toward viral 

infection (see below and ref. 18).

Multi-hit information footprints

We next attempted to dissect the two enhancers using the multi-hit 

sampling data9. To quantify the dependency between enhancer activity  

5′-GCACCAGACAGTGACGTCAGCTGCCAGATCCCATGGCCGTCATACTGTGACGTCTTTCAGACACCCCATTGACGTCAATGGGAGAAC-3′
3′-CGTGGTCTGTCACTGCAGTCGACGGTCTAGGGTACCGGCAGTATGACACTGCAGAAAGTCTGTGGGGTAACTGCAGTTACCCTCTTG-5′
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Figure 2 Single-hit scanning mutagenesis of 

the cAMP-responsive enhancer. (a) The CRE 

sequence with known and putative transcription 

factor binding sites indicated. (b) Changes in 

induced activity owing to single-nucleotide 

substitutions. Each bar shows the log-ratio 

of the median variant and wild-type activity 

estimates. (c) Changes in induced activity owing 

to eight consecutive substitutions. The plot 

shows the medians of three different types of 

substitutions (see also Supplementary Fig. 4). 

Each bar is located at the fourth nucleotide in 

the corresponding 8-nt substitution. (d) Changes 

in induced activity owing to 5-nt (top) and 10-nt 

(bottom) insertions. The plots show the means of 

two different insertions (see also Supplementary 

Fig. 5). Each bar is located one nucleotide to the 

right of the insertion. Error bars show the first 

and third quartile. Red indicates a significant 

change from wild-type (Mann-Whitney U-test, 

5% FDR). Numerical values are provided in 

Supplementary Table 3.



©
2
0
1
2
 N

a
tu

re
 A

m
e
ri

c
a
, 
In

c
. 
 A

ll
 r

ig
h

ts
 r

e
s
e
rv

e
d

.

4 ADVANCE ONLINE PUBLICATION NATURE BIOTECHNOLOGY

A RT I C L E S

and substitutions at a specific position, we 

estimated the mutual information between 

the nucleotides at that position and the corres-

ponding tag ratios across the ~27,000 variants. 

To infer the effect of substitutions on the basal 

enhancer activities, we also assayed the variants 

in untreated cells. The resulting ‘information 

footprints’9,19 are shown in Figures 4 and 5.

We found that the 27 most informative 

positions in the induced CRE footprint were 

all located in or immediately flanking the four 

CREB sites (Fig. 4a). The more symmetric 

footprint of dimeric CREB site 4 compared  

to site 1 likely reflects the palindromic flanks 

of the former (ATTGACGTCAAT versus 

AGTGACGTCAGC). The information con-

tents of CREB sites 2–4 (that is, the mutual 

information between their constituent 

nucleotides and the CRE activity) were sub-

stantially lower in the uninduced state, which is consistent with cAMP-

 dependence. In contrast, the information contents of CREB site 1 and 

the cryptic binding sites near CREB sites 1 and 4 were higher in the 

uninduced footprint. This is again consistent with the most promoter-

distal CREB site being less cAMP-dependent14 and suggests that these 

sites may be important for controlling the basal CRE activity.

The IFNB enhancer footprint from virus-infected cells shows, as 

expected, that its functionally relevant nucleotides are concentrated in 

the 44-nt core (Fig. 5a). Indeed, 35 of 46 positions that had significant 

mutual information with the enhancer’s activity (5% FDR) are located 

in the core. Strikingly, the uninduced IFNB footprint revealed only 8 

informative positions, compared to 73 in the uninduced CRE footprint. 

This likely reflects the very low basal activity of the IFNB enhancer  

(at least fivefold lower than the uninduced CRE in luciferase assays).

Quantitative sequence-activity models

We next attempted to develop QSAMs9,12,13 for the two enhancers, with 

the goal of predicting the activity of novel variants. As a first step, we 

used linear regression to train QSAMs where each nucleotide position is 

simply assumed to contribute additively to the log-transformed activity 

of the enhancers in the induced or uninduced states12,13.

Linear QSAMs trained on the multi-hit data are shown in  

Figures 4b and 5b (see Supplementary Figs. 8 and 9 for models trained 

on single-hit data). Inspection revealed good qualitative correspondence 

with the sequence features described above. For example, the two CRE 

models show that CREB site 1 is critical for maximizing the induced 

activity, whereas site 4 has the largest influence on the basal activity.

To quantify how well the linear models describe our data, we 

compared their predictions to the observed activities for both 

the ~27,000 variants in the multi-hit training sets and the 261 

single substitutions in the independent single-hit data. For the 

CRE, we found that the linear model for the induced state gene-

rates predictions that are highly correlated with the observed 

activities of both multi- and single-hit variants (r2 = 0.63,  

P < 10−100 and r2 = 0.79, P < 10−89, respectively). Remarkably, this 

model therefore explains ~90% of the nontechnical variance in both 

data sets (compare to r2 = 0.67 and 0.89 between replicates, see above). 

The large number of multi-hit measurements ensures that this is not 

the result of overfitting (r2 ≥ 0.62 on fivefold cross-validation). In 

contrast, the induced IFNB model performed significantly better on 

single-hit variants (r2 = 0.61, P < 10−54) than on multi-hit variants  

(r2 = 0.071, P < 10−100), despite being trained on the latter set.

5′-TAGAAACTACTAAAATGTAAATGACATAGGAAAACTGAAAGGGAGAAGTGAAAGTGGGAAATTCCTCTGAATAGAGAGAGGACCATC-3′
3′-ATCTTTGATGATTTTACATTTACTGTATCCTTTTGACTTTCCCTCTTCACTTTCACCCTTTAAGGAGACTTATCTCTCTCCTGGTAG-5′

TGACA

ACTG

ATAGG

TATC

A

T

GAAA

CTTT

TGAAA

ACTTT

GGAGA

CCTCT

GAGA

CTCT

GGAGA

CCTCT

ATTCCT

TAAGGA

TGGGAA

ACCCTT

ATF-2 IRF-3(1) IRF-3(2) p50

c-Jun RelAIRF-7(1) IRF-7(2)

A

T

G

C

ATAGG

TATCC

A

T

TGAAA

ACTTT

GAAA

ACTTT

GAAAA

TTTT

A

T

G

C

1 8710 20 30 40 50 60 70 80

−1.5

−1.0

−0.5

0

0.5

1.0

−1.5

−1.0

−0.5

0

0.5

1.0

−1.5

−1.0

−0.5

0

0.5

1.0

−1.5

−1.0

−0.5

0

0.5

1.0

−1.5

−1.0

−0.5

0

0.5

1.0

−1.5

−1.0

−0.5

0

0.5

1.0

−1.5

−1.0

−0.5

0

0.5

1.0

→A

→C

→G

5 nt

10 nt

→T

∆a
c
ti
v
it
y
 (

lo
g

2
):

 s
in

g
le

 s
u

b
s
ti
tu

ti
o

n
s

∆a
c
ti
v
it
y
 (

lo
g

2
):

8
-n

t 
s
u

b
s
ti
tu

ti
o

n
s

∆a
c
ti
v
it
y
 (

lo
g

2
):

 i
n

s
e

rt
io

n
s

a

b

c

d

Figure 3 Single-hit scanning mutagenesis of 

the virus-inducible IFNB enhancer. (a) The 

IFNB enhancer with known transcription factor 

binding sites indicated. (b) Changes in induced 

activity owing to single-nucleotide substitutions. 

Each bar shows the log-ratio of the median 

variant and wild-type activity estimates.  

(c) Changes in induced activity owing to eight 

consecutive substitutions. The plot shows the 

medians of three different types of substitutions  

(see also Supplementary Fig. 6). Each bar  

is located at the fourth nucleotide in the  

corresponding 8-nt substitution. (d) Changes  

in induced activity owing to 5-nt (top) and  

10-nt (bottom) insertions. The plots show the  

means of two different insertions (see also  

Supplementary Fig. 7). Each bar is located  

one nucleotide to the right of the insertion.  

Error bars show the first and third quartile.  

Red indicates a significant change from wild-type  

(Mann-Whitney U-test, 5% FDR). Numerical 

values are provided in Supplementary Table 4.
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The difference in the fit of linear models  

appears to reflect the different architec-

tures of the enhancers. Most CRE multi-hit 

variants disrupt one or more of the nonover-

lapping consensus CREB sites, which caused 

large (median = 4.7-fold) and roughly 

additive reductions in its induced activity, 

until an apparent minimum is reached 

(Supplementary Fig. 8b). Multiple sub-

stitutions in the induced IFNB enhancer generally caused weaker  

(median = 1.8-fold) and nonadditive reductions in activity, which 

may reflect its initially weaker nonconsensus binding sites or more 

complex interactions between its transcription factors.

Because both enhancers showed evidence of nonlinear responses, 

we next attempted to refine our QSAMs by incorporating functional 

nonlinearities. We fit a variety of QSAMs to the data, including 

ones describing either dinucleotide interactions or biophysical inter-

actions between DNA-bound proteins (Supplementary Notes and 

Supplementary Tables 5 and 6). Model parameters were optimized 

using linear regression or mutual information maximization9. 

For the CRE, the best performing QSAM was a ‘linear-nonlinear’ 

model20 in which each nucleotide position is assumed to contribute 

additively to a linear activation measure, and a sigmoidal func-

tion of that measure then gives the transcriptional response. The 

optimal parameters for the linear part of this model are virtually 

identical (r2 = 0.98) to the strictly linear QSAM, but the two addi-

tional parameters that describe the sigmoidal nonlinearity allow the 

model to describe both minimum and maximum activation levels. 

Notably, this nonlinearity appears to capture much of the remain-

ing nontechnical variance in the induced CRE data (r2 = 0.72,  

P < 10−100, compared to r2 = 0.67 between the two replicates).  

For the IFNB enhancer, the best performing models were those 

that incorporated dinucleotide interactions, which is consistent 

with its more complex architecture, although no model provided 

more than a modest improvement over the linear QSAM (up to  

r2 = 0.10, P < 10−100). Thus, although linear QSAMs are imperfect 

representations of the underlying biological systems, in these cases 

they appear to provide a reasonable trade-off between complexity 

and predictive power.

Model-based optimization

Linear QSAMs have previously proven useful for engineering 

regulatory elements in bacteria12,21. To explore the potential  

for model-based optimization of synthetic regulatory elements  

in mammals, we next attempted to design enhancers with  

modified activities (Fig. 6).

We first attempted a ‘greedy’ approach to maximize the induced 

enhancer activities. We selected, for each position, the nucleotide 

predicted to make the largest activity contribution according to the 

corresponding linear model. This resulted in changing the CRE 

at 36 of 87 positions (CRE-A1 in Fig. 6a). These changes left the 

consensus CREB sites intact, but introduced predicted activating 

mutations into the flanks of CREB sites 1–3 and into the two cryp-

tic binding sites. For the IFNB enhancer, we limited modifications 

to the 44-nt core. This resulted in changes at 15 positions (IFNB- 

A1 in Fig. 6c), including conversion of every nonconsensus IRF 

half-site to the GAAA consensus and strengthening of the p50 half-

site. We individually synthesized these two variants and then com-

pared them to their wild types using a luciferase assay. We found 

that both new variants had significantly higher induced activities  

(2.1-fold for CRE-A1, P < 0.0001, and 2.6-fold for IFNB-A1, P < 0.0001;  

Fig. 6b,d). Notably, the increase for CRE-A1 (2.1-fold) was substan-

tially lower than predicted by the simple linear model (32-fold), but 

close to the value predicted by the linear-nonlinear model (1.7-fold). 

In contrast, the increase for IFNB-A1 (2.6-fold) was close to the 

value predicted by its linear model (2.1-fold). This difference likely 

reflects that the wild-type CRE is composed of consensus activa-

tor sites and therefore operates much closer to saturation than the 

IFNB enhancer. We also found, however, that both new variants 

had disproportionately higher uninduced activities (19-fold for  

CRE-A1 and 17-fold for IFNB-A1). This suggests that mutations that 

increase the induced activity of an enhancer may often decrease its 

inducibility, which would likely be detrimental in most biological 

and engineering contexts.

Accordingly, we attempted instead to maximize the inducibility 

of the two enhancers. We simultaneously considered the induced 

and uninduced linear QSAMs and, for each position, selected the 

nucleotide predicted to maximize inducibility, without (i) increas-

ing the uninduced activity or (ii) decreasing the induced activity 
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Figure 4 Multi-hit sampling mutagenesis of 
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5% FDR). Error bars show uncertainties inferred 

from subsampling. (b) Visual representations 
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provided in Supplementary Table 3.



©
2
0
1
2
 N

a
tu

re
 A

m
e
ri

c
a
, 
In

c
. 
 A

ll
 r

ig
h

ts
 r

e
s
e
rv

e
d

.

6 ADVANCE ONLINE PUBLICATION NATURE BIOTECHNOLOGY

A RT I C L E S

relative to that of the wild type. For the 

CRE, we synthesized three variants (CRE-I1 

to CRE-I3 in Fig. 6a). CRE-I1 and -I2 were  

predicted by QSAMs trained on each of the 

two replicate CRE data sets and contained 

10 and 12 substitutions, respectively. CRE-

I3 contained only the five substitutions that 

were shared between the first two. Only one 

variant (CRE-I2) contained any activating 

substitutions in the cryptic motifs near CREB sites 1 and 4. We found 

that all three variants showed a significant (P < 0.0001) increase 

in induced activity without the large decrease in inducibility seen  

for CRE-A1 (Fig. 6b). Moreover, CRE-I3 showed no increase in 

uninduced activity, which resulted in a ~25% increase in induc-

ibility relative to that of the wild type (~44-fold versus ~35-fold).  

Notably, we failed to isolate variants with similar or higher induci-

bilities from the original random variants (Supplementary Fig. 10). 

For the IFNB enhancer, we synthesized one variant containing five 

substitutions in the core, none of which modified the nonconsensus 

sites (IFNB-I1 in Fig. 6c). This variant also showed increased induc-

ibility relative to that of the wild-type (~100-fold versus ~67-fold).

0

1

2

3

4

0

1

2

3

4

5′-TAGAAACTACTAAAATGTAAATGACATAGGAAAACTGAAAGGGAGAAGTGAAAGTGGGAAATTCCTCTGAATAGAGAGAGGACCATC-3′
3′-ATCTTTGATGATTTTACATTTACTGTATCCTTTTGACTTTCCCTCTTCACTTTCACCCTTTAAGGAGACTTATCTCTCTCCTGGTAG-5′

TGACA

ACTG

ATAGG

TATCC

A

T

GAAA

CTTT

TGAAA

ACTTT

GGAGA

CCTCT

GAGAA

CTCT

GGAGA

CTCT

ATTCC

TAAGGA

TGGGAA

ACCCTT

ATF-2 IRF-3(1) IRF-3(2) p50

c-Jun RelAIRF-7(1) IRF-7(2)

A

T

G

C

ATAGG

TATCC

A

T

TGAAAG

ACTTT

GAAA

CTTT

AAAA

TTTT

A

T

GA

C

1 8710 20 30 40 50 60 70 80

M
ill
ib
it
s

M
ill
ib
it
s

Induced

Uninduced

Induced

Uninduced

A

C

G

T

A

C

G

T

A
c
ti
v
it
y
 c

o
n
tr

ib
u
ti
o
n

(r
e
s
c
a
le

d
)

0

1

a

b

Figure 5 Multi-hit sampling mutagenesis of the 

virus-inducible IFNB enhancer. (a) Information 

footprints of the IFNB enhancer in its induced 

(top) and uninduced (bottom) states. Red 

indicates significant information content at the 

corresponding position (permutation test,  

5% FDR). Error bars show uncertainties inferred 

from subsampling. (b) Visual representations 

of linear QSAMs of the IFNB enhancer in its 

induced (top) and uninduced (bottom) states. 

The color in each entry represents the estimated 

additive contribution of the corresponding 

nucleotide to the log-transformed activity of the 

enhancer. The matrices are rescaled such that 

the lowest entry in each column is zero and the 

highest entry anywhere is one. Both matrices are 

shown on the same scale. Numerical values are 

provided in Supplementary Table 4.

5′-GCACCAGACAGTGACGTCAGCTGCCAGATCCCATGGCCGTCATACTGTGACGTCTTTCAGACACCCCATTGACGTCAATGGGAGAAC-3′
3′-CGTGGTCTGTCACTGCAGTCGACGGTCTAGGGTACCGGCAGTATGACACTGCAGAAAGTCTGTGGGGTAACTGCAGTTACCCTCTTG-5′

5′-ACACCAGACATTGACGTAAGCTGCCAGATCCCATTCCCGTCATACTCTGACGTCTTTCAGACACCCCATTGACGTCAATGGGAGAAC-3′
3′-TGTGGTCTGTAACTGCATTCGACGGTCTAGGGTAAGGGCAGTATGAGACTGCAGAAAGTCTGTGGGGTAACTGCAGTTACCCTCTTG-5′

5′-ACACCAGACATTGACGTAAGCTGACTAATCCCATTCCCGTCATACTCTGACGTCTTTTAGACATCCCATTGACGTCAATGGGAAAAC-3′
3′-TGTGGTCTGTAACTGCATTCGACTGATTAGGGTAAGGGCAGTATGAGACTGCAGAAAATCTGTAGGGTAACTGCAGTTACCCTTTTG-5′

5′-ACACCAGACATTGACGTCAGCAGCCAGATCGCATTCCCGTCATTCTCTGACGTCTATCAGACACCCCATTGACGTCAATGGGAGAAA-3′
3′-TGTGGTCTGTAACTGCAGTCGTCGGTCTAGCGTAAGGGCAGTAAGAGACTGCAGATAGTCTGTGGGGTAACTGCAGTTACCCTCTTT-5′

TGACGTCAG

ACTGCAGT

GCACCAGACA

CGTGGTCTG

TGACGTCAA

ACTGCAGTTG T

C AACGTGACGT

CACTGCA

CGTCAT

GGCAGTA

CREB(1) CREB(2) CREB(3) CREB(4)

1 8710 20 30 40 50 60 70 80

Cryptic

Cryptic

5′-TCGCGAGACATTGACGTCAGCCGACTCTGTACGCTAACGTCATCCACTGACGTCTGTCTCCCGGGGGATTGACGTCAATGCGCTGGA-3′
3′-AGCGCTCTGTAACTGCAGTCGGCTGAGACATGCGATTGCAGTAGGTGACTGCAGACAGAGGGCCCCCTAACTGCAGTTACGCGACCT-5′

a

WT

CRE-A1

CRE-I1

5′-TAGAAACTACTAAAATGTAAATGACATAGGAAAACTGAAAGGGAGAAGTGAAAGTGGGAAATTCCTCTGAATAGAGAGAGGACCATC-3′
3′-ATCTTTGATGATTTTACATTTACTGTATCCTTTTGACTTTCCCTCTTCACTTTCACCCTTTAAGGAGACTTATCTCTCTCCTGGTAG-5′

5′-TAGAAACTACTAAAATGTAAATGACATAGGAAAACTGAAACTGAGAACGGAAACTGGGAAATTCCCCTGAATAGAGAGAGGACCATC-3′
3′-ATCTTTGATGATTTTACATTTACTGTATCCTTTTGACTTTGACTCTTGCCTTTGACCCTTTAAGGGGACTTATCTCTCTCCTGGTAG-5′

5′-TAGAAACTACTAAAATGTAAATGAGGAAAGGAAACGGAAACTGGAAACGGAAACTGGGGAATTCCACTGAATAGAGAGAGGACCATC-3′
3′-ATCTTTGATGATTTTACATTTACTCCTTTCCTTTGCCTTTGACCTTTGCCTTTGACCCCTTAAGGTGACTTATCTCTCTCCTGGTAG-5′

TGACA

ACTG

GG

C

A

T

GAAA

CTTT

TGAAA

ACTTT

GGAGA

CCTCT

GAGAA

CTCT

GGAGA

CCTCT

ATTCC

TAAGGA

TGGGAA

ACCCTT

ATF-2 IRF-3(1) IRF-3(2) p50

c-Jun RelAIRF-7(1) IRF-7(2)

A

T

G

C

ATAGG

TATCC

A

T

A

T

TGAAAG

ACTTT

GAAA

ACTTT

AAAA

TTTT

A

T

GA

C

1 8710 20 30 40 50 60 70 80d

WT

IFNB-A1

IFNB-I1

CRE-I2

CRE-I3
e f

***

***

***
***

L
u
c
if
e
ra

s
e
 a

c
ti
v
it
y

(R
L
U

)

In
d
u
c
ib

ili
ty

(f
o
ld

-c
h
a
n
g
e
)

Uninduced Induced

0
2
4
6
8

10
12
14
16
18

0

50

100

150

200

250

0

20

40

60

80

100

120

IF
N
B
-W

T

IF
N
B
-A

1

IF
N
B
-I1

IF
N
B
-W

T

IF
N
B
-A

1

IF
N
B
-I1

IF
N
B
-W

T

IF
N
B
-A

1

IF
N
B
-I1

b c

10

20

30

40

50

***

******

***

******
***

L
u

c
if
e

ra
s
e

 a
c
ti
v
it
y
 (

R
L

U
)

In
d

u
c
ib

ili
ty

 (
fo

ld
-c

h
a

n
g

e
)Uninduced Induced

n.s.
0 0 0

5

10

15

20

25

10
20
30
40
50
60
70
80

C
R
E-W

T

C
R
E-A

1

C
R
E-I1

C
R
E-I2

C
R
E-I3

C
R
E-W

T

C
R
E-A

1

C
R
E-I1

C
R
E-I2

C
R
E-I3

C
R
E-W

T

C
R
E-A

1

C
R
E-I1

C
R
E-I2

C
R
E-I3

Figure 6 Model-based optimization. (a) CRE variants predicted to maximize induced activity (A1) or inducibility (I1-I3) based on linear QSAMs trained 

on multi-hit data. Differences from wild type are indicated by red shading. Darker shading indicates a higher predicted contribution to the change in 

activity. (b) Luciferase activity of the wild-type (WT) and optimized CRE variants in untreated and forskolin-treated cells. RLU, relative light unit.  

(c) Inducibility of the CRE variants in response to cAMP elevation caused by forskolin treatment. (d) IFNB enhancer variants predicted to maximize induced  

activity (A1) or inducibility (I1) based on linear QSAMs trained on multi-hit data. (e) Luciferase activity of the WT and optimized IFNB enhancer variants 

in uninfected and virus-treated cells. (f) Inducibility of the IFNB enhancer variants in response to virus infection. Blue bars show mean activity across 

12 replicates in the induced or uninduced states. Error bars show s.e.m. (SE). All statistical comparisons are relative to WT in the same state; n.s., not 

significant; ***, P ≤ 0.0001; two-tailed t-test. Orange bars show the ratio of the corresponding induced and uninduced mean activities. Error bars show 

the range from (induced mean – induced SE)/(uninduced mean + uninduced SE) to (induced mean + induced SE)/(uninduced mean – uninduced SE).



©
2
0
1
2
 N

a
tu

re
 A

m
e
ri

c
a
, 
In

c
. 
 A

ll
 r

ig
h

ts
 r

e
s
e
rv

e
d

.

NATURE BIOTECHNOLOGY ADVANCE ONLINE PUBLICATION 7

A RT I C L E S

DISCUSSION

We have developed a massively parallel reporter assay that enables 

functional analysis of transcriptional regulatory elements at 

 significantly higher throughput than traditional bioluminescence- 

and fluorescence-based assays. In our initial experiments, we used 

MPRA to map functional transcription factor binding sites at single-

 nucleotide resolution and to train simple quantitative sequence-

 activity models. The ability to infer QSAMs of arbitrary functional 

form using data similar to ours has been demonstrated in bacteria9. 

Applied to mammalian cells, this approach may help elucidate the bio-

physical basis of inducible and cell type–specific enhancer activity.

MPRA can be readily adapted to other experimental designs by vary-

ing the oligonucleotide composition, promoter-ORF insert, plasmid  

backbone or transfected cell types. For example, promoter activity can 

be assayed by leaving out the optional invariant promoter, silencer 

activity can be assayed by including a promoter with strong basal 

activity and regulatory elements that directly affect RNA stability can 

be assayed by incorporating the synthetic variants in the reporter 

transcript. Advances in DNA synthesis technology promise to enable 

analysis of longer elements in the near future22,23 and transposon- or 

virus-derived sequences can be included in the backbone to support 

genomic integration. We therefore expect that the assay will facilitate 

screening and dissecting the large variety of regulatory elements that 

are being identified by the ENCODE Project1, the NIH Roadmap 

Program on Epigenomics24 and similar efforts.

Beyond studying variants of naturally occurring DNA sequences, 

the flexibility and decreasing cost of DNA synthesis is enabling 

development of novel regulatory elements. Strong synthetic pro-

moters have previously been selected from combinatorial libraries 

using fluorescence-activated cell sorting25,26. It may be challenging, 

however, to design direct selection strategies for elements with more 

complex characteristics, such as optimal inducibility, dynamic range 

or cell type specificity. Model-based optimization represents an alter-

native to direct selection. In this approach, all synthesized elements 

are first profiled in multiple cell states, with the resulting data being 

integrated to identify sequences that optimize complex objectives. 

This approach can be applied iteratively, which would be concep-

tually similar to optimization based on genetic algorithms27. With 

the development of more sophisticated mutagenesis and modeling 

strategies, we expect that this approach will provide a useful tool for 

synthetic biology.

METHODS

Methods and any associated references are available in the online  

version of the paper at http://www.nature.com/naturebiotechnology/.

Accession codes. All analyzed sequence data has been deposited in 

NCBI GEO under accession GSE31982.

Note: Supplementary information is available on the Nature Biotechnology website.
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ONLINE METHODS
Oligonucleotide library design and synthesis. We designed 142-

mer oligonucleotides to contain, in order, the universal primer site 

ACTGGCCGCTTCACTG, an 87-nt variable sequence, KpnI/XbaI restric-

tion sites (GGTACCTCTAGA), a 10-nt variable tag sequence and the uni-

versal primer site AGATCGGAAGAGCGTCG (Supplementary Fig. 1). The 

wild-type CRE sequence was derived from pGL4.29 (Promega). The wild-

type interferon-β enhancer sequence was derived from the NCBI36/hg18 

human genome reference assembly. The enhancer variants were designed 

as described in ‘Experimental design and mutagenesis strategies’, and 100 

distinct wild-type enhancer-tag pairs were included in each multi-hit pool. 

The distinct tags were selected from randomly generated 10-nt sequences, 

with the following constraints: (i) must contain all four nucleotides,  

(ii) must not contain a run of more than four identical nucleotides,  

(iii) must not contain a KpnI or XbaI restriction site, and (iv) must not 

contain a known mammalian microRNA seed sequence (obtained from 

http://www.targetscan.org/, April 2009).

The resulting oligonucleotide libraries were synthesized by Agilent as previ-

ously described7. Sanger sequencing of subcloned MPRA plasmids suggested 

that the synthesis error rate was 1 in 200–300, with small deletions being the 

most common failure mode (data not shown).

Plasmid construction. Oligonucleotide libraries were resuspended in TE 0.1 

buffer (10 mM Tris-HCl, 0.1 mM EDTA, pH 8.0) and amplified using 8–12 

cycles of PCR using Phusion High-Fidelity PCR Master Mix with HF buffer 

(New England Biolabs (NEB)) and primers ACTGGCCGCTTCACTG and 

CGACGCTCTTCCGATCT. The resulting PCR products were selected on the 

basis of size on 4% NuSieve 3:1 agarose gels (Lonza), purified using QIAquick 

Gel Extraction kits (Qiagen) and reamplified with primers GCTAAGGGCC

TAACTGGCCGCTTCACTG and GTTTAAGGCCTCCGAGGCCGACGCT

CTTC to add SfiI sites.

To generate the plasmid backbone for the MPRA constructs, the luc2 

reporter gene was removed from pGL4.10[luc2] (Promega) by HindIII-XbaI 

digestion. The 5′ extension of the HindIII site was filled in with Klenow 

fragment of DNA polymerase I (NEB) and the XbaI site was eliminated by 

treatment with Mung Bean nuclease (NEB). The resulting linear plasmid was 

self-ligated to generate cloning vector pGL4.10M.

To insert the variable regions into the MPRA vector, purified oligonucleo-

tide PCR products were digested with SfiI (NEB) and directionally cloned 

into SfiI-digested pGL4.10M using One Shot TOP10 Electrocomp E. coli 

cells (Invitrogen). To preserve library complexity, the efficiency of trans-

formation was maintained at >3 × 108 cfu/µg. Isolated plasmid pools were  

digested with KpnI/XbaI to cut between the enhancer variants and tags, 

ligated with the 1.78 kb KpnI-XbaI fragment of pGL4.23[luc2/minP] 

(Promega), which contains a minimal TATA-box promoter and the luc2  

ORF, and then transformed into E. coli as described above. Finally, to  

remove vector background, the resultant plasmid pools were digested  

with KpnI, size selected on a 1% agarose gel, self-ligated and re-transformed 

into E. coli.

For validation of QSAM optimized enhancers, each variant was indi-

vidually synthesized with the constant flanking sequences CTGGCC 

TAACTGGCCGCTTCACTG and GGTACCTGAGCTCGC (IDT). The 

oligonucleotides were PCR amplified as described above with primers  

CTGGCCTAACTGGCC and GCGAGCTCAGGTACC, cloned into 

pGL4.24[luc2P/minP] (Promega) using the In-Fusion PCR Cloning System 

(Clontech) and verified by Sanger sequencing before transfection.

Cell culture and transfection. HEK293T/17 cells (ATCC CRL-11268) were 

cultured in DMEM (Mediatech) supplemented with 10% FBS and l-glutamine/

penicillin/streptomycin.

For transfection of a plasmid pool, 4×106 cells were grown to 40–50% 

confluence in a 10 cm culture dish. Cells were transfected with 10 µg DNA 

from each plasmid pool in 1 ml Opti-MEM I Reduced Serum Medium 

(Invitrogen) using 30 µl Lipofectamine LTX and 10 µl Plus Reagent 

(Invitrogen). The transfection mixtures were removed by media exchange 

after 5 h. After 24 h, cells transfected with CRE plasmid pools were treated 

for 5 h with 100 µM forskolin (Sigma) in DMSO (induced state) or an 

equivalent volume of DMSO only (uninduced state). Cells transfected with 

IFNB plasmid pools were infected with Sendai virus (ATCC VR-907) at  

an MOI of 10 (induced state) or mock infected (uninduced state) for 16 h.  

Immediately following these treatments, cells were lysed in RLT buffer 

(Qiagen) and frozen at −80 °C. Total RNA was isolated from cell lysates 

using RNeasy kits (Qiagen).

For transfection of individual validation plasmids, 2.3×104 cells were 

seeded into each well of 96-well plates. Each well was transfected with 15 µl  

of Opti-MEM I Reduced Serum Medium (Invitrogen) containing 100 ng of 

luc2P reporter plasmid with CRE- or IFNB-derived variants and 10 ng of 

pGL4.73[hRluc/SV40] (Promega) for normalization, 0.25 µL Lipofectamine 

LTX and 0.1 µL Plus Reagent (Invitrogen). Cell were treated with forskolin 

or infected with Sendai virus as described above. Luciferase activities were 

measured using Dual-Glo Luciferase Assay (Promega) and an EnVision 2103 

Multilabel Plate Reader (PerkinElmer).

Tag-Seq. mRNA was extracted from total RNA using MicroPoly(A)Purist kits 

(Ambion) and treated with DNase I using the Turbo DNA-free kit (Ambion). 

First-strand cDNA was synthesized from 400-700 ng mRNA using High 

Capacity RNA-to-cDNA kits (Applied Biosystems).

Tag-Seq sequencing libraries were generated directly from 12% of a cDNA 

reaction or 50 ng plasmid DNA by 26 cycle PCR using Pfu Ultra HS DNA 

polymerase 2× master mix (Agilent) and primers AATGATACGGCGACCA

CCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT and CA

AGCAGAAGACGGCATACGAGATXXXXXXXXGTGACTGGAGTTCAGA

CGTGTGCTCTTCCGATCTCGAGGTGCCTAAAGG (where XXXXXXXX 

is a library-specific index sequence). The resultant PCR products were size-

selected using 2% agarose E-Gel EX (Invitrogen). The libraries were sequenced 

in indexed pools of eight, or individually, using 36-nt single-end reads on 

Illumina HiSeq 2000 instruments.

To infer the tag copy numbers in each Tag-Seq library, all sequence reads 

were examined, regardless of their quality scores. If the first 10 nt of a read 

perfectly matched one of the 13,000 or 27,000 designed tags and the remain-

ing nucleotides matched the expected upstream MPRA construct sequence, 

this was counted as one occurrence of that tag. All reads that did not meet 

this criterion were discarded. All tags that did not have a count of at least 20 

in every sequenced CRE or IFNB enhancer plasmid pool were also discarded. 

The mRNA/plasmid tag ratios were normalized by multiplying by the ratio of 

the total number of plasmid and mRNA tag counts from the corresponding 

Tag-Seq libraries.

Analysis of single-hit scanning variants. To estimate the relative activity 

of each distinct enhancer variant, the median of its 13 mRNA/plasmid tag 

ratios were compared to the median of the mRNA/plasmid ratios for tags 

linked to the corresponding WT enhancer. To increase the accuracy of this 

comparison, 65 distinct WT enhancer-tag pairs were included in each pool 

design. Significant differences in the median ratios were inferred by apply-

ing the Mann-Whitney U-test to all variant-WT pairs and then applying the 

Benjamini-Hochberg procedure to identify the 5% false discovery rate (FDR) 

threshold28.

Analysis of multi-hit sampling variants. Information footprints were gene-

rated as described in ref. 9. Briefly, the mRNA/plasmid tag ratios from each 

transfection experiment were first quantized by partitioning into five equally 

sized bins. The mutual information values between the bases at each position 

and the quantized activities were then estimated using the Treves-Panzeri 

limited sample correction29: 

I b f b
f b

f b f N
ei i

bi

i

i
; , log

,
log

,

m m
m

mm
( ) ≈ ( ) ( )

( ) ( ) −∑ 2 2
6

where bi is the base at the ith position, µ is the quantized activity, f() gives 

the corresponding joint and marginal frequency distributions and N is the 

number of assayed variants.

Error bars on these values were determined by computing uncorrected 

mutual information estimates I bnaive i
50%

;m( ) for 10,000 random sub-samples 
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that each contained 50% of the enhancer variants. The uncertainties in I(bi;µ) 

were computed from the variance of these estimates: 

d m mI b I bi naive i; var ;
%( ) = ( )( )1

2

50

To identify positions with significant information content, empirical null 

distributions for I bi ;m( ) were generated from 10,000 random permutations 

of the mapping between the quantized activities and the enhancer variants. 

The probability of the absence of information at the ith position was estimated 

as (ni+1)/10,000, where ni is the number of random permutations for which 

I bi ;m( ) exceeded the original value. The Benjamini-Hochberg procedure was 

then applied to identify the 5% FDR threshold28.

Quantitative sequence-activity modeling. The method of ordinary least-

squares was used to train linear QSAMs of the form 

log

,

activity A xbi bi
b i

s( )( ) = ∑

where Abi is the activity contribution of base b at the ith position, and xbi is 

an indicator variable that is 1 if the enhancer variant σ contains base b at the 

ith position and 0 otherwise. Other models, including nonlinear QSAMs, are 

described in the Supplementary Notes.

Model-based optimization of the induced activity of each enhancer was 

performed by identifying and synthesizing 

argmax
s

sactivityinduced ( )

based on the corresponding linear QSAMs (without interaction terms).

Model-based optimization of the inducibility of each enhancer was per-

formed by identifying and synthesizing 

argmax
s

s
s

activity

activity
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based on the corresponding linear QSAMs, with the constraints 
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where WTi is the base at the ith position of the wild-type enhancer.

28. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and 

powerful approach to multiple testing. J.R. Stat. Soc. B 57, 289–300 (1995).

29. Treves, A. & Panzeri, S. The upward bias in measures of information derived from 

limited samples. Neural Comput. 7, 399–407 (1995).
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