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We developed a series of interrelated locus-specific databases 
to store all published and unpublished genetic variation related 
to hemoglobinopathies and thalassemia and implemented 
microattribution to encourage submission of unpublished 
observations of genetic variation to these public repositories. 
A total of 1,941 unique genetic variants in 37 genes, 
encoding globins and other erythroid proteins, are currently 
documented in these databases, with reciprocal attribution of 
microcitations to data contributors. Our project provides the 
first example of implementing microattribution to incentivise 
submission of all known genetic variation in a defined system. 
It has demonstrably increased the reporting of human variants, 
leading to a comprehensive online resource for systematically 
describing human genetic variation in the globin genes 
and other genes contributing to hemoglobinopathies and 
thalassemias. The principles established here will serve as a 
model for other systems and for the analysis of other common 
and/or complex human genetic diseases.

Since completion of the human genome project, a major aim in the 

field of genetics has been to determine how individual genomes 

differ from each other and how these differences explain variation 

in phenotype. However, it often remains unclear which variants 

cause changes in phenotype and which are phenotype neutral; fur-

thermore, in many instances, the mechanisms by which variants 

cause changes in gene expression and phenotypes remain unknown.  

To address this, DNA sequence data will need to be matched 

with well-defined phenotypes to make meaningful connections  

between structure, function and mechanism.

A potential hurdle to this approach is how to encourage ‘phenotypers’ to 

report their observations. After the initial excitement during the 1980s and 

1990s of identifying disease-causing molecular defects and the mecha-

nisms by which they arise, enthusiasm in this area has declined such that 

it has become increasingly difficult to report small numbers of human 

variants in scientific journals. Consequently, many new variants associ-

ated with well-defined phenotypes and, equally important, variants which 

cause no change in phenotype remain unreported. Inevitably, a large 

amount of potentially valuable information remains inaccessible.

To overcome this problem, we implemented a process for captur-

ing such information with the incentive of microattribution, whereby 

the contribution of those individuals collecting new detailed geno-

type and phenotype data is positively encouraged and appropriately 

acknowledged1. We have applied the microattribution approach 

to inherited disorders affecting either the structure of hemoglobin 

(such as sickle cell disease (SCD)) or the levels and balance of globin 

chain production (the thalassemias). We also included variants that 

cause hereditary persistence of fetal hemoglobin (HPFH), a condition 

associated with increased production of γ-globin which ameliorates 

the clinical endpoints of SCD and β-thalassemia. The hemoglobino-

pathies and thalassemias are among the commonest inherited disor-

ders in humans. Variants of the globin-encoding genes, residing in 

the α-like and β-like globin gene clusters, have provided key insights 

into the principles underlying human molecular genetics since the 

discipline was established in the 1950s (ref. 2).
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Although most hemoglobinopathies are classic monogenic disor-

ders affecting structural genes, globin gene expression is the end prod-

uct of a complex regulatory network (transcriptional and epigenetic) 

that emerges during terminal erythroid differentiation. Consequently, 

globin gene expression may also be affected by trans-acting mutations. 

Examples of such mutations were initially found in families with rare 

syndromal disorders, of which α-thalassemia was one component 

(for example, ATR-X (MIM301040) and ATMDS (MIM300448) syn-

dromes)3,4. Similarly, trichothiodystrophy (MIM300448) was shown 

to be associated with β-thalassemia due to mutations in the XPD 

component of the general transcription factor complex TFIIH5. The 

association of X-linked thrombocytopenia with β-thalassemia identi-

fied a mutation of the erythroid-specific transcription factor GATA-1 

(ref. 6), and recently, systematic analysis of subjects with unexplained 

HPFH has identified mutations in the KLF1 erythroid transcription 

factor7. Finally, the implementation of genome-wide association 

studies searching for quantitative trait loci that influence the level of 

fetal hemoglobin (HbF) has revealed several important regulators of 

HBG1 and HBG2 gene expression, including the HBS1L-MYB8 and 

BCL11A loci9,10 on chromosomes 6 and 2, respectively. As genetic 

variations in the genes within the erythroid network are investigated 

in further detail, we anticipate many more discoveries of trans-acting 

mutations that may provide target pathways for manipulating globin 

gene expression to ameliorate the symptoms of thalassemia and 

SCD. Therefore it is important that an effective database be created 

to accommodate all of the mutations affecting the globin genes and 

the network regulating their expression.

Here we report the first example of implementing microattribu-

tion to systematically document genetic variation leading to human 

genetic disorders, using hemoglobinopathies and thalassemias as 

an example. Furthermore, we demonstrate that microattribution 

can incentivise data contribution and, importantly, show how an 

integrated human variant database (including the recently acquired 

microattribution data) can provide key insights into human genetic 

diseases. Microattribution provides an important mechanism and 

incentive for researchers to report all variants within a specific gene 

or disease network. Following the principles established for the globin 

disorders, these databases should provide a key resource for under-

standing the molecular pathology of human genetic diseases.

Developing the microattribution process
To ensure that all natural mutations and their associated phenotypes 

are accurately and efficiently recorded, we comprehensively docu-

mented genotype and phenotype information in individuals with 

globin disorders in a series of interrelated locus-specific databases 

(LSDBs). Traditionally, credit has been given to discoverers of genetic 

variants through citations of their publications describing the vari-

ants. However, the increased rate of discovery through re-sequencing 

efforts far exceeds the capacity of citations of individual publications 

to give adequate credit. In order to be used effectively by the com-

munity, published variants are deposited into databases such as those 

described here; nevertheless, many variants may still not be published. 

Alternatively, variants may be discovered in large-scale collaborative 

projects. Credit can be given to the discoverers of the variants depos-

ited in databases through the new process of microattribution1. Each 

variant used in a paper is listed in four microattribution tables with its 

accession number and with unique IDs for the discoverers, or ‘authors’, 

of the variant. In this paper, we have applied ‘microcitations’ to 

 hemoglobinopathy-associated variants in order to provide incentives 

to data producers to deposit all of their data in these public resources1. 

Depositing the microattribution tables in a central repository  

(for example, NCBI) provides a venue for quantitative microcitations 

for every unique author. Using this approach (first implemented in 

2010), there has been a marked increase in the number of reported 

variants in the globin gene network (Supplementary Fig. 1).

Implementing microattribution
All genetic variation data have been collected and documented in 

the HbVar database of hemoglobin variants and thalassemia muta-

tions11 and the Leiden Open-Access Variation Database (LOVD)–

based LSDBs for the other erythroid proteins12 (Supplementary 

Note) with appropriate attribution of the data contributors. These 

variants are reported in publicly available microattribution tables 

(also provided in Supplementary Table 1) that have been centrally 

deposited in NCBI (Supplementary Fig. 2). Each microattribution 

table has different information related to submission to the cen-

tral depository, microattribution, phenotype and allele frequency 

(Supplementary Note).

In this protocol, data submitters directly contribute variants lead-

ing to hemoglobinopathies to HbVar and in return obtain direct 

microattribution credit. These variants have been recorded with 

researcher IDs and in the case of previously published variants, the 

corresponding PubMed ID was also used (Supplementary Fig. 2). 

To date, 232 variants have been directly submitted to HbVar without 

being published in a peer-reviewed journal, some of which have been 

deposited with more than one researcher ID. Seventy-six variants 

were ‘orphan’, that is, variants for which there was neither a PubMed 

ID nor a researcher ID, all of which were variants initially deposited 

to HbVar in the year 2000 and for which either valid contact details 

for the variant contributors was lacking or the contributor(s) failed 

to respond to our invitation. These variants have been deposited with 

an HbVar researcher ID.

For all unpublished variants directly contributed to HbVar by the 

microattribution process, a very stringent evaluation of the informa-

tion submitted takes place. Contributed variant data are evaluated 

by curators, all of whom are senior scientists with extensive editorial 

experience, especially in the field of hemoglobinopathies. The cura-

tors directly contact the data contributors, if needed, for clarifications 

related to issues pertaining to phenotypic description, method of vari-

ant identification, ethnicity of the individual with the variant, allele 

frequency and so on. Upon acceptance, contributed data become part 

of the main HbVar data collection recorded with the contributor(s) 

researcher ID.

Although microattribution can operate locally (within journals and 

databases each reporting quantitative citation of accessions), deposit-

ing the microattribution tables in a central repository of cited acces-

sions (for example, NCBI or European Bioinformatics Institute (EBI)) 

allows the central registry to be mined for citations associated with 

unique author identities and with each author’s publications and data-

base entries. For the purpose of our project, we have chosen to deposit 

the microattribution tables in NCBI, and a copy of these tables is also 

deposited in Nature Publishing Group’s central database.

Mining the databases
In the case of globin gene disorders, many variants were conven-

tionally reported in genetics journals, and these variants identi-

fied and/or elucidated many mechanisms underlying key aspects of 

gene regulation in cis (for example, promoters, enhancers, silencers, 

mRNA processing signals and translational signals) and in trans 

(for example, transcription factors, chromatin remodeling factors 

and protein chaperones)2. Furthermore, these variants helped to 

establish the molecular mechanisms underlying human genetic 
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disease. Implementation of the microattribution approach has 

substantially added to the repository of variants, and use of this 

expanded database will continue to provide an important resource 

for generating and testing new hypotheses in the globin field. Below, 

we provide some recent examples illustrating the value of the micro-

attribution approach. The value of the comprehensive globin vari-

ant database (pre- and post-microattribution) clearly emphasizes 

the importance of developing similar databases for other genes and 

disease systems for which microattribution will become the main 

route to publication.

The first example of the value of the microattribution approach is 

the finding that the distribution of promoter mutations differs among 

globin genes. Although a great deal has been learned about mam-

malian promoters from previous analyses of the globin genes, the 

discovery of additional variants continues to develop our knowledge 

of how these genes are normally activated and how they are altered in 

human genetic disease. Globin gene promoter mutations contributing 

to β-like thalassemias and HPFH comprise approximately 10% of the 

total variants and result in various phenotypes, from the asympto-

matic non-deletional HPFH conditions to the mild forms of β- and 

δ-thalassemia. The HBB promoter region harbors several genetic 

variants associated with β+ (expressing lower than normal levels of 

β-globin) and β0 (expressing no β-globin) thalassemia; these variants 

cluster in cis-regulatory elements known to bind transcription factors 

(Fig. 1). Many of these variants have been published, but an increasing 

number of unpublished variants have been contributed to HbVar by 

investigators around the world. The unpublished variants provide a 

more complete view of the contribution of genetic variants to pheno-

types. In this particular case, they reveal phenotypic consequences of 

variants in more positions of well-known transcription factor binding 

sites (the CACC box and the TATA box) and show that additional subs-

titutions in other binding sites contribute to phenotype (for example, 

positions c.-80, c.-81 and c.-138). The HBB c.-121C>T transition is 

adjacent to the CCAAT box. This motif was recognized 30 years ago 

as a component of some promoters, but the newly reported mutation 

here is the first indication that genetic variation close to this motif 

affects HBB gene expression in humans.

In contrast to the promoters for HBB and HBD, variants are not 

found in the first 100 bp of the HBG1 and HBG2 promoters, but 

instead, variants occur in the upstream region from approximately 

−100 to −200 bp (Fig. 2a). The HBG1 and HBG2 gene promoters 

have several cis-regulatory elements in common with HBB and HBD 

promoters, such as a TATA box and a proximal CCAAT box, but no 

variants have been found in these elements. However, the CCAAT box 

is duplicated in the promoters of HBG1 and HBG2, and the upstream 

CCAAT box (and the nucleotides very close to it) carries variants 

associated with HPFH. A newly discovered, unpublished variant,  

c.-250C>T, calls attention to a tight cluster of mutations all associated 

with HPFH. An HPFH-associated variant has now been reported at 

each nucleotide from position c.-251 to c.-248 (198 to 195 bp from 

the gene transcription start site), and a variant at c.-255 (202 bp 

from the transcription site) is associated with a similar phenotype 

(Fig. 2a). Given these phenotypes, this cluster of variants within the 

motif CCCTTCCC delineates a response element important for the 

silencing of the HBG1 and presumably HBG2 genes in adult erythroid 

cells (the same c.-250C>T mutation has been found in the promoter 

of HBG2; data not shown).

To test the hypothesis, derived from the documented variants, 

that this motif delineates a response element important for silencing 

of the HBG1 and HBG2 genes, we generated human β-globin locus 

(β-yeast artificial chromosome (β-YAC)) transgenic mice containing 

the HBG1 c.-248C>G variation (the Brazilian non-deletional HPFH 

mutation), which directly alters the CCCTTCCC sequence at the 3′ C.  

Adult mutant β-YAC mice showed an HPFH phenotype with an 

increased number of HbF-containing cells (Fig. 2b), and real-time 

quantitative RT-PCR analyses showed an 8- to 34-fold increase of 

HBG1 gene expression relative to wild-type β-YAC mice (Fig. 2c). 

By comparison, β-YAC transgenic mice bearing the Greek type of 

non-deletional HPFH (HBG1 c.-170G>A)13 showed a 56-fold increase 

of HBG1 gene expression relative to wild-type β-YAC mice. Future 

experiments will examine the mechanism of repression at this region. 

Recent studies have shown that the transcription factor BCL11A acts 

to repress HBG1 and HBG2 expression in adult erythroid cells, act-

ing with the protein SOX6 (ref. 14). Although BCL11A showed no 

binding to the HBG1 and HBG2 proximal promoters, SOX6 showed 

strong binding that overlapped with GATA1 binding in these regions. 

In this way, the database has posed a new testable hypothesis. The 

CCCTTCCC element, which is adjacent to a GATA binding site, may 

bind a currently unknown protein that acts in concert with BCL11A 

to repress the production of γ-globins.

Human Feb. 2009 (GRCh37/hg19) chr11:5,248,301–5,248,400 (100 bp)

5,248,400

EKLF

CACC

HBB:c.-138C>G

HBB:c.-143C>G

HBB:c.-121C>T HBB:c.-106G>C HBB:c.-76A>C

HBB:c.-80T>G

HBB:c.-81A>C

HBB:c.-136C>G
HbVar published substitutions

HBB:c.-75G>C
HBB:c.-50A>CHBB:c.-78A>G

HBB:c.-78A>C

HBB:c.-79A>G

HBB:c.-80T>C

HBB:c.-80T>A

HBB:c.-81A>G

HBB:c.-82C>T

HBB:c.-82C>A

HBB:c.-100G>A

HBB:c.-136C>A

HBB:c.-137C>T

HBB:c.-137C>G

HBB:c.-137C>A

HBB:c.-138C>T

HBB:c.-138C>A

HBB:c.-140C>T

HBB:c.-142C>T

HbVar unpublished variants

NF-Y, CP1

CCAAT

βDRF

βDRE
TFIIB

BRE

TBP

TATA +1, HBB

5,248,390 5,248,380 5,248,370 5,248,360 5,248,350 5,248,340 5,248,330 5,248,320 5,248,310 5,248,300

Figure 1 Graphical display of the HBB promoter variants recorded in HbVar, partitioned into unpublished variants contributed by investigators (blue) 

and published variants (purple). The genomic position, sequence change and associated phenotype (β+ or β0 thalassemia) are given for each variant. 

Known protein-binding sites in the DNA sequence are boxed, with the name of the site and the binding protein above it. The transcription start site 

(+1) is in reverse type. The reverse complement of the genomic sequence is shown so that the gene is in the conventional left-to-right transcriptional 

orientation. The image was generated by displaying the results of a query on HbVar in the Pennsylvania State University genome browser followed by 

editing for clarity. Variants are given using the conventional nomenclature.
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Overall, comparative analysis of the globin gene promoter muta-

tions revealed a distinct distribution pattern for each gene. In 

HBD, promoter mutations are widely spread within the proximal 

promoter region and do not form mutational clusters around cis-

 regulatory elements (Supplementary Fig. 3). Notably, the muta-

tions c.-81A>G and c.-80T>C have been found in the TATA boxes 

of HBB and HBD, suggesting that they could be the result of genetic 

recombination events15.

A second example of the value of the microattribution approach 

was the discovery of α-thalassemia resulting from inherited or 

acquired mutations in ATRX. The comprehensive database originally 

identified and defined some of the key trans-acting factors in the 

globin gene system. The expanded database continues to refine our 

understanding of such trans-acting factors. Unlike the common forms 

of α-thalassemia resulting from cis-acting genetic defects, two rare 

forms of α-thalassemia are caused by trans-acting mutations in the 

X-linked ATRX. These mutations cause ATR-X syndrome, which is 

characterized by a severe form of syndromal mental retardation with 

characteristic dysmorphic faces, genital abnormalities and a mild but 

variable form of hemoglobin H disease3. In addition, acquired muta-

tions in ATRX are seen in individuals who develop ATMDS syndrome, 

a condition in which α-thalassemia (AT) is associated with myelodys-

plastic syndrome (MDS)4. In both conditions, the levels of α-globin 

mRNA are reduced, suggesting that ATRX is involved in the normal 

regulation of α-globin gene expression. To date, 107 unique inherited 

and/or acquired disease-causing missense mutations have been found, 

which are located predominantly in two highly conserved domains 

of ATRX (Supplementary Fig. 4). These variants cluster within a 

globular domain that contains a plant homeodomain, which binds 

the N-terminal tails of histone H3, and the 7 helicase sub-domains, 

which identify ATRX as a member of the SNF2 family of chromatin-

associated proteins. Structure and function studies based on natural 

mutations in the comprehensive database have elucidated precisely 

how ATRX is recruited to some of its targets through an interaction 

with the N-terminal tails of histone H3.

Notably, the degree of α-thalassemia seen in individuals with 

ATMDS (having acquired ATRX gene mutations) is much greater than 

in individuals with the ATR-X syndrome (having inherited ATRX 

gene mutations), even when, by comparing mutations on the com-

prehensive database, we can see that the same ATRX mutation occurs 

in both conditions16. Again, analysis of the comprehensive variant 

database poses a new testable hypothesis. These findings suggest that 
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Figure 2 Functional role of  

HBG1 and HBG2 promoter  

variants. (a) HBG1 promoter  

variants are confined to the  

upstream region and associated  

with HPFH. The top line gives a  

schematic view of previously  

described binding sites for  

transcription factors, including  

the TATA box, the stage-selector  

element (SSE), the CCAAT  

boxes, GATA motifs bound by  

GATA1, and an octamer motif  

(OCT), plus the response element  

(RE) defined by a cluster of HPFH  

mutations. Motifs in which variants  

have been found are colored gray. The transcription start site (+1) is in reverse type. The image was generated by displaying the results of a query on 

HbVar in the Pennsylvania State University genome browser followed by editing for clarity. Variants are given using the conventional nomenclature.  

(b) Flow cytometry analysis of γ-globin+ erythrocytes from adult HBG1 c.-248C>G HPFH β-YAC transgenic lines. A mouse monoclonal γ-globin antibody 

was used to determine the percentage of F cells. Line and individual numbers are indicated at the top of the panels. Percent γ-globin–positive cells are 

indicated within each plot (see also Online Methods). Wild-type (wt) β-YAC mice served as negative controls, and HBG1 c.-170G>A HPFH β-YAC mice13 

were used as positive controls. In parallel experiments, human β-globin was expressed in 92–97% of the cells analyzed for all lines (data not shown). 

(c) Human γ-globin gene expression in HBG1 c.-248C>G HPFH β-YAC transgenic lines. Percent γ-globin gene expression, copy number-corrected and 

normalized to per-copy mouse α-globin gene expression, is shown on the y axis. β-YAC construct and line numbers, where appropriate, are indicated at 

the bottom of the plot. Error bars represent standard deviation of triplicate experiments.©
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another component of the ATRX pathway may frequently be mutated 

in individuals with the common forms of MDS.

A third example of the value of microattribution is the discovery 

of variants in KLF leading to elevated HbF levels. KLF1 encodes a key 

erythroid transcriptional regulator that has many target genes with 

essential functions in erythroid cells including the globins, membrane 

proteins and heme synthesis enzymes17. The first report on KLF1 

mutations in humans linked them to the rare blood group In(Lu) 

phenotype18, in which the expression of the Lutheran blood group 

antigens is diminished. The reported individuals carried eight differ-

ent loss-of-function mutations and one mutation abolishing a GATA1 

binding site in the KLF1 promoter. In all cases, the mutant KLF1 

allele occurred in the presence of a normal KLF1 allele. A subsequent 

study on a large Maltese pedigree demonstrated that haploinsuffi-

ciency for KLF1 causes HPFH7. A mutation in KLF1, resulting in 

p.Lys288X, was present exclusively in all individuals in this family 

with HPFH. This mutation ablates the complete zinc finger domain 

and therefore abrogates DNA binding of the mutant KLF1 protein 

(Fig. 3 and Supplementary Table 2). The occurrence of HPFH in 

the individuals with In(Lu) has not been investigated. An analysis 

of archived blood samples from a number of these individuals with 

In(Lu) showed that their HbF levels were raised compared to those 

observed in control samples. Also, 30 out of 31 Sardinian individuals 

bearing four different KLF1 mutations showed raised HbF levels  

compared to control samples. In addition, two individuals suffering 

from dyserythropoietic anemia carried a KLF1 p.Glu325Lys alteration 

and had an HbF level of 40% (Fig. 3 and Supplementary Table 2)19,20. 

Mutations at this position alter the DNA binding specificity of KLF1. 

We note that the mouse neonatal anemia mutant (Nan) has an altera-

tion in the orthologous amino acid of Klf1, p.Glu339Asp21,22. Adult 

heterozygous Nan animals show increased expression of embryonic 

globins, a condition akin to HPFH. Collectively, these data support 

the link between KLF1 and HPFH and highlight the importance of 

the second DNA-binding zinc finger for normal KLF1 function. This 

raises the possibility that some of the KLF1 mutations which result in 

altered DNA binding specificity may have increased impact on HbF 

levels. This hypothesis can now be experimentally tested in vitro by 

DNA binding assays and in vivo in animal models.

A final example of the value of microattribution is the discovery 

of hemoglobin variants. A large proportion of genetic variation 

in the human globin genes leads to hemoglobin variants. Most 

hemoglobin variants are rare, result from single amino acid sub-

stitutions of a globin chain and have a negligible or even no effect 

on hemoglobin function2.

The documented hemoglobin variants reside solely within exons 

and include: (i) structural variants with a pleiotropic effect (for 

example, HbS (HBB c.20A>T), HbE (HBB c.79G>A) and HbC (HBB 

c.19G>A); (ii) variants (138 different variants) leading to unstable 

hemoglobin, where mutations affect the heme pocket of the globin 

chain; (iii) variants leading to methemoglobinemia, where the  

ferrous ion (Fe2+) of the heme group is oxidized to the ferric state 

(Fe3+) (most of these variants involve replacement by tyrosine of the 

histidine residues that anchor heme); and (iv) variants (92 different 

variants) with altered oxygen affinity, most of which result in increased 

oxygen affinity.

Although all of these correlations between structure and func-

tion have depended on data from the comprehensive database, new 

insights and questions continue to arise as new mutants are added 

to the repository, an initiative that sparked the implementation of 

the microattribution process for hemoglobinopathies. Notably,  

14 hemoglobin variants result from the same mutation, but this 

mutation occurs on a different α-globin gene paralogue23, that is, 

variations involving related genes that have evolved from recent gene 

duplication and as such are subject to frequent gene conversion events 

(Supplementary Fig. 5). HbF-Sardinia and HbF-Lesvos provide 

another such example, involving the same mutation (c.227T>C) but 

on the paralogous HBG1 and HBG2 genes, respectively24.

DISCUSSION
The development of an integrated set of comprehensive LSDBs for a 

particular spectrum of human genetic diseases with microattribution, 

as described here for the hemoglobinopathies, provides an example of 

how such systems might be set up for a wide range of human genetic 

disorders in the future. Using the microattribution process set out 

here, datasets which took decades to accumulate for the globin genes 

could be assembled rapidly for other genes and disease systems. In the 

past, the description of natural variants has been accommodated by 

the conventional literature and has made an enormous contribution 

to the field of human genetics. In addition, it has shown how some of 

these mutations have reached polymorphic frequencies through natu-

ral selection, and detailed analysis of natural mutants has also been 

invaluable in establishing many of the general principles underlying 

mammalian gene regulation and human molecular genetics.

The strength of such observations will continue to increase as new 

mutations enter the databases, even though these might not merit a 

full publication on their own. Furthermore, new patterns of muta-

tion may emerge; the accumulation of coding mutations in particular 

regions of a protein often identify a functionally important domain, as 

illustrated by ATRX and KLF1 gene variants (Supplementary Fig. 4 

and Fig. 3, respectively), and conversely, the identification of com-

mon neutral variants may rule out a major functional role for other 

regions. Similarly, DNA variants of key regulatory regions (promoters, 

enhancers, silencers, boundary elements and locus control regions) 

are often critical in identifying important cis elements and yet other 

neutral variants may help map regions of little functional importance 

(Fig. 1 and Supplementary Fig. 3). At the nucleotide level, such vari-

ants can even help map transcription factor binding sites25. The emer-

gence of patterns of mutation may also point to the mechanisms of 

mutation, exemplified by gene conversion events identified at the 
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HBA1 and HBA2, and HBG1 and HBG2 genes. Additionally, subtle 

phenotypic differences, for example, between δβ-thalassemia and 

deletional HPFH2, can be attributed to the different junction points 

and the sequences that are removed or juxtaposed as a result of these 

deletions. Systematic documentation of these deletions in HbVar is 

currently under way and may allow for the identification of new regu-

latory elements that lie within the deleted or juxtaposed regions.

Perhaps the most important aspect of such comprehensive interact-

ing databases is that they will pose and answer questions that would 

otherwise not be addressed, potentially leading to useful new insights. 

These databases will not only be of value in establishing the pheno-

types of natural variants but may also be used in the development 

of personalized medicine. In the globin field, a great deal of effort is 

directed toward the development of drugs to increase the level of HbF 

and thereby ameliorate the clinical severity of β-thalassemia and SCD. 

Potential therapeutic agents identified to date include hydroxyurea 

and butyrate. The response to HbF-augmenting therapies is variable 

in patients with β-thalassemia and SCD, with approximately 25% of 

these patients being poor responders or non-responders26. Therefore, 

the ability to predict a patient’s response to hydroxyurea and/or 

other HbF-augmenting drugs would help in optimizing therapy. 

Polymorphisms in genes regulating HbF expression, hydroxyurea 

metabolism and erythroid progenitor proliferation might modulate 

a patient’s response to HbF-inducing pharmacological agents27. Data 

to support the use of pharmacogenetic testing of hydroxyurea treat-

ment for hemoglobinopathies are currently very limited. Several SNPs 

in HAO2, ARG2, FLT1 and NOS1 have been associated with variable 

HbF response to hydroxyurea treatment27, and genome-wide tran-

scription profiling efforts are expected to shed light on new pathways 

involved in this process28.

Since its establishment in 2000, we have witnessed a substantial 

annual growth in HbVar content, and a fraction of data submitters 

were subsequently encouraged to submit a full or short report to the 

scientific journal Hemoglobin29. The large repository of previously 

reported data, together with more recent data acquired by micro-

attribution, shows how the comprehensive documentation of human 

variation will provide key insights into normal biological processes 

and how these are perturbed in human genetic disease. We anticipate 

that microattribution will further encourage new data submitters to 

contribute their observations to HbVar to receive not only credit in the 

form of microcitations but also coauthorship in a future microattribu-

tion update. The microattribution process established here provides a 

template for similar ventures for other human genes, their associated 

systems and the variants that cause their associated genetic diseases. 

The value of the databases may be considerably further enhanced by 

linking to collections of blood and DNA samples and also cataloged 

online, as in the case of many other rare diseases in EuroBioBank.

In essence, this project is a well-coordinated multicenter effort to 

systematically document genetic variation in globin and associated 

genes relevant to hemoglobinopathies and thalassemias and is the 

first example of implementing microattribution to provide incentives 

for submitting data describing genetic variation. As such, it should 

serve as a model for the comprehensive documentation and analysis of 

genetic variations in other common or genetically complex disorders, 

the conduct of a thorough synopsis of other fields, or both.

URLs. HbVar Database of Hemoglobin Variants and Thalassemia 

Mutations, http://globin.bx.psu.edu/hbvar/; Golden Helix Server, 

http://www.goldenhelix.org/; Leiden Open-Access Variation Database, 

http://www.lovd.nl/; Frequencies of Inherited Disorders database, 

http://www.findbase.org/; dbSNP database, http://www.ncbi.nlm.

nih.gov/projects/SNP/; Human Genome Variation Society, http://

www.hgvs.org/; ResearcherID System of Thomson ISI, http://www.

researcherid.com/; Open ID system, http://openid.net/; Genotype-to-

Phenotype database project’s Researcher Identification Primer (RIP), 

http://www.gen2phen.org/.

METHODS
Methods and any associated references are available in the online 

 version of the paper at http://www.nature.com/naturegenetics/.

Note: Supplementary information is available on the Nature Genetics website.
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ONLINE METHODS
Quantitation of hemoglobin fractions. Twenty microliters of total blood 

was analyzed using cation-exchange high performance liquid chromatography 

(VARIANT, Bio-Rad Laboratories).

Construction of the HBG1 c.-248C>G HPFH β-YAC. A 213-kb yeast artifi-

cial chromosome (YAC) carrying the human β-globin locus with the HBG1 

c.-248C>G point mutation (Aγ -195C>G), leading to the Brazilian type of non-

deletional HPFH, which directly alters the CCCTTCCC sequence at the 3′ C, was 

synthesized as follows, using previously described methods30. Briefly, a marked 

HBG1 gene (Aγm) contained as a 5.4-kb SspI fragment (GenBank file U01317, 

coordinates 38,683-44,077) in the yeast-integrating plasmid (YIP) pRS406 was 

mutagenized using the QuikChange Site-Specific Mutagenesis Kit (Stratagene). 

The presence of the HBG1 c.-248C>G point mutation was confirmed by DNA 

sequencing, and the mutation was introduced into the β-YAC by ‘pop-in’, ‘pop-

out’ homologous recombination in yeast. The mark in the Aγm-globin gene is 

a 6-bp deletion at +21 to +26 relative to the Aγ-globin translation start site, 

allowing preliminary discrimination of the modified β-YAC from the wild-type 

β-YAC by restriction enzyme digestion following homologous recombination. 

The presence of the mutation in clones passing this test was confirmed by DNA 

sequence analysis of a PCR-amplified fragment encompassing the mutated 

region. Transformation of yeast, screening of positive clones, purification of 

the β-YAC and mouse transgenesis were performed as described previously31.

Copy number determination. The relative β-YAC transgene copy number 

was calculated using the HBG1 and HBG2 genes and a standard curve gen-

erated from genomic DNA samples from our wild-type β-YAC transgenic 

mice. Samples of transgenic mouse genomic DNA were serially diluted from 

100–0.01 ng and subjected to SYBR PCR with HBG1 or HBG2 primers. The 

copy number for each reaction was estimated by comparing the threshold cycle 

of each sample to the threshold cycle of the standards and normalizing to the 

wild-type β-YAC transgenic mouse samples.

Real-time quantitative RT-PCR. Total RNA, isolated from adult peripheral 

blood, was reverse-transcribed and the resultant complementary DNA was 

subjected to real-time quantitative RT-PCR analysis with SYBR green using 

a CFX96 system (Bio-Rad). Human γ-globin expression was normalized to 

mouse α-globin expression and corrected for transgene and endogenous gene 

copy number. PCR primer sequences were as previously described32. Results 

are averages of triplicates, with the standard error indicated.

F-cell detection by flow cytometry. We used a protocol adapted from refer-

ences 32 and 33. Essentially, mouse blood was collected from the tail vein 

in heparinized capillary tubes. Ten microliters of whole blood was washed 

in 1 ml PBS, centrifuged at 200g at 4 °C for five minutes, and the pellet was 

resuspended and fixed in 1 ml of 4% fresh paraformaldehyde and PBS at  

pH 7.5 (Sigma-Aldrich) for 40 min at 37 °C. The cells were centrifuged, and  

the pellets were resuspended in 1 ml of ice cold acetone and methanol (4:1) 

and incubated on ice for one minute. Following centrifugation, cells were 

washed twice in 1 ml ice-cold PBS and 0.1% BSA and resuspended in 800 µl 

of PBS, 0.1% BSA and 0.1% Triton X-100 (PBT). One microgram of γ-globin 

antibody (catalog number sc-21756 unconjugated, Santa Cruz Biotechnology) 

was added to 100 µl of the cell suspension and incubated for 20 min in the dark 

at room temperature (37 °C). One milliliter of ice-cold PBS and 0.1% BSA was 

added, the sample was centrifuged and the pellet was resuspended in 100 µl 

ice-cold PBT. One hundred microliters of Alexa 488 (catalog number 11001, 

Invitrogen Molecular Probes) secondary antibody, diluted 1:200 in ice-cold 

PBT, was added to the cell suspension and the sample was incubated at room 

temperature for 20 min in the dark. Cells were washed with 1 ml of ice-cold 

PBS and 0.1% BSA and the pellets were resuspended in 200 µl of PBS. Samples 

were analyzed using an Accuri C6 Flow Cytometer (Accuri Cytometers, Inc.) 

with a 530/30 nm (FITC/GFP) emission filter. Data from 30,000 cells were 

acquired for analysis using CFlow Software (Accuri Cytometers, Inc.); cells 

were gated to exclude dead cells. For, FL1-A, a 530/30 nm (FITC, GFP) filter 

was used to identify the Alexa 488–positive F cell population; For FL2-A a 

585/40 nm (PE, PI) filter was used as a compensation to identify the Alexa 

488–negative cell population. For M3, the mean fluorescent intensity, an 

increase in F cells is reflected by a peak shift and increase in the peak of 

fluorescence intensity. P4, distinct positive F cells.

30. Harju, S., Navas, P.A., Stamatoyannopoulos, G. & Peterson, K.R. Genome 

architecture of the human β-globin locus affects developmental regulation of gene 

expression. Mol. Cell. Biol. 25, 8765–8778 (2005).

31. Harju-Baker, S., Costa, F.C., Fedosyuk, H., Neades, R. & Peterson, K.R. Silencing 

of Agamma-globin gene expression during adult definitive erythropoiesis mediated 

by GATA-1-FOG-1-Mi2 Complex binding at the -566 GATA site. Mol. Cell. Biol. 28, 

3101–3113 (2008).

32. Böhmer, R.M. Flow cytometry of erythroid cells in culture: bivariate profiles of fetal 
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