
Systematic Dynamic Memory Management
Design Methodology for Reduced
Memory Footprint

DAVID ATIENZA and JOSE M. MENDIAS

DACYA, Complutense University of Madrid

STYLIANOS MAMAGKAKIS, and DIMITRIOS SOUDRIS

VLSI Design and Test Center, Democritus University of Thrace

and

FRANCKY CATTHOOR

DESICS Division, IMEC

New portable consumer embedded devices must execute multimedia and wireless network appli-
cations that demand extensive memory footprint. Moreover, they must heavily rely on Dynamic
Memory (DM) due to the unpredictability of the input data (e.g., 3D streams features) and sys-
tem behavior (e.g., number of applications running concurrently defined by the user). Within
this context, consistent design methodologies that can tackle efficiently the complex DM behav-
ior of these multimedia and network applications are in great need. In this article, we present
a new methodology that allows to design custom DM management mechanisms with a reduced
memory footprint for such kind of dynamic applications. First, our methodology describes the
large design space of DM management decisions for multimedia and wireless network applica-
tions. Then, we propose a suitable way to traverse the aforementioned design space and con-
struct custom DM managers that minimize the DM used by these highly dynamic applications.
As a result, our methodology achieves improvements of memory footprint by 60% on average in
real case studies over the current state-of-the-art DM managers used for these types of dynamic
applications.

Categories and Subject Descriptors: C.3 [Special-Purpose and Application-Based Systems]:
Real-time and embedded systems

General Terms: Design, Management, Measurement, Performance

This work was partially supported by the Spanish Government Research Grant TIC2002/0750, the
European founded program AMDREL IST-2001-34379 and E.C. Marie Curie Fellowship contract
HPMT-CT-2000-00031.
Authors’ addresses: D. Atienza and J. M. Mendias, DACYA/UCM, Avda. Complutense s/n, 28040
Madrid, Spain. email: {datienza, mendias}@dacya.ucm.es; S. Mamagkakis and D. Soudris, VLSI
Design and Testing Center – Democritus University, Thrace, 67100 Xanthi, Greece. email:
{smamagka,dsoudris}@ee.duth.gr; F. Catthoor, IMEC vzw, Kapeldreef 75, 3001 Heverlee, Belgium.
email: {francky.catthoor}@imec.be.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2006 ACM 1084-4309/06/0400-0465 $5.00

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 2, April 2006, Pages 465–489.

466 • D. Atienza et al.

Additional Key Words and Phrases: Multimedia embedded systems, custom dynamic memory man-
agement, reduced memory footprint, memory management, operating systems

1. INTRODUCTION

In order to cope with the increasing complexity, the drastic rise in memory
requirements, and the shortened time-to-market of modern consumer embed-
ded designs, new system design methodologies are required. In the past, most
applications that were ported to embedded platforms stayed mainly in the clas-
sic domain of signal processing and actively avoided algorithms that employ
data de/allocated dynamically at run-time, also called Dynamic Memory (DM
from now on). Recently, the multimedia and wireless network applications to
be ported to embedded systems have experienced a very fast growth in their
variety, complexity and functionality. These new applications (e.g., MPEG4 or
new network protocols) depend, with few exceptions, on DM for their opera-
tions due to the inherent unpredictability of the input data. Designing the final
embedded systems for the (static) worst-case memory footprint1 of these new
applications would lead to a too high overhead for them. Even if average values
of possible memory footprint estimations are used, these static solutions will
result in higher memory footprint figures (i.e., approximately 25% more) than
DM solutions [Leeman et al. 2003]. Furthermore, these intermediate static so-
lutions do not work in extreme cases of input data, while DM solutions can do
it since they can scale the required memory footprint. Thus, DM management
mechanisms must be used in these designs.

Many general DM management policies, and implementations of them, are
nowadays available to provide relatively good performance and low fragmenta-
tion for general-purpose systems [Wilson et al. 1995]. However, for embedded
systems, such managers must be implemented inside their constrained Oper-
ating System (OS) and thus have to take into account the limited resources
available to minimize memory footprint among other factors. Thus, recent em-
bedded OSes (e.g., RTEMS [2002]) use custom DM managers according to the
underlying memory hierarchy and the kind of applications that will run on
them.

Usually custom DM managers are designed to improve performance [Berger
et al. 2001; Wilson et al. 1995], but they can also be used to heavily optimize
memory footprint compared to general-purpose DM managers, which is very
relevant for final energy and performance in new embedded systems as well
since many concurrent dynamic applications have to share the limited on-chip
memory available. For instance, in new 3D vision algorithms [Pollefeys et al.
1998], a suitably designed custom DM manager can improve memory foot-
print by 45% approximately over conventional general-purpose DM managers
[Leeman et al. 2003]. However, when custom DM managers are used, their
designs have to be manually optimized by the developer, typically considering
only a limited number of design and implementation alternatives, which are de-
fined based on his experience and inspiration. This limited exploration is mainly

1Accumulated size of all the data allocated in memory and counted in bits.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 2, April 2006.

Systematic Dynamic Memory Management Design Methodology • 467

restricted due to the lack of systematic methodologies to consistently explore
the DM management design space. As a result, designers must define, con-
struct and evaluate new custom implementations of DM managers and strate-
gies manually, which has been proved to be programming intensive (and very
time-consuming). Even if the embedded OS offers considerable support for stan-
dardized languages, such as C or C++, the developer is still faced with defining
the structure of the DM manager and how to profile it on a case per case basis.

In this article, we present a new methodology that allows developers to de-
sign custom DM management mechanisms with the reduced memory footprint
required for these new dynamic multimedia and wireless network applications.
First of all, this methodology delimits the relevant design space of DM man-
agement decisions for a minimal memory footprint in new dynamic embedded
applications. After that, we have studied the relative influence of each decision
of the design space for memory footprint and defined a suitable order to traverse
this design space according to the DM behavior of these new dynamic applica-
tions. As a result, the main contributions of our methodology are two-fold: (1)
the definition of a consistent orthogonalization of the design space of DM man-
agement for embedded systems and (2) the definition of a suitable order for new
dynamic multimedia and wireless network applications (and any other type of
embedded applications that possesses the same dynamic de/allocation charac-
teristics) to help designers to create very customized DM managers according
to the specific dynamic behavior of each application.

The remainder of the article is organized in the following way: In Section 2,
we describe relevant related work. In Section 3, we present the relevant DM
management design space of decisions for a reduced memory footprint in dy-
namic applications. In Section 4, we define the order to traverse this design
space in order to minimize the memory footprint of the application under anal-
ysis. In Section 5, we outline the global design flow proposed in our methodology
to minimize the memory footprint in dynamic embedded applications. In Sec-
tion 6, we introduce our case studies and present in detail the experimental
results obtained. Finally, in Section 7, we draw our conclusions.

2. RELATED WORK

Currently the basis of an efficient DM management in a general-context are al-
ready well established. Much literature is available about general-purpose DM
management software implementations and policies [Wilson et al. 1995]. Try-
ing to reuse this extensive available literature, new embedded systems where
the range of applications to be executed is very wide (e.g., new consumer de-
vices) tend to use variations of well-known state-of-the-art general-purpose
DM managers. For example, Linux-based systems use as their basis the Lea
DM manager [Berger et al. 2001; Wilson et al. 1995] and Windows-based sys-
tems (both mobile and desktop) include the ideas of the Kingsley DM manager
[Microsoft MSDN (a);(b); Wilson et al. 1995]. Finally, recent real-time OSes for
embedded systems (e.g., RTEMS [2002]) support DM de/allocation via custom
DM managers based on simple region allocators [Gay and Aiken 2001] with
a reasonable level of performance for the specific platform features. All these

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 2, April 2006.

468 • D. Atienza et al.

approaches propose optimizations considering general-purpose systems where
the range of applications are very broad and unpredictable at design time, while
our approach takes advantage of the special DM behavior of multimedia and
wireless network applications to create highly customized and efficient DM
managers for new embedded systems.

Lately, research on custom DM managers that take application-specific be-
havior into account to improve performance has appeared [Vo 1996; Wilson et al.
1995; Berger et al. 2001]. Also, for improving speed in highly constrained em-
bedded systems, Murphy [2000] proposes to partition the DM into fixed blocks
and place them in a single linked list with a simple (but fast) fit strategy, for
example, first fit or next fit [Wilson et al. 1995]. In addition, some partially con-
figurable DM manager libraries are available to provide low memory footprint
overhead and high level of performance for typical behaviors of certain appli-
cation (e.g., Obstacks [Wilson et al. 1995] is a custom DM manager optimized
for a stack-like allocation/deallocation behavior). Similarly, Vo [1996] proposes
a DM manager that allows to define multiple regions in memory with several
user-defined functions for memory de/allocation. Additionally, since the incur-
sion in embedded systems design of object-oriented languages with support
for automatic recycling of dead-objects in DM (usually called garbage collec-
tion), such as Java, work has been done to propose several automatic garbage
collection algorithms with relatively limited overhead in performance, which
can be used in real-time systems [Bacon et al. 2003; Blackburn and McKinley
2003]. In this context, also hardware extensions have been proposed to perform
garbage collection more efficiently [Srisa-an et al. 2003]. The main difference
of these approaches compared to ours is that they mainly aim at performance
optimizations and propose ad-hoc solutions without defining a complete design
space and exploration order for dynamic embedded systems as we propose in
this paper.

In addition, research has been performed to provide efficient hardware sup-
port for DM management. Chang et al. [1999] presents an Object Management
Extension (i.e., OMX) unit to handle the de/allocation of memory blocks com-
pletely in hardware using an algorithm which is a variation of the classic binary
buddy system. Shalan and Mooney [2000] proposes a hardware module called
SoCDMMU (i.e., System-On-a-Chip Dynamic Memory Management Unit) that
tackles the global on-chip memory de/allocation to achieve a deterministic way
to divide the memory among the processing elements of SoC designs. However,
the OS still performs the management of memory allocated to a particular
on-chip processor. All these proposals are very relevant for embedded systems
where the hardware can still be changed, while our work is thought for fixed
embedded designs architectures where customization can only be done at the
OS or software level.

Finally, a lot of research has been performed in memory optimizations and
techniques to reduce memory footprint and other relevant factors (e.g., power
consumption or performance) in static data for embedded systems (see surveys
in Panda et al. [2001] and Benini and De Micheli [2000]). All these techniques
are complementary to our work and are usable for static data that usually are
also present in the dynamic applications we consider.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 2, April 2006.

Systematic Dynamic Memory Management Design Methodology • 469

3. RELEVANT DYNAMIC MEMORY MANAGEMENT DESIGN SPACE FOR

DYNAMIC MULTIMEDIA AND WIRELESS NETWORK APPLICATIONS

In the software community, much literature is available about possible design
choices for DM management mechanisms [Wilson et al. 1995], but none of the
earlier work provides a complete design space useful for a systematic explo-
ration in multimedia and wireless network applications for embedded systems.
Hence, in Section 3.1, we first detail the set of relevant decisions in the design
space of DM management for a reduced memory footprint in dynamic multime-
dia and wireless network applications. Then, in Section 3.2, we briefly summa-
rize the interdependencies observed within this design space, which partially
allow us to order this vast design space of decisions. Finally, in Section 3.3, we
explain how to create global DM managers for new dynamic multimedia and
wireless network applications.

3.1 Dynamic Memory Management Design Space for Reduced Memory Footprint

Conventional DM management basically consists of two separate tasks, namely
allocation and de-allocation [Wilson et al. 1995]. Allocation is the mechanism
that searches for a block big enough to satisfy the request of a given applica-
tion and de-allocation is the mechanism that returns this block to the available
memory of the system in order to be reused later by another request. In real ap-
plications, the blocks can be requested and returned in any order, thus creating
“holes” among used blocks. These holes are known as memory fragmentation.
On the one hand, internal fragmentation occurs when a bigger block than the
one needed is chosen to satisfy a request. On the other hand, if the memory to
satisfy a memory request is available, but not contiguous (thus, it cannot be
used for that request), it is called external fragmentation. Therefore, on top of
memory allocation and de-allocation, the DM manager has to take care of frag-
mentation issues as well. This is done by splitting and coalescing free blocks to
keep memory fragmentation as small as possible. Finally, to support all these
mechanisms, additional data structures should be built to keep track of all the
free and used blocks, and the defragmentation mechanisms. As a result, to
create an efficient DM manager, we have to systematically classify the design
decisions that can be taken to handle all the possible combinations of these
previous factors that affect the DM subsystem (e.g., fragmentation, overhead
of the additional data structures, etc.).

We have classified all the important design options that constitute the de-
sign space of DM management in different orthogonal decision trees. Orthogo-
nal means that any decision in any tree can be combined with any decision in
another tree, and the result should be a potentially valid combination, thus cov-
ering the whole possible design space. Then, the relevance of a certain solution
in each concrete system depends on its design constraints, which implies that
some solutions in each design may not meet all timing and cost constraints for
that concrete system. Furthermore, the decisions in the different orthogonal
trees can be sequentially ordered in such a way that traversing the trees can be
done without iterations, as long as the appropriate constraints are propagated
from one decision level to all subsequent levels. Basically, when one decision

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 2, April 2006.

470 • D. Atienza et al.

Fig. 1. Overview of our DM management design space of orthogonal decisions for reduced memory
footprint.

has been taken in every tree, one custom DM manager is defined (in our nota-
tion, atomic DM manager) for a specific DM behavior pattern (usually, one of
the DM behavior phases of the application). In this way, we can recreate any
available general purpose DM manager [Wilson et al. 1995] or create our own
highly specialized DM managers.

Then, these trees have been grouped in categories according to the different
main parts that can be distinguished in DM management [Wilson et al. 1995].
An overview of the relevant classes of this design space for a reduced memory
footprint is shown in Figure 1. This new approach allows us to reduce the
complexity of the global design of DM managers in smaller subproblems that
can be decided locally, making feasible the definition of a convenient order to
traverse it.

In the following, we describe the five main categories and decision trees
shown in Figure 1. For each of them, we focus on the decision trees inside them
that are important for the creation of DM managers with a reduced memory
footprint.

—A. Creating block structures, which handles the way block data structures are
created and later used by the DM managers to satisfy the memory requests.
More specifically, the Block structure tree specifies the different blocks of the
system and their internal control structures. In this tree, we have included
all possible combinations of Dynamic Data Types (from now on called DDTs)
required to represent and construct any dynamic data representation [Day-
light et al. 2004; Leeman et al. 2003] used in the current DM managers.
Second, the Block sizes tree refers to the different sizes of basic blocks avail-
able for DM management, which may be fixed or not. Third, the Block tags

and the Block recorded info trees specify the extra fields needed inside the
block to store information used by the DM manager. Finally, the Flexible

block size manager tree decides if the splitting and coalescing mechanisms
are activated or extra memory is requested from the system. This depends
on the availability of the size of the memory block requested.

—B. Pool division based on, which deals with the number of pools (or mem-
ory regions) present in the DM manager and the reasons why they are

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 2, April 2006.

Systematic Dynamic Memory Management Design Methodology • 471

created. The Size tree means that pools can exist either containing in-
ternally blocks of several sizes or they can be divided so that one pool
exists per different block size. In addition, the Pool structure tree speci-
fies the global control structure for the different pools of the system. In
this tree we include all possible combinations of DDTs required to rep-
resent and construct any dynamic data representation of memory pools
[Daylight et al. 2004; Leeman et al. 2003].

—C. Allocating blocks, which deals with the actual actions required in DM man-
agement to satisfy the memory requests and couple them with a free memory
block. Here we include all the important choices available in order to choose
a block from a list of free blocks [Wilson et al. 1995]. Note that a Deallocating
blocks category with the same trees as this category could be created, but
we do not include it in Figure 1 to avoid adding complexity unnecessarily
to our DM management design space. The fact is that the Allocating blocks
category possesses more influence for memory footprint than the additional
Deallocating blocks category. Moreover, these two categories are so tightly
linked together regarding memory footprint of the final solution that the de-
cisions taken in one must be followed in the other one. Thus, the Deallocating
blocks category is completely determined after selecting the options of this
Allocating block category.

—D. Coalescing blocks, which is related to the actions executed by the DM
managers to ensure a low percentage of external memory fragmentation,
namely merging two smaller blocks into a larger one. The Number of max

block size tree defines the new block sizes that are allowed after coalescing
two different adjacent blocks. The When tree defines how often coalescing
should be performed.

—E. Splitting blocks, which refers to the actions executed by the DM managers
to ensure a low percentage of internal memory fragmentation, namely split-
ting one larger block into two smaller ones. The Number of min block size

tree defines the new block sizes that are allowed after splitting a block into
smaller ones. The When tree defines how often splitting should be performed
(these trees are not presented in full detail in Figure 1, because the options
are the same as in the two trees of the Coalescing category).

3.2 Interdependencies between the Orthogonal Trees

After this definition of the decision categories and trees, in this section, we
identify their possible interdependencies. They impose a partial order in the
characterization of the DM managers. The decision trees are orthogonal, but
not independent. Therefore, the selection of certain leaves in some trees heav-
ily affects the coherent decisions in the others (i.e., interdependencies) when a
certain DM manager is designed. The whole set of interdependencies for our
design space is shown in Figure 2. These interdependencies can be classified in
two main groups. First, the interdependencies caused by certain leaves, trees
or categories, which disable the use of other trees or categories (drawn as full
arrows in Figure 2). Second, the interdependencies affecting other trees or cat-
egories due to their linked purposes (shown as dashed arrows in Figure 2). The

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 2, April 2006.

472 • D. Atienza et al.

Fig. 2. Interdependencies between the orthogonal trees in the design space.

Fig. 3. Example of interdependency between two orthogonal trees of the DM management design
space.

arrows indicate that the side without arrow ending affects the other one and
must be decided first.

3.2.1 Leaves or Trees that Obstruct the Use of Others in the New Design

Space. These interdependencies appear due to the existence of opposite leaves
and trees in the design space. They are depicted in Figure 2 and are represented
by full arcs:

—First, inside the Creating block structures category, if the none leaf from the
Block tags tree is selected, then the Block recorded info tree cannot be used.
Clearly, there would be no memory space to store the recorded info inside the
block. This interdependency is graphically shown as example in Figure 3.

—Second, the one leaf from the Block sizes tree excludes the use of the Size tree
in the Pool division based on criterion category. In a similar way, the one leaf
from the Block sizes tree, excludes the use of the Flexible block size manager

tree in the Creating block structures category. This occurs because the one

block size leaf does not allow us to define any new block size.

3.2.2 Leaves or Trees that Limit the Use of Others in the New Design Space.

These interdependencies exist since the leaves have to be combined to create
consistent whole DM schemes. For example, the coalescing and splitting mecha-
nisms are quite related and the decisions in one category have to find equivalent
ones in the other one. These interdependencies are represented with dashed

arcs in Figure 2.

—First, the Flexible block size manager tree heavily influences all the trees
inside the Coalescing Blocks and the Splitting Blocks categories. Thus, ac-
cording to the selected leaf for a certain atomic DM manager (i.e., the split

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 2, April 2006.

Systematic Dynamic Memory Management Design Methodology • 473

or coalesce leaf), the DM manager has to select some leaves of the trees in-
volved in those decisions or not. For example, if the split leaf is chosen, the
DM manager will not use the coalescing category and the functions of their
corresponding trees inside that atomic the DM manager. However, it can be
used in another atomic DM manager in a different DM allocation phase, thus
the final global manager will contain both (see Section 3.3 for more details).

However, the main cost of the selection done in the Flexible block size man-

ager tree is characterized by the cost of the Coalescing Blocks and Splitting
Blocks categories. This means that a coarse grain estimator of their cost in-
fluence must be available to take the decision in the aforementioned Flexible

block size manager tree. In fact, this estimator is necessary whether the de-
rived decisions in other categories have a large influence in the final cost,
which is not smaller than the influence of the tree that decides to use them
or not [Catthoor and Brockmeyer 2000]. This does not happen in the tree
ordering and then no estimator is required.

—Second, the decision taken in the Pool structure tree significantly affects the
whole Pool division based on criterion category. This happens because some
data structures limit or do not allow the pool to be divided in the complex
ways that the criteria of this category suggest.

—Third, the Block structures tree inside the Creating block structures category
strongly influences the decision in the Block tags tree of the same category
because certain data structures require extra fields for their maintenance.
For example, single-linked lists require a next field and a list where several
blocks sizes are allowed has to include a header field with the size of each
free block inside. Otherwise, the cost to traverse the list and find a suitable
block for the requested allocation size is excessive [Daylight et al. 2004].

—Finally, the respective When trees from the Splitting and Coalescing Blocks
categories are linked together with a double arrow in Figure 3 because they
are very tightly related to each other and a different decision in each of these
two trees does not seems to provide any kind of benefit to the final solution.
On the contrary, according to our study and experimental results it usually
increases the cost in memory footprint of the final DM manager solution.
However, this double arrow is needed because it is not possible to decide
which category has more influence in the final solution without studying the
specific factors of influence for a certain metric to optimize (e.g., memory
footprint, power consumption, performance, etc.). Thus, the decision about
which category should be decided first has to be analyzed for each particular
cost function or required metric to optimize in the system.

3.3 Construction of Global Dynamic Memory Managers

Modern multimedia and wireless network applications include different DM
behavior patterns, which are linked to their logical phases (see Section 6 for
real-life examples). Consequently, our methodology must be applied to each
of these different phases separately in order to create an atomic custom DM
manager for each of them. Then, the global DM manager of the application is
the inclusion of all these atomic DM managers in one. To this end, we have

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 2, April 2006.

474 • D. Atienza et al.

developed a C++ library based on abstract classes or templates that covers all
the possible decisions in our DM design space and enables the construction
of the final global custom DM manager implementation in a simple way via
composition of C++ layers [Atienza et al. 2004a].

4. ORDER FOR REDUCED DYNAMIC MEMORY FOOTPRINT IN DYNAMIC

MULTIMEDIA AND WIRELESS NETWORK APPLICATIONS

Once the whole design space for DM management in dynamic embedded sys-
tems has been defined and categorized in the previous section, the order for
different types of applications can be defined according to their DM behavior
and the cost function/s to be optimized. In this case, the DM subsystem is op-
timized to achieve solutions with a reduced DM footprint. Therefore, first, in
Section 4.1, we summarize the factors of influence for DM footprint. Then, in
Section 4.2, we briefly describe the features that allow us to group different dy-
namic applications and focus on the common (and particular) features of new
multimedia and wireless network applications, which enable to cluster these
applications and define of a common exploration order of the design space.
Finally, in Section 4.3, we present the suitable exploration order for these mul-
timedia and wireless network application to attain reduced memory footprint
DM management solutions.

4.1 Factors of Influence for Dynamic Memory Footprint Exploration

The main factors that affect memory size are two: the Organization overhead

and the Fragmentation memory waste.

(1) The Organization overhead is the overhead produced by the assisting fields
and data structures, which accompany each block and pool respectively.
This organization is essential to allocate, deallocate and use the memory
blocks inside the pools, and depends on the following parts:

—The fields (e.g., headers, footers, etc.) inside the memory blocks are used
to store data regarding the specific block and are usually a few bytes
long. The use of these fields is controlled by category A (Creating block
structures) in the design space.

—The assisting data structures provide the infrastructure to organize the
pool and to characterize its behavior. They can be used to prevent frag-
mentation by forcing the blocks to reserve memory according to their
size without having to split and coalesce unnecessarily. The use of these
data structures is controlled by category B (Pool division based on crite-
rion). Note that the assisting data structures themselves help to prevent
fragmentation, but implicitly produce some overhead. The overhead they
produce can be comparable to the fragmentation produced by small data
structures. Nonetheless this negative factor is overcome by their main
feature of preventing fragmentation problems, which is a more relevant
negative factor for memory footprint [Wilson et al. 1995]. The same effect
on fragmentation prevention is also present in tree C1. This happens be-
cause depending on the fit algorithm chosen, you can reduce the internal
fragmentation of the system. For example, if you allocate a 12-byte block

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 2, April 2006.

Systematic Dynamic Memory Management Design Methodology • 475

using a next fit algorithm and the next block inside the pool is 100 bytes,
you loose 88 bytes in internal fragmentation while a best fit algorithm
will probably never use that block for the request. Therefore, in terms of
preventing fragmentation, category C is equally important to B.

(2) The Fragmentation memory waste is caused by the internal and external
fragmentation, discussed earlier in this article, which depends on the fol-
lowing:

—The internal fragmentation is mostly remedied by category E (Splitting
blocks). This mostly affects to small data structures. For example, if you
have only 100-byte blocks inside your pools and you want to allocate
20-byte blocks, it would be wise to split each 100-byte block inside your
pool to 5 blocks of 20 bytes to avoid too much internal fragmentation.

—The external fragmentation is mostly remedied by category D (Coalescing
blocks). It mostly affects to big data requests. For example, if you want
to allocate a 50-Kbyte block, but you only have 500-byte blocks inside
your pools it would be necessary to coalesce 100 blocks to provide the
necessary amount of memory requested.

Note the distinction between categories D and E, which try to deal with
fragmentation, as opposed to category B and C that try to prevent it.

4.2 Analysis of De/Allocation Characteristics of Dynamic Embedded Multimedia

and Wireless Network Applications

Current dynamic multimedia and wireless network embedded applications in-
volve several de/allocation phases (or patterns) for their data structures, which
usually represent different phases in the logical. We have classified these differ-
ent DM allocation patterns [Wilson et al. 1995] in three orthogonal components,
namely, Predominant allocation block size, Main pattern and Proportion of in-

tensive memory de/allocation phases.
As we have empirically observed, using this previous classification based on

component, new dynamic multimedia and wireless network applications share
the main features regarding DM footprint. First, the predominant allocation
block sizes are few (as our case studies indicate, 6 or 7 can account for 70–80%
of the total allocation requests), but sizes with a large variation since some of
them can be just few bytes and the others several Kbytes per allocation. There-
fore, DM managers suitable for only large or very small sizes are not suitable,
and combinations of solutions for both types of allocations are required in these
applications. Second, the main pattern component that defines the dominant
pattern of de/allocations, for example, ramp, peaks, plateaus, (see Wilson et al.
[1995] for more details) indicates that very frequently new dynamic multime-
dia and wireless network applications possess very active phases where few
data structures are dynamically allocated in a very fast and variable way (i.e.,
peaks) while others data structures grow continuously (i.e., ramps) and remain
stable at a certain point for a long-time before they are freed from the system.
According to our observations, this DM phases of creation/destruction of sets of
data structures with certain allocation sizes are mostly influenced by the logi-
cal structure of phases defined by the designers in their application codes (e.g.,

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 2, April 2006.

476 • D. Atienza et al.

rendering phases) or special event (e.g., arrival of packets in wireless network
applications). Third, the proportion of intensive memory de/allocation phases
defines how often the structure of the DM manager has to be changed to fit the
new de/allocation sizes and pattern of the dynamic application. In this case,
we have also observed very similar features in both new dynamic multimedia
and wireless network applications because the run-time behavior of the system
tends to follow a predefined order (i.e., defined by the designer) about how to
handle the different phases and events. For example, in 3D games the sequence
to service new events, as the movement of the camera by the players (e.g., up-
date of the visible objects, rendering of the new background, etc.) is always fixed
depending on the type of object. Similarly, it is fixed the way to handle the ar-
rival of new packets in wireless network applications. Thus, all these previous
features allow us to cluster these two initially different fields of applications
considering their common DM behaviors and define a common order to traverse
the design space.

4.3 Order of the Trees for Reduced Memory Footprint in Dynamic Multimedia and

Wireless Network Applications

In this Section, we discuss the global order inside the orthogonal categories of
our DM management design space according to the aforementioned factors of
influence for a reduced memory footprint for dynamic multimedia and wireless
network applications. We have defined this global order after extensive testing
(i.e., more than 6 months of experiments with different orders and implemen-
tations of DM managers) using a representative set of 10 applications of new
real-life dynamic embedded multimedia and wireless network applications with
different code sizes (i.e., from 1000 lines to 700K lines of C++ code), including:
scalable 3D rendering such as [Luebke et al. 2002] or MPEG 4 Visual Texture
Coder (VTC) [MPEG-4], 3D image reconstruction algorithms [Pollefeys et al.
1998], 3D games [Quake; MobyGames] and buffering, scheduling and routing
network applications [Memik et al. 2001].

Experience suggests that most of the times fragmentation cannot be avoided
only with a convenient pool organization [Wilson et al. 1995]. Our experiments
show that this holds especially true for embedded dynamic multimedia and
wireless network applications. Therefore, categories D and E are placed in the
order before categories C and B. The final order is as follows: the tree A2 is
placed first to determine if one or more block sizes are used and A5 are placed
second to decide the global structure of the blocks. Next, categories that deal
with fragmentation, that is, categories D and E, are decided because, as we have
mentioned, they are more important than categories that try to prevent frag-
mentation (i.e., C and B). Then, the rest of the organization overhead must be
decided for these block requests. Thus, the rest of the trees in category A (i.e., A1,
A3 and A4) are decided. As a result, taking into account the interdependencies,
the final global order is the following: A2->A5->E2->D2->E1->D1->B4->B1-
>C1->A1->A3->A4.

If the order we have just proposed is not followed, unnecessary constraints
are propagated to the next decision trees. Hence, the most suitable decisions

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 2, April 2006.

Systematic Dynamic Memory Management Design Methodology • 477

Fig. 4. Example of correct order between two orthogonal trees.

cannot be taken in the remaining orthogonal trees. An example of this is shown
in Figure 4. Suppose that the order was A3 and then E2 and D2. When decid-
ing the correct leaf for A3, the obvious choice to save memory footprint would
be to choose the None leaf, which indicates that no header fields of any type
should be used. This seems reasonable at first sight because the header fields
would require a fixed amount of additional memory for each block that is going
to be allocated. After the decision about the None leaf in tree A3, the leaves
to use for the trees E2 and D2 are decided. Now, we are obliged to choose the
Never leaf because after propagating the constraints of A3, one block cannot
be properly split or coalesced without storing information about the size of the
block. Hence, the final DM Manager uses less memory per block, but cannot
deal with internal or external fragmentation by splitting or coalescing blocks.
This solution could be seen as an appropriate decision for an application where
the predominant block size is fixed and thus no serious effects exist due to inter-
nal or external fragmentation. However, if the application includes a variable
amount of allocation sizes (typical behavior in many current dynamic multime-
dia and wireless network applications), the fragmentation problem (internal
and external) is going to consume more memory than the extra header fields
needed for coalescing and splitting since the freed blocks will not be able to be
reused. Therefore, it is necessary to decide the E2 and D2 trees first, and then
propagate the resulting constraints to tree A3.

To demonstrate the correctness of this explanation, in the following para-
graphs the experimental results of memory footprint for a multimedia applica-
tion with a varying predominant block size that uses each of the possible orders
are shown, that is, A 3D algorithm with scalable meshes [Luebke et al. 2002]
that is later described more in detail in our case studies and experimental re-
sults (Section 6). The results shown are average values after 10 runs for each
experiments and groups of 10 bursts. First of all, the application is divided in
several bursts of 1000 (de)allocations with a limited amount of blocks (10 differ-
ent sizes that range from 20 bytes to 500 bytes). This is a typical way in which a
multimedia application with several phases can run. In network applications,

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 2, April 2006.

478 • D. Atienza et al.

Table I. Example of Two DM Managers with Different Order in the DM
Design Space

DM Managers Memory Footprint (KBytes) Execution Time (secs)

(1) A3-D2/E2 2.392 ×102 7.005

(2) D2/E2-A3 4.682 ×101 11.687

Comparison 2–1 19.56% 166.83%

the range of sizes can vary even more due to the uncertainty in the workload
and input packets. We have implemented two different versions of the same
DM manager, which include a single pool where both the free and used blocks
are doubly linked inside one list. The only difference between these two DM
managers is the aforementioned explained order between A3 and D2/E2.

In the first solution, A3 is decided and then D2 and E2. Hence, no coalescing
and splitting services are provided in the DM manager, but also less overhead
in the blocks is required. In the second solution D2 and E2 are decided first
and then A3 is determined. Thus, this DM manager includes both services (i.e.,
coalescing and splitting), but includes an overhead of 7 bytes per block in the
list as additional header for maintenance: 2 bytes for the size, each link 2 bytes
(2 required) and 1 byte (i.e., a bool field) to decide if it is used. The results
obtained in both cases are shown in Table I. It shows clearly that the over-
head of the additional headers is less significant than the overhead due to
fragmentation, where 5 times less memory is required (see line Comparison

2-1 in Table I). Therefore, as we propose in our global exploration order for
reduced memory footprint (see Section 4.3 for more details), the second DM
manager produces better results. In this second manager, first the D2 and E2
trees are decided and then their constraints are used to select the A3 tree leaf.
Also note the difference in execution time: the first DM manager has a very
low total execution time because it does not provide coalescing or splitting
services, while the second one has an additional overhead in execution time
of 66.83%. This shows that the performance requirement of the system under
development must be taken into account when the choices in the design
space are decided. Hence, if the system designer requires a certain level of
performance, which is not achieved by the extreme reduced memory footprint
solution shown in number 2, another solution closer to solution number 1 (but
with a more balanced trade-off between memory footprint and performance)
can be designed. As it has been mentioned before, we have performed a large
amount of similar experiments for the rest decision orders and derived the
proposed one. The main conclusion from our studies is that with the proposed
global order the exploration methodology is not unnecessarily limited and only
the necessary constraints are forwarded to the next decision trees, which is
not possible with other orders for these types of new dynamic applications.

5. OVERVIEW OF THE GLOBAL FLOW IN THE DYNAMIC MEMORY

MANAGEMENT METHODOLOGY

The main objective of our proposed DM management design methodology is
to provide developers with a complete design flow of custom DM managers for

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 2, April 2006.

Systematic Dynamic Memory Management Design Methodology • 479

Fig. 5. Global overview of our proposed DM management design methodology flow.

new dynamic multimedia and wireless network systems. Our proposed global
design flow is divided into four main phases, as indicated in Figure 5.

The first phase of our methodology is used to obtain detailed information
about the DM sizes requested and the time when each dynamic de/allocation is
performed, as depicted in the first oval shape of Figure 5. This phase is based on
profiling the use of DM in the considered application because, according to our
experience, it is the only realistic option for today’s highly-dynamic multimedia
and wireless network applications [Leeman et al. 2003; Atienza et al. 2004a].
Profiling is carried out as follows. First, we insert in the code of the application
our own high-level profiling framework, which is based on a C++ library of pro-
filing objects and additional graphical parsing tools [Leeman et al. 2003]. Then,
we automatically profile a representative set of input cases of the application,
in general between 10 and 15 different inputs, including the extreme cases of
least and maximum memory footprint. This small set is provided by the design-
ers of the application since they use it to create their dynamic data structures
to store and retrieve the data in the application (e.g., dynamic arrays, doubly
linked lists, binary trees, etc.) [Daylight et al. 2004]. As a result, this first phase

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 2, April 2006.

480 • D. Atienza et al.

takes between 2-3 days in our methodology for real-life applications thanks to
our tools with very limited user interaction.

Then, in the second phase of our DM management methodology, indicated as
the second rectangular shape of Figure 5, the DM behavior of the application is
characterized. The de/allocation phases are identified and linked to the logical
phases of the application (e.g., rasterization, clipping, illumination, etc. in 3D
rendering [Woo et al. 1997]) using our tools to analyze the profiling information
obtained in the previous phase. These tools identify in different graphs and ta-
bles the main variations in memory footprint and the dynamically de/allocated
sizes. Then, using our design space for DM management and the exploration
order for dynamic multimedia and wireless network applications, proposed in
Section 3 and Section 4, respectively, suitable sets of custom DM manager can-
didates are selected for each application. This second phase can take up to one
week for very complex applications, namely with more than 20 de/allocation
phases in the same application.

Next, in the third phase of our DM management methodology we implement
the DM manager candidates and exhaustively explore their run-time behav-
ior in the application under study, such as memory footprint, fragmentation,
performance and energy consumption. For this purpose, as we have explained
in Section 3.3, we have developed an optimized C++ library that covers all the
decisions in our DM design space and enables the construction and profiling of
our custom DM managers implementations in a simple way via composition of
C++ layers [Atienza et al. 2004a]. As a result, the whole implementation space
exploration is done automatically using the aforementioned library and addi-
tional tools, which execute multiple times the application with the different DM
managers to acquire complete run-time profiling information. This third phase
takes between 3 to 4 days in case of complex applications.

In the fourth and final phase of our DM management design flow, we use
our own tools to automatically evaluate the profiling generated in the previous
phase and to determine the final implementation features of the custom DM
manager for the application, such as final number of max block sizes, number of
allowed allocation memory sizes. This fourth phase takes between 2 to 3 days.
Overall, the whole flow for custom DM managers requires between 2 to 3 weeks
for real-life applications.

6. CASE STUDIES AND EXPERIMENTAL RESULTS

We have applied the proposed methodology to three realistic case studies that
represent different modern multimedia and network application domains: the
first case study is a scheduling algorithm from the network protocol domain,
the second one is part of a new 3D image reconstruction system and the third
one is a 3D rendering system based on scalable meshes.

In the following sections, we briefly describe the behavior of the three case
studies and the proposed methodology is applied to design custom managers
that minimize their memory footprint. All the results shown are average values
after a set of 10 simulations for each application and manager implementation
using 10 additional real inputs from the ones used to profile and design the

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 2, April 2006.

Systematic Dynamic Memory Management Design Methodology • 481

custom DM managers. All the final values in the simulations were very similar
(variations of less than 2%).

6.1 Method Applied to a Network Scheduling Application

The first case study presented is the Deficit Round Robin (DRR) application
taken from the NetBench benchmarking suite [Memik et al. 2001]. It is a
scheduling algorithm implemented in many routers today. In fact, variations of
the DRR scheduling algorithm are used by Cisco for commercial acess points
products and by Infineon in its new broadband access devices. Using the DRR
algorithm the router tries to accomplish a fair scheduling by allowing the same
amount of data to be passed and sent from each internal queue. In the DRR
algorithm, the scheduler visits each internal nonempty queue, increments the
variable deficit by the value quantum and determines the number of bytes in
the packet at the head of the queue. If the variable deficit is less than the size
of the packet at the head of the queue (i.e., it does not have enough credits at
this moment), then the scheduler moves on to service the next queue. If the
size of the packet at the head of the queue is less than or equal to the variable
deficit, then the variable deficit is reduced by the number of bytes in the packet
and the packet is transmitted on the output port. The scheduler continues this
process, starting from the first queue each time a packet is transmitted. If a
queue has no more packets, it is destroyed. The arriving packets are queued to
the appropriate node and if no such exists then it is created. 10 real traces of
internet network traffic up to 10 Mbit/sec have been used [Lawrence Berkeley
Lab 2000] to run realistic simulations of DRR.

To create our custom DM Manager, we have followed our methodology step
by step. As a result, in order to define the logical phases of the application and
its atomic DM manager, we first profile its DM behavior with our dynamic data
structures profiling approach [Leeman et al. 2003]. Then, we can apply our DM
management design exploration. First, we make the decision in tree A2 (Block
sizes) to have many block sizes to prevent internal fragmentation. This is done
because the memory blocks requested by the DRR application vary greatly in
size (to store packets of different sizes) and if only one block size is used for all
the different block sizes requested, the internal fragmentation would be large.
Then, in tree A5 (Flexible block size manager) we choose to split or coalesce, so
that every time a memory block with a bigger or smaller size than the current
block is requested, the splitting and coalescing mechanisms are invoked. In
trees E2 and D2 (When) we choose always, thus we try to defragment as soon
as it occurs. Then, in trees E1 and D1 (number of max/min block size) we choose
many (categories) and not fixed because we want to get the maximum effect
out of coalescing and splitting mechanisms by not limiting the size of these
new blocks. After this, in trees B1 (Pool division based on size) and B2 (Pool
structure), the simplest pool implementation possible is selected, which is a
single pool, because if we do not have fixed block sizes, then no real use exists
for complex pool structures to achieve a reduced memory footprint. Then, in
tree C1 (Fit algorithms), we choose the exact fit to avoid as much as possible
memory loses in internal fragmentation. Next, in tree A1 (Block structure),

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 2, April 2006.

482 • D. Atienza et al.

Fig. 6. Maximum memory footprint results in the DRR application.

we choose the most simple DDT that allows coalescing and splitting, which is
a doubly linked list. Then, in trees A3 (Block tags) and A4 (Block recorded
info), we choose a header field to accommodate information about the size and
status of each block to support splitting and coalescing mechanisms. Finally,
after taking these decisions following the order described in Section 4, according
to the proposed design flow we can determine those decisions of the final custom
DM manager that depend on its particular run-time behavior in the application
(e.g., final number of max block sizes) via simulation with our own customizable
C++ library and tools [Atienza et al. 2004a] (see Section 5 for more details).

Then, we implement it and compare our custom solution to very well-known
state-of-the-art optimized general-purpose managers, namely Lea v2.7.2 [Lea
2002] and Kingsley [Wilson et al. 1995]. The Lea allocator is one of the best
generic managers (in terms of the combination of speed and memory foot-
print) [Berger et al. 2001] and several variations of it are integrated in the
different distributions of the GNU Linux OS. It is a hybrid DM manager that
includes different behaviors for different object sizes. For small objects it uses
some kind of quick lists [Wilson et al. 1995], for medium-sized objects it per-
forms approximate best-fit allocation [Wilson et al. 1995] and for large ob-
jects it uses dedicated memory (allocated directly with the mmap() function).
Also, we compare our approach with an optimized version of the Kingsley
[Wilson et al. 1995] DM manager that still uses power-of-two segregated-fit lists
[Wilson et al. 1995] to achieve fast allocations, but it is optimized for objects
larger than 1024 bytes, which take their memory from a sorted linked list, sac-
rificing speed for good fit. A similar implementation technique is used in the
latest Windows-based OSes [Microsoft MSDN (a), (b)].

In addition, we have compared our custom DM solution with a manually
designed implementation of the new region-semantic managers [Gay and Aiken
2001] that can be found in new embedded OSes (e.g., RTEMS [2002]).

As Figure 6 shows, our custom DM manager uses less memory than the Lea
2.7.2 (Linux OS), the Kingsley (Windows OS) and Region DM managers. This
is due to the fact that our custom DM manager does not have fixed sized blocks
and tries to coalesce and split as much as possible, which is a better option
in dynamic applications with sizes with large variation. Moreover, when large
coalesced chunks of memory are not used, they are returned back to the system
for other applications. On the other hand, Lea and Kingsley create huge freelists
of unused blocks (in case they are reused later), they coalesce and split seldom

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 2, April 2006.

Systematic Dynamic Memory Management Design Methodology • 483

Fig. 7. Memory footprint behavior of the Lea DM manager vs our custom DM manager (left graph),
and DM allocation requests in the DRR application (right side).

(Lea) or never (Kingsley) and finally, they have fixed sized block sizes. This
can be observed in Figure 7, where we show the DM use graphs of our custom
manager, the Lea DM manager and the DM requests of the application during
one run. In the case of the Region DM manager, since no coalescing/splitting
mechanisms are applied to reuse memory blocks, more memory footprint than
Lea is consumed due to fragmentation.

Concerning the performance of the various DM managers (see Table II fur-
ther on for a summary with the results of all our case studies), we can observe
that in all cases 600 seconds is the time used to schedule real traces of 600
seconds of internet traffic. This means that all the DM managers studied fulfill
the real-time requirements of the DRR application. Moreover, our DM man-
ager improves extensively the memory footprint used by the other DM man-
agers, but no extra time overhead is noticed due to its internal maintenance
operations.

Finally, we have evaluated the total energy consumption of the final em-
bedded system with each of the studied DM managers, using a cycle-accurate
ARM-based simulator that includes a complete energy-delay estimation model
for 0.13 um [Loghi et al. 2004]. The results indicate that our custom DM achieves
very good results for energy, when compared to the state-of-the-art DM man-
agers. This is due to the fact that most of the dynamic accesses performed
internally by the managers to their complex management structures are not
required in our custom manager, which uses a simpler and optimized internal
data structures for the target application. Thus, our custom DM manager re-
duces by 12%, 15% and 16% the energy consumption values of Kingsley, Lea and
Regions, respectively. It is important to mention that even though Kingsley has
a smaller amount of DM management accesses, since it does not perform split-
ting or coalescing operations, it suffers from a large memory footprint penalty.
This translates into very expensive memory accesses because bigger memories
need to be used.

Consequently, for new dynamic network applications like the DRR appli-
cation, our methodology allows to design very customized DM managers that
exhibit less fragmentation than Lea, Regions or Kingsley and thus require less
memory. Moreover, since this decrease in memory footprint is combined with

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 2, April 2006.

484 • D. Atienza et al.

a simpler internal management of DM, the final system consumes less energy
as well.

6.2 Methodology Applied to a New 3D Image Reconstruction System

The second case study forms one of the sub-algorithms of a 3D reconstruction
application [Pollefeys et al. 1998] that works like 3D perception in living be-
ings, where the relative displacement between several 2D projections is used to
reconstruct the 3rd dimension. The software module used as our driver appli-
cation is one of the basic building blocks in many current 3D vision algorithms:
feature selection and matching. It has been extracted from the original code of
the 3D image reconstruction system (see Target Jr [2002] for the full code of the
algorithm with 1.75 million lines of high level C++), and creates the mathemat-
ical abstraction from the related frames that is used in the global algorithm. It
still involves 600,000 lines of C++ code, which demonstrates the complexity of
the applications that we can deal with our approach and the necessity of tool
support for the analysis and code generation/exploration phases in our overall
approach (see Section 5). This implementation matches corners [Pollefeys et al.
1998] detected in 2 subsequent frames and heavily relies on DM due to the un-
predictability of the features of input images at compile-time (e.g., number of
possible corners to match varies on each image). Furthermore, the operations
done on the images are particularly memory intensive, that is, each image with
a resolution of 640×480 uses over 1Mb. Therefore, the DM overhead (e.g., inter-
nal and external fragmentation [Wilson et al. 1995]) of this application must be
minimized to be usable for embedded devices where more applications are run-
ning concurrently. Finally, note that the accesses of the algorithm to the images
are randomized, thus classic image access optimizations as row-dominated ac-
cesses versus column-wise accesses are not relevant to reduce the DM footprint
further.

For this case study, its dynamic behavior shows that only a very limited
range of data type sizes are used in it [Leeman et al. 2003], namely 8 different
allocation sizes are requested. In addition, most of these allocated sizes are
relatively small (i.e., between 32 or 16384 Bytes) and only very few blocks are
much bigger (e.g., 163 KBytes). Furthermore, we see that most of the data
types interact with each other and are alive almost all the execution time of
the application. Within this context, we apply our methodology and using the
order provided in Section 4 we try to minimize the DM footprint wastage (e.g.,
fragmentation, overhead in the headers, etc.) of this application. As a result, we
obtain a final solution that consists of a custom DM manager with 4 separated
pools or regions for the relevant sizes in the application. The first pool is used for
the smallest allocation size requested in the application, that is, 32 bytes. The
second pool allows allocations of sizes between 756 bytes and 1024 bytes. Then,
the third pool is used for allocation requests of 16384 bytes. Finally, the fourth
pool is used for big allocation requests blocks (e.g., 163 or 265 KBytes). The pool
for the smallest size has its blocks in a single linked list because it does not need
to coalesce or split since only one block size can be requested in it. The rest of the
pools include doubly linked lists of free blocks with headers that contain the size

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 2, April 2006.

Systematic Dynamic Memory Management Design Methodology • 485

Fig. 8. Maximum memory footprint results in the 3D reconstruction application.

of each respective block and information about their current state (i.e., in use or
free). These mechanisms efficiently support immediate coalescing and splitting
inside these pools, which minimizes both internal and external fragmentation
in the custom DM manager designed with our methodology.

In this case study we have compared our solution with new region-semantic
managers [Gay and Aiken 2001; Wilson et al. 1995]. Also, we have tested our
manager with the same optimized versions of Kingsley and Lea used in the
previous example (i.e., DRR) since they are the types of DM managers found
in embedded systems using Windows or Linux-based OSes, respectively. The
memory footprint results obtained are depicted in Figure 8.

These results show that the values obtained with the DM manager designed
using the proposed methodology obtains significant improvements in memory
footprint compared to the manually designed implementation of a Region man-
ager (28.47%), Lea (29.46%) and the optimized version of Kingsley (33.01%).
These results are because our custom DM manager is able to minimize the
fragmentation of the system in two ways. First, because its design and be-
havior varies according to the different block sizes requested. Second, in pools
where a range of block sizes requests are allowed, it uses immediate coalescing
and splitting services to reduce both internal and external fragmentation. In
the new region managers, the blocks sizes of each different region are fixed to
one block size and when blocks of several sizes are used, this creates internal
fragmentation. In Lea, the range of block sizes allowed do not fit exactly the
ones used in the applications and the mixed de/allocation sizes of few block sizes
produce a waste of the lists of sizes not used in the system. Furthermore, the
frequent use of splitting/coalescing mechanisms in Lea creates an additional
overhead in execution time compared to the Region manager, which has better
adjusted allocation sizes to those used in the application. Finally, in Kingsley,
the coalescing/splitting mechanisms are applied, but an initial boundary mem-
ory is reserved and distributed among the different lists for sizes. In this case,
since only a limited amount of sizes is used, some of the “bins” (or pools of DM
blocks in Kingsley) [Wilson et al. 1995] are underused.

In addition, the final embedded system implementation using our custom
DM manager achieves better energy results than the implementations using
general-purpose DM managers. In this case study, our DM manager employs
less management accesses to DM blocks and memory footprint than any other
manager. Thus, our DM manager enables overall energy consumption savings
of 10% with respect to Regions, 11% over Kingsley and 14% over Lea.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 2, April 2006.

486 • D. Atienza et al.

Fig. 9. Maximum memory footprint results in the 3D rendering application.

6.3 Methodology Applied to a 3D Rendering System

The third case study is the 3D rendering module [Woo et al. 1997] of a whole 3D
video system application. This module belongs to the new category of 3D algo-
rithms with scalable meshes [Luebke et al. 2002] that adapt the quality of each
object displayed on the screen according to the position of the user watching
at them at each moment in time (e.g., Quality of Service systems [Pham Ngoc
et al. 2002]). Therefore, the objects are represented by vertices and faces (or
triangles) that need to be dynamically stored due to the uncertainty at compile
time of the features of the objects to render (i.e., number and resolution). First,
those vertices are traversed in the first three phases of the whole visualization
process, that is, modelview transformation, lighting process and canonical view
transformation [Woo et al. 1997]. Finally, the system processes the faces of the
objects in the next three phases (i.e., clipping, viewport mapping and rasteriza-
tion [Woo et al. 1997]) of the visualization process to show the final object with
the appropriate resolution on the screen. According to our experiments, this
application closely resembles the DM behavior of the MPEG4 Visual Texture
deCoder (VTC) implementation in the standard [MPEG-4].

In this case, we have compared our custom manager with Lea v2.7.2, the
optimized version of Kingsley, the Region manager and due to its particular
behavior with phases where intermediate values are built in a sequential way
and are finally destroyed at the end of each phase (for the phases that handle
vertices), we have also used Obstacks [Wilson et al. 1995]. Obstacks is a well-
known custom DM manager optimized for applications with such stack-like
behavior. For example, Obstacks is used internally by gcc, the GNU Compiler.

As Figure 9 shows, Lea and the Region manager obtain better results in
memory footprint than the Kingsley DM manager. Also, due to the stack-like be-
havior of the application in the phases that handle triangles, Obstacks achieves
even better results than Lea and region managers in memory footprint. How-
ever, the custom manager designed with our methodology improves further the
memory footprint values obtained by Obstacks. The fact is that the optimized
behavior of Obstacks cannot be exploited in the final phases of the rendering
process because the faces are used all independently in a disordered pattern
and they are required to be freed separately. Thus, Obstacks suffers from a
high penalty in memory footprint due to fragmentation because it has not got
a suitable maintenance structure of the DM blocks for such DM deallocation
behavior.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 2, April 2006.

Systematic Dynamic Memory Management Design Methodology • 487

Table II. Maximum Memory Footprint, Execution Time and Energy Consumption Results of Each
DM Manager in Our Case Studies

Dynamic Memory Managers DRR Scheduler 3D Image Reconstruction 3D Scalable Rendering

Kingsley- Windows (Bytes) 2.09 × 106 2.26 × 106 3.96 × 106

execution time (sec.) 600 1.52 6.05

energy consumption (nJ) 7.98 × 109 4.04 × 106 11.22 × 106

Lea-Linux (Bytes) 2.34 × 105 2.11 × lO6 1.86 × 106

execution time (sec.) 600 2.01 8.12

energy consumption (nJ) 8.18 × 109 4.11 × 106 11.43 × 106

Regions (Bytes) 2.47 × 105 2.08 × 106 2.03 × 106

execution time (sec.) 600 1.87 7.03

energy consumption (nJ) 8.25 × 109 4.01 × lO6 11.61 × lO6

Obstacks (Bytes) — — 1.55 × 106

execution time (sec.) — — 6.55

energy consumption (nJ) — — 10.93 × 106

our DM manager (Bytes) 1.48 × 105 1.49 × 106 1.07 × 106

execution time (secs.) 600 1.24 6.91

energy consumption (nJ) 7.11 × 109 3.52 × 106 9.67 × 106

From an energy point of view, our custom DM manager also improves the
results obtained with the studied general-purpose managers in the ARM-based
simulator. In a similar way as in the previous case studies, our DM manager
requires less memory management accesses than Lea and Regions, thus im-
proving the global energy figures of the final embedded system by 18% 20%,
respectively. In the case of Obstacks and Kingsley, they produce less memory
accesses than our custom DM manager due their optimized management of
DM blocks for performance, but their larger consumption of memory footprint
finally enables 13% and 14% overall savings in energy consumption for our
custom DM manager, respectively.

Finally, to evaluate the design process with our methodology, our proposed
design and implementation flow of the final custom DM managers for each case
study took us two weeks. Also, as Table II shows, these DM managers achieve
the least memory footprint values with only a 10% overhead (on average) over
the execution time of the fastest general-purpose DM manager observed in
these case studies, that is, Kingsley. Moreover, the decrease in performance is
not relevant since our custom DM managers preserve the real-time behavior
required by the applications. Thus, the user will not notice any difference. In ad-
dition, the proposed custom DM managers include optimized internal DM man-
agement organizations of memory blocks for each studied application, which
usually produce a decrease in memory accesses compared to state-of-the-art
general-purpose managers, such as Lea or Regions, that are designed for a
wide range of memory requests and DM behavior patterns. Only Kingsley and
Obstacks produce less memory accesses than our custom DM manager due to
their performance-oriented designs, thus outperforming our custom DM man-
agers but wasting a large part of memory footprint due to fragmentation. As
a consequence, these managers demand larger on-chip memories to store the
dynamic data and much more energy is required per access [Loghi et al. 2004],
which counteracts the possible improvements in energy consumption because

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 2, April 2006.

488 • D. Atienza et al.

of less memory accesses. In summary, our custom DM managers also reduce
by 15% on average the total energy consumption of the final embedded system
compared to general-purpose DM managers.

Although our methodology for designing custom DM managers has been
driven by the minimization of the memory footprint, it can be perfectly re-
targeted towards achieving different trade-offs between any relevant design
factors, such as improving performance or consuming a little more memory
footprint to achieve more energy savings [Atienza et al. 2004b].

7. CONCLUSIONS

Embedded devices have improved their capabilities in the last years making
feasible to map very complex and dynamic applications (e.g., multimedia appli-
cations) in portable devices. Such applications have grown lately in complexity
and to port them to the final embedded systems, new design methodologies must
be available to efficiently use the memory present in these very limited embed-
ded systems. In this paper we have presented a new systematic methodology
that defines and explores the dynamic memory management design space of rel-
evant decisions, in order to design custom dynamic memory managers with a
reduced memory footprint for new dynamic multimedia and wireless network
applications. Our results in real applications show significant improvements
in memory footprint over state-of-the-art general-purpose and manually opti-
mized custom DM managers, incurring only in a small overhead in execution
time over the fastest of them.

REFERENCES

ATIENZA, D., MAMAGKAKIS, S., CATTHOOR, F., MENDIAS, J. M., AND SOUDRIS, D. 2004a. Modular con-
struction and power modelling of dynamic memory managers for embedded systems. In Pro-

ceedings of Workshop PATMOS. Lecture Notes in Computer Science, vol. 3254, Springer-Verlag,
New York.

ATIENZA, D., MAMAGKAKIS, S., CATTHOOR, F., MENDIAS, J. M., AND SOUDRIS, D. 2004b. Reducing mem-
ory accesses with a system-level design methodology in customized dynamic memory manage-
ment. In Proceedings of IEEE Workshop ESTIMEDIA. IEEE Computer Society Press, Los Alami-
tos, CA.

BACON, D. F., CHENG P., AND RAJAN, V. T. 2003. A real-time garbage collector with low overhead and
consistent utilization. In Proceedings of the Symposium on Principles of Programming Languages

(POPL). ACM, New York.
BENINI, L. AND DE MICHELI, G. 2000. System level power optimization techniques and tools. In

ACM Trans. Des. Automat. Embed. Syst.

BERGER, E. D., ZORN, B. G., AND MCKINLEY, K. S. 2001. Composing high-performance memory
allocators. In Proceedings of Conference PLDI. ACM, New York.

BLACKBURN, S. M. AND MCKINLEY, K. S. 2003. Ulterior reference counting: Fast garbage collection
without a long wait. In Proceedings of Conference OOPSLA. ACM, New York.

CATTHOOR, F. AND BROCKMEYER, E. 2000. Unified Low-Power Design Flow for Data-Dominated

Multi-Media and Telecom Applications. Kluwer Academic Publishers.
CHANG, J. M., LO, C.-T. D., AND SRISA-AN, W. 1999. OMX: Object management extension. In Pro-

ceedings of Workshop CASES, USA.
DAYLIGHT, E., ATIENZA, D., VANDECAPPELLE, A., CATTHOOR, F., AND MENDIAS, J. M. 2004. Memory-

access-aware data structure transformations for embedded software with dynamic data accesses.
IEEE Trans. VLSI Syst. 269–280.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 2, April 2006.

Systematic Dynamic Memory Management Design Methodology • 489

GAY, D. AND AIKEN, A. 2001. Memory management with explicit regions. In Proceedings of PLDI.
ACM, New York.

LAWRENCE BERKELEY NATIONAL LAB 2000. The Internet Traffic Archive. http://ita.ee.lbl.gov/.
LEA, D. 2002. The Lea 2.7.2 DM Allocator. http://gee.cs.oswego.edu/dl/.
LEEMAN, M., ATIENZA, D., CATTHOOR, F., DECONINCK, G., MENDIAS, J. M., DE FLORIO, V., AND LAUWEREINS,

R. 2003. Power estimation approach of dynamic data storage on a hardware software boundary
level. In Proceedings of the Workshop PATMOS. Lecture Notes in Computer Science, vol. 2799,
Springer-Verlag, New York.

LOGHI, M., ANGIOLINI, F., BERTOZZI, D., BENINI, L., AND ZAFALON, R. 2004. Analyzing on-chip com-
munication in a mpsoc environment. In Proceedings of DATE. IEEE Computer Society Press,
Los Alamitos, CA.

LUEBKE, D., REDDY, M., COHEN, J., VARSHNEY, A., WATSON, B., AND HUEBNER, R. 2002. Level of Detail

for 3D Graphics. Morgan-Kaufmann Publishers, USA.
MEMIK, G., MANGIONE-SMITH, B., AND HU, W. 2001. Netbench: A benchmarking suite for network

processors. CARES Technical Report 2001-2-01.
MICROSOFT MSDN (a) Heap:pleasures and pains (for Windows NT Technologies).
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dngenlib/html/heap3.

asp.

MICROSOFT MSDN (b) Heaps in Windows CE. http://msdn.microsoft.com/library/default.asp?
url=/library/en-us/wcecor% eos5/html/wce50conheaps.asp.

MOBYGAMES. Moby Games, a game docs and review project. http://www.mobygames.com/.
MPEG-4 Implementation Reference. Iso/iec jtc1/sc29/wg11 Mpeg-4 standard features overview.
http://www.chiariglione.org/mpeg/standards/mpeg-4/mpeg-4.htm.

MURPHY, N. 2000. Safe memory usage with dynamic memory allocation. Embedded Systems.
PANDA, P. R., CATTHOOR, F., DUTT, N. D., DANCKAERT, K., BROCKMEYER, E., AND KULKARNI, C. 2001. Data

and memory optimizations for embedded systems. ACM Trans. Des. Automat. Elect. Syst. 6, 2,
142–206.

PHAM NGOC, N., VAN RAEMDONCK, W., LAFRUIT, G., DECONINCK, G., AND LAUWEREINS, R. 2002. Qos
framework for interactive 3d applications. In Proceedings of Conference CECGVC.

POLLEFEYS, M., KOCH, R., VERGAUWEN, M., AND VAN GOOL, L. 1998. Metric 3D surface reconstruction
from uncalibrated image sequences. In Lecture Notes in Computer Science, vol. 1506, Springer-
Verlag, New York.

QUAKE, H. Handheld quake. http://handheldquake.sourceforge.net/.
RTEMS RESEARCH, O.-L. A. 2002. RTEMS, open-source real-time operating system for multipro-

cessor systems. http://www.rtems.org.
SHALAN, M. AND MOONEY V. J. II, 2000. A dynamic memory management unit for embedded

real-time system-on-a-chip. In Proceedings of Workshop CASES.
SRISA-AN, W., DAN LO, C.-T., AND CHANG, J. M. 2003. Active memory processor: A hw garbage

collector for real-time java embedded devices. IEEE Trans. Mobile Comput. 2, 89–101.
Target Jr 2002. Target jr. http://computing.ee.ethz.ch/sepp/targetjr-5.0b-mo.html.
VO, K.-P. 1996. Vmalloc: A general and efficient memory allocator. Softw. Pract. Exp. 26, 1–18.
WILSON, P. R., JOHNSTONE, M. S., NEELY, M., AND BOWLES, D. 1995. Dynamic storage allocation,

a survey and critical review. In Proceedings of the Workshop on Memory Management, Lecture
Notes in Computer Science, Springer-Verlag, New York.

WOO, M., NEIDER, J., DAVIS, T., AND SHREINER, D. 1997. OpenGL Programming Guide, Second

Edition. Silicon Graphics, Inc.

Received March 2004; revised November 2004 and July 2005; accepted August 2005

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 2, April 2006.

