

Systematic Embedded Software Generation from SystemC

F. Herrera, H. Posadas, P. Sánchez & E. Villar

TEISA Dept., E.T.S.I. Industriales y Telecom., University of Cantabria

Avda. Los Castros s/n, 39005 Santander, Spain

{fherrera, posadash, sanchez, villar}@teisa.unican.es

Abstract

The embedded software design cost represents an
important percentage of the embedded-system
development costs [1]. This paper presents a method for
systematic embedded software generation that reduces the
software generation cost in a platform-based HW/SW
codesign methodology for embedded systems based on
SystemC. The goal is that the same SystemC code allows
system-level specification and verification, and, after
SW/HW partition, SW/HW co-simulation and embedded
software generation. The C++ code for the SW partition
(processes and process communication including HW/SW
interfaces) is systematically generated including the user-
selected embedded OS (e.g.: the eCos open source OS).

1. Introduction1

The evolution of technological processes maintains its
exponential growth; 810 Mtrans/chip in 2003 will become
2041 Mtrans/chip in 2007. This obliges an increase in the
designer productivity, from 2.6 Mtrans/py in 2004 to 5.9
Mtrans/py in 2007, that is, a productivity increase of
236% in three years [2]. Most of these new products will
be embedded System-on-Chip (SoC) [3] and include
embedded software. In fact, embedded software now
routinely accounts for 80% of embedded system
development costs [1].

Today, most embedded systems are designed from a
RT level description for the HW part and the embedded
software code separately. Using a classical top-down
methodology (synthesis and compilation) the
implementation is obtained. The 2001 International
Technology Roadmap for Semiconductors (ITRS) predicts
the substitution (during the coming years) of that waterfall

1 This work has been partially supported by the Spanish MCYT through
the TIC-2002-00660 project.

methodology by an integrated framework where codesign,
logical, physical and analysis tools operate together. The
design step being where the designer envisages the whole
set of intended characteristics of the system to be
implemented, system-level specification acquires a key
importance in this new design process since it is taken as
the starting point of all the integrated tools and procedures
that lead to an optimal implementation [1][2].

The lack of a unifying system specification language
has been identified as one of the main obstacles bedeviling
SoC designers [4]. Among the different possibilities
proposed, languages based on C/C++ are gaining a wider
consensus among the designer community [5], SystemC
being one of the most promising proposals. Although, the
first versions of SystemC were focused on HW design, the
latest versions (SystemC2.x [6]) include some system-
level oriented constructs such as communication channels
or process synchronization primitives that facilitate the
system specification independently of the final module
implementation in the HW or SW partition.

Embedded SW generation and interface synthesis are
still open problems requiring further research [7]. In order
to become a practical system-level specification language,
efficient SW generation and interface synthesis from
SystemC should be provided. Several approaches for
embedded SW design have been proposed [8] [9] [10].
Some of them are application-oriented (DSP, control,
systems, etc.), where others utilise input language of
limited use.

SoCOS [11][12] is a C++ based system-level design
environment where emphasis is placed on the inclusion of
typical SW dynamic elements and concurrency.
Nevertheless, SoCOS is only used for system modeling,
analysis and simulation.

A different alternative is based on the synthesis of an
application-specific RTOS [13][14][15] that supports the
embedded software. The specificity of the generated
RTOS gives efficiency [16] at the expense of a loss of

1530-1591/03 $17.00 2003 IEEE

verification and debugging capability, platform portability
and support for application software (non firmware). Only
very recently, the first HW/SW co-design tools based on
C/C++-like input language have appeared in the
marketplace [17]. Nevertheless, their system level
modeling capability is very limited.

In this paper, an efficient embedded software and
interface generation methodology from SystemC is
presented. HW generation and cosimulation are not the
subject of this paper. The proposed methodology is based
on the redefinition and overloading of SystemC class
library elements. The original code of these elements calls
the SystemC kernel functions to support process
concurrency and communication. The new code (defined
in an implementation library) calls the embedded RTOS
functions that implement the equivalent functionality.
Thus, SystemC kernel functions are replaced by typical
RTOS functions in the generated software. The embedded
system description is not modified during the software and
interface generation process. The proposed approach is
independent of the embedded RTOS. This allows the
designer to select the commercial or open source OS that
best matches the system requirements. In fact, the
proposed methodology even supports the use of an
application-specific OS.

The contents of the paper are as follows. In this
section, the state of the art, motivation and objectives of
the work have been presented. In section 2, the system-
level specification methodology is briefly explained in
order to show the input description style of the proposed
method. In section 3, the embedded SW generation and
communication channel implementation methodology will
be described. In section 4, some experimental results will
be provided. Finally, the conclusions will be drawn in
section 5.

2. Specification Methodology

Our design methodology follows the ITRS predictions
toward the integration of the system-level specification in
the design process. SystemC has been chosen as a suitable
language supporting the fundamental features required for
system-level specification (concurrency, reactiveness,�).

The main elements of the proposed system
specification are processes, interfaces, channels, modules
and ports. The system is composed of a set of
asynchronous, reactive processes that concurrently
perform the system functionality. Inside the process code
no event object is supported. As a consequence, the notify
or wait primitives are not allowed except for the �timing�
wait, wait(sc_time). No signal can be used and processes
lack a sensitivity list. Therefore, a process will only block
when it reaches a �timing� wait or a wait on event

statement inside a communication channel access. All the
processes start execution with the sentence sc_start() in
the function sc_main(). A process will terminate execution
when it reaches its associated end of function.

The orthogonality between communication and
process functionality is a key concept in order to obtain a
feasible and efficient implementation. To achieve this,
processes communicate among themselves by means of
channels. The channels are the implementation of the
behavior of communication interfaces (a set of methods
that the process can access to communicate with other
processes). The behavior determines the synchronization
and data transfer procedures when the access method is
executed. For the channel description at the specification
level it is possible to use wait and notify primitives. In
addition, it is necessary to provide platform
implementations of each channel. The platform supplier
and occasionally the specifier should provide this code.
The greater the number of appropriate implementations
for these communication channels on the platform, the
greater the number of partition possibilities, thus
improving the resulting system implementation.

start

Finish

wait2

ch1

ch3

ch2
ch4

wait1

Figure 1. Process representation.

Figure 1 shows a process representation graph
composed of four kinds of nodes. The process will resume
in a start node and will eventually terminate in a finish
node. The third kind of node is an internal node containing
timing wait statements. The fourth kind of node is the
channel method access node. The segments are simply
those code paths where the process executes without
blocking.

Hierarchy is supported since processes can be grouped
within modules. Following the IP reuse-oriented design
recommendations for intermodule communications, port
objects are also included. Therefore, communication
among processes of different module instances passes
through ports. Port and module generation is static.
Granularity is established at the module level and a
module may contain as many processes as needed.
Communication inside the inner modules must also be
performed through channels.

The previously commented set of restrictions on how
SystemC can be used as a system specification language
do not constrain the designer in the specification of the
structure and functionality of any complex system.
Moreover, as the specification methodology imposes a
clear separation between computation and
communication, it greatly facilitates the capture of the
behavior and structure of any complex system ensuring a
reliable and efficient co-design flow.

3. Software Generation

Today, most industrial embedded software is manually
generated from the system specification, after SW/HW
partition. This software code includes several RTOS
function calls in order to support process concurrency and
synchronization. If this code is compared with the
equivalent SystemC description of the module a very high
correlation between them is observed. There is a very
close relationship between the RTOS and the SystemC
kernel functions that support concurrency. Concerning
interface implementation, the relationship is not so direct.
SystemC channels normally use notify and wait
constructions to synchronize the data transfer and process
execution while the RTOS normally supports several
different mechanisms for these tasks (interruption, mutex,
flags, �). Thus, every SystemC channel can be
implemented with different RTOS functions [18].

 SPECIFICATION

ALGORITHM

GENERATION

SW

HW

SystemC
library

SystemC
Simulation kernel

SC2RTOS
library

RTOS

SystemC
library

SystemC
Simulation kernel

Cosimulation
channels

Hardware
implementation flow

SW

HW

SystemC description

SystemC description

C/C++ (SystemC) code

SC2RTOS
library

RTOS

Figure 2. Proposed SW generation flow.

The proposed software generation method is based on
that correlation. Thus, the main idea is that the embedded
software can be systematically generated by simply
replacing some SystemC library elements by
behaviourally equivalent procedures based on RTOS
functions. It is a responsibility of the platform designer to
ensure the required equivalence between the SystemC
functions and their implementation. Figure 2 shows the
proposed software generation flow. The design process
begins from a SystemC specification. This description

verifies the specification methodology proposed in the
previous section. At this level (�Specification�) SW/HW
partition has not been performed yet. In order to simulate
the �Specification level� description, the code has to
include the SystemC class library (�systemc.h� file) that
describes the SystemC simulation kernel.

After partition, the system is described in terms of SW
and HW algorithms (�Algorithmic level�). At this level,
the code that supports some SystemC constructions in the
SW part has to be modified. This replacement is
performed at library level, also so it is totally hidden from
the designer who sees these libraries as black boxes. Thus,
the SystemC user code (now pure C/C++ code) is not
modified during the software generation flow, constituting
one of the most important advantages of this approach. A
new library SC2RTOS (SystemC to RTOS) redefines the
SystemC constructions whose definition has to be
modified in the SW part. It is very important to highlight
that the number of SystemC elements that have to be
redefined is very small.

Table 1 shows these elements. They are classified in
terms of the element functionality. The table also shows
the type of RTOS function that replaces the SystemC
elements. The specific function depends on the selected
RTOS. The library could be made independent of the
RTOS by using a generic API (e.g.: EL/IX[19]).
 Hierarchy Concurrency Communication

Sy
st

em
C

E

le
m

en
ts

 SC_MODULE
SC_CTOR
sc_module
sc_module_name

SC_THREAD
SC_HAS_PROCESS
sc_start

wait (sc_time)
sc_time
sc_time_unit

sc_interface
sc_channel
sc_port

R
T

O
S

Fu
nc

tio
ns

 Thread management

Synchronization
management

Timer
management

Interruption
management

Memory
access

Table 1. SystemC elements replaced

At algorithmic level, the system can be co-simulated.
In order to do that, an RTOS-to-SystemC kernel interface
is needed. This interface models the relation between the
RTOS and the underlying HW platform (running both
over the same host).

Another application of the partitioned description is
the objective of this paper: software generation. In this
case (�Generation� level in Figure 2), only the code of the
SW part has to be included in the generated software.
Thus, the code of the SystemC constructions of the HW
part has to be redefined in such a way that the compiler
easily and efficiently eliminates them.

The analysis of the proposed SW generation flow
concludes that the SystemC constructions have to be
replaced by different elements depending on the former

levels (Specification, Algorithm or Generation) and the
partition (SW or HW) in which the SystemC code is
implemented. This idea is presented in Figure 3:

LEVEL

IMPLEMENTATION

SW

HW

SPECIFICATION GENERATION ALGORITHM

//FUNCTIONS

// MACROS

// CLASSES

SC_MODULE
SC_THREAD
�

sc_module
�

SC2RTOS.h

1 2 3

4 5 6

systemc.h

SC2RTOS.h

Figure 3. SC2RTOS library implementation

Thus, there are 6 possible implementations of the
SystemC constructions. In the proposed approach all these
implementations are included in a file (SC2RTOS.h)
whose content depends on the values of the LEVEL and
IMPLEMENTATION variables. For example, at
SPECIFICATION level only the LEVEL variable is taken
into account (options 1 and 4 are equal) and the
SC2RTOS file only includes the SystemC standard
include file (systemc.h). However, in option 3, for
example, the SC2RTOS file redefines the SystemC
constructions in order to insert the RTOS. Figure 4
presents an example (a SystemC description) that shows
these concepts:

#include �SC2RTOS.h�

#define LEVEL GENERATION

// module includes

#define IMPLEMENTATION HW
#include �module1.h�
�.

#define IMPLEMENTATION SW
#include �moduleN.h�
�.

sc_main(...) {
// channels Instances
 s_channel<type > ch(...,HW_SW);
...
// module Instances
...
sc_start(-1);
}

#include �SC2RTOS.h�

#include �moduleN_1.h�
�
SC_MODULE(�) {
 //channels, ports, functions and
 // module instances
 sc_port<interface > port;
 s_channel<type > *ch;
 moduleN_1 *mod;
 void function(){ ... }
 ...
 SC_CTOR(...){
 ch=new s_channel<int>(�n�,
 IMPLEMENTATION);
 mod = new moduleN_1t(�name�);
 mod->port(*ch) ;
 SC_THREAD(function);
 �
 }
};

ModuleN.h
Top.cc

Figure 4. SystemC description example

The �#define� preprocessing directives will be
introduced by the partitioning tool. These directives are
ignored at specification level. In this paper, it is assumed
that the platform has only one processor, the partition is
performed at module level in this top hierarchical module
and every module is assigned to only one partition. Thus,
only the modules instantiated in the top module are
assigned to the hardware or software partition.

Hierarchical modules are assigned to the same parent-
module partition. Only the channels instantiated in the top
hierarchical module can communicate processes assigned
to different partitions. The channels instantiated inside the
hierarchy will communicate processes that are assigned to
the same partition. This is a consequence of the
assignment of the hierarchical modules.

In Figure 4, the top hierarchical module (described in
file top.cc) and one of the hierarchical modules (described
in file ModuleN.h) are presented. All the statements that
introduce partition information in these descriptions have
been highlighted with bold fonts. The LEVEL and
IMPLEMENTATION variables are specified with pre-
processor statements. With a little code modification,
these variables could be defined, for example, with the
compiler command line options. In this case, the partition
decisions will only affect the compiler options and the
SystemC user code will not be modified during the
software generation process.

Before a module is declared, the library �SC2RTOS.h�
has to be included. This allows the compiler to use the
correct implementation of the SystemC constructions in
every module declaration. Concerning the channels, an
additional argument has been introduced in the channel
declaration. This argument specifies the type of
communication (HW_SW, SW_HW, SW or HW) of a
particular instance of the channel. This parameter is used
to determine the correct channel implementation. The
current version of the proposed software generation
method is not able to determine automatically the
partitions of the processes that a particular instance of a
channel communicates, thus this information must be
explicitly provided.

4. Application example

In order to evaluate the proposed technique a simple
design, a car Anti-lock Braking System (ABS) [17]
example, is presented in this section. The system
description has about 200 SystemC code lines and it
includes 5 modules with 6 concurrent processes.

The system has been implemented in an ARM-based
platform that includes an ARM7TDMI processor, 1Mb
RAM, 1Mb Flash, two 200Kgate FPGAs, a little
configuration CPLD and an AMBA bus. The open source
eCos operating system has been selected as embedded
RTOS. In order to generate software for this platform-OS
pair, a SystemC-to-eCos Library has to be defined. This
library is application independent and it will allow the
generation of the embedded software for that platform
with the eCos RTOS.

The SC2ECOS (SystemC-to-eCos) Library has about
800 C++ code lines and it basically includes the
concurrency and communication support classes that
replace the SystemC kernel. This library can be easily
adapted to a different RTOS.

The main non-visible elements of the concurrency
support are the uc_thread and exec_context classes. The
uc_thread class maintains the set of elements that an eCos
thread needs for its declaration and execution. The
exec_context class replaces the SystemC sc_simcontext
class during software generation. It manages the list of
declared processes and its resumption. These elements call
only 4 functions of eCos (see Table 2):

 Thread
management

Synchronization
management

Interruption
management

eC
os

Fu

nc
tio

ns

cyg_thread_create
cyg_thread_resume
cyg_user_start
cyg_thread_delay

cyg_flag_mask_bits
cyg_flag_set_bits
cyg_flag_wait

cyg_interrupt_create
cyg_interrupt_attach
cyg_interrupt_acknowledge
cyg_interrupt_unmask

Table 2. Ecos functions called by the SC2ECOS
Library.

In order to allow communication among processes,
several channel models have been defined in the
SC2ECOS library. The ABS application example uses two
of them; a blocking channel (one element sc_fifo channel)
and an extended channel (that enables blocking, non-
blocking and polling accesses).

The same channel type could communicate SW
processes, HW processes or a HW and a SW process (or
vice versa). Thus, the proposed channel models have
different implementations depending on the HW/SW
partition. In order to implement these channel models only
7 eCos functions have been called (center and right
columns of Table 2). These eCos functions control the
synchronization and data transfer between processes.

The ABS system has 5 modules: the top
(�Abs_system�), 2 modules that compute the speed and
the acceleration (�Compute Speed� and �Compute
Acceleration�), another (�Take decision�) that decides the
braking, and the last one (�Multiple Reader�) that
provides speed data to the �Compute Acceleration� and
�Take Decision� modules. Several experiments, with
different partitions have been performed.

Several conclusions have been obtained from the
analysis of the experimental results shown in Figure 5:

• There is a minimum memory size of 53.2Kb that can
be considered constant (independent of the
application). This fixed component is divided in two
parts: a 31K contribution due to the default

configuration of the eCos kernel, that includes the
scheduler, interruptions, timer, priorities, monitor and
debugging capabilities and a 22.2Kb contribution,
necessary to support dynamic memory management,
as the C++ library makes use of it.

• There is a variable component of the memory size that
can be divided into two different contributions. One of
them is due to the channel implementation and
asymptotically increases to a limit. This growth is non-
linear due to the compiler optimizing the overlap of
necessary resources among the new channel
implementations. It reaches a limit depending on the
number of channel implementations given for the
platform. Thus, each platform enables a different limit.
The channel implementation of the ABS system
requires 11.4Kb. The other component depends on the
functionality and module specification code. This
growth can be considered linear (at a rate of
approximately 1Kb per 50-70 source code lines in the
example), as can be deduced from Table 3.

The total software code generated is limited to 68.7Kb:

 eCos 31.0Kb

Dynamic Memory
Managament

Functionality

Channel
implementation

22.2Kb

11.4Kb

4,1Kb

Minimum
 Memory
Footprint
 53.2 Kb

Variable
 Memory

Size

Figure 5. Memory footprint for the ABS SW

implementation.

Table 3 shows in more detail how the functionality
size component in the ABS system is distributed in each
module:

SC_MODULE Abs

System
Compute

Speed
Compute

acceleration
Take

Decision
Multiple
Readers

C++ Code
lines 30 44 46 110 12

Blocking
channels 3 0 0 1 0

Extended
channels 1 0 0 0 0

Generated SW 1130 bytes 700 bytes 704 bytes 3510 bytes 140 bytes

Table 3. Code size introduced by each module.

The addition of module memory sizes gives the value
of 6.2Kb. This exceeds by 2.1Kb the 4.2Kb shown in

Figure 5. This is due to the shared code of instanced
channels that appears in modules including structural
description (Take Decision and ABS System).

The overall overhead introduced by the method respect
to manual development is negligible because the SystemC
code is not included but substituted by a C++ equivalent
implementation that uses eCos. In terms of memory, only
the 22.2Kbytes could be reduced if an alternative C code
avoiding dynamic memory management is written.

5. Conclusions

This paper presents an efficient embedded software
generation method based on SystemC. This technique
reduces the embedded system design cost in a platform
based HW/SW codesign methodology. One of its main
advantages is that the same SystemC code is used for the
system-level specification and, after SW/HW partition, for
the embedded SW generation. The proposed methodology
is based on the redefinition and overloading of SystemC
class library construction elements. In the software
generated, those elements are replaced by typical RTOS
functions. Another advantage is that this method is
independent of the selected RTOS and any of them can be
supported by simply writing the corresponding library for
that replacement. Experimental results demonstrate that
the minimum memory footprint is 53.2 Kb when the eCos
RTOS is used. This overhead is relatively low taking into
account the great advantages that it offers: it enables the
support of SystemC as unaltered input for the
methodology processes and gives reliable support of a
robust and application independent RTOS, namely eCos,
that includes an extensive support for debugging,
monitoring, etc� To this non-recurrent SW code, the
minimum footprint has to be increased with a variable but
limited component due to the channels. Beyond this, there
is a linear size increment with functionality and hierarchy
complexity of the specification code.

References
[1] A. Allan, D. Edenfeld, W. Joyner, A. Kahng, M. Rodgers, Y.

Zorian: �2001 Technology Roadmap for Semiconductors�.
IEEE Computer. January 2002.

[2] International Technology Roadmap for Semiconductors.
2001 Update. Design. Editions at http://public.itrs.net.

[3] J. Borel: "SoC design challenges: The EDA Medea
Roadmap", in E. Villar (Ed.): "Design of HW/SW embedded
systems". University of Cantabria. 2001.

[4] L. Geppert: "Electronic design automation", IEEE Spectrum,
V.37, N.1, January 2000.

[5] G. Prophet: �System Level design Languages: to C or not to
C?�. EDN Europe. October 1999. www.ednmag.com.

[6] "SystemC 2.0 Functional specification", www.systemc.org,
2001.

[7] P. Sánchez: "Embedded SW and RTOS", in E. Villar (Ed.):
"Design of HW/SW embedded systems". University of
Cantabria. 2001.

[8] PtolemyII. http://ptolemy.eecs.berkeley.edu/ptolemyII.
[9] F.Baladin, M. Chiodo, P.Giusto, H.Hsieh, A. Jurecska,

L.Lavagno, C.Passerone, A.Sangiovanni-Vicentelli, E.
Sentovich, K. Suzuki, B.Tabbara �Hardware-Software Co-
design of Embedded Systems: The POLIS Approach�.
Kluwer. 1997.

[10] R.K.Gupta. �Co-synthesis of Hardware and Software for
Digital Embedded Systems�. Ed. Kluwer. August 1995.
ISBN 0-7923-9613-8.

[11] D. Desmet, D. Verkest and H. de Man, �Operating System
Based Software Generation for System-On-Chip�,
Proc.Design Automation conf., June 2000.

[12] D. Verkest, J. da Silva, C. Ykman, K.C roes, M. Miranda,
S. Wuytack, G. de Jong, F. Catthoor and H. de Man.
�Matisse: A system-on-chip design methodology
emphasizing dynamic memory management�. Journal of
VLSI signal Processing, 21(3): 277-291, July 1999.

[13] M. Diaz-Nava, W. Cesário, A. Baghdadi, L. Gauthier, D.
Lyonnard, G. Nicolescu, Y. Paviot, S. Yoo, A.A. Jerraya.
�Component-Based Design Approach for Multicore SoCs�,
Proc. Design Automation Conf. June 2002.

[14] L. Gauthier, S. Yoo and A.A. Jerraya �Automatic
Generation of Application-Specific Operating Systems and
Embedded Systems Software�, Proc. of Design Automation
and Test in Europe. Mar. 2001.

[15] S. Yoo; G. Nicolescu; L. Gauthier & A.A. Jerraya:
"Automatic generation of fast simulation models for
operating systems in SoC design", Proc. of DATE'02, IEEE
Computer Society Press, 2002.

[16] K. Weiss; T. Steckstor and W. Rosenstiel. �Emulation of a
Fast Reactive Embedded System using a Real Time
Operating System�. Proc of DATE�99. March 1999.

[17] Coware, Inc., �N2C�, http://www.coware.com/N2C.html.
[18] F. Herrera, P. Sánchez & E. Villar: �HW/SW Interface

Implementation from SystemC for Platform Based Design�.
FDL�02. Marseille. September 2002.

[19] EL/IX Base API Specification DRAFT.
http://sources.redhat.com/elix/api/current/api.html.

