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Systematic errors in digital image correlation
caused by intensity interpolation
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Abstract. Recently, digital image correlation as a tool for surface defor-
mation measurements has found widespread use and acceptance in the
field of experimental mechanics. The method is known to reconstruct
displacements with subpixel accuracy that depends on various factors
such as image quality, noise, and the correlation algorithm chosen. How-
ever, the systematic errors of the method have not been studied in detail.
We address the systematic errors of the iterative spatial domain cross-
correlation algorithm caused by gray-value interpolation. We investigate
the position-dependent bias in a numerical study and show that it can
lead to apparent strains of the order of 40% of the actual strain level.
Furthermore, we present methods to reduce this bias to acceptable lev-
els. © 2000 Society of Photo-Optical Instrumentation Engineers.
[S0091-3286(00)00911-9]

Subject terms: image correlation; bias; systematic error; phase error; interpola-
tion.
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1 Introduction

It has been observed in many of our experiments that
iterative cross-correlation algorithm1 introduces a system
atic error depending on the subpixel position of the d
placed subset. This error has been observed in pure tr
lation tests as well as in strained specimens. For a l
time, the errors remained unexplained and only recently
this error been attributed to the interpolation method u
in the cross-correlation algorithm.2 A plot illustrating the
typical relationship between systematic displacement e
and subpixel position of the displaced subset is shown
Fig. 1. We can see that the error is zero at integer
midpoint positions. For a specimen uniformly strained
the x direction, where

u~x!5«x, ~1!

the relative apparent strain caused by this bias is found

D«

«
5

]Du

]~«x!
5

]Du

]u
, ~2!

whereDu corresponds to the ordinate shown in Fig. 1 a
«x5u corresponds to the abscissa. Thus, the relative
parent strain is given by the slope of the error function, a
for the case shown, a maximum relative apparent strain
approximately 20% of the actual strain level can be
pected, limiting the usefulness of cross-correlation
strain measurements.

2 Interpolation Errors

The cause of the position-dependent bias is found in
properties of the interpolators used in the iterative cro
correlation algorithm. To obtain subpixel accuracy, t
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cross-correlation coefficient~or other matching criterion,
e.g., squared gray-value differences! must be evaluated a
noninteger locations. Therefore, gray values and gray-va
derivatives must be interpolated. It is well known that t
most commonly used interpolators, namely, polynom
and B-spline interpolators, alter both the signal amplitu
and the signal phase, depending on the subpixel posi
and the wave number of the signal.3 For a linear, shift-
invariant interpolation filter with a transfer functio
ĥ( k̃,d), the phase errorDf can be calculated by subtrac

ing the linear phase shiftdp k̃ caused by a positional shiftd
according to the shift theorem:

Df5arctanS Im ĥ~ k̃,d!

Reĥ~ k̃,d!
D 2dp k̃, ~3!

wherek̃ denotes normalized wave numbers. The positio
error Dp corresponding to the phase shiftDf is given by

Dp5lDf/2p5Df/p k̃. ~4!

As an example, a cubic polynomial interpolator can be
pressed as a convolution operator with the kernel

@h0 ,h1 ,h2 ,h3#, ~5!

where
2915© 2000 Society of Photo-Optical Instrumentation Engineers
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h051 1
4d

22 1
161

1
24 d2 1

6d
3,

h152 1
4d

21 9
16 2 9

8d1 1
2d

3,
~6!

h252 1
4d

21 9
161

9
8d2 1

2d
3,

h351 1
4d

22 1
162

1
24d1 1

6d
3.

Here, the polynomials are grouped into the even and
parts andd denotes the subpixel position measured fro
the midpoint between samples for symmetry reasons. Us
the symmetry of the coefficients, the corresponding trans
function is easily found as

ĥc~ k̃,d!5~2 1
2d

21 9
8!cos~ 1

2p k̃!1~ 1
2d

22 1
8!cos~ 3

2p k̃!

1 i @~ 9
4d2d3!sin~ 1

2p k̃!2~ 1
12d2 1

3d
3!sin~ 3

2p k̃!#.

~7!

Using Eqs.~3! and~4!, the positional error as a function o
subpixel position and wave number is found as

Fig. 1 Typical correlation error as a function of the subpixel position
of the displaced subset.
2916 Optical Engineering, Vol. 39 No. 11, November 2000
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1

p k̃
arctan

3
@~9/4d2d3!sin~1/2p k̃!2~1/12d21/3d3!sin~3/2p k̃!#

~21/2d219/8!cos~1/2p k̃!1~1/2d221/8!cos~3/2p k̃!
2d.

~8!

The positional errorDp and the amplitude attenuationuĥu
are shown in Fig. 2 as a function of the fractional positi
d and the wave numberk̃. At the integer positionsd51/2
and d521/2, both errors vanish. At the midpoint,d50,
the positional error is zero for symmetry reasons, but
amplitude error is highest. Note that the general shape
the error shown in Fig. 2 is the same for all polynomial a
B-spline interpolators, only the magnitude of the erro
changes.

The effect of the positional interpolation error on su
pixel reconstruction is difficult to predict, as the error vari
with frequency. For the case of reconstructing the displa
ment between two monochromatic waves, however, the
fect can easily be imagined. The cross-correlation match
criterion is insensitive to a scale, such that the amplitu
attenuation of interpolation has no effect. The maximu
correlation will occur when the original wave and the wa
interpolated from the displaced copy are in phase. This w
be the case if the measured displacementu* plus the posi-
tional errorDp(u* ) is equal to the true displacementuT .
Therefore, the reconstruction errorDu5u* 2uT becomes

Du52Dp~u* !. ~9!

For a first-order approximation of the error as a function
the true displacementuT , one can assume thatDp(u* )
'Dp(uT), and the reconstruction error becomes the ne
tive of the interpolation error.

3 Numerical Studies

As the systematic errors of the cross-correlation results
influenced by many factors such as the frequency con
of the speckle pattern, the amplitude attenuation and
phase error of the interpolator used, etc., an analytical p
Fig. 2 Positional errors (left) and amplitude attenuation (right) of cubic polynomial interpolation as a

function of the fractional position d for wave numbers k̃51/4, 1/2, and 3/4, as indicated.
erms of Use: http://spiedl.org/terms
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diction of the errors cannot be found easily. Therefore,
merical studies with different speckle patterns and inter
lation methods were performed.

The correlation algorithm used is based on an itera
search algorithm to find the maximum of the cros
correlation coefficientr. For simplicity, suppose the origin
of anx,y coordinate system is located at the center pixe
an (N11)3(N11) subset in the first imagef (x,y), where
N is even. To find the corresponding subset in the sec
imageg(x,y), the cross-correlation coefficient

r 5
Sy52N/2

y5N/2 Sx52N/2
x5N/2 f ~x,y! g~j~x,y,s!,h~x,y,s!!

$Sy52N/2
y5N/2 Sx52N/2

x5N/2 f 2~x,y! Sy52N/2
y5N/2 Sx52N/2

x5N/2 g2@j~x,y,s!,h~x,y,s!#%1/2

~10!

is defined. In this equation,s is a parameter vector tha
relates coordinates in the first image subset to the co
sponding coordinates in the second image through

j~x,y,s!5s11s2x1s3y, ~11!

h~x,y,s!5s41s5x1s6y. ~12!

The parameterss1 ands4 describe theu andv displacement
components between the subset centers, respectively,
the remaining parameters allow for an affine transform.
find the parameter vectorsmax that maximizes Eq.~10!, the
cross-correlation coefficient is developed into a seco
order Taylor polynomial at a points̄ in the vicinity of the
correlation peak. Assuming the Taylor polynomial is co
rect, the maximum can be found by

smax5 s̄1D s̄, ~13!

whereD s̄ is obtained from

3
r 11 r 12 r 13 r 14 r 15 r 16

¯ r 22 r 23 r 24 r 25 r 26

¯ ¯ r 33 r 34 r 35 r 36

¯ ¯ ¯ r 44 r 45 r 46

¯ ¯ ¯ ¯ r 55 r 56

¯ ¯ ¯ ¯ ¯ r 66

4 S Ds1

Ds2

Ds3

Ds4

Ds5

Ds6

D 52S r 1

r 2

r 3

r 4

r 5

r 6

D .

~14!

Here, r i denotes]r /]si u s̄ and r i j denotes]2r /]si]sj u s̄.
Equations~13! and~14! are used to iteratively findsmax in a
Levenberg-Marquardt algorithm.4 The program ‘‘Vic2D’’
was used for all numerical studies.5

The speckle images used for the numerical studies w
taken from a number of previous experiments. To isol
the effects of interpolation, translated and stretched ima
were generated numerically from the speckle images.
course, the generated images must not have an interpol
bias. Therefore, the images were obtained by applying
appropriate shift in the Fourier domain according to t
shift theorem. For a given subpixel displacementDx, an
interpolated value can be calculated by shifting the sig
by 2Dx, which brings the sought value to an integer loc
oaded From: http://opticalengineering.spiedigitallibrary.org/ on 01/07/2013 T
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tion. The shift can be accomplished by the Fourier fil
exp(iDxpk̃) so that the phase or amplitude of the shift
signal are not corrupted.

4 Results

Initial studies with linear interpolation indicated that rel
tive apparent strain errors in excess of 40% can be in
duced by the phase errors. This is not surprising, as lin
interpolation causes a maximum positional error of a
proximately 1/20 of a pixel for a periodic structure of
pixels wavelength, and 0.13 pixels error for a waveleng3

of 3 pixels. As the magnitude of these errors is clea
unacceptable, all further investigations were limited to c
bic polynomial, cubic B-spline and quintic B-spline inte
polation.

Extensive studies were performed for a large numbe
different speckle patterns. It was consistently found t
speckle patterns with a bimodal gray-value distribution p
duced the highest errors, while patterns with a uniform d
tribution exhibited significantly less error. This can b
readily attributed to the higher interpolation errors towa
high wave numbers. While the gray-value distribution
not an exact measure of frequency content, it is obvio
that a bimodal distribution with essentially black speck
on a white background~or vice versa! has more energy in
the high wave number range than an image with smo
transitions between black and white. To limit the amount
data presented, we chose two speckle patterns. The sp
pattern shown in Fig. 3~a! had the least amount of error o
all patterns investigated. This image approximates a c
tinuously varying intensity pattern and has a uniform gra
level distribution. The second image chosen was produ
by mapping the lower half of the gray values to the low
quarter and the upper half to the upper quarter, thus p
ducing a bimodal gray-value distribution@see Fig. 3~b!#.
The results from the image generated in this manner w
chosen because they can be regarded as an upper bou
the errors that occured with images taken from actual
periments. Furthermore, the characteristics of both imag
particularly speckle size and orientation, are comparabl

4.1 Translation

First, a series of translated speckle images was investiga
The shifted images were computed by applying a Fou
filter exp (2ipnDx), wheren indicates the image numbe
and Dx is the shift increment between successive imag
In this manner, a series of 20 images was generated, co
sponding to a shift of 0.05 pixel between successive
ages. The images were then analyzed with the itera

Fig. 3 Speckle patterns used for numeric studies.
2917Optical Engineering, Vol. 39 No. 11, November 2000
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Fig. 4 Systematic error for a simulated translation test for different interpolation functions: left, con-
tinuous gray-value distribution; right, bimodal distribution.
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cross-correlation algorithm described in the previous s
tion. The displacements were calculated at one thous
points for every image with a subset size of 31331 pixels.
Figure 4 shows the correlation error as a function of
true subpixel displacement for the image with the contin
ous gray-value distribution on the left and for the bimod
image on the right. While quintic spline interpolation pr
duces the least amount of error for the continuous image
one would intuitively assume, the errors are larger than
the other interpolators for the bimodal gray-value distrib
tion. These somewhat counterintuitive results clearly po
out the importance of both phase error and amplitude
tenuation for the matching process. Even though the qui
spline interpolator has smaller phase errors for a gi
wave number, it can produce worse results because it
less amplitude damping and does not filter out the h
wave numbers to the same degree as lower order inte
lation. The cubic polynomial interpolation exhibits the low
est error for the bimodal image. The iterative minimizati
process becomes slightly unstable for the bimodal ca
with the number of iterations being approximately thr
times higher than for the continuous image. In this ca
higher random errors occur, which cancel due to averag
rather than the pronounced systematic error found for
continuous gray-value distribution. The instability can
attributed to errors in the second order derivatives of
tical Engineering, Vol. 39 No. 11, November 2000
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cross-correlation coefficient, which are approximated us
only the first-order gray-value derivatives for efficienc
reasons.

4.2 Strain

As a second test, strained images were generated to in
tigate how the systematic errors are affected by a non
form displacement field. The generated images had a
form strain of 0.005 in the horizontal direction of th
image. Twenty-one columns of the image, corresponding
subset displacements between 0 and 1 pixels in 0.05-p
increments, were analyzed with the correlation program.
the true displacement was constant along vertical lines
the image, the average was taken along the vertical di
tion, where 450 data points were available for each s
pixel displacement, resulting in a total of 9450 points an
lyzed. Figure 5 shows the average error in the reconstru
displacement over the true subpixel displacement. The
rors are on the same order as for uniform displacement
both the continuous and the bimodal gray-value distrib
tion. The same instability noted previously occurred for t
cubic polynomial interpolation and the bimodal pattern.

As mentioned in the introduction, the relative appare
strain error caused by the bias is given by the slope of
error plots shown in Fig. 5. Figure 6 shows the relati
apparent strains obtained by numerical differentiation
Fig. 5 Systematic error for a simulated uniaxial strain test for different interpolation functions: left,
continuous gray-value distribution; right, bimodal distribution.
erms of Use: http://spiedl.org/terms
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Fig. 6 Relative apparent strain for different interpolation functions: left, continuous gray-value distri-
bution; right, bimodal distribution.
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the displacement errors. For the continuous pattern, er
of the order of 4% occur for cubic polynomial interpol
tion, and for the bimodal pattern, quintic spline interpo
tion produces errors of the order of 15%.

Similar tests were performed for different strain leve
ranging from 0.02 to 5%. The errors do not show any d
matic change with strain level; only toward the higher e
was a slight decrease in error observed.

4.3 Error Reduction

As the interpolation errors increase with the wave num
k̃, the reduction of the high-frequency content in t
speckle images by low-pass filters can be used to red
systematic errors. At first, this procedure appears to red
the information content that is desirable for correlatio
One would expect the cross-correlation algorithm to rely
the presence of pronounced edges between black and w
speckles, which are blurred by a low-pass filter. Howev
due to the nature of common speckle patterns, the infor
tion content in the low-frequency range is very high a
sufficient for accurate matching. Applying a low-pass filt
can be thought of as a weighting function that reduces
erroneous contribution of the high wave numbers to
correlation result. The spatial resolution is unaffected
this procedure, as long as the filter cutoff is sufficien
separated from the frequency band of the displacem
: http://opticalengineering.spiedigitallibrary.org/ on 01/07/2013 T
s

e
e
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functions. Figure 7 shows the correlation error for the tra
lated and strained bimodal speckle patterns for a binom
@0.25, 0.5, 0.25# low-pass filter applied prior to correlation
The error reduction for spline interpolation is significan
and quintic spline interpolation shows approximately fi
times less error than cubic spline interpolation. Since cu
interpolation is stable in this case, the algorithm conver
to the biased location and the systematic errors are
nounced.

For the plot on the right-hand side in Fig. 7, which w
obtained from the strained bimodal speckle pattern,
relative apparent strain error is given by the slope of
error curves shown. Thus, the error reduction is not limi
to displacement errors, but also provides a substantial
duction of the strain errors. For quintic spline interpolatio
the relative apparent strain error obtained after numer
differentiation of the displacement errors was less than
for all cases studied.

4.4 Convergence and Speed

Cross-correlation algorithms that perform the search for
correlation peak in the spatial domain are commonly
garded as extremely slow compared to Fourier dom
methods.6 This stems largely from early implementation
Fig. 7 Systematic error for the bimodal pattern using binomial low-pass filters: left, pure translation:
right, uniaxial strain.
2919Optical Engineering, Vol. 39 No. 11, November 2000
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using a coarse-to-fine search strategy,7 which has since
been replaced by Newton-Raphson or Levenbe
Marquardt methods.8 Although Fourier processing is faste
than the older spatial coarse-fine search methods, note
Fourier methods exhibit a similar systematic error as
spatial domain methods relying on interpolation.9 This bias
is caused by peak estimators used to obtain a subpixe
timate of the peak location from the cross-correlation fu
tion sampled at integer pixel locations.

Using the Levenberg-Marquardt search method,
speed of spatial domain algorithms has become, at the
least, comparable to the Fourier methods. This is due to
reduction of points where the cross-correlation function
to be evaluated. Typically, the average number of iterati
varies between two and five, depending on factors suc
noise, strain, rotation, and very importantly, the interpo
tion method used. At first glance, linear interpolation a
pears to be the fastest choice, as only four multiplicatio
are required to interpolate a gray value, compared to
multiplications for a cubic scheme. However, the sea
algorithm converges much faster for cubic than for line
interpolation, which, in most cases, compensates for
additional multiplications used for interpolation. In add
tion, calculating the derivatives of the cross-correlation
efficient is more time consuming than the gray-value int
polation and differentiation while being totally independe
of the interpolation method used. Even though quintic
terpolation requires more than twice as many multiplicat
as cubic interpolation, the speed reduction is only ab
20% on average, with the number of iterations being
proximately the same. As the number of points where d
placements are evaluated is typically of the order of at le
several hundred points, the additional computation time
quired for the spline transform is negligible, as it can
very efficiently implemented due to the work of Uns
et al.10,11The same argument applies to the additional co
putational cost of a binomial low-pass filter.

In summary, cubic and quintic spline interpolation a
preferable to polynomial interpolation because of the be
convergence and smaller phase errors. This benefi
achieved at virtually no additional computational cost. On
if very few points are evaluated and the speed requirem
is critical, e.g., in an on-line inspection system, can cu
polynomial interpolation be beneficial.

5 Discussion

To further illustrate the impact of the systematic error a
to obtain insight into the potential of the method for sm
strain determination, we investigated the following e
ample. According to the method described above, a u
formly strained image with an applied strain of 50me was
created from the test image with the continuous gray-va
distribution. One line of displacement data spanning 4
columns of the image was analyzed with different interp
lation methods. The strain was then calculated from
displacement data as the slope of the best linear fit.
results were 59.8, 53.4, 52.8, and 50.1me for linear, cubic
polynomial, cubic B-spline, and quintic B-spline interpol
tion, respectively.

These results suggest that the systematic errors du
intensity interpolation can be virtually eliminated. Furthe
more, they show that digital image correlation metho
2920 Optical Engineering, Vol. 39 No. 11, November 2000
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have no inherent systematic errors preventing them fr
making strain measurements with accuracies comparab
those of strain gages, provided that appropriate signal p
cessing techniques are employed. However, there are o
sources of error that affect the accuracy of the method
have not been taken into consideration by this study. As
from experimental factors, the method is currently som
what limited by the random noise in the displacement da
In the preceding example, the strain exhibits random va
tions of 610 and650me if gage lengths of 100 and 31
pixels, respectively, are used for numerically differentiati
the displacement data obtained by quintic B-spline inter
lation. To mitigate the effect of random noise on the stra
measurements, we are currently investigating a metho
incorporating smoothness constraints into the correla
algorithm directly, rather than relying solely on postpr
cessing of the displacement data.

The impact of the interpolation error is not limited t
small strain measurements. The absolute strain errors
to interpolation scale linearly with the strain level. Ther
fore, attention to the interpolation error should be paid
all cases. We feel that the proposed method of error red
tion by high-order interpolation functions and low-pass fi
tering comes at very little additional computational expen
for the error reduction that can be achieved. Particula
we see no justification for continued use of linear interp
lation, as the subpixel information gained by this method
severely biased. If care is taken, the relative apparent st
introduced by cubic interpolation methods can be limited
below 5%, and to below 2% if quintic B-spline interpola
tion is used.

Finally, the relationship between this work and previo
numerical simulations12 was studied. Sutton et al. showe
that there was a bias in the numerical simulation results
varied between being parabolic and sinusoidal on the in
val uP@0,1#. Their simulation results included the effec
of interpolation errors, partial sensor sensitivity and qua
tization errors. Since our work has focused on defining a
mitigating the effects of interpolation error, it is difficult t
directly relate the results. However, in one regard, b
current and previous work are in agreement; higher or
interpolation methods are effective in reducing systema
errors in digital image correlation.

6 Conclusion

We showed the impact of interpolation phase error on
matching error in digital image correlation. This systema
error can cause significant apparent strains in data obta
through image correlation methods.

To reduce the systematic errors, high-order interpolat
methods with smaller phase errors are preferable. The m
dramatic error reduction is found in going from linear
cubic interpolation, while quintic interpolation showed
less pronounced improvement over cubic interpolation.

We also showed the influence of frequency content
the speckle pattern on matching bias and have foun
smooth transition between black and white to be prefera
for accurate measurements. Alternatively, low-pass filter
the speckle images prior to correlation can be used to li
the effect of phase error at high wave numbers that is ch
acteristic of all interpolators with compact support. As dig
tal image correlation is most commonly used as an off-l
erms of Use: http://spiedl.org/terms
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processing tool with no particular speed requirements,
use of the somewhat slower quintic spline interpolation
conjunction with a low-pass filter is highly recommende
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