Systematic errors in digital image correlation
caused by intensity interpolation
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1 Introduction cross-correlation coefficienfor other matching criterion,

It has been observed in many of our experiments that the €9+ squared gr_ay-value differencesust be evaluated at
iterative cross-correlation algoritnintroduces a system-  noninteger locations. Therefore, gray values and gray-value
atic error depending on the subpixel position of the dis- derivatives must be interpolated. It is well known that the

placed subset. This error has been observed in pure transM0St commonly used interpolators, namely, polynomial
lation tests as well as in strained specimens. For a long and B-spline interpolators, alter both the signal amplitude

time, the errors remained unexplained and only recently has@nd the signal phase, depending on the subpixel position

this error been attributed to the interpolation method used @nd the wave number of the sigriaFor a linear, shift-

in the cross-correlation algorithmA plot illustrating the ~ Invariant interpolation filter with a transfer function
typical relationship between systematic displacement error h(K,d), the phase erroA¢ can be calculated by subtract-
and Subpixel position of the displaced subset is shown in |ng the linear phase Shlﬂ’ﬂrk caused by a positiona| shift
Fig. 1. We can see that the error is zero at integer and according to the shift theorem:

midpoint positions. For a specimen uniformly strained in

the x direction, where

u(x)=ex, (1) A¢p=arcta Imhtk, 2) — ok, )

the relative apparent strain caused by this bias is found as Reh(k, 9)

Ae JAu  JAu

=—=—), (2) wherek denotes normalized wave numbers. The positional
e dlex) ou

error A, corresponding to the phase shift is given by

whereAu corresponds to the ordinate shown in Fig. 1 and
eXx=u corresponds to the abscissa. Thus, the relative ap- ~
parent strain is given by the slope of the error function, and Ap=NA@l2m=Almk. (4)
for the case shown, a maximum relative apparent strain of
approximately 20% of the actual strain level can be ex-
pected, limiting the usefulness of cross-correlation for
strain measurements.

As an example, a cubic polynomial interpolator can be ex-
pressed as a convolution operator with the kernel

2 Interpolation Errors [ho,h1,hy,h3] 5

The cause of the position-dependent bias is found in the
properties of the interpolators used in the iterative cross-
correlation algorithm. To obtain subpixel accuracy, the where
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Fig. 1 Typical correlation error as a function of the subpixel position
of the displaced subset.

~ 1
Ap(k,8)= —arctan
K

y [(9/45— 8%)sin(1/2a7k) — (1/125— 1/35%)sin(3/2K) |
(—1/25%+9/8)cog 1/277K) + (1/282— 1/8) cog 3/27K) (.8)

The positional errol\, and the amplitude attenuatigh|
are shown in Fig. 2 as a function of the fractional position

5 and the wave numbék. At the integer position$= 1/2

and 6= —1/2, both errors vanish. At the midpoinf=0,

the positional error is zero for symmetry reasons, but the
amplitude error is highest. Note that the general shape of
the error shown in Fig. 2 is the same for all polynomial and

B-spline interpolators, only the magnitude of the errors

changes.

The effect of the positional interpolation error on sub-
pixel reconstruction is difficult to predict, as the error varies
with frequency. For the case of reconstructing the displace-
ment between two monochromatic waves, however, the ef-
fect can easily be imagined. The cross-correlation matching
criterion is insensitive to a scale, such that the amplitude
attenuation of interpolation has no effect. The maximum
correlation will occur when the original wave and the wave

Lo 9 0e 1 (6) interpolated from the displaced copy are in phase. This will
hy=— 26+ 55+ §6— 36, be the case if the measured displacemgnplus the posi-
tional errorA,(u*) is equal to the true displacememnt .
hy=+38°— £— 26+ 15 Therefore, the reconstruction errdu=u* —u; becomes
Here, the polynomials are grouped into the even and odd Au=—A(u*). 9

parts andé denotes the subpixel position measured from

the midpoint between samples for symmetry reasons. UsingFor a first-order approximation of the error as a function of
the symmetry of the coefficients, the corresponding transfer the true displacement;, one can assume that,(u*)

function is easily found as
he(k,8)=(— 36°+ cos 3k) + (36°— 3)cos 37k)
+i[ (36— 8%)sin(37K) — (156~ 56%)sin(37k) .
()

Using Egs.(3) and(4), the positional error as a function of

subpixel position and wave number is found as

P

A, [pixel]
o
J
Y

0.4 02 o 02 04
8 [pixel]

~A,(ur), and the reconstruction error becomes the nega-
tive of the interpolation error.

3 Numerical Studies

As the systematic errors of the cross-correlation results are
influenced by many factors such as the frequency content
of the speckle pattern, the amplitude attenuation and the
phase error of the interpolator used, etc., an analytical pre-
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Fig. 2 Positional errors (left) and amplitude attenuation (right) of cubic polynomial interpolation as a
function of the fractional position & for wave numbers k= 1/4, 1/2, and 3/4, as indicated.
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diction of the errors cannot be found easily. Therefore, nu- a)
merical studies with different speckle patterns and interpo-
lation methods were performed.

The correlation algorithm used is based on an iterative
search algorithm to find the maximum of the cross-
correlation coefficient. For simplicity, suppose the origin
of anx,y coordinate system is located at the center pixel of
an (N+1) X (N+1) subset in the firstimagix,y), where
N is even. To find the corresponding subset in the second
imageg(x,y), the cross-correlation coefficient

Fig. 3 Speckle patterns used for numeric studies.

3Y2M02 X Me f(Y) g(é(xy.9),m(x.y.9)
(ZY2 MR MRy YN0 €k Y. ), mxy, 9 11 tion. The shift can be accomplished by the Fourier filter
(10 exp(AxmK) so that the phase or amplitude of the shifted
signal are not corrupted.

r=

is defined. In this equatiors is a parameter vector that
relates coordinates in the first image subset to the corre-4 Results

sponding coordinates in the second image through Initial studies with linear interpolation indicated that rela-
tive apparent strain errors in excess of 40% can be intro-

&(X,Y,S) =S, + SoX+S3Y, (11 duced by the phase errors. This is not surprising, as linear
interpolation causes a maximum positional error of ap-

7(X,Y,S) =S,+ SsX + SgY. (12) proximately 1/20 of a pixel for a periodic structure of 4

pixels wavelength, and 0.13 pixels error for a wavelehgth

The parameters; ands, describe the andv displacement of 3 pixels. As the magpitude_ of_these erro.rs.is clearly
components between the subset centers, respectively, angnacceptable, all further investigations were limited to cu-
the remaining parameters allow for an affine transform. To PiC polynomial, cubic B-spline and quintic B-spline inter-
find the parameter vectay, ., that maximizes Eq10), the ~Polation. .

cross-correlation coefficient is developed into a second- , EXtensive studies were performed for a large number of
order Taylor polynomial at a poifgin the vicinity of the different speckle patterns. It was consistently found that

; ; s _ speckle patterns with a bimodal gray-value distribution pro-
correlation pgak. Assuming the Taylor polynomial is cor duced the highest errors, while patterns with a uniform dis-
rect, the maximum can be found by

tribution exhibited significantly less error. This can be
readily attributed to the higher interpolation errors toward

Smax= ST AS, (13 high wave numbers. While the gray-value distribution is
_ ) not an exact measure of frequency content, it is obvious
whereAs is obtained from that a bimodal distribution with essentially black speckles

_ . on a white backgroun¢bor vice versa has more energy in
rig Fip T13 Tig T1s Tig| [ ASy ri the high wave number range than an image with smooth
Fop Tos Tos Tos Fog|| AS, ry transitions between black and white. To limit the amount of

data presented, we chose two speckle patterns. The speckle
a3 Tas TFas TI3e|[ AS3 Is pattern shown in Fig. @) had the least amount of error of

aa Tas Tas|| Asy rs all patterns investigated. This image approximates a con-
tinuously varying intensity pattern and has a uniform gray-
Fss Tse|| ASs I's level distribution. The second image chosen was produced
res| | Asg re by mapping the lower half of the gray values to the lower
3 B (14) quarter and the upper half to the upper quarter, thus pro-
ducing a bimodal gray-value distributidisee Fig. 8o)].
Here, r; denoteso’)r/gsdg and rij denotesﬁzr/ﬁsio’asj|§ The results from the Image generated in this manner were
Equations(13) and(14) are used to iteratively finghq,in a chosen because they can_be_regarded as an upper bound of
Levenberg-Marquardt algorithf’n]’he program “Vic2D” the.errors that occured with images tqun from act_ual ex-
was used for all numerical studies. periments. Furthermore, the characteristics of both images,

The speckle images used for the numerical studies werebarticularly speckle size and orientation, are comparable.
taken from a number of previous experiments. To isolate
the effects of interpolation, translated and stretched images
were generated numerically from the speckle images. Of First, a series of translated speckle images was investigated.
course, the generated images must not have an interpolatiorThe shifted images were computed by applying a Fourier
bias. Therefore, the images were obtained by applying thefilter exp (—i7nAx), wheren indicates the image number
appropriate shift in the Fourier domain according to the andAx is the shift increment between successive images.
shift theorem. For a given subpixel displacemént, an In this manner, a series of 20 images was generated, corre-
interpolated value can be calculated by shifting the signal sponding to a shift of 0.05 pixel between successive im-
by —Ax, which brings the sought value to an integer loca- ages. The images were then analyzed with the iterative

4.1 Translation
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Fig. 4 Systematic error for a simulated translation test for different interpolation functions: left, con-
tinuous gray-value distribution; right, bimodal distribution.

cross-correlation algorithm described in the previous sec- cross-correlation coefficient, which are approximated using
tion. The displacements were calculated at one thousandonly the first-order gray-value derivatives for efficiency
points for every image with a subset size 0f331 pixels. reasons.

Figure 4 shows the correlation error as a function of the .

true subpixel displacement for the image with the continu- 4-2  Strain
ous gray-value distribution on the left and for the bimodal As a second test, strained images were generated to inves-
image on the right. While quintic spline interpolation pro- tigate how the systematic errors are affected by a nonuni-
duces the least amount of error for the continuous image, asform displacement field. The generated images had a uni-
one would intuitively assume, the errors are larger than for form strain of 0.005 in the horizontal direction of the
the other interpolators for the bimodal gray-value distribu- image. Twenty-one columns of the image, corresponding to
tion. These somewhat counterintuitive results clearly point subset displacements between 0 and 1 pixels in 0.05-pixel
out the importance of both phase error and amplitude at-increments, were analyzed with the correlation program. As
tenuation for the matching process. Even though the quintic the true displacement was constant along vertical lines in
spline interpolator has smaller phase errors for a given the image, the average was taken along the vertical direc-
wave number, it can produce worse results because it hadion, where 450 data points were available for each sub-
less amplitude damping and does not filter out the high pixel displacement, resulting in a total of 9450 points ana-
wave numbers to the same degree as lower order interpodyzed. Figure 5 shows the average error in the reconstructed
lation. The cubic polynomial interpolation exhibits the low- displacement over the true subpixel displacement. The er-
est error for the bimodal image. The iterative minimization rors are on the same order as for uniform displacement for
process becomes slightly unstable for the bimodal case,both the continuous and the bimodal gray-value distribu-
with the number of iterations being approximately three tion. The same instability noted previously occurred for the
times higher than for the continuous image. In this case, cubic polynomial interpolation and the bimodal pattern.
higher random errors occur, which cancel due to averaging, As mentioned in the introduction, the relative apparent
rather than the pronounced systematic error found for the strain error caused by the bias is given by the slope of the
continuous gray-value distribution. The instability can be error plots shown in Fig. 5. Figure 6 shows the relative
attributed to errors in the second order derivatives of the apparent strains obtained by numerical differentiation of
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Fig. 5 Systematic error for a simulated uniaxial strain test for different interpolation functions: left,
continuous gray-value distribution; right, bimodal distribution.
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Fig. 6 Relative apparent strain for different interpolation functions: left, continuous gray-value distri-
bution; right, bimodal distribution.

the displacement errors. For the continuous pattern, errorsfunctions. Figure 7 shows the correlation error for the trans-
of the order of 4% occur for cubic polynomial interpola- lated and strained bimodal speckle patterns for a binomial
tion, and for the bimodal pattern, quintic spline interpola- [0.25, 0.5, 0.2blow-pass filter applied prior to correlation.
tion produces errors of the order of 15%. The error reduction for spline interpolation is significant,
Similar tests were performed for different strain levels and quintic spline interpolation shows approximately five
ranging from 0.02 to 5%. The errors do not show any dra- times less error than cubic spline interpolation. Since cubic
matic change with strain level; only toward the higher end interpolation is stable in this case, the algorithm converges

was a slight decrease in error observed. to the biased location and the systematic errors are pro-
) nounced.
4.3  Error Reduction For the plot on the right-hand side in Fig. 7, which was

As the interpolation errors increase with the wave number obtained from the strained bimodal speckle pattern, the

k. the reduction of the high-frequency content in the relative apparent strain error is given by the slope of the

speckle mages by low-pass itrs can be used to reducel"3f VS shoun. Thus the eror reuction ot fnfed
systematic errors. At first, this procedure appears to reduce ISP : ' pro > ;
duction of the strain errors. For quintic spline interpolation,

the information content that is desirable for correlation. X . ; .
the relative apparent strain error obtained after numerical

One would expect the cross-correlation algorithm to rely on .. L ]
the presence of pronounced edges between black and whit ifferentiation of the displacement errors was less than 2%
or all cases studied.

speckles, which are blurred by a low-pass filter. However,
due to the nature of common speckle patterns, the informa-
tion content in the low-frequency range is very high and

sufficient for accurate matching. Applying a low-pass filter

can be thought of as a weighting function that reduces the 44 Convergence and Speed

erroneous contribution of the high wave numbers to the Cross-correlation algorithms that perform the search for the
correlation result. The spatial resolution is unaffected by correlation peak in the spatial domain are commonly re-
this procedure, as long as the filter cutoff is sufficiently garded as extremely slow compared to Fourier domain
separated from the frequency band of the displacementmethods. This stems largely from early implementations
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Fig. 7 Systematic error for the bimodal pattern using binomial low-pass filters: left, pure translation:
right, uniaxial strain.
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using a coarse-to-fine search stratégyhich has since  have no inherent systematic errors preventing them from
been replaced by Newton-Raphson or Levenberg- making strain measurements with accuracies comparable to
Marquardt method® Although Fourier processing is faster those of strain gages, provided that appropriate signal pro-
than the older spatial coarse-fine search methods, note thatessing techniques are employed. However, there are other
Fourier methods exhibit a similar systematic error as the sources of error that affect the accuracy of the method that
spatial domain methods relying on interpolatiohhis bias have not been taken into consideration by this study. Aside
is caused by peak estimators used to obtain a subpixel esfrom experimental factors, the method is currently some-
timate of the peak location from the cross-correlation func- what limited by the random noise in the displacement data.
tion sampled at integer pixel locations. In the preceding example, the strain exhibits random varia-
Using the Levenberg-Marquardt search method, the tions of =10 and £50ue if gage lengths of 100 and 31
speed of spatial domain algorithms has become, at the verypixels, respectively, are used for numerically differentiating
least, comparable to the Fourier methods. This is due to thethe displacement data obtained by quintic B-spline interpo-
reduction of points where the cross-correlation function has lation. To mitigate the effect of random noise on the strain
to be evaluated. Typically, the average number of iterations measurements, we are currently investigating a method of
varies between two and five, depending on factors such asincorporating smoothness constraints into the correlation
noise, strain, rotation, and very importantly, the interpola- algorithm directly, rather than relying solely on postpro-
tion method used. At first glance, linear interpolation ap- cessing of the displacement data.
pears to be the fastest choice, as only four multiplications  The impact of the interpolation error is not limited to
are required to interpolate a gray value, compared to 20 small strain measurements. The absolute strain errors due
multiplications for a cubic scheme. However, the search to interpolation scale linearly with the strain level. There-
algorithm converges much faster for cubic than for linear fore, attention to the interpolation error should be paid in
interpolation, which, in most cases, compensates for theall cases. We feel that the proposed method of error reduc-
additional multiplications used for interpolation. In addi- tion by high-order interpolation functions and low-pass fil-
tion, calculating the derivatives of the cross-correlation co- tering comes at very little additional computational expense
efficient is more time consuming than the gray-value inter- for the error reduction that can be achieved. Particularly,
polation and differentiation while being totally independent we see no justification for continued use of linear interpo-
of the interpolation method used. Even though quintic in- lation, as the subpixel information gained by this method is
terpolation requires more than twice as many multiplication severely biased. If care is taken, the relative apparent strain
as cubic interpolation, the speed reduction is only about introduced by cubic interpolation methods can be limited to
20% on average, with the number of iterations being ap- below 5%, and to below 2% if quintic B-spline interpola-
proximately the same. As the number of points where dis- tion is used.
placements are evaluated is typically of the order of at least  Finally, the relationship between this work and previous
several hundred points, the additional computation time re- numerical simulation$ was studied. Sutton et al. showed
quired for the spline transform is negligible, as it can be that there was a bias in the numerical simulation results that
very efficiently implemented due to the work of Unser varied between being parabolic and sinusoidal on the inter-
et all® The same argument applies to the additional com- val ue[0,1]. Their simulation results included the effects
putational cost of a binomial low-pass filter. of interpolation errors, partial sensor sensitivity and quan-
In summary, cubic and quintic spline interpolation are tization errors. Since our work has focused on defining and
preferable to polynomial interpolation because of the better mitigating the effects of interpolation error, it is difficult to
convergence and smaller phase errors. This benefit isdirectly relate the results. However, in one regard, both
achieved at virtually no additional computational cost. Only current and previous work are in agreement; higher order
if very few points are evaluated and the speed requirementinterpolation methods are effective in reducing systematic
is critical, e.g., in an on-line inspection system, can cubic errors in digital image correlation.
polynomial interpolation be beneficial.

6 Conclusion

5 Discussion We showed the impact of interpolation phase error on the
To further illustrate the impact of the systematic error and matching error in digital image correlation. This systematic
to obtain insight into the potential of the method for small error can cause significant apparent strains in data obtained
strain determination, we investigated the following ex- through image correlation methods.
ample. According to the method described above, a uni-  To reduce the systematic errors, high-order interpolation
formly strained image with an applied strain of 56 was methods with smaller phase errors are preferable. The most
created from the test image with the continuous gray-value dramatic error reduction is found in going from linear to
distribution. One line of displacement data spanning 450 cubic interpolation, while quintic interpolation showed a
columns of the image was analyzed with different interpo- less pronounced improvement over cubic interpolation.
lation methods. The strain was then calculated from the  We also showed the influence of frequency content in
displacement data as the slope of the best linear fit. Thethe speckle pattern on matching bias and have found a
results were 59.8, 53.4, 52.8, and 5Qéfor linear, cubic smooth transition between black and white to be preferable
polynomial, cubic B-spline, and quintic B-spline interpola- for accurate measurements. Alternatively, low-pass filtering
tion, respectively. the speckle images prior to correlation can be used to limit
These results suggest that the systematic errors due tahe effect of phase error at high wave numbers that is char-
intensity interpolation can be virtually eliminated. Further- acteristic of all interpolators with compact support. As digi-
more, they show that digital image correlation methods tal image correlation is most commonly used as an off-line
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processing tool with no particular speed requirements, the
use of the somewhat slower quintic spline interpolation in
conjunction with a low-pass filter is highly recommended.
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