
Systematic errors in Hadamard transform optics
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This paper analyzes the systematic errors in Hadamard transform optical instruments caused by moving

masks, incorrect mask alignment, faulty mask fabrication, missing data, diffraction, etc. and describes tech-
niques for reducing or eliminating these errors. In a great many cases the behavior of the instrument can

be characterized by a single matrix equation of the form 71 = TWa + e, where the components of 71 are the

measurements, T is a matrix characterizing the instrument, W specifies the mask configurations, a is a vector
containing the unknown spectral intensities, and the components of e are small random errors.

1. Introduction

Hadamard transform optical systems have been
widely studied during the past few years. By encoding
the light with properly designed masks these instru-
ments benefit from the so-called multiplex advantage
and achieve an increased SNR. A variety of multi-
plexing instruments have been described in the litera-
ture, designed to improve images, spectra, or
both.'-'0

Any optical technique that leads to improved per-
formance is likely to have its limitations. Some of these
limitations may be inherent in the design of the system,
while others may be caused by practical difficulties with
the apparatus. In either case once such a limitation is
recognized, ways of working with or around it can be
examined. The purpose of this paper is to describe a
number of sources of error encountered in Hadamard
transform optical instruments, to give techniques for
reducing or eliminating these errors where such tech-
niques have already been worked out and to suggest
some possible ways of dealing with errors that have not
yet been fully studied.

We shall mainly describe errors occurring in singly
encoded spectrometers, although most of the discussion
will apply equally well to imagers. Similar errors occur
in doubly encoded systems but have not yet been ex-
tensively investigated.
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II. Description of Instrument and Spectrum:

Simplest Case

In this section we consider a multiplexing spec-
trometer in its simplest mode of operation. We give a
mathematical description of the instrument under the
assumption that no errors occur except random fluc-
tuations in the detector readings. Subsequent sections
will consider various departures from this ideal be-
havior.

A. Description of Instrument

Let us consider then a spectrometer with a single
narrow entrance slit and with a mask in the exit focal
plane 3,5 It is assumed that the entrance slit is suffi-
ciently narrow so as to be always filled by the incoming
radiation. The input to the spectrometer can therefore
be completely specified by giving the frequency distri-
bution of the radiation. It is most convenient to express
this as a function F(v), say, of the wavenumber v. We
further assume that over the operating range in which
we are interested the optical system between the en-
trance slit and the exit mask behaves like a linear sys-
tem.'1 In particular if the input consists of mono-
chromatic light at wavenumber vo and with unit inten-
sity, so that F(v) = -(v-Po), the distribution of intensity
along the exit focal plane can be written as H(v - o).
(We assume that distances along the exit focal plane
have been calibrated in terms of wavenumber.) Thus
H( - o) is the instrument's spectral display for
monochromatic input at wavenumber Po. H(v - vo) is
called the impulse response or point spread function' 2

of the instrument. Because of aberrations and dif-
fraction H(v - o) can never be concentrated at a single
point, no matter how narrow the entrance slit is. By
superposition the distribution of intensity along the exit
focal plane produced by an arbitrary input F(v) is given
by
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Fig. 1. Impulse response H(v - Po) (a) when diffraction can I
nored and (b) when diffraction dominates. (c) and (d) are the
responding slit functions (see Examples 1 and 2 in Sec. II.D).

G(v) = RF(vo)H(v - vo)dvo.

In other words G (v) is the spectral display along the
focal plane if the input spectrum is F(v).

An ideal instrument, free of aberrations and
fraction, would have impulse response H(v - o) =
- o) and [from Eq. (1)] G(P) = F(v). Thus the lii
spectral display G(v) in the exit focal plane wouli
identical to the spectral distribution of the input.
in any real instrument G (v) i) F(v).

Of course strictly speaking we should write G
function G (x) of the position x along the exit focal p1
rather than as a function of wavenumber. But
latter notation is simpler and more suggestive.

Suppose a single exit slit is used, extending say f
wavenumber v to wavenumber 2 along the exit f
plane. The detector output is given by the integr,
the exit plane distribution over the slit area:

n(V1,V2) =f -2G(v)dv + e,

- l F(vo)dvo H(v - vo)dv + e,

= 3' F(vo)S(vo;v1,v2)dvo + e,

where e is the error due to detector noise, and S(vo;v
is defined by

S(Vo;v1,V2) = f H(v - vo)dv.

S(vo;v1,v2) is called the slit function'2 of the instrum
it is the total intensity of radiation passing through <
extending from v, to 2 in the exit focal plane, when
input is monochromatic radiation at wavenumber

Figures 1(a) and 1(b) show two examples of H(v -
Figure 1(a) corresponds to an input slit which is 
enough for diffraction to be ignored, while Fig.
shows the opposite extreme when diffraction eff
dominate and H(v - vo) = sinc2 (v - o), where sini

(sinx)/x. The main lobe of H(v - vo) has width 2d in
Fig. 1(a), or 2d2 in Fig. 1(b). The corresponding slit
functions S(vo;v 1 ,v2 ) are shown in Figs. 1(c) and 1(d),

(b) assuming the exit slit has width v2 - v1 equal to 2d, or
2d2 , respectively. For example, in Fig. 1(c) when vo =
(v + v2)/2 the exit slit extends fromvo - di to vo + d,
and gathers all the radiation, while if vo = ( + v2)12 J
d1 only half of the radiation passes through the slit.

Equation (2) is the fundamental equation that relates
the output of the detector to the input spectrum F(v)
when the exit slit extends from v = v to v = 2.

(d) B Description of Spectrum

It is customary when measuring a spectrum with a
v0 dispersion instrument to divide the spectrum into n

intervals, estimate the intensity in each interval, and
2 then join the estimates by straight line segments. The

result is a piecewise linear curve as shown in Fig. 2. Any
be ig- spectrum can be approximated as closely as we please

cor- by such a curve, if n is taken large enough. We shall
therefore start off with the assumption that the input
spectrum F(v) is a piecewise linear curve as shown in

(1) Fig. 2: the spectrum is divided into n segments 0 'o0 '1,
0102, * * , 0'n-10'n, corresponding to positions 0001, 0102,

exit ... , On-On of the slits in the mask, and ai is the inten-
sity at the center of 0 iOi+,. (We assume that the scales

dif- have been chosen so that 'i and Oi are related by an
6(v equation of the form O'i = Os + A0 + . . , where A is a

near constant.)
I be The goal is to determine the n unknowns ao,al, ...

But an-, as accurately as possible. In order to have an
unambiguous expression for F(v) in the first and last

as a segments we assume that F(v) is periodic outside the
ane, interval 000n, as shown by the broken lines in Fig. 2.
the Thus we define a-, = an-, and an = a0 as the intensities

in the segments 0_10o to the left of 000, and OnOn+, to the
rom right of On-10

n, respectively. Analytically we are as-
ocal suming that F(v) is given by
El of

(2)

1),v2 )

(3)

ent;
a slit

the
vO.

Po),

vide
1(b)
fects

U =

F(v) = ai + (ai+1 - ai)(v - 0i+1 + b)/2b (4)

for Oi+i - b < v < i+i + b where 2b = Oj+l - Oj is the
length of each segment.

C. Operation as a Multiplexed Spectrometer

Let us consider what happens when the instrument
is operated as a multiplexed spectrometer by allowing
light from several slits to fall simultaneously onto the
detector during each measurement. Suppose there are
n slit positions in all: 0001,0102, . . , On-10n The pat-

an-1

F (V)

6
o 91 82 83 .' 2 ' en- 9n- n V

k2b4

Fig. 2. A piecewise linear input spectrum F(v). a is the intensity
at the midpoint of the interval Oii+1.
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tern of open and closed slits is specified by means of the

configuration matrix W = (wi1), where wij = 1 if the jth

slit is open during the ith measurement and wij = 0
otherwise, for 0 < ij < n - 1. In statistical terminology
W specifies a weighing design.13-' 5 The mechanical

design of the instrument is simplified (as will appear in

the next section) if W is either a (right) circulant matrix,

with wij = wi-s, or a left circulant matrix, with wij =
wi+j (and subscripts taken modulo n in both cases).
From now on we assume that W is a left circulant;

similar results hold in the other case.
If the jth slit is open during a particular measurement

the total intensity of light passing through that slit is

fJ" G(P)dv. (5)

Since G (v) is a linear function of F(v) [Eq. (1)] and F(v)

is a linear function of the ak [Eq. (4)] this intensity may

be written as

n-1
E tj-kak, (6)

k=O

where the tj-k are constants characterizing the instru-
ment. Thus tj-k specifies the amount of radiation that
is transferred through an open slit at position j for unit
intensity at the kth spectral element. We assume that
this is only a function of the separation j- k, indepen-
dent of the actual values of j and k. To include more
general situations (for example, misaligned masks, see
Secs. III and IV), we allow these constants to vary from
measurement to measurement. Thus we assume that
if the jth slit is open during the ith measurement, the
total intensity of light passing through that slit (i.e., the
contribution of this slit to the ith detector reading) is
given by

n-1
Tj = E t)-kak, (7)

k=O

where again the ti-k are constants depending on the
particular instrument. The ith detector reading us is
given by the sum of all rj for which the corresponding
slit is open:

n-i
i = E Twij + ei, (8)

j=0

n-1 n-1
= E E t Awijak + ei,

k=O j=O

n-1
= E Cika + ei, (9)

k=O

where es is the error in the ith reading, and the constants

Cik are given by

n-1
Cik = E tj'-Wjij,

j=0

n-1
= E tj^wi+j (since W is a left circulant),

j=0

n-1
E t,-iWr+k (where r = i + j - ,
r=o

n-1
= E tiriW,k. (10)

r=0

This is simpler in matrix notation. Let

X7 = (0,71, - * Mtn-1)7?

a = (aoal,...,an-1)7.

e = (eoel,. . . en-1)T,

denote column vectors of measurements, unknowns,
and errors, respectively. From Eqs. (9) and (10) we
obtain

7 = Ca + e (11)

= TWa + e, (12)

where C is the matrix with (i,k)th entry cik, and

[ to to to ...

T = t .t. t j (13)

Un1 tn-1 tn-1 .. tn-1

T is called the transfer matrix of the instrument. In
an ideal instrument in which distortion, aberrations,
and diffraction were negligible, T would be the unit
matrix I. In a real instrument, however, radiation that
should be exiting through a given mask slit often spills
over into neighboring mask positions, so that diagonal
elements of T are reduced in value and off-diagonal
elements of the matrix grow. Since radiant energy in-
cident on a detector cannot be negative, 0 < tj-k < 1.
Conservation of radiant energy requires that the sum
of the matrix elements in any row or column of T equals
unity, unless dissipative processes such as absorption
or scattering play a role. If dissipation is significant
these sums,

L t,.-k or E t-k,

may be less than unity and greater than zero. A zero
value for any one of these sums would imply a system-
atic blockage in the spectrometer-either by design or
through faulty construction. If no light is lost, T
satisfies TJ = T-1J = J, where J is a square matrix of
ones.

Equations (11) and (12) are the basic equations de-
scribing the performance of this multiplexing spec-
trometer. They relate the unknowns ao, . . ., an~- of
Fig. 2 to.the measurements nqo, . . ., 77n- 1 via the matrix
C = (cik) or via the matrices T and W. Here W = (wij)

= (w+j) is the configuration matrix that describes
which slits are open and which are closed during the
measurements, and the transfer matrix T [Eq. (13)]
characterizes the particular instrument but is inde-
pendent of the multiplexing. The entries in T are de-
termined by Eq. (7) and depend on the impulse re-
sponse H(v) and on the positions 0o,..., an-. We shall
see below that by suitably choosing the transfer matrix
T in Eq. (12), we can use the same equation to describe

the distortion introduced by a number of different
sources of error.

D. Example 1: No Diffraction

As a first example we assume a wide entrance slit and

no diffraction, so that the impulse response is as shown
in Fig. 1(a). We take di = l/2, so that H(v-vo) = 1 for
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-'/2 < v - o < 1/2, H(v - vo) = 0 elsewhere. We also as-
sume that the exit slits have width 1, so that Oj+1-0j
= 1 and b = 1/2 in Eq. (4) and Fig. 2. The slit function
S(vo;0j,Oj+,) is given in Fig. 1(c) or analytically by

vOj + 
1
/2 if O-

1
/2 O -< Oj + 

1
/2,

S(Vo;oj,Oj+i) = -VO + Oj + 3/2 if O + 1/2 - o < 0j + 3/2,

or 0 otherwise. (14)

If the jth slit is open during the ith measurement, the
total intensity of light passing through that slit is found
by substituting S(vo;Oj,Oj+i) and F(v) into Eq. (2) to
give

Oj-+1/2

Tr = 0j -1/2 (Po - Oj + 
1/2)[aj.. + (a - aj,-)(vo - Oj + /2)]dvo

0j+3/2

+ 1 (-o + Oj + 
3/2)[aj + (a,+l - a,)(vO -Oj - 2)]do

Therefore the constants t-k in Eq. (7) are given by

t 
4
/6, i- * -1/,

t = 0 otherwise.

(Note that in this instrument the t are independent of
i.) The transfer matrix T for this instrument is there-
fore

41 0 .. 0 1
1 4 1 ... 0 0

T= %/ 0 1 4 . .. 0 0 (16)

0 0 0 ... 4 1

_1 0 0 ... 1 4_

Numerical evaluation of the integrals (18) shows that
the transfer matrix T of this instrument is a symmetric
circulant matrix with the first row equal to

(0.6667, 0.1482, 0.0080, 0.0031, 0.0017,

0.0010, 0.0007, 0.0005, 0.0004, 0.0003,

0.0003, 0.0002, ... , 0.0017, 0.0031,

0.0080, 0.1482),

correct to four decimal places. Notice the very slow
decay of elements off the main diagonal, illustrating the
pronounced spreading effect of this impulse re-
sponse.

In general whenever H(v) is an even function, i.e.,
satisfies H(-v) = H(P), T is a symmetric circulant-a
matrix of the formEUo U1 U2 ... U 3 U2 U1

U1 UO Ui ... U4 U U2

U2 U1 UO ... U5 U4 U3 (21)

U1 U2 U3 ... U2 U1 UOJ

F. Operation as a Monochromator

If the same instrument is operated as a conventional
monochromator, n measurements are made, where in
the ith measurement a single exit slit extends from 
to i+. The basic equation is now

1q= Ta + e,

obtained by setting W = I in Eq. (12).

(22)

E. Example 2: Full Diffraction

The second example assumes a very narrow entrance
slit, so that the impulse response is

H( - o) = 2 sinc2[2r( - O)], (17)

as in Fig. 1(b) with d2 = 1/2. [The constant 2 is chosen
so that the total area under H(v - o) is one.] Again we
assume the slits have width 1, 0j+ - = 1, b = /2.
Now the contribution of the th slit to the ith mea-
surement is [from Eqs. (2), (4), and (17)]

n-1 O r++/2
rhZI [a, + (ar+ - a)(o - r+ + 12)]dvo
r=0 fDr+I+1/2

Sj+1
.fi

2 sinc
2
2r(v -vO)dv.

After some algebra this becomes = tVaj + (t'aj>, +
tlaj+,) + . . . [i.e., Eq. (7)], where the coefficients tr
are given by

3/2
t' = 2 3 f(x) sinc

2
2ir(x - r)dx, (18)ad-3/2

and

G. Recovery of Spectrum

To estimate the spectrum from the measurements we
proceed as follows. We assume (again this is the ideal
case) that ei, the detector error in the ith measurement,
is a random variable with mean zero:

Ejeij = 0, (23)

that the errors in distinct measurements are uncorre-
lated:

Ejejej) = 0, i j, (24)

and that

(25)

where the variance U2 is independent of the amount of
radiation falling on the detector. Under these as-
sumptions if Eq. (12) holds then the best estimate of the
as's is given by

f(x) = 
1
/2(X + 3/2)2 if -/2 < X < _/

f(x) = 3 /--x
2 if -1/2 < x < /2,

f(x) = 112(x - 3/2)2 if 1/2 _ x < %.2

(26)

(27)

a= W- 1T- 177

= a + W-1T-1e.

This is best in the sense of being that linear unbiased
estimate which minimizes the average mean square

(19) error
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Table I. First Row of Inverse Matrix of (16)

I 1i 1

(28)

see Refs. 3 and 15. Then E is a measure of the accuracy

of the experiment and should be made as small as pos-
sible.

H. Computing the Spectrum. Inverse Matrices

The spectrum is estimated by Eq. (26). Usually W-1

is known explicitly,3 but problems may arise in finding

T-1, since in general the inverse of say a 255 X 255

matrix is both difficult to compute and awkward to
store.

If T is a circulant matrix, as is often the case, the in-
verse is fairly easy to find and to store (see below). If
T is Toeplitz (constant along diagonals) but not a cir-

culant, the inverse can still be found but with more
difficulty.'6 -2 ' But usually if T is not a circulant, the
best method of computing the spectrum is not to at-

tempt to find T-' but to solve directly the system of
equations

1q= TWa (29)

for a. This is particularly straightforward in the im-

portant case when W-' is known and T is a band ma-

trix, i.e., the only nonzero entries in T are those within
a fixed distance of the main diagonal.2 2

The following are two methods for finding the inverse

of an invertible circulant matrix C with first row
co,cl,. . .,Cn-1. Method (I)16,17 often gives an explicit

formula for the inverse: Let c(x) = co + cix + . . . +
cn 1lxn-1. Find the unique polynomial d(x) = do + d1x

+...+ dn-lxn-' such that c(x)d(x)- 1 (modxn-1).
Then C-1 is the circulant with first row do,. .. ,dn...
Method II (which may be new) is an efficient algorithm

for finding the inverse of a symmetric circulant with a
computer: For large n the mth entry dm of the first row

of the inverse approaches

0

2

3

4

5

6

1.732

-0.464
0.124

-0.033
0.009

-0.002
0.001

An explicit formula is

1
bn = - [(3 - 2V3)(-2 + \/3)n + (3 + 2V3)(-2 - /3)n] (32)

6

and also

(33)

Then the inverse of Eq. (16) is given by the symmetric
circulant (21) with

3bn-1

11 = 2bn-1 + bn- 2 + 1
(34)

3(bn-i-i + bi-1)

2bn-i + bn-2 + 1

(This may be verified by using Method I: we omit the
rather lengthy details.) For example, when n = 4

-4 1 0 1 7 -2 1 -27

T = h/6 o] T-1 = 1/4 - -

0 1 4 1 1 -2 7 -2

i _1~~L 0 1 4 t_-2 1 -2 7_

For large n the second term in Eq. (32) dominates, and
we can approximate ui by

Ui U = (-l)i \/3(2 - \/3)i (36)

for 0 < i < n/2, independent of n. The approximation
is very accurate, in fact Iu -u~j < 10- if n > 20.
Table I gives the values of u' correct to three decimal

places. Note that u' approaches 0 rapidly as i increases.

Also

1 fr -cos mOdO

co + 2 i c, cosrO
rl

(30)

In calculating Eq. (26) it is useful to remember that
any two right circulants commute, i.e., satisfy AB = BA,

any two left circulants commute, and any left circulant
commutes with any symmetric right circulant.

1. Example 1 (cont.)

The inverse of Eq. (16) was found by Method I. First

define the sequence of integers bo,b,,b2 ,. . .by

bo = 1, b =-4

bn = -4bn-1 - bn- 2 , n > 2. (31)

This is Sequence 1420 in Ref. 23. The first few terms
are

bo b, b2 b3 b4 b5

1 -4 15 -56 209 -780

2 + d32 n
detT ) (37)

Therefore, for example, if the instrument is being
operated as a monochromator, so that Eq. (22) applies,
the best estimate of the ai 's is given by

a= T-1= (38)

and for n > 20 we can write Eq. (38) as

ai = Uo77 + U(7i-l + 7li+1) + . . . + U6(Mi-6 + ni+6)

with an error of less than 10-3, where the uj are given
by Table I, and subscripts are read modulo n. The
average mean square error e for this mode of operation
can be found from Eqs. (28) and (36) and is

f 2/3U
2
. (39)

Incidentally, if the correction matrix T-l is not applied,
the result is a coarsening of the spectrum. Consider an
input spectrum with a single sharp line, corresponding
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1 n-1
'e = -LF E[(di -ai)21

n i=o

- Trace (TW)-
1[(TW)-Y'i]

n

= - X [sum of squares of elements of (TW)-i];
n

2bn-1 - bnbn-2 = 1, n > 1.



to a = (0,0,0,1,0,0,...) as shown in Fig. 3(a). Then from
Eq. (22), ignoring e, X = Ta = (0,0,1/6,2/3,/6,0,0,. . .). If
we ignore T-' and estimate a by q [instead of Eq. (38)]
the resulting spectrum is shown in Fig. 3(b).

Suppose the same instrument is operated as a mul-
tiplexed spectrometer, so that Eq. (12) applies. The
argument used in the Appendix of Ref. 15 can be mod-
ified to show that for any (0,1)-matrix W we have

10.34a
2

> , n large
n

(40)

[using Eq. (37)]. If W is an S-matrix, 3 ,15 it can be shown
that

13.86U2
e - ~~, n large,

n
(41)

which is reasonably close to (40) and may well be the
smallest e that can be achieved. Comparing Eq. (39)
with Eq. (41) we see that

m.s.e. with multiplexing 4.00

m.s.e. without multiplexing n

and in fact for this choice of W it can be shown that Eq.
(42) holds for any matrix T.

2. Example 2 (cont)

The inverse of Eq. (20) was found by Method II and
is a circulant with first row which approaches

(1.6683, -0.3820, 0.0705, -0.0183, 0.0017,

-0.0017, -0.0006, -0.0006, -0.0004, -0.0003,...) (43)

correct to four decimal places for large n. Again the
elements off the main diagonal decay very slowly.
Without multiplexing the average mean square error
for this instrument is E 2 .93U2 , while multiplexing with
an S-matrix gives (11.74a2)/n, and again (42)
holds.

Of course for any instrument we can ask the following
question. The impulse response of H(v) determines the
transfer matrix T, as in Eq. (13). Then which config-
uration matrix W minimizes the average mean square
error (28)? In Ref. 15 we studied the performance of
various W's in the very special case when T is the
identity matrix [thus ignoring the spreading effect of
H(v)]. The more general question for an arbitrary H(v)
or T remains unsolved.

Ill. Errors Occurring with a Mask which is Moved in
Steps

This section deals with some classes of errors that can
occur with a mask which is stepped to the next position
between measurements. Most of these can be described
by a suitable modification of the transfer matrix T in
the basic Eq. (12). These errors may also arise in in-
struments with a continuously moving mask (see Sec.
IV). The resulting T is then the product of the matrices
described in Sec. IV and those below. The echo effects
produced by slits which are uniformly too narrow (or too
wide) were described by Tai et al. 24

(a)

I I ,, ) I I I I

(b)

XI II 

Fig. 3. How a sharp input (a) is coarsened (b) if the correction matrix
T- 1 is not used.

CORRECT
POSITION

MISALIGNED

Fig. 4. Faulty mask alignment.

A. Faulty Mask Alignment

Sometimes the position of an encoding mask is sys-
tematically displaced by some small distance from its
correct position (see Fig. 4). Plankey et al.9 have de-
scribed the effects produced by deliberate misalignment
of a spectral encoding mask by 0.5 and 2.5 slit widths.
As one would expect, the main result is an apparent
spectral shift by 0.5 and 2.5 resolution elements, re-
spectively, and an increase in spectral noise. The exact
form of this noise may be determined as follows. We
assume that is small compared to the slit width. Then
the contribution to the ith detector reading from light
passing through the jth slit is now given by

Tj rj G(v)dvj-a (44)

instead of Eq. (5). For the instrument of Example 1,
this becomes

i 0-1/2
T = J (-Oj + 1/2+ + vO)[aj-2

+ (a_ 1 - a2)(v0 - O + 
3
12)]dvo+ Jo /2 ( + + vo)[aj_-

+ (a - aj-1 )(vo - Oj + /2)]dvo

r 6j+1/2+ 1, (j + 3/2 - - vo)[aj- + (a - aj-1)(vo - O + /2)]dvo
rj O+/2-

+ JO+1/2 (0j + /2 - vO)[a + (aj+ - aj)(vo - Oj- 2)]dvo

- '/6(aj-1 + 4a + aj+j) + 1/2(aj1 -aj+l)

+ /26
2

(aj_1 - 2a + aj+i) + 1
/6(aj-2 - 3aj-1 + 3aj - aj+i). (45)

Hence the transfer matrix T is an asymmetric circulant
with first row equal to

1/6[4 - 62 + 363,(1 -6)3,0,... ,0,3,j + 3 + 362 - 3 3]. (46)
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Thus a sharp spectral line is dispersed asymmetrically
into the adjoining resolution elements. Furthermore
a sharp line at one end of the spectrum affects elements
at the opposite end of the spectrum.

To deal with this problem the mask should first be
repositioned so as to minimize the misalignment. The
remaining error can then be removed by using the cor-
rect T-1 in Eq. (26).

B. Differences Between Slit Width and Step Size

When a mask contains a large number of slits, a
similarly large number of steps must be taken in order
to moved the encoding mask from one extreme position
to the other. Over such a range of steps, small differ-
ences between the step size and the encoding slit width
can accumulate. For example, a typical spectral mask
might have a slit width of 0.1 mm and be 255 slits wide.
Over this total width of 2.55 cm, the mask must be

stepped with sufficient precision that its final position
is precisely one step short of cycling into the initial
configuration. Thus the systematic error in the mask
motion has to be less than 4 X 10-5 mm per step for the
final position to be within one-tenth of a slit width from

the intended location.
If such precision cannot be attained, sharp spectral

lines will take on a broadened appearance. Figure 5
shows a computer simulation of this effect. The anal-
ysis of this distortion is very similar to that in Sec.
III.A.

Suppose the initial position of the mask is correct, and
the final position is nA behind the correct position.
Then Eq. (5) must be replaced by

O 1+I-iA

T> J G(v)dv. (47)

The transfer matrix T for the instrument of Example
1 has ith row equal to

1/6(0, . . . 0,(iA)
3
,1 + 3iA + 3(i)2 - 3(iA)

3
, (48)

4 - 6(iA)2 + 3(iA)
3
,(1 - iA)

3
,0, . . . 0),

with the entry 4 - 6(iA)2
+ 3(iA)3 on the main diago-

nal.

C. Excessive Gap Between Encoding and Blocking

Masks

If the blocking mask and encoding mask are mounted
too close together, there is a danger that one of the
opaque elements of the encoding mask may catch the
edge of the blocking mask. To avoid this there must be
a gap between the two masks. If this gap is too large,
however, some of the radiation that strikes the blocking
mask obliquely will pass into an encoding slit that ac-
tually was meant to be obscured by the blocking mask
and therefore inaccessible to any incident radiation.
Then a spectral line imaged on either extreme end of the

blocking mask will produce a false spectral line at the
opposite end of the spectrum. This effect is most pro-
nounced in fast optical systems (with small focal ra-
tios).

As long as the encoding (rather than the blocking)
mask is placed in the plane where the sharpest focus is

Fig. 5. Computer simulation of the errors produced by a systematic

difference between slit width and step size. The final position of the

mask after 255 steps is displaced by one slit width from the correct

position. An input spectrum with a single sharp spectral line has been

broadened to a width of two spectral elements, and noise has appeared

across the whole spectrum.

obtained, this effect is not very serious because it only
affects the extreme elements at the two ends of the
spectrum. In contrast the mask misalignment men-
tioned in Sec. III.B produces distortion over the entire
spectrum.

D. Nonlinearities

Any of the versions of Eq. (12) derived in this paper
will only be valid as long as there is a linear relation

between the input and the detector readings. Even-
tually this linear relation will fail, as the number of
spectral elements increases, or as the resolution is in-
creased, for example. Equation (12) must then be re-
placed by a system of simultaneous nonlinear equations.

Although numerical techniques for solving systems of
nonlinear equations are available,25 26 little work has
been done so far to determine the exact form of the
equations that will be needed to replace Eq. (12).

Some nonlinearities can be compensated for very
simply:

(a) A nonlinear response of the detector to in-
creasing amounts of radiation can be eliminated
through judicious calibration which permits nonlinear
(compensating) scaling of the actual detector output
before further data processing is undertaken.

(b) A nonlinear wavelength or wavenumber re-
sponse-when G (v), the spectral display function along
the exit plane, is not a linear function of v-can be
compensated for by suitably plotting the final spectrum
in a way that takes the actual wavelength calibration of
the instrument into account.

(c) However, if the detector response at one wave-
number is a nonlinear function of the other wavenum-
bers present, compensation becomes very difficult, and
the best procedure may be to solve for the spectrum it-
eratively by successive approximations.

IV Distortion Introduced by a Continuously Moving

Mask

In this section we analyze the distortion introduced
when the slits move continuously across the exit focal
plane instead of being discretely stepped between
measurements. (An alternative analysis, which applies

also to imagers, has been given by Gottlieb.' However,
the matrix approach given here seems simpler.) We
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shall see that in many cases the basic Eq. (12) still holds,
with T given by Eq. (13), where the entries tk are ob-
tained from Eq. (7). Again the spectrum is estimated
by a = W-IT-',, and the effect of T-' is (theoretically
at least) to eliminate the distortion caused by the
moving slits.

A. Derivation of Basic Equation

As mentioned in Sec. II.C we assume that the con-
figuration matrix is a left circulant:

~Wo WI1 . . . Wn-1

WI W2 ... WO

W= W2 W3 ... w1 . (49)

_Wn-I Wo ... Wn-2.]

In many cases the S-matrices 3"15 can be arranged so as
to have this form. An example with n = 7 is given in Eq.
(50):

K

1 1 0 1 0 0

1 0 1 0 0 1

1 0 1 0 0 1 1

o 1 0 0 I 1 i

1 0 0 1 1 1 0

o 0 1 1 1 0 1

o 1 1 1 0 1 0]

(50)

Then instead of using n separate masks of length
n-one for each row of Eq. (49)-we can use one long
mask of length 2n which is moved continuously across
the exit plane. Figure 6 shows the mask of length 14
corresponding to Eq. (50). The extra half-slit at each
end of the mask is necessary to avoid errors at the ends
of the spectrum. If Wn-1 = 0 in Eq. (49) the extra
half-slits are opaque. The mask is periodic with period
n.

Ideally the slits have width 2b = j+-Oj. Let To be
the time for each measurement. When operated cor-
rectly the mask should move at a constant velocity
2b/To, so as to move one slit width in the time taken to
make a measurement.

In general, as in the previous section, we let r denote
the contribution toward the ith detector reading from
light passing through an open slit which crosses the jth
segment °j0j+1 (see Fig. 7). We may write

i= J l(v)G(v)dv,ij

where vij, Vij+i are the endpoints of this slit at the start
of the ith measurement, vi+lji, V+l j+2 are the end-
points of the slit at the conclusion of the ith measure-
ment, and l(v) is the length of time during which light
at wavenumber v can pass through the slit. Thus l(v)
can be read off Fig. 7: it is the length of the intersection
of a vertical line at position v with the shaded region
which is the path swept out by the slit. By combining
Eqs. (8) and (51) we again get the basic Eq. (12).

B. Ideal Case

Figure 8 shows the ideal case, when the mask has the
correct dimensions, is properly aligned, and moves at
the right speed. In this case

l(v) = (v-Oi+b)To/2b, Oi -bv < O+b,
I(v) = (i+1 + b - v)To/2b, 0i+1 - b < P < i+1 + b. (52)

POSITION OF MASK
AT START OF FIRST
MEASUREMENT

0010203 04050607
d I I I I 1 DIRECTION OF MOTION

m I OF M S K

/ L POSITI
AT ENE

MEASU

POSITION OF MASK
AT END OF FIRST
MEASUREMENT

ON OF MASK
D OF SEVENTH
REMENT

Fig. 6. Mask designed to be moved continuously. This is a mask
of length 14 corresponding to the W matrix of Eq. (50). Elements
1-6 are repeated as elements 8-13, respectively. The extra half slit
at each end, corresponding to element 7, is needed to avoid errors at

the ends of the spectrum.

0
-J

I

- MASK POSITION
AT START OF I -TH
MEASUREMENT

-MASK POSITION
AT END OF i-TH
MEASUREMENT

DIRECTION OF MASK MOTION -

Fig. 7. Path swept out by an open slit crossing the jth segment OjOj+I
during the ith detector reading. Time runs downward in this di-

agram, and the mask moves to the right.

0

_

LU.

w

I

s -b e, ej+b ei

t'

v 0j+b

DIRECTION OF MASK MOTION-

Fig. 8. The ideal case when the mask has the correct dimensions,
is properly aligned, and moves at the right speed. Again time runs

downward, and the mask moves to the right.
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As an example, suppose the instrument of Example 1
is being operated in this ideal mode. It follows from
Eqs. (4), (51), and (52) that

T= (a-2 + 76aj~- + 230aj + 76aj+l + aj+2). (53)
384

Since this is of the same form as Eq. (7) we see that Eq.
(12) still holds, where the transfer matrix T is now a
circulant with first row equal to

1 (230,76,1,0,0,...,0,0,1,76). (54)
384

Actually this is an approximation. Since the input
spectrum F(v) is in fact not periodic, as we have as-
sumed, Eq. (53) must be modified for i = 0,1,2,n - 3,n
- 2,n - 1, and the top right-hand and bottom left-hand
corners of T are missing. Thus T is a Toeplitz' 9 matrix,
not a circulant. However, it seems worthwhile changing
T to a circulant and accepting the resulting distortion
in the ends of the spectrum in order to obtain a matrix
which has a manageable inverse. The inverse of the
circulant (54) is easily obtained, e.g., by Method II of
Sec. II.H. The inverse is a circulant with first row which
approaches

(2.213, -0.826, 0.299, -0.108, 0.039,

-0.014, 0.006, -0.002, 0.001, 0, 0, 0....) (55)

correct to three decimal places, as n increases. For n
= 30, (55) is already valid to this order of accuracy.

Again the effect of ignoring T is to broaden the
spectrum, but now the broadening is more pronounced
than in Fig. 3.

C. If the Mask Velocity or Slit Width is Wrong

It is not difficult to modify the above analysis to de-
termine the distortion introduced if the mask is mis-
aligned or if the mask velocity or slit widths are incor-
rect. It can be shown that, as long as each slit has the
same (possibly incorrect) width, Eqs. (12) and (13) still
hold, e.g., for the instrument of Example 1 operating
with a misaligned mask moving with incorrect velocity
we find that

= t2aj-2 + tlaj- 1 + t8a + t' 1 aj+1 + t' 2aj+2 (56)

for certain constants t' (again with suitable modifica-
tions for the first and last few measurements).

It does not seem worthwhile giving further examples,
since each instrument will have its own transfer matrix
T to be used in Eq. (12), and T should be determined
when the instrument is calibrated.

D. Rotating 2-D Masks

The above effects also occur in imagers,6 "10 when the
encoding mask may be a 2-D mask mounted on a ro-
tating disk. For example, a slight radial eccentricity
will cause an effective radial motion of the mask. The
result of this run-out should be a superposition of three
effects. There should be a widening of the image along
the radial direction, similar to the effect discussed in
Sec. III.B. The over-all appearance of the image should
become noisier, because of the continuous motion, as
in Sec. IV.A and IV.B. Third, there should be a single

cycle of roughly sinusoidal change in intensity along the
unfolded 2-D chain of elements, somewhat similar to an
effect described in Sec. V. This is because the eccentric
motion of the mask will move an opaque portion of the
wheel into the open frame in the blocking mask, re-
ducing the intensity during that portion of the cycle.

E. Imaging a Moving Source

If one of the sources being observed moves slightly
during the measurements, the results will be similar to
those described in Secs. III.B. and IV.D., depending on
whether the motion is along the direction of the mask's
motion or across it. By and large, the result of a small
displacement, of the order say of one spatial element
during the frame time (or complete cycling time) of the
mask, will be to stretch the image along the direction of
motion and to add noise to the entire scene.

V. Effect of Drift in Background Level

If the intensity of background radiation incident on
a spectrometer or imaging system varies during a
spectral run, the derived spectrum will necessarily be
affected. Suppose, for example, that the ir spectrum
of a star is to be observed. If the foreground atmo-
spheric emission drifts during the course of the spectral
run, the instrument will record a corresponding drift,
and the final spectrum obtained for the star will contain
a component which can be directly attributed to the
drift. Because the spectrum is estimated by a linear
operation [Eq. (26)], the drift component is simply
added to the true stellar spectrum. In this section we
analyze the magnitude of this effect for several different
types of drift, assuming for simplicity that T = I. (The
analysis in the general case is much more complicated,
and we do not go into it here.)

Let in denote the vector of measurements with no drift
present [Eq. (12)], let dj be the drift in the jth mea-
surement, d = (do,d, ... , dn- 1)T, and let

ii = ij + d (57)

be the actual measurements. The estimate of the
spectrum is

(58)a = W- 17' = W-1 ,q + W- 1d,

and we wish to analyze the drift component

D = W-1d. (59)

For concreteness we take W to be a symmetric left cir-
culant S-matrix,3"15 with

W-1 = S-1 = [2/(n + 1)](2S - J).

Case 1 = Constant Offset.
Suppose

d = 61,

where 1 = (1,1,.. ., 1)T Then

D = [(26)/(n + 1)11.

Case 2: Sinusoidal Drift
Suppose

(60)

(62)
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Table II. Noise in Spectrum Produced by Drift of Unit Amplitude

Type R.m.s. Noise R.m.s. Ratio of
of drift in spectrum r.m.s. spectrum

drift in data spectrum noise noise to

r.m.s. drift

Constant Constant
offset I offset 21i 21n

Sinusoid l,/22 Sinusoid V27J 2/Vf

Single

spike lI/7n Eq. (69) 21i 21x/J

Random - Random 21J

dj=cos27ra(j-0), j=0,1,...,n-1,

where as are constants, 0 being a phase shift. The
component of the drift is

n-1
Dk= A jcos2raj-k-4),

j=o

where

(63)

kth

(64)

.es - * n-l) (65)

is the first row of W-1. Simplifying Eq. (64) we ob-
tain

Dk = A cos2ira(k + 0-A), (66)

where the amplitude is given by

A
2

= 4 + 2 A, {iEj cos2ra(i - j) - (67)
(n + 1)2 i<j n

for large n, since Eq. (65) is a pseudo-random se-
quence,27 and the phase shift a is given by

n-1
L sin27raj

tan(27rafl) = j=. (68)
n-1
L (j cos27raj

j=o

We conclude that a sinusoidal drift voltage adds to the
true spectrum a sinusoid of the same frequency as the
drift, with amplitude multiplied by 2/VG and with a
phase shift given by Eq. (68). Notice that a sinusoidal
drift affects the spectrum more strongly than a constant
offset of equal amplitude.

Case 3: A Single Noise Spike.
Suppose dk = 6,dj = 0 for] 5 k. Then jDj}

is a pseudo-random sequence of rms value

(1E DY) 1/2 23/n

= 16%j+k}

is approximately equal to the improvement obtained
when the noise is coherent. Only a constant offset in
the data gives rise to a considerably smaller mean square
error in the final spectrum.

Similar results are obtained in Fourier spectroscopy.
A noise spike in the data will again produce a wide dis-
tribution of error signals in the final spectrum. A si-
nusoidal noise component, on the other hand, will
produce a single spectral line at a frequency corre-
sponding to that of the noise. (The analogous noise in
the Hadamard instrument is that considered in Case
4.)

VI. Singular Designs

A. More Measurements Than Unknowns

It is sometimes desirable to design the experiment so
that the number of measurements p exceeds the num-
ber of unknowns n. The purpose in doing this is to
ensure that in case some measurements are lost (for
example, if a cloud passes over an observatory during
an astronomical observation), the spectrum can still be
calculated. 2 8

The basic Eq (12) relating the vector of measure-
ments X = (o,n1, . . . np_1)T to the vector of unknowns
a becomes

, = TWa + e, (70)

where W is a p X n(0,1) configuration matrix describing
the experiment, and T is a p X p transfer matrix char-
acterizing the instrument. The (ij) th entry of T is ti.,
< ij < p - 1 [see Eq. (7)]. The best estimate for a is
now3 ,18

a= (TW)+,q, (71)

where (TW)+ is the generalized inverse, given in this
case by

(TW)+ = (WTTTTW)-1(TW)T.

The average mean square error is then3

= -Trace[(WTTTTW)-l].
n

(72)

(73)

A mask of this type suitable for use in a spectrometer
can be obtained by taking W to be the first n columns
of a p X p circulant S-matrix. This can be accom-
plished by means of a blocking mask which only exposes
a frame of n slits at a time.

(69)

Thus a single noise spike of amplitude 6 produces fairly
random noise over the whole spectrum with rms value
26/n.
Case 4

Conversely, if dj = 6 j+k, D has a single spike of
amplitude 6 in the kth component.

These results have been collected in Table II, where
the different drifts have been normalized so as to have
unit amplitude. The last line of the table shows the
improvement in SNR obtained by considering random
noise, obtained from Eq. (42). It is interesting that this

B. More Unknowns Than Measurements

Suppose an experiment has been designed to make
n measurements in order to determine a spectrum with
n unknown components, via Eqs. (12) and (26), but is
prematurely terminated after only p < n measurements
have been made. In some cases it is still possible to say
something about the unknown spectrum. For example,
suppose W = Sn and T = L Then = Sna, and the sum
of all n measurements is equal to (n + 1)/2 times the
sum of the unknown spectral components:
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Fig. 9. Uncorrected 255-element spectrum of a laboratory source

showing the 1.7-um mercury vapor lines. There has been no data

processing other than applying the inverse Hadamard

transformation.

Fig. 10. Same as Fig. 9 except that the last data point, of height 1.16

X 103, has been replaced by a noise spike of height 4 X 103. The main

spectral features remain, but noise is added to the entire spectrum.

n 1 n

L1 -p (n + 1) a,. (74)
=

1
2

Suppose the last measurement n is missing: what can
be said about its possible value? Since O7n is the sum of

those ai for which there is a 1 in the last row of Sn, we
have

n
In E I ai. (75)

j-1

From Eq. (74) and (75) we obtain the bounds

2 n-1
0 S n - E nj. (76)

n- 1j~i

A similar result can be given if two measurements are
missing. In some cases the lower bound in (76) can be
improved by considering the differences i - 'ij for
suitably chosen i and j.

Fig 11. Same as Fig. 9, except that we have simulated losing the last

five data points and replacing them by a straight line joining the 250th

and 1st data points.

An analysis of this type can also be given for other
multiplexing schemes, including Fourier spectroscopy.
A single missing measurement never entails complete
loss of information about the spectrum. The uncer-
tainty however increases rapidly as the number of
missing data points increases.

C. Correction Procedures

A similar situation arises when one or more mea-
surements are lost because of a burst of noise. A single
noise spike of amplitude 6 produces random noise over
the whole spectrum with rms value 26/n, as we saw in
Sec. V.

A large noise spike can often be recognized by ex-
amining the other measurements obtained in the same
run. When the spectrum is continuous, or contains a
large number of intense lines, the individual data values
do not greatly deviate from each other. Only if one or
two spectral lines dominate do wide deviations occur.
For a polychromatic spectrum, then, large noise spikes
tend to appear as well defined extraordinary points.

In the laboratory we have tended to remove these
spikes and replace them by the mean value of adjacent
data points on either side. The theoretical justification
for this procedure is somewhat questionable, but we find
in practice that the spectra obtained by means of such
corrections are rather good approximations to the ex-
pected forms. The procedure is illustrated in Figs.
9-12. Figure 9 shows a spectrum obtained in the usual
way with a 255 X 255 S-matrix. Figure 10 shows the
effect of a noise spike in the last measurement, while
Fig. 11 shows the result of replacing this and four ad-
jacent data points by a straight line joining the 250th
and 1st data points. Similarly in Fig. 12 the last 15
measurements have been replaced by 15 points linearly
interpolated between the 240th and 1st measure-
ments.
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Fig. 12. Same as Fig. 11, but now the last 15 measurements have
been replaced by 15 points linearly interpolated between the 240th

and 1st data points.

1.7.L DOUBLET

EMISSION

U) Hg VAPOR EMISSION LINE
z SINGLE ENTRANCE, 255 EXIT SLITS
W

0 50 100 150 200
SPECTRAL ELEMENT NUMBER

Fig. 13. The data used here are the same as in Fig. 9, except that a
correction has been inserted to remove the negative echo caused by

faulty slit deposition (or etching) as in Tai et al. 
24

A comparison of Figs. 9 and 11 suggests that linear
interpolation between values spanning the gap of
missing data entries produces relatively little distortion.
A somewhat better procedure might be to use a qua-
dratic or higher degree curve for the interpolation.

Figure 13 uses the same data as in Fig. 9, except that
a correction has been inserted to remove the negative
echo caused by faulty slit deposition (or etching), as in
Tai et al. 24
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