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In recent years, the independent measurement of wall shear stress with oil-film or
oil-drop interferometry has become a cornerstone of turbulent-boundary-layer research
as many arguments depend critically on a precise knowledge of the skin friction τ ∗

w. To
our knowledge, all practitioners of oil-drop interferometry have so far used the leading-
order similarity solution for asymptotically thin, wedge-shaped, two-dimensional oil
films established by Tanner & Blows (J. Phys. E: Sci. Instrum., vol. 9, 1976, pp. 194–
202) to relate the evolution of drop thickness to τ ∗

w. It is generally believed that this
procedure, if carefully implemented, yields the true time-averaged τ ∗

w within ±1 % or
possibly better, but the systematic errors due to the finite thickness of the oil film
have never been determined. They are analysed here for oil films with a thickness
of the order of a viscous unit in a zero-pressure-gradient turbulent boundary layer.
Neglecting spanwise surface curvature and surface tension effects, corrections due to
the secondary air boundary layer above the oil film are derived with a linearised triple-
layer approach that accounts for the turbulent shear-stress perturbation by means of
modified van-Driest-type closure models. In addition, the correction due to processing
oil drops with a slight streamwise surface curvature as if they were exact wedges
is quantified. Both corrections are evaluated for oil-drop interferograms acquired in
a zero-pressure-gradient turbulent boundary layer at a Reynolds number of around
3500, based on displacement thickness, and are shown to produce a reduction of the
friction velocity relative to the basic Tanner and Blows theory of between −0.1 % and
−1.5 %, depending on the mixing-length model. Despite the uncertainty about the true
correction, the analysis allows the formulation of some guidelines on where and when
to analyse interference fringes in order to minimise the error on the measured wall
shear stress.

Key words: turbulent boundary layers, turbulent flows

1. Introduction

Since Tanner & Blows (1976) and Tanner & Kulkarny (1976) introduced the oil-film
and oil-drop technique to measure wall shear stress of air flows, it has slowly gained

† Email address for correspondence: segalini@mech.kth.se
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ground relative to other methods, as documented by Janke (1993), Fernholz et al.
(1996), Brown & Naughton (1999), Rüedi et al. (2003) and Vinuesa et al. (2014),
for instance. The oil-film method, where a large wall area is covered with an oil
film, is used rather rarely but the oil-drop method, where small individual oil drops
are deposited on the wall, has over the last decade become the method of choice
for the independent determination of wall shear stress. As such it is a cornerstone
of recent experimental turbulent-boundary-layer research by Österlund (1999), Nagib,
Chauhan & Monkewitz (2007), Nagib & Chauhan (2008) and Chauhan, Monkewitz &
Nagib (2009), for instance, and its accuracy is a central issue in the ongoing debate
on turbulent-boundary-layer scalings (see for instance Marusic et al. 2010; Alfredsson
et al. 2013) and in the recent international comparison of different turbulent-boundary-
layer facilities (see Nagib et al. 2009; Rüedi et al. 2009; Bailey et al. 2013).

Until now, the extraction of wall shear stress from the evolution of oil drops
has been based on the basic similarity solution (see Tanner & Blows 1976)
for the thickness of a wedge-shaped two-dimensional oil film entrained by a
zero-pressure-gradient turbulent boundary layer, henceforth abbreviated ‘ZPG TBL’:

h∗(x∗, t∗)=
µ∗

oilx
∗

τ ∗
wt∗

, (1.1)

where µ∗
oil is the dynamic viscosity of oil, τ ∗

w the wall shear stress of the air boundary
layer entraining the oil and ∗ superscripts denote dimensional quantities throughout the
paper. Hence, with µ∗

oil known, τ ∗
w is obtained directly from the time evolution of the

oil-wedge angle. In practice the latter is determined with a Fizeau interferometer. Its
typical set-up for the oil-drop technique, which has virtually become the standard, is
shown schematically in figure 1.

The set-up includes an optical window of thickness d∗ mounted in a flush-wall
plug on which the oil drop is deposited and through which it is observed from the
outside of the flow facility. Also shown in the figure is the optical path of the Fizeau
interferometer used to measure the oil-film thickness h∗(x∗, t∗). In an actual set-up,
the observation angle ϕ is chosen first (note that this angle varies slightly over the
streamwise extent of the oil drop as the camera focal plane is located at a finite
distance, typically of the order of a metre, necessitating an x∗-dependent calibration
of the camera image as outlined in appendix B). Within the glass window the viewing
angle is modified to θ with sin θ = sin ϕ/nglass. In order to see optimal interference
fringes from this direction θ , the wavevectors of light reflected from the glass–oil
interface y∗ = 0 and from the oil–air interface y∗ = h∗ (shown as arrows originating
from points I and O, respectively) have to be symmetric relative to the direction θ ,
i.e. θ = (θi + θo)/2 with the small difference (θi − θo) of order dh∗/dx∗ (note that in
figure 1 the refraction index of glass is slightly larger than the one of oil, as in our
experiment). Hence, the angle θi of the illuminating wave train is somewhat larger
than θ and varies as dh∗/dx∗ evolves in time. For this reason the monochromatic
illumination is provided by a spatially extended source, typically a sodium arc lamp
behind a ground glass plate. The situation where camera and illumination are placed
on the flow side is analogous and the phase shifts at interfaces, due to the choice
of refractive indices, only translate interference fringes in the x∗-direction without
changing their spacing.

For a perfectly wedge-shaped drop, the observed fringe spacing 1x∗
fringe is a function

of time alone and proportional to the inverse slope of h∗. With h∗ given by (1.1) and
ϕ fixed by the experimentalist, one obtains

1x∗
fringe =

τ ∗
w t∗

µ∗
oil

λ
∗

2(n2
oil − sin2 ϕ)1/2

, (1.2)
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Glass 
plate

R

O I

FIGURE 1. (Colour online) Typical set-up with an oil drop of thickness h∗(x∗, t∗) (shaded)
on an optical window of thickness d∗. The sketch represents the symmetry plane of the
oil drop and includes the definition of coordinates and the optical path of the Fizeau
interferometer (note that the slope of the oil–air interface is grossly exaggerated to make
visible the difference between the wavevector angles θi and θo). – · – · –, Direction from
which interference fringes are seen (θ = (θi + θo)/2 within the glass window). Specifics of
our set-up are given in § 2.8.

where λ∗ is the wavelength of the illuminating light in air and noil the refraction index
of oil relative to air. The streamwise coordinate x∗ in (1.1) is measured from the
physical origin of the oil drop. The origin of time t∗ =0, on the other hand, is the time
at which the fringe spacing given by (1.2) is zero and must in practice be determined
by backward extrapolation.

An example of the fringe pattern obtained with an oil drop entrained by the shear
stress of a ZPG TBL is shown in figure 2. From this example it is evident that there
exists considerable freedom for the practical determination of the fringe spacing as
a function of time. To date, each experimental group has its own preferences which
are rarely documented in publications: some use the region near the leading edge,
others avoid it, some advocate using the early stages of drop evolution while others
process only the late stages. In short, to choose the region and time for the analysis
of interferograms which minimises the error of τ ∗

w, the corrections to the basic
Tanner and Blows theory need to be established. The analysis of all other sources of
experimental error is of course also necessary (see e.g. Janke 1993; Fernholz et al.

1996; Vinuesa et al. 2014), but will not be further discussed in this paper.
The most obvious shortcoming of the basic similarity solution (1.1) is the fact that,

while it satisfies continuity of shear stress across the air–oil interface, the perturbation
of the air boundary layer by a finite-thickness oil drop is neglected, corresponding to
a velocity jump across the interface. Continuity of velocity induces a secondary air
boundary layer above the oil drop which increases the shear stress imparted to the oil.
Hence, if τ ∗

w is extracted from interferograms according to (1.2), the wall shear stress
of the air boundary layer without the oil drop is systematically overestimated. This
error only disappears in the limit of t → ∞ when the oil-drop height h∗ → 0. Other
sources of systematic errors, neglected in the basic theory (1.1), are deviations of the
oil-drop shape from a perfect two-dimensional wedge, as well as the associated surface
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FIGURE 2. Example of an oil-drop interferogram. Flow is from left to right.

tension effects. In other words, the basic solution (1.1) constitutes a leading-order
approximation for infinitesimally thin oil-film wedges and needs to be refined in order
to quantify the systematic errors resulting from the interpretation of interferograms of
finite-thickness oil drops with (1.2).

The paper is organised as follows. In § 2 corrections to the basic similarity solution
of Tanner & Blows (1976) and the corresponding equation (1.2) for the fringe
spacing are derived for a ZPG TBL using a perturbation approach. The analysis
is first validated in § 3 by comparison with a numerical solution of the linearised
Reynolds-averaged Navier–Stokes (RANS) equations with different mixing-length
models specially adapted to the near-wall region. In § 4 interferograms acquired
in a laboratory set-up are presented and shown to be well described by the
two-dimensional analysis of § 2. The final section, § 5, is devoted to a summary
of the principal findings and to some recommendations for the optimal use of the
oil-drop technique.

2. Asymptotic analysis of the shear-stress perturbation in a ZPG TBL caused by

a thin two-dimensional oil film

For the following analysis, the oil drop is taken to be two-dimensional, an
assumption which will be justified experimentally in § 4.1. The streamwise extent
of the oil film is characterised by the distance L∗ between the drop leading edge and
the point where it reaches a thickness h∗ of one viscous unit of the air boundary
layer at the start of the observation, i.e. h+(L+, t = 0) = 1. In other words, L+

is a measure of the inverse slope of the upstream part of the drop. At the same
time, we assume that L+ is also of the order of the streamwise distance over which
interference fringes are monitored. Here, and in the following, the + superscript
indicates viscous boundary-layer scaling in air, i.e. normalisation with air density
ρ∗, kinematic viscosity ν∗ and friction velocity u∗

τ , related to the unperturbed wall
shear stress by τ ∗

w = ρ∗(u∗
τ )

2, while the ∗ superscript denotes dimensional quantities.
Two additional parameters are required to characterise the oil drop: its maximum
thickness h+

max at the start of observation and its total length L+
max. In the following,

we will assume that the oil drop is entirely buried in the viscous sub-layer, i.e. that
h+

max = O(1). The different parameters characterising the oil-drop geometry, together
with the three layers required to analyse the effect of the drop on the air boundary
layer in the following sections, are shown in figure 3.

The analysis uses the two-dimensional (2D) unsteady RANS (abbreviated ‘URANS’)
equations, which allow for a slow time dependence of the averaged flow quantities.
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Outer layer

Main layer

Inner layer

0
0
1

FIGURE 3. Schematic of the layer structure for the asymptotic analysis. Flow is from left
to right.

In the following, 〈·〉 denotes averaging of the turbulent correlations, while capital
letters are used for the average velocity and pressure. The URANS equations are
made dimensionless by scaling the streamwise, wall-normal and time coordinates as

ξ =
x∗

L∗ , η=
y∗ − h∗(ξ)

∆∗ , t =
Rµu∗

τ t
∗

L∗ . (2.1a−c)

The normalisation of x∗ with L∗ provides the correct scaling of streamwise derivatives
of perturbation quantities, while the unperturbed flow (the flow without the oil drop)
is assumed independent of x∗. This implies that the length of the observation area
has to be much shorter than the characteristic evolution length Reδ∗ (U

+
∞)

2 of the
unperturbed ZPG TBL (Monkewitz, Chauhan & Nagib 2007), where Reδ∗ = U∗

∞δ
∗
∗/ν

∗

is the Reynolds number based on the displacement thickness, δ∗
∗ . In the following,

the length of the observation window can be taken of O(L+), which automatically
satisfies the above requirement due to the restriction L+ . 0.1 Reδ∗ U+

∞ imposed in
§ 2.2 in order to make analytical progress.

The wall-normal coordinate is shifted up by h∗(ξ) so that η= 0 corresponds to the
oil–air interface. Such a uniform shift applied to the mixing-length model introduced
in § 2.1 has essentially the effect of pushing the near-wall turbulent structures out
of the way without distortion. As it will turn out, this leads to relatively minor
shear-stress corrections at the oil–air interface. Any attenuation of the coordinate
shift with increasing wall distance, (3.1), explored with the numerical experiments
of § 3, will be seen to significantly increase the shear-stress correction. Finally, the
limiting case of no y∗-shift at all, considered in § 2.6 and corresponding physically
to turbulence structures not reacting to the bump, is again amenable to asymptotic
analysis and leads to a shear-stress correction which is an order of magnitude larger
than the one obtained with the uniform shift of (2.1). The vertical scale ∆∗ in (2.1)
is left unspecified at this point as it has to be determined in each layer by the
respective dominant balance of perturbation terms. Finally, the scaling of time is
determined globally by the (slow) rate of oil-film thinning which, according to the
leading-order equation (1.1) of Tanner & Blows (1976), occurs on the characteristic
scale t∗thinning = L∗/(Rµu∗

τ ), where Rµ = µ∗/µ∗
oil is the typically very small dynamic

viscosity ratio between air and oil.
The mean quantities and the Reynolds stresses are normalised as

U+ =
U∗

u∗
τ

, V =
L+

∆+

V∗

u∗
τ

, P =
P∗

τ ∗
w

, 〈u′
iu

′
j〉

+ =
〈u′

iu
′
j〉∗

(u∗
τ )

2
. (2.2a−d)
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With these normalisations, and neglecting ξ -derivatives of the viscous and Reynolds
stresses, the boundary-layer approximation of the URANS equations for ∆+/L+ ≪ 1
reads

U+
ξ + Vη =

1

∆+ h+
ξ U+

η , (2.3)

RµU+
t + U+U+

ξ +
(

V −
U+

∆+ h+
ξ

)
U+
η = −Pξ +

L+

∆+

(
1

∆+ U+
η − 〈u′v′〉+

)

η

, (2.4)

Pη = O

(
∆+

L+

)2

+ O

(
1

L+

)
≪ 1. (2.5)

When ∆+/L+ = O(1) the above approximation is no longer valid and the full vertical
momentum equation must be used. This situation arises only in the outer layer treated
in § 2.3, where the appropriate equations are given.

In the oil layer, the Reynolds number (based on the oil height and maximum oil
velocity) is RνRµ(h

+)2 ≪ 1 (with Rν = ν∗/ν∗
oil) so that the oil motion is a laminar

Couette–Poiseuille flow with velocity profile

U+
oil = Rµ

[
τoily

+ +
1

L+ Pξy
+
(

y+

2
− h+

)]
. (2.6)

The coefficient τoil ≡ τ ∗
oil/τ

∗
w and the pressure gradient are unknowns and must be

found from the matching of the shear stress and pressure gradient between air and
oil. Only their limiting values τoil = 1 and Pξ = 0 are known for an infinitely thin
drop in a ZPG boundary layer. The deviation from these limiting values for an
oil drop of small but finite thickness is the subject of this paper. To describe the
resulting wall-shear-stress perturbation, an approach similar to the triple-deck concept
of Stewartson & Williams (1969) and its turbulent extension by Jackson & Hunt
(1975) and Sykes (1980) for low hills in the atmospheric boundary layer is adopted.
The outer potential layer (see figure 3) is driven by the blowing velocity due to the
drop and provides the streamwise pressure gradient in the main layer. The latter is
assumed to lie within the logarithmic region of the unperturbed mean velocity profile
where convection, turbulent diffusion and pressure gradient balance. Below the main
layer, a constant-stress layer exists which is unaffected by the pressure gradient and
acts like a ‘wall function’ for the main layer.

2.1. Inner-layer analysis

With L+ ≫ 1 (2.4) reduces at leading order, within a layer of thickness ∆+ = O(1),
to the balance between viscous and Reynolds stresses (see also Mellor 1972). Hence
∆+ = 1 and η = y+ − h+ in this inner layer. The streamwise mean velocity is
decomposed as

U+ = U+
B (η)+1U(ξ , η; L+), (2.7)

where U+
B (η) is the basic undisturbed velocity profile and 1U the quasi-steady

spatial velocity perturbation which depends parametrically on L+. Since L+ ≫ 1, the
pressure gradient and the convective terms are of the same order and the streamwise
momentum equation reduces to the balance between the viscous and Reynolds stresses,
i.e.

U+
η − 〈u′v′〉+ = 1 + τ , (2.8)
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(a)
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10–1

10–2

10–3

100

100

101 102
0

1

2

3

4

5

6(b)

FIGURE 4. (a) ——, Modified factor (2.10); - - - -, original van Driest factor (van Driest
1956); – · – · –, leading term of the Taylor expansion obtained from DNS. (b) ——,
Indicator function Ξ ≡ y+(dU+/dy+) resulting from (2.11) with κ = 0.384 and τ =
0 (unperturbed profile); - - - -, original van Driest model with κ = 0.41; – · – · –, fit of
Monkewitz et al. (2007).

with τ the perturbation of the wall shear stress due to the oil drop. A similar result
was also obtained by Sykes (1980) for a taller hump. To proceed, a closure model for
the Reynolds stress 〈u′v′〉+ is needed. For the present analysis, the simplest mixing-
length model,

−〈u′v′〉+ = (l+m U+
η )

2 = (κηD U+
η )

2, (2.9)

is adopted with κ the von Kármán constant and D a novel van-Driest-like correction
factor

D(η)= {1 − exp[−(0.0086η)2 − (0.02755η)4]}1/4. (2.10)

The modification of D relative to the original van Driest factor (van Driest 1956)
is designed to yield both the correct leading term of the Taylor expansion of the
unperturbed 〈u′v′〉 and up-to-date log-law parameters. Equation (2.10) is motivated by
the Taylor expansions of the unperturbed mean velocity and Reynolds stress, which are
of the form U+

B = y+ − t
(U)
4 (y+)4 + · · · and 〈u′v′〉+ = −4t

(U)
4 (y+)3 + · · · , respectively,

with the coefficient t
(U)
4 ≈ 3.2 × 10−4 extracted from the direct numerical simulation

(DNS) of Schlatter & Örlü (2010). Figure 4(a) compares the new factor (2.10) to its
Taylor expansion and the original van Driest factor, showing a significant improvement
for y+ of order unity where the oil–air interface is located. The indicator functions,
Ξ ≡ y+(dU+/dy+), corresponding to the original van Driest factor and the new factor
(2.10), are compared in figure 4(b) to the best fit of Monkewitz et al. (2007).

Assuming that the closure model (2.9) is only affected by the presence of the oil
drop via the shift of origin of y∗, (2.1), (2.8) and (2.9) immediately yield the total
velocity derivative

U+
η =

1

2(κηD)2

[√
1 + 4(κηD)2(1 + τ)− 1

]
. (2.11)

For y+ → ∞, (2.11) integrates to

U+ =
√

1 + τ

κ
ln η+ B1 + b0 (η→ ∞), (2.12)
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where B1 is determined from the integral of (2.11) and b0 is a function which must
be found from the matching of the streamwise velocity between air and oil. Since the
basic mean flow in the inner layer asymptotes to U+

B = κ−1 ln η+ B for y+ → ∞, the
streamwise perturbation velocity asymptotes to

1U = U+ − U+
B =

√
1 + τ − 1

κ
ln η+ (B1 − B)+ b0 (η→ ∞), (2.13)

where B1 − B = στ ≡ 5.795τ is the variation of the logarithmic intercept due to the
shear-stress perturbation τ .

At the lower edge of the inner layer, as η→ 0, U+
η → 1 + τ + O(η3), and the total

streamwise velocity near the wall is U+ = b0 + (1 + τ)η+ O(η4). Matching shear stress
and streamwise velocity at the air–oil interface yields

τoil = 1 + τ and b0 = Rµ(1 + τ)h+. (2.14a,b)

Here, pressure gradients have been neglected (to be justified a posteriori), which
makes the oil flow a pure Couette flow driven by the undisturbed wall shear plus a
perturbation τ . The latter must be determined from the matching to the upper layers
where, in particular, the logarithmic increase of the perturbation velocity (2.13) is
arrested. The slip velocity b0 is of O(Rµ). For typical values of L+ and Rµ . 10−4,
b0 is much smaller than (1/L+) and can therefore be neglected in the determination
of the wall-shear-stress perturbation, making the oil drop essentially a rigid bump.

2.2. Main-layer analysis

At the top of the inner region the viscous effects vanish and in the following main
layer the Reynolds-stress term is balanced by the inertial terms. The characteristic
thickness of this main layer is ∆m, for the moment still undefined, and the associated
scaled wall-normal coordinate is η ≡ Y = (y+ − h+)/∆+

m . For the following, we
assume that the undisturbed mean velocity profile is logarithmic throughout this layer,
corresponding to a mixing length which is linear in Y . The requirement that the
deviation from the log law be O(1) at the outer edge of the main layer imposes
a first limitation on ∆+

m , namely ∆+
m . 0.1Reδ∗ . This assumption allows the mean

velocity profile to be decomposed as

U+
B = U+

∞ − W(Y)=
1

κ
ln∆+

m +
1

κ
ln Y + B, (2.15)

so that

W(Y)= U+
∞ −

1

κ
ln∆+

m − B −
1

κ
ln Y = C − B −

1

κ
ln Y, (2.16)

with C = U+
∞ − κ−1 ln∆+

m = O(1) a constant.
The following perturbation expansions are introduced:

U+ = U+
∞ − W(Y)+ωm

(
U1 +

1

U+
∞

U2

)
, (2.17)

V =
1

∆+
m

h+
ξ U+ +ωm

(
V1 +

1

U+
∞

V2

)
, (2.18)
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P =ωp

(
P1 +

1

U+
∞

P2

)
, (2.19)

where ωm and ωp are the, as yet unknown, orders of magnitude of the velocity and
pressure perturbations. With this, the linearised streamwise momentum equation takes
the form

(U+
∞ − W)

(
U1,ξ +

1

U+
∞

U2,ξ

)
− WYV1

= −
ωp

ωm

(
P1,ξ +

1

U+
∞

P2,ξ

)
+ 2κ

L+

∆+
m

(
YU1,Y +

1

U+
∞

YU2,Y

)

Y

. (2.20)

In the main layer the convective and Reynolds-stress terms are of the same order as
the pressure terms, so that ωm = ωp/U

+
∞ and ∆+

m = L+/U+
∞. Grouping the terms of

O(U+
∞) and O(1) yields at leading order

U1,ξ + V1,Y = 0, (2.21)

U1,ξ = −P1,ξ + 2κ(YU1,Y)Y, (2.22)

and at second order

U2,ξ + V2,Y = 0, (2.23)

U2,ξ − WU1,ξ − WYV1 = −P2,ξ + 2κ(YU2,Y)Y . (2.24)

As P2,Y = O(U+
∞)

−1, the wall-normal pressure gradient is zero up to the second order,
while the third-order problem will necessarily involve P3,Y 6= 0.

Applying the streamwise Fourier transform defined by

F̂(α)=
∫

R

F(ξ)e−iαξ dξ, (2.25)

to (2.22) yields

Û1 = −P̂1 +
2κ

iα
(YÛ1,Y)Y . (2.26)

With the transformation z =
√

2iαY/κ , (2.26) becomes an inhomogeneous modified
Bessel equation (Abramowitz & Stegun 1972; Jackson & Hunt 1975), with the
solution

Û1 = ĉ1K0(z)+ ĉ2I0(z)− P̂1, (2.27)

where ĉ1 and ĉ2 are unknown functions and I0 and K0 the modified Bessel functions
of the first and second kind, respectively. As I0 → ∞ for Y → ∞, c2 = 0 to ensure
boundedness of the solution. Since K0(z) has a logarithmic behaviour for z → 0
which cannot be matched with the inner layer at this order, one must have also
c1 = 0. Therefore, the first-order velocity correction is simply U1 = −P1, with the
corresponding wall-normal velocity given by V1 = P1,ξY + V1(0). To avoid unnecessary
complications, it is also anticipated that V1(0) = O(L+)−1 = 0, i.e. that the blowing
velocity at the bottom of the main layer is negligible, as shown in § 2.5.

The equation for the second-order problem is the same as (2.27) but with additional
inhomogeneities. After some algebra, its solution is obtained as

Û2 = d̂1K0(z)− P̂2 − P̂1

[
K0(z)

∫ z

0

qI0(q)Φ

(
κq2

2iα

)
dq + I0(z)

∫ ∞

z

qK0(q)Φ

(
κq2

2iα

)
dq

]
,

(2.28)
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where Φ(Y)= W − YWY . Note that the solution (2.28) does not grow exponentially as
Y → ∞ even though I0(z) does.

Collecting the above results, the perturbation velocities in the limit of large Y are

1̂U
+

= −ωm

{
P̂1 +

1

U+
∞

[P̂2 + (W − YWY)P̂1]
}
, (2.29)

V̂ =
iαĥ+

∆+
m

(U+
∞ − W)+ iαωm

[
P̂1Y +

1

U+
∞

(
P̂2Y + P̂1

∫ Y

0

Φ(q) dq + D

)]
, (2.30)

with D an integration constant.
On the other hand, as Y → 0, the streamwise velocity perturbation behaves as

1̂U
+

= −ωm

{
P̂1 +

1

U+
∞

[
−d̂1K0(z)+ P̂2 + P̂1

∫ ∞

0

qK0(q)Φ

(
κq2

2iα

)
dq

]}
, (2.31)

with the modified Bessel function behaving at small Y as

K0(z)∼ −
[
γ + ln

( z

2

)]
= −

[
γ + ln

√
iα

2κ
+

1

2
ln(Y)

]
, (2.32)

with γ = 0.577 . . . the Euler–Mascheroni constant. The integral in (2.31) can be
evaluated for small Y:

∫ ∞

0

qK0Φ

(
κq2

2iα

)
dq = C − B +

1

κ

(
1 + ln

2iα

κ

)
−

2

κ
χ, (2.33)

with χ =
∫∞

0 qK0(q) ln q dq ≈ 0.1159.
A consequence of (2.29) and (2.31) is that the streamwise velocity perturbation

behaves logarithmically (at second order) both close to the wall, where it has to be
matched with the inner layer, and for Y → ∞. On the other hand, the wall-normal
velocity goes to zero close to the wall. For large Y , it exhibits a linear increase with
Y plus the term αĥ+U+/∆+

m , which is the blowing velocity directly induced by the
topology of the oil drop.

2.3. Outer-layer analysis

In the outer region the perturbation pressure has to decay to zero towards the free
stream. Therefore, this region must have an aspect ratio of one in order to obtain
an elliptic equation for the perturbation. Hence the outer layer has a thickness ∆+ =
L+. Furthermore, since its lower edge is far enough from the wall, the upward shift
by h+ of the wall-normal coordinate is no longer necessary. Hence, the wall-normal
coordinate in the outer layer is

ζ = y+/L+. (2.34)

With the perturbation expansions

U+ = U+
∞ − W(ζ )+ωu

(
U1 +

1

U+
∞

U2

)
, (2.35)
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V+ =ωu

(
V1 +

1

U+
∞

V2

)
, (2.36)

P+ =ωp

(
P1 +

1

U+
∞

P2

)
, (2.37)

the momentum equations become

(U+
∞ − W)

(
U1,ξ +

1

U+
∞

U2,ξ

)
− WζV1 = −

ωp

ωu

(
P1,ξ +

1

U+
∞

P2,ξ

)
+ (ψU1,ζ )ζ ,(2.38)

(U+
∞ − W)

(
V1,ξ +

1

U+
∞

V2,ξ

)
= −

ωp

ωu

(
P1,ζ +

1

U+
∞

P2,ζ

)
, (2.39)

with ψ = −2l2
mWζ → 2κζ as ζ → 0. Grouping the terms of O(U+

∞) and O(1) leads at
leading order to

U1,ξ + V1,ζ = 0, (2.40)

U1,ξ = −P1,ξ , (2.41)

V1,ξ = −P1,ζ , (2.42)

and at the next order to

U2,ξ + V2,ζ = 0, (2.43)

U2,ξ − WU1,ξ − WζV1 = −P2,ξ + (ψU1,ζ )ζ , (2.44)

V2,ξ − WV1,ξ = −P2,ζ . (2.45)

Equations (2.40)–(2.42) and (2.43)–(2.45) can be reduced to the Poisson equations

∇2V1 = V1,ξξ + V1,ζ ζ = 0, (2.46)

∇2V2 = −Wζ ζV1 − (ψU1,ζ )ζ ζ = H(ξ , ζ ). (2.47)

The solution of the Laplace equation (2.46) is readily found in terms of the Fourier
transform

V̂1 = Γ̂ e−|α|ζ , (2.48)

while the solution of the second-order problem (2.47) is

V̂2 = Ω̂e−|α|ζ +
1

α

∫ ∞

ζ

Ĥ sinh[α(z − ζ )] dz = Ω̂e−|α|ζ − WV̂1

+ 2|α|Γ̂ e|α|ζ
∫ ∞

ζ

We−2|α|z dz −ψÛ1,ζ − α

∫ ∞

ζ

ψÛ1,z sinh[α(z − ζ )] dz. (2.49)

Consequently, at the bottom of the upper layer (ζ → 0) the wall-normal velocity
approaches

V̂+ =ωuΓ̂ +
ωu

U+
∞

[
Ω̂ − WΓ̂ + 2|α|Γ̂

∫ ∞

0

We−2|α|z dz − α

∫ ∞

0

ψÛ1,z sinh(αz) dz

]
,

(2.50)
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while the pressure (for ζ → 0) is P̂1 = i sgn(α)Γ̂ at leading order and

P̂2 = i sgn(α)

[
Ω̂ − 2|α|Γ̂

∫ ∞

0

We−2|α|z dz − |α|
∫ ∞

0

ψÛ1,z cosh(αz) dz

]
(2.51)

at second order.
At this point, the structure of the perturbation solution emerges clearly: the upper

layer is driven by the blowing velocity generated by the drop topology and transmitted
through the two lower layers, and providing in turn the streamwise pressure gradient
that drives the main layer. The resulting streamwise velocity perturbation in the main
layer is logarithmic throughout the layer, while the wall-normal velocity vanishes
towards the wall so that the main function of the inner layer is to impose the no-slip
boundary condition at the oil–air interface.

2.4. Matching main and outer layers

By matching the wall-normal velocity at the top of the main layer (2.30) with the
one at the bottom of the upper layer (2.50), one obtains the order of magnitude of
the perturbations in the upper layer

ωu =ωm =
U+

∞

L+ , ωp =
(U+

∞)
2

L+ , (2.52a,b)

and their wavenumber dependence

Γ̂ = iαĥ+, (2.53)

Ω̂ = −2|α|Γ̂
∫ ∞

0

We−2|α|z dz + α

∫ ∞

0

ψÛ1,z sinh(αz) dz. (2.54)

From the scalings (2.52) it can now be shown that the boundary condition for
the vertical velocity at the bottom of the main layer is indeed V1(0)= 0, as already
anticipated in § 2.2. This follows from the normalisation (2.2) as the vertical velocity
is of O(L+)−1 in lower-layer scales and becomes O(∆+

mL+)−1 ≪ O(ωm) in main-layer
scales.

Finally, (2.53) and (2.54) allow (2.51) for the pressure to be simplified to

P̂2 = −iα

(
4Γ̂

∫ ∞

0

We−2|α|z dz +
∫ ∞

0

ψÛ1,ze
−|α|z dz

)
. (2.55)

2.5. Matching inner and main layers

The matching of the streamwise velocity in the inner layer as η→ ∞ (2.13) to the
one in the main layer as Y → 0 (2.31) yields

−
1

L+

(
1

κ
ln∆+

m + C

)
P̂1 −

1

L+

[
d̂1

(
γ + ln

√
iα

2κ
+

1

2
ln Y

)
+ P̂2

+ P̂1

∫ ∞

0

ηK0Φ

(
κη2

2iα

)
dη

]
=
τ̂

2κ
ln∆+

m +
τ̂

2κ
ln Y + σ τ̂ + b̂0, (2.56)
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where U+
∞ in ωu has been replaced by U+

∞ = κ−1 ln ∆+
m + C already used in (2.16).

Furthermore, since O(Rµτ) is negligible, the slip velocity b0 = Rµ(1 + τ)h+ can be
approximated by b0 ≈ Rµh+ to avoid a nonlinear term.

The matching of (2.56) at O(ωm) and O(ωm/U
+
∞) leads to d̂1 = 2P̂1/κ and

τ̂ = −
2

L+

{
P̂1 +

κ

ln∆+
m

[
P̂2 + P̂1

(
C +

2γ

κ
− 2σ +

2

κ
ln

√
iα

2κ

+
∫ ∞

0

ηK0Φ

(
κη2

2iα

)
dη

)
+ L+Rµĥ+

]}
, (2.57)

where the product L+Rµ has been assumed to be O(1). This is realistic in most
practical applications but the result (2.57) also remains valid for L+Rµ ≪ 1.

Equation (2.57) concludes the analysis of the shear-stress perturbation acting on
the oil film using a shifted wall-normal coordinate (2.1). Its principal feature is the
appearance of the pressure perturbation P̂1 at leading order which is the hallmark of
an interactive triple deck.

2.6. Result without shifting the wall-normal coordinate

An analogous analysis has also been carried out without shifting the y-coordinate, i.e.
by using in all the layers

η=
y∗

∆∗ (2.58)

instead of (2.1). The scales ∆+ remain the same for all the layers. The modified
velocity boundary condition at the oil–air interface is obtained by Taylor expanding
the total velocity around η= 0, leading to u+(ξ , η= 0)=−h+. However, the boundary
condition for the Reynolds stress cannot be imposed. From the Taylor expansion of
〈u′v′〉+ given in § 2.1, the error is 〈u′v′〉+(y+ = h+) = −1.28 × 10−3 (h+)3, which is
small compared to the maximum Reynolds stress, but significant in comparison with
the stress perturbation.

This unshifted problem is amenable to a perturbation solution along the same lines
as the analysis of §§ 2.1–2.5. The main differences are the value of b0 ≈ −(1 + τ)h+

in the lower layer and a stress perturbation which becomes of O(ln∆+
m)

−1 ≫ O(L+)−1,
much larger than the perturbation obtained with the shifted coordinate of (2.1).
As a result, the pressure perturbation is pushed up to higher-perturbation orders,
corresponding to P1 = P2 = Γ = Ω = 0 but d̂1 6= 0 in § 2.2 and the three layers
become non-interactive. Because of the violation of the Reynolds-stress boundary
condition, the value of this analysis is somewhat uncertain and only the final result
corresponding to (2.57) is given here:

τ̂ =
2κ ĥ+

ln∆+
m

+
κ

ln2 ∆+
m

[
(4γ − 4σκ) ĥ+ + 5κ ĥ2

+
+ 4ĥ+ ln

√
iα

2κ

]
. (2.59)

The difference between the result (2.57), corresponding essentially to turbulence
structures being pushed up by the oil drop without distortion, and (2.59), corresponding
to turbulence structures not reacting to the presence of the drop, turns out to be
significant. For the typical oil-film interferometry (OFI) parameters in the examples
of § 3 (see figures 7 and 9), the perturbation shear stresses differ by an order of
magnitude! The question of whether the solution (2.59) is meaningful despite the
violation of the Reynolds-stress boundary condition will be answered positively in
§ 3 by numerical RANS simulations with the non-uniform coordinate shift (3.1).
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2.7. h+ distribution

For the application under consideration, the oil-height distribution is the relevant
quantity since it determines directly the fringe spacing. From the continuity of the
oil film, the evolution of h∗ is obtained as

∂h∗

∂t∗
= −

∂

∂x∗

∫ h∗(x∗)

0

U∗
oil(x

∗, y∗) dy∗, (2.60)

or in non-dimensional variables

h+
t = −

[
(h+)2

(1 + τ)

2
−

Pξ

3L+ (h
+)3
]

ξ

≈ −
[
(h+)2

(1 + τ)

2

]

ξ

. (2.61)

According to the experimental observations, over a large upstream part of the oil
drop h+ is very nearly a linear function of ξ . Therefore, h+ is decomposed into a
dominant linear term and a small corrective term, i.e. h+ ∼ h+

0 + h+
1 , with h+

0 and h+
1

determined by the differential equations

h+
0,t = −h+

0 h+
0,ξ (2.62)

and
h+

1,t = −
[
h+

0 h+
1 + 1

2
(h+

0 )
2τ
]
ξ
. (2.63)

With the Ansatz h+
0 = φ(t)ξ and the initial condition φ(0) = 1 imposed by the

definition of L+, the solution of (2.62) is φ(t) = (1 + t)−1, providing the rate of
decay of the slope of the front part of the oil film. Equation (2.62) is a nonlinear
wave equation with general solution h+

0 (ξ , t)= H(ξ − h+
0 t) for any given initial drop

shape h+
0 (ξ , 0)= H(ξ). This implicit solution has, however, some drawbacks near the

oil-drop trailing edge which is fixed in space and steepens until a Rankine–Hugoniot
discontinuity is met, which then starts travelling downstream to conserve the oil
volume. As this scenario is not realistic, the oil-drop shape is prescribed here as

h+
0 (ξ , t)= φ

[
ξ − ξf

(
ξ

ξf

)n]
with φ =

1

1 + t
, (2.64)

where ξf and n are functions of time. Requiring that the trailing-edge slope −s, i.e.
the advancing contact angle, as well as the drop volume remain constant leads to

ξf (t)= ξf (0)

√
s + 2φ

φ(s + 2)
, n = 1 +

s

φ
. (2.65)

A solution of (2.63) can be found in terms of characteristic curves. The first
characteristic coordinate s = t is obtained from the equation ts = 1, while the equation
ξs = h+

0 determines the second characteristic coordinate q,

ξ = q +
∫ t

0

h+
0 [ξ(q, s), s] ds. (2.66)

In terms of these characteristic coordinates, (2.63) becomes

h+
1,s = −h+

1 h+
0,ξ − Q with Q = 1

2
[(h+

0 )
2τ ]ξ . (2.67)
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The solution of (2.67) is

h+
1 (q, s)=

[
h+

1 (q, 0)−
∫ s

0

Q exp

(∫ r

0

h+
0,ξ dw

)
dr

]
exp

(
−
∫ s

0

h+
0,ξ dw

)
, (2.68)

where the integrals must be performed along the characteristics q = constant.
Since the leading term of the height distribution is linear, it is natural to include

in h+
1 the evolution of the deviation of the initial oil-drop shape H(ξ) from linear,

together with the effect of the leading-order shear-stress correction, τ . Therefore, the
initial value of h+

1 is h+
1 (ξ , 0)= H(ξ)− ξ . It is instructive to consider a linear drop

shape h+
0 (ξ , t) = φξ , so that the characteristic coordinate is q = φξ . For a spatially

constant stress perturbation τ(t)∝ φ which decreases in time, (2.68) has the explicit
solution

h+(ξ , t)≈ φ[ξ + h+
1 (φξ, 0)− τ ξ ln(1 + t)], (2.69)

corresponding to a slope reduction by τ ln(1 + t) which only vanishes in the limit
t → ∞.

2.8. Determination of fringe spacing

The results of the above perturbation analysis can now be used to improve the
basic relation (1.2) for the fringe spacing observed with the Fizeau interferometer
set-up of figure 1. As already pointed out in § 1, the slope of the air–oil interface
causes the angle θi of the reflected ray to be different from the angle θo of
the refracted ray in figure 1. Recalling the normalisation of all wall-normal and
wall-parallel distances by ν∗/u∗

τ and L∗, respectively, the slope of the air–oil interface
is (∂h∗/∂x∗)= (L+)−1(∂h+/∂ξ)= O(L+)−1. In terms of this scaled slope the difference
between φo and φi, which correspond to the two angles θo and θi in figure 1 seen
from outside the glass window (i.e. sin(φ) = nglass sin(θ), with nglass the refractive
index of the window relative to air), is at any given time

ϕo − ϕi ∼ −
2

L+

∂h+

∂ξ

(n2
oil − sin2 ϕi)

1/2

cos ϕi

+ O(L+)−2. (2.70)

Equation (2.70) implies that the difference in the observation angle for the two light
rays originating from points O and I in figure 1 is of O(L+)−1. Hence, the slope effect
can be neglected in practice and ϕi ≈ ϕo ≈ ϕ. It is also noteworthy that the distance
OI

+
between the points O and I is approximately 2h+ϕi/noil. In the present typical

experimental set-up, one pixel extends over 0.16 viscous units even at the highest pixel
resolution of 280 px mm−1, while the distance OI

+ ≈ 0.37 when h+ = 1, meaning that
the distance OI is in practice within pixel accuracy for most of the fringes.

The fringe spacing is now obtained from straightforward geometric optics: the kth
dark fringe is located at a streamwise location where the phase difference between the
refracted and reflected light ray is

2πnoil

λ∗

(
2h∗

cos γ

)
−

2π

λ∗ (2h∗ tan γ sin ϕ)= (2k + 1)π, (2.71)

where noil sin γ = sin ϕ. No phase-shift effect is present when the fringes are observed
from the glass side, while two phase shifts, cancelling each other, are present when
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they are observed from the oil side. Some algebra yields the height where the kth
dark fringe is located:

h∗
k =

(2k + 1)λ∗

4(n2
oil − sin2 ϕ)1/2

, (2.72)

with a constant height difference between consecutive fringes of

1h+ = h+
k+1 − h+

k =
λ

+

2(n2
oil − sin2 ϕ)1/2

. (2.73)

The fringe spacing is also obtained from a Taylor expansion of ∂h+/∂ξ as

1h+ ≈
∂h+

∂ξ

1x+
fringe

L+ + O(L+)−2. (2.74)

Combining (2.73) and (2.74) and neglecting the second derivative of h+ yields

1x+
fringe ∼

λ
+L+

2(n2
oil − sin2 ϕ)1/2

[
∂h+

∂ξ
+ O(L+)−1

]−1

. (2.75)

What has been gained relative to the identical-looking basic result (1.2) is the
understanding that the optical-path corrections play a role in 1x+

fringe only at O(L+)−1.

3. Numerical experiments

To assess the quality of the asymptotic analyses of § 2 with and without shift of
the wall-normal coordinate, the linearised 2D RANS equations are solved numerically
with the Reynolds-stress model of § 2.1. The variables are scaled as in (2.1) and (2.2)
with ∆+ = 1, except for the wall-normal coordinate, which is non-uniformly shifted
according to

η= y+ − h+ exp(−aη). (3.1)

This allows the gap between the uniform shift in (2.1) corresponding to a = 0 and the
non-shifted case (2.58) to be bridged. For a> 0 the homogeneous boundary condition
for the Reynolds stress remains satisfied but the upward shift of turbulence structures
is attenuated away from the drop surface. Note, however, that the value of a must be
limited to ah+

max < 1, in order to avoid a non-monotonic relation between η and y+. It
is expected that physical reality is best modelled with some small a> 0, but the best
value will have to be determined by (very) high-resolution DNS.

The RANS equations are linearised around the mean velocity profile U+
B and

simplified by neglecting the ξ -derivatives of the viscous terms, the normal Reynolds
stresses and the wall-normal pressure gradient of the base flow, resulting in

uξ + vη =
dU+

B

dη
exp(−aη)h+

ξ , (3.2)

U+
B uξ +

dU+
B

dη
v + pξ − L+uηη − L+

(
2l2

m

dU+
B

dη
uη

)

η

=
[

U+
B

dU+
B

dη
h+
ξ + aL+

(
2

d2U+
B

dη2
− a

dU+
B

dη
−

d〈u′v′〉+
B

dη

)
h+
]

exp(−aη), (3.3)

U+
B vξ + (L+)2pη − L+vηη = 0, (3.4)
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FIGURE 5. Velocity-field and shear-stress perturbations computed with (3.2)–(3.4) for
boundary-layer thickness δ+ = 104 (U+

∞ = 30.5), L+ = 1000 and a uniform coordinate
shift by h+ (a = 0 in (3.1)). (a) Assumed oil-drop shape. (b) Streamwise velocity
perturbation u+ = U+(y+)− U+

B (y
+), with details in (c). (d) Scaled shear-stress perturbation

4[(dU+/dy+)− (dU+
B /dy+)].

where 〈u′v′〉+
B indicates the unperturbed turbulent shear-stress profile. Due to the

linearisation, the above equations are correct only for ah+ ≪ 1, which is consistent
with the limitation ah+

max < 1 for the coordinate transformation (3.1).
The mean unperturbed velocity profile is composed of an inner part, obtained by

integrating (2.11), and an outer part provided by the wake function given as (A12) in
Monkewitz, Chauhan & Nagib (2008). Similarly, the mixing length is composed of an
inner part, given by l+m = κηD(η), and an outer part obtained from the mixing-length
model (2.9). Furthermore, the oil drop is replaced by a stationary rigid wall at η= 0
where the no-slip condition is applied, and appears as a (linearised) forcing term on
the right-hand side of the RANS equations. The free-stream boundary conditions are
u, v, p → 0. Fourier transform in ξ and Chebyshev polynomials in the wall-normal
direction are used, with collocation points placed according to a Gauss–Lobatto
distribution (zGL ∈ [−1, 1]) by means of the algebraic map η= 100(zGL + 1)/(1 − zGL).
Equations (3.2)–(3.4) are then solved in the Fourier domain for an appropriately large
number of wavenumbers, α, and transformed back to the physical domain.

An example of the resulting velocity-perturbation field is shown in figure 5 for
a = 0 and a typical oil-drop shape. The resulting streamwise velocity perturbation is
of the order of +4 % of u∗

τ just 20 viscous units above the highest point of the oil
drop, while some deceleration is present in the neighbourhood of the drop leading
and trailing edges. The pressure perturbation is not shown as it is, at leading order,
independent of y+ in the two lower layers and given by P1 = −U1 in both the
main and upper layer. Figure 6 shows the comparison between the wall-shear-stress
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FIGURE 6. Scaled shear-stress perturbation for δ+ = 104 (U+
∞ = 30.5), a = 0 and an

oil drop with (a) L+ = 500, (b) L+ = 1000, (c) L+ = 5000 and (d) L+ = 10 000. ——,
Linearised RANS result; leading-order (· · · ) and second-order (- - - -) asymptotic theory
(2.57).

perturbation, τ , calculated from (2.57) of § 2 and the linearised numerical solution of
(3.2)–(3.4), with a = 0 to match the theory, for four values of L+ and the oil-drop
shape of figure 5(a). The wall-shear-stress perturbation predicted by the extended
theory and by the numerics are seen to decrease roughly as 1/L+ and to converge,
albeit rather slowly, with increasing L+. Note also the viscous stagnation points near
the drop leading and trailing edges where the local velocity gradients may become
sufficiently important to warrant a different local balance in the lower layer, i.e.
the introduction of ‘fore-’ and ‘after-decks’. In short, the proposed theory probably
underestimates the shear-stress perturbation at the drop leading edge, although the
behaviour is qualitatively correct even at the lowest L+ considered.

At this point it is interesting to start changing the parameter a which governs
the grid stretching and physically represents the degree of deformation of turbulence
structures by the oil drop. Figure 7 shows that increasing the stretching parameter a
results in both a dramatic increase of the shear-stress perturbation and a change in
the scaling of τ : while τ scales asymptotically as (1/L+) according to the shifted
theory (2.57), as demonstrated in figure 6, the τ values obtained from the RANS
solution with a> 0 in the coordinate shift (3.1), the unshifted RANS solution and the
asymptotic result (2.59) without shift decrease much more slowly than (1/L+) and
are seen to approach the asymptotic decrease ∝[ln(L+/U+

∞)]−1 given by (2.59).
Interestingly, the highest a = 0.5 shown in figure 7 yields a τ approaching

the numerical result obtained with the unshifted RANS equations, which is also
reasonably close and converging towards the unshifted perturbation solution (2.59).
The perturbation field computed without the shift is shown in figure 8 for the same
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FIGURE 7. Comparison of the shear-stress perturbation in a ZPG TBL with δ+ =
104 (U+

∞ = 30.5) for an oil drop with (a) L+ = 103 and (b) L+ = 104. Thick black
line, numerical RANS solution for a = 0; thin grey lines, numerical RANS solution for
a = 0.05, 0.2, 0.5 (a increasing in the direction of the arrows); thick grey line, numerical
solution of the unshifted RANS equations. Dashed lines, analytical results: (2.57) in black
and (2.59) in grey.
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FIGURE 8. (a) u+ = U+(y+)− U+
B (y

+) and (b) 4[(dU+/dy+)− (dU+
B /dy+)], analogous to

figure 5(c,d) with the same drop shape and parameters, but without coordinate shift. Note
that the streamwise velocity perturbation in (a) is negative because the no-slip condition
at the oil–air interface has been linearised to u+(y+ = 0)= −h+.

conditions as in figure 5. Consistent with figure 7, the shear-stress perturbation in
figure 8(b) is an order of magnitude larger than in figure 5(d). From these numerical
experiments it appears that the unshifted asymptotic solution (2.59) is providing a
useful upper bound for the shear-stress perturbation, despite violating the boundary
condition for the Reynolds stress at the oil–air interface.

Figures 5–8 show that the two asymptotic theories, together with the RANS
simulations, provide the range of the shear-stress perturbation incurred by neglecting
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FIGURE 9. Evolution of fringe spacing according to (2.68) and (2.75) in time steps of
1t+ = 3.08 × 105, with associated shear-stress perturbation τ provided by (2.57) (black
lines) and (2.59) (grey dashed lines). The initial shape of the synthetic oil drop is given
by (2.64) with L+ = 500 and L+

max = 3L+: (a,c) with δ+ = 103 (U+
∞ = 24.5); (b,d) with δ+ =

104 (U+
∞ = 30.5). Other parameters: u∗

τ = 0.68 m s−1, ν∗ = 1.5 × 10−5 m2 s−1, Rµ = 10−4.
The arrows indicate evolution with time.

the secondary boundary layer above the oil drop. All these figures have been
established for a boundary-layer thickness of δ+ = 104 but, from the two limiting
results ((2.57) and (2.59)), it follows that τ depends only very weakly on δ+: for the
shifted theory (2.57), τ ∝ 1/L+ at leading order, while for the unshifted theory (2.59)
τ ∝ 1/ ln(L+/U+

∞)∼ 1/ ln(L+/ ln δ+).
What remains to be shown is how these perturbations practically affect OFI

measurements where the fringe spacing is spatially averaged. To clarify this question,
two synthetic oil drops with an initial shape given by (2.64) with L+ =500, L+

max =3L+

and a boundary-layer thickness of δ+ = 103 (close to the δ+ in the experiment
described in § 4) and δ+ = 104 have been evolved according to (2.68) and (2.75)
with τ provided either by (2.57) or (2.59). The other parameters of the simulations
have been selected to match the experimental conditions in § 4. Figure 9 shows
the resulting fringes as a function of space and time, together with the computed
shear-stress perturbation for both theories. Consistent with the results shown in
figure 7, the theoretical perturbations obtained with the shifted y-coordinate are an
order of magnitude smaller than the ones for the unshifted theory and very close to
the case with τ = 0. Note, however, that the difference between the theory (2.57) and
τ = 0 is most pronounced near the drop leading edge where the local shear-stress
perturbation is negative, corresponding to a viscous stagnation point. This is a

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
:/w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e .

 U
ni

ve
rs

ity
 o

f B
as

el
 L

ib
ra

ry
, o

n 
30

 M
ay

 2
01

7 
at

 1
5:

37
:3

0,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
:/w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s .
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

5.
23

7

https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2015.237


318 A. Segalini, J.-D. Rüedi and P. A. Monkewitz

0 50 100 150 200

4

6

8

10

12

14

16

18

20

22

0 50 100 150 200

4

6

8

10

12

14

16

18

20

22
(a) (b)

FIGURE 10. Example of observed fringe spacing (◦) versus distance x+ measured from the
drop leading edge at different times, in steps of 1t+ = 1.45 × 106 with initial L+ = 471
and L+

window = 220. ——, Corrected fringe spacing according to (2.75) with ±1 % errors
(- - - -). (a) Correction with shifted theory (2.57) resulting in u∗

τ = 0.682 m s−1; (b)
correction with unshifted theory (2.59) resulting in u∗

τ = 0.675 m s−1. Other parameters:
ν∗ = 1.589 × 10−5 m2 s−1, µ∗ = 1.827 × 10−5 kg m−1 s−1, Rµ = 8.700 × 10−5, Reδ∗ ≈ 3500
and u∗

τ = 0.682 ± 0.003 m s−1 without τ correction.

manifestation of the streamwise pressure gradient which affects the result (2.57) at
leading order, while it enters (2.59) only at higher order.

4. Laboratory experiments

A large number of nominally identical OFI measurements have been carried out
at station ‘M2’ of the ‘S’-duct described in Bruns (1998) and Bruns, Fernholz &
Monkewitz (1999). This measuring station is located at 2.85 m from the boundary-
layer trip where the turbulent boundary layer is still nearly two-dimensional. The duct
geometry has been slightly corrected relative to the set-up of Bruns (1998) to ensure
a zero pressure gradient at the measuring station. All the experiments were carried
out with a nominal free-stream velocity of U∗

∞ = 16.7 m s−1, monitored with a Pitot-
static tube. Depending on which model is used for the shear-stress correction, the
corresponding U+

∞ is in the range 24.6–24.9 corresponding to Reδ∗ = 3600–4000 when
using the relation U+

∞ = 0.384−1 ln Reδ∗ + 3.30 established by Monkewitz et al. (2007)
for high Reynolds numbers.

A typical example of the fringe spacing obtained from an oil-film interferogram of
good quality, i.e. without defects due to dust, is shown in figure 10. To obtain this
graph, a single line is manually selected along the centreline of the oil-drop image.
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The corresponding intensity signal is then high-pass filtered to remove any slow
variations due to non-uniform lighting, and the zero crossings of this filtered signal
are identified with the fringe spacing 1x∗

fringe(x
∗, t∗) at each time t∗. The oil-film

height h∗(x∗, t∗) is then obtained by integrating (2.74). To obtain a smooth initial
condition H∗(x∗), needed in (2.68), a fifth-order polynomial is fitted to h∗(x∗, 0).
Finally, the L+ parameter is determined from the inverse slope of H∗(x∗) obtained
from a least-squares linear fit of H∗ over the entire length of the interrogation window
L∗

window and the iterated estimate of τ ∗
w.

Since there is no reference method to determine wall shear stress, the new
corrections for τ are compared to the traditional analysis of Tanner & Blows
(1976), where the fringe spacing is assumed to be a function of time only. The
spatial average 1x

∗
fringe(t

∗) of 1x∗
fringe(x

∗, t∗) over the interrogation window L∗
window is

computed independently at any given time by minimising the integral over L∗
window of

the squared distance between the measured intensity signal s(x∗) and the sinusoid

S(1x
∗

fringe, Aj)= A1 sin

(
2πx∗

i

1x
∗

fringe

)
+ A2 cos

(
2πx∗

i

1x
∗

fringe

)
+ A3, (4.1)

which respect to the arguments of S. The corresponding wall shear stress is then
obtained according to (1.2) from the time derivative of 1x

∗
fringe. Further details on

the experimental set-up and data processing are given in the appendices A and B.
The standard uncertainty of the complete measurement chain (excluding the systematic
correction discussed in the present work) has been quantified as 0.5 %.

It is evident in figure 10 that the measured 1x+
fringe at any fixed time are not quite

independent of x+, as assumed in the classic theory. Note also the transients at small
times near the end of the domain, where excess oil is still being removed by the shear.
The fringe spacing determined from (2.75) actually shows good quantitative agreement
with the measurements, both near the leading edge and tail end of the interrogation
window, for both the shifted and unshifted asymptotic τ corrections. Just by looking
at the figure it is hardly possible to see a difference between the two shear-stress
corrections (2.57) and (2.59), even though the corresponding friction velocities differ
by 1 % (see caption of figure 10).

The difference between (2.57) and (2.59) is, however, clearly revealed by the wall
shear stress extracted from 111 different runs at the same nominal conditions by
means of (2.75) with the two different corrections for τ . This is shown in figure 11
as a scatter plot between the friction velocities according to the basic Tanner & Blows
(1976) theory with τ = 0 and with the two theoretical shear-stress corrections (2.57)
and (2.59). For each run, the friction velocity has been determined by minimising
the root-mean-square error of the difference between the measured fringe spacing and
both theoretical predictions. The figure shows that, for our experimental conditions,
which are similar to many other experiments, the estimate for the friction velocity is
decreased by only 0.1 % for the shifted theory (2.57), while the reduction is 1.5 % for
the unshifted solution (2.59). This range is believed to bracket the true overestimation
of the wall shear stress relative to the value obtained with the standard Tanner &
Blows (1976) theory for infinitely thin oil films.

4.1. Assessment of the effect of spanwise drop surface curvature

Up to here, only the parts of interferograms on or near the line of symmetry of the
oil drops have been considered. To justify this approach, the effect of the spanwise
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FIGURE 11. Comparison between the friction velocity u∗
τ ,TB76 estimated with the Tanner &

Blows (1976) theory (τ = 0) and the estimates based on the shear-stress correction (2.57)
obtained with the shifted y-coordinate (black circles) and the correction (2.59) without
coordinate shift (grey circles). The solid line is the identity line while the two dashed
lines correspond to an overestimation by 1 % and 2 %.

curvature of the drop surface has been assessed experimentally. For this, u∗
τ was

determined from the fringes on the symmetry axis of a number of different size drops
and of a two-dimensional drop, i.e. a transverse ‘oil strip’ of about 30 mm length,
all made with the same oil of 200 cSt nominal viscosity, at the same temperature
and subjected to the same air boundary layer. No trend of u∗

τ with initial drop size
was detected in these measurements, meaning that if there is a trend it is buried in
the small variance of the measurements.

The other question is how far off the centreline one can analyse the streamwise
fringe spacing and still obtain an accurate value of u∗

τ , for instance when the centreline
region is contaminated by dust particles. To answer this question, the shapes in the
x∗–z∗ plane (with z∗ the transverse coordinate) of five different fringes have been
extracted from interferograms of three oil drops with initial diameters of 2.8 mm,
4.6 mm and 7.43 mm, which covers the range of drop sizes used in most experiments.
In addition, the corresponding fringes of the transverse ‘oil strip’ were recorded over
a central width of 5 mm. For each of the three drops and for the 2D oil strip five
fringes, numbers 2, 7, 12, 17 and 22 counted from the leading edge, are stacked
on top of each other in figure 12. To facilitate the comparison and to show the
similarity between drops of different diameter, both coordinates x∗ and z∗ are scaled
with the initial drop diameter d∗, except of course for the 2D oil strip. It is evident
from figure 12 that in all cases the fringe shapes do not change, within experimental
accuracy, with downstream distance. This means that the transverse curvature of
the three drop surfaces does not change with downstream distance. In other words,
any pressure increase within the drop due to surface tension is independent of
downstream distance and hence does not affect the streamwise evolution of the drop.
The two-dimensional theory developed in § 2 applies along any line of z∗ = constant
as long as this line is not too close to the lateral boundaries, where drops develop a
topology resembling glacier moraines (see figure 2). In conclusion, no trend of the
measured wall shear stress with initial oil-drop diameter could be identified for drop
sizes typically used in oil-film interferometry.
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–0.1
–0.1

–0.2–0.3–0.4–0.5 0 0.50.4

0.4

0.3

0.3

0.2

0.2

0.1

0.1

0

FIGURE 12. Superposition of fringes numbers 2, 7, 12, 17 and 22 from the leading edge
at time t+ ≈ 1.8 × 107. From bottom to top: 2D oil strip (central 5 mm shown on the
graph) and drops with initial diameters of d∗ = 7.4,4.6 and 2.8 mm. Each group of fringes
is shifted up by 0.1d∗.

5. Conclusions

The basic two-dimensional similarity solution of Tanner & Blows (1976) has been
extended to a nearly wedge-shaped two-dimensional oil film of small but finite
thickness (of the order of one viscous unit) by means of a perturbation expansion in
terms of the oil-film slope 1/L+ which accounts for the perturbation of a ZPG TBL
by the oil ‘hill’. The turbulence is accounted for by a mixing-length model, specially
adapted to yield the correct Taylor expansion of the Reynolds stress at the bottom of
the air layer. As it turns out, the shear-stress perturbation depends critically on how
the mixing length is affected by the oil drop. Two cases have been considered which
are argued to provide a lower and upper bound for the perturbation caused by the
oil drop.

(i) The smallest wall-shear-stress perturbation due to the presence of the oil film, of
O(L+)−1, has been obtained by uniformly shifting the mixing length up by the oil
thickness. This corresponds physically to turbulent structures which are uniformly
pushed up by the oil film with a minimal distortion. The analysis is similar to the
analyses by Jackson & Hunt (1975) and Sykes (1980) of atmospheric flow over low
hills where the outer flow is driven by the ‘blowing’ velocity U∗

∞ dh∗/dx∗ due to
the topography. The addition of the present analysis is the proper treatment of the
region immediately above the oil film, which is essential to evaluate the shear-stress
perturbation acting on the oil. For a typical application of the OFI technique, this
shifted mixing-length model yields a correction of the friction velocity of −0.1 %
relative to the one determined with the original Tanner & Blows (1976) theory for an
infinitely thin, perfectly wedge-shaped oil film. Remember also that this variant of the
theory is of the interactive triple-deck variety, i.e. involves the pressure perturbation
at leading order, so that the shear-stress correction in the upstream wedge-shaped part
of the oil film is influenced by the shape of its downstream part.

(ii) The largest wall-shear-stress perturbation, of O[ln(L+/U+
∞)]−1, is obtained when

the mixing length is not shifted at all so that the Reynolds stress is zero at the wall
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and not at the oil–air interface. This corresponds to turbulent structures which do not
react to the presence of the oil film so that their distance to the oil–air interface is
reduced by the oil-film thickness. The effect of this change on the present example
is to significantly increase the friction velocity correction from −0.1 % to −1.5 %
relative to the original Tanner & Blows (1976) theory. However, in contrast to the
shifted theory, the three layers in this unshifted analysis are non-interacting, meaning
that the leading order is not affected by the pressure perturbation. As already noted,
this perturbation analysis violates the Reynolds-stress boundary condition at the oil–
air interface, but numerical experiments with a non-uniform shift, equal to the oil
thickness at the oil–air interface and diminishing towards the free stream, demonstrate
that the unshifted asymptotic result is close to the computed shear-stress perturbation
for a shift which is attenuated within a few viscous units.

It is remarkable – and fortunate for the OFI application – that the shifted theory
for the wall-shear-stress perturbation, where the tail end of the oil drop influences
the evolution of its wedge-like front part, produces a shear-stress perturbation which
is negligible in practice, while in the unshifted theory, which yields a substantial
shear-stress perturbation, the upstream part of the oil film used for the shear-stress
measurement remains essentially unaffected by the (uncontrollable) shape of the
downstream part of the drop. It is also noted that the restriction of the oil-film
thickness to O(1) wall units for the theoretical developments does not limit the
application of the new shear-stress corrections to low Reynolds numbers. For a fixed
free-stream velocity of, say, U∗

∞ = 50 m s−1 and Reynolds numbers Reδ∗ between
104 and 106, the viscous unit in air varies between 8 and 12 µm, while the vertical
distance between consecutive fringes in a typical set-up is of the order of 0.2 µm,
(2.73), so that O(50) fringes are available within h+ ∈ [0, 1] at the start of an
OFI run.

At this point, a friction-velocity correction in the range of −0.4 % to −1 % relative
to the original Tanner & Blows (1976) theory appears most likely for typical oil
films with inverse slope L+ = O(103) and maximum thickness h+

max = O(1). (Note that
the lower figure of −0.4 % corresponds to the case a = 0.05 on figure 7 where the
mixing-length model is adapted to the presence of the oil film over the lowest 20 wall
units.) Such an uncertainty about the true systematic correction for u∗

τ is generally
beyond the accuracy desired in high-quality experiments. The present estimates are
nevertheless useful as they provide an estimate of the maximum negative bias to be
applied to OFI measurements of u∗

τ as a function of the drop geometry at the start
of the measurement. For the experiments of § 4 with a standard statistical uncertainty
of ±0.5 %, for instance, the true u∗

τ is estimated to be between −1.5 % and +0.1 %
of the measured value. Such a large total uncertainty is of course unsatisfactory, but
a sharper estimate of the systematic error would require a model for the near-wall
Reynolds stress with an unheard of accuracy of the order of 0.1 %, possibly including
history effects due to the presence of the oil drop. A more realistic alternative to
definitively nail down the systematic correction, as a function of the initial L+ and
h+

max, are high-resolution, high-precision direct numerical simulations. While waiting
for such computations, one can nevertheless extract some practical guidelines from
the present analysis.

(a) The correction for a non-planar initial oil surface, discussed in § 2.7, should
always be implemented to account for the initial oil-drop curvature and its
propagation in time.

(b) The first fringe(s) near the leading edge of the oil drop should not be used
because of the pressure field associated with the viscous stagnation point (see
e.g. figure 9).
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(c) The oil film should be analysed as late as possible in its evolution, i.e. the film
slope 1/L+ should be as small as possible. This timing is of course limited by
the requirement of still having a sufficient number (&10) of fringes to analyse. In
addition, oil surface contamination is likely to influence the film evolution when
it becomes very thin.

(d) The new corrections developed in this paper for ZPG TBLs remain applicable
in TBLs with a weak imposed pressure gradient. The evolution of oil height
h(x, t) would then be affected additively not only by the shear-stress correction
and the initial shape H(x), but also by the effect of the imposed mean pressure
gradient in (2.6) already considered by Tanner & Blows (1976), as long as the
difference between h with and without pressure gradient can be treated as a small
correction.
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Appendix A. Experimental set-up

The flow facility is described in Bruns (1998) and Bruns et al. (1999). All the
measurements presented here have been carried out at station ‘M2’ of the ‘S’-duct
located at 2.85 m from the boundary-layer trip where the turbulent boundary layer
is still two-dimensional and unaffected by pressure gradients. The duct geometry
has been slightly corrected relative to the set-up of Bruns (1998) to ensure a
zero pressure gradient at the measuring station. The nominal free-stream velocity
of U∗

∞ = 16.7 m s−1 was monitored with a Pitot-static tube connected to a MKS
Baratron pressure transducer. The temperatures of the air in the wind tunnel and of the
boundary-layer plate surface, where the oil drop was deposited, were monitored with
two thermocouples, connected to a FLUKE handheld device. The same thermometer
was used to monitor the temperature during the oil-viscosity calibration, allowing a
repeatability of the temperature measurements of ±0.2 ◦C for the determination of the
oil viscosity. As the wall shear stress is directly proportional to the oil viscosity, it
is crucial to perform an independent calibration with a better accuracy than the one
desired for τ ∗

w. For the present experiments the silicone oil 200DC from Dow Corning
with a nominal viscosity of 200 cSt was used. The oil calibration was performed with
a Schott capillary viscometer in which the transit times were recorded automatically
by two light barriers. It was placed in a thermally controlled bath and measurements
were repeated 10 times at different temperatures within a range of 10 ◦C. After
eliminating outliers and series exhibiting a temporal drift, the data points were
least-square fitted with an exponential relationship of the form ν∗

oil = a∗
1 exp(a∗

2T∗),
where T∗ is the temperature and a∗

1 and a∗
2 are fitting parameters. The density of the

oil was ρ∗
oil = 966.5 kg m−3 with a refractive index of noil = 1.403.

A 12 Mpx Nikon D300 DSLR camera with a Sigma APO 180 mm F3.5 Macro-lens
plus a Nikon Teleconverter TC-200 was used to record interferograms. The camera
was mounted on a tripod on the ceiling of the wind tunnel and pointed down through
a flush-mounted glass window in the boundary-layer plate mounted on the ceiling of
the test section. The viewing angle was 15◦ with respect to the flat plate normal in the
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downstream direction and was measured with an electronic level providing an accuracy
of ±0.2◦. The window in the boundary-layer plate on which oil drops were deposited
was made of 6 mm thick BK7 optical glass with a surface flatness of λ∗/10 and a
refractive index of nglass = 1.513 at 589.3 nm. Its illumination with monochromatic
light of λ∗ = 589.3 nm was provided by a 35 W low-pressure sodium lamp. This
optical set-up provided a field of view of 10 mm in the streamwise and 16 mm in
the cross-stream direction corresponding to 2848 pixel × 4288 pixel on the CCD. The
images were recorded in high-quality colour Jpeg format and transferred directly to
a computer. The timing between the pictures was controlled by an external timer for
time lapse photography which ensured a triggering accuracy of the order of 1/100 s
over the entire duration of an experimental run.

Appendix B. Data acquisition and processing

For each measurement run, a calibration image with a millimetre grid glued onto
a replica of the glass plug was recorded to determine the calibration factor over
the extent of the oil drop. The image of the millimetre grid was magnified to
pixel resolution to manually select the reference marks along a line passing through
the symmetry axis of the oil drop. Due to the angle of 15◦ between the plane of
the window and the CCD sensor, the calibration factor is a linear function of the
distance from the centre of the image, with an additional correction for the refraction
angle at the glass surface. From geometry the linear deviation from the constant
calibration factor is expected to be of the order of 0.1 % for the current set-up,
while the refraction correction is even smaller. As the standard deviation of the
calibration points from the linear fit (corresponding to a constant calibration factor)
over 2848 pixels was about ±2 pixels, the linear correction to the constant calibration
factor was buried in the noise and therefore neglected. Hence a constant calibration
factor of close to 280 px mm−1 has been determined from the calibration images
with a repeatability of 0.2 %. Finally, the slight change of view angle ϕ (see figure 1)
away from the image centre also has an influence on the determination of the film
height but this effect modifies the fringe spacing only by about 0.05 % at the edge
of the interferogram and is therefore also neglected. Additional measurements of 103
oil drops, with nominally the same operating conditions but with a larger field of
view and a calibration constant of 140 px mm−1, have been used in order to provide
statistical support to the analysis.

After calibration, the glass surface was prepared and the oil drop deposited with
great care. The glass surface was cleaned with 95 % alcohol, and dried with a clean
particle-free cloth to remove any dust particles and alcohol deposits. The silicone oil
drop was then deposited with a needle on the glass surface outside the wind tunnel
and the plug was only then installed in the wind tunnel, flush with the boundary-layer
plate. This procedure did not require shutting down the wind tunnel, which avoided
thermal transients. After installing the plug with the oil drop, images were recorded
at constant time intervals of 10 s during 15 min. The images were then cropped to
the zone of the oil drop, transformed to grey scale and turned into an image stack in
Matlab.
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