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Abstract 

Patient-Derived Xenografts (PDXs) are tumor-in-mouse models for cancer. PDX collections, 

such as those supported by the NCI PDXNet program, are powerful resources for preclinical 

therapeutic testing. However, variations in experimental design and analysis procedures have 

limited interpretability. To determine the robustness of PDX studies, the PDXNet tested 

temozolomide drug response for three pre-validated PDX models (sensitive, resistant, and 

intermediate) across four blinded PDX Development and Trial Centers (PDTCs) using 

independently selected SOPs. Each PDTC was able to correctly identify the sensitive, resistant, 

and intermediate models, and statistical evaluations were concordant across all groups. We also 

developed and benchmarked optimized PDX informatics pipelines, and these yielded robust 

assessments across xenograft biological replicates. These studies show that PDX drug responses 

and sequence results are reproducible across diverse experimental protocols. Here we share the 

range of experimental procedures that maintained robustness, as well as standardized cloud-

based workflows for PDX exome-seq and RNA-Seq analysis and for evaluating growth. 
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Introduction 

Patient-Derived Xenografts (PDX) are in vivo preclinical models in which human cancers are 

engrafted into a mouse for translational cancer research and personalized therapeutic selection 1–

8. Prior studies have shown that treatment responses of tumor-bearing mice usually reflect the 

responses in patients 5,9,10. PDXs have been used successfully for preclinical drug screens 5,8,9, to 

facilitate the identification of potential biomarkers of  drug response and resistance 5,8,11,12, to 

select appropriate therapeutic regimens for individual patients 13, and to measure evolutionary 

processes in cancer in response to treatment 14. At the genomic level, engrafted human tumors 

have been shown to retain most genomic aberrations from the original patient tumor 13,15,16. 

These successes have led to the development of a number of PDX collections in both academia 

and industry 9,17–19 for use in preclinical testing.  

Despite these successes, important questions remain for the use of PDXs as a model system for 

treatment response. The reproducibility of treatment response has not been well-evaluated 

because research teams frequently do not repeat large in vivo experiments, and often perform 

experiments in models that are not used by other groups. Variations in engraftment rates for 

different cancer subtypes, study duration, dosing routes and schedules, and response assessment 

protocols also frustrate comparisons of results. Moreover, intratumoral heterogeneity within 

primary tumors, as well as potential genetic drift or selection (“bottlenecking”) during tumor 

engraftment and xenograft passaging, can result in genomic variation among primary tumor 

samples and their subsequently-derived xenografts 5,16. Whether such variation impacts the 

accuracy of PDXs as a preclinical model has been unclear. Resolution of this issue requires 

comparison of primary tumors and their derivative PDX to ensure biological consistency 

whenever possible, as well as controlled treatment regimens with human-equivalent dosing. 
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Resolution of this issue at the molecular level will also require standardized PDX-specific 

sequence analysis pipelines to robustly identify genomic aberrations either selected for, or 

arising de novo, in the PDX model relative to the tumor of origin. Progress on these topics is 

important to the overall field of cancer patient-derived models, as analogous concerns pertain to 

organoids and other 3D culture systems. 

To resolve such questions related to the use of PDXs in precision medicine, the US National 

Cancer Institute has supported a consortium of PDX-focused research enters, the NCI PDXNet. 

Here, we in the PDXNet consortium report the results of experiments to test the robustness of 

PDX treatment responses across different research centers, using temozolomide treatment on 

three blinded models chosen by the NCI Patient Derived Models Repository based on existence 

of prior data on their temozolomide responses. We report on replicate evaluations across four 

Patient-derive Xenograft Development and Trials Centers (PDTC) of the PDXNet using blinded 

treatment and response evaluation protocols uniquely chosen by each PDTC.  

Simultaneously, we performed exome and RNA sequencing at each center to determine 

biological and technical stability of genomic characterizations of samples from each center. 

These sequence analyses were performed with optimized analysis pipelines chosen based on an 

extensive new benchmarking of pipelines from each center on synthetic sequence sets.  

Finally, we have statistically analyzed the cohort growth curves for each model in each research 

center using five separate metrics. These studies allowed us to assess whether PDXs have 

sufficiently robust behaviors to withstand variations in experimental procedures, response 

measurement algorithms, genomic variation among replicates, and alternative sequence analysis 

protocols. We also report effective SOPs for experimental procedures, pipelines for statistical 
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assessment of response, as well as both DNA and RNA sequence analysis workflows. We expect 

these standards to advance the use of PDXs and other in vivo models in cancer precision 

medicine, a critical need for the evaluation of PDX results in the context of moving novel 

therapeutics or therapeutic combinations to the clinic. 

Results 

Study design and treatment results  

A critical, yet unresolved, question that motivated the inception of the PDXNet was what the 

inter-laboratory reproducibility of PDX drug studies would be across centers with independently 

established practices for preclinical testing, i.e. how much standardization would be needed to 

run large-scale, multicenter preclinical studies. To address this question, the NCI Patient Derived 

Models Repository (PDMR) reviewed preclinical studies performed by the Biological Testing 

Branch (BTB/DCTD/NCI), which has performed numerous in vivo studies with PDX models. 

The PDMR selected three PDX models with non-published known responses to temozolomide 

for an inter-laboratory reproducibility pilot. The three PDX models selected were 625472-104-R 

(colon adenocarcinoma, non-responsive model), 172845-121-T (colon adenocarcinoma, 

intermediate response), and BL0293-F563 (urothelial/bladder cancer, complete response). 

Patient data, clinical history, and representative histology and sequence data can be found at 

https://pdmr.cancer.gov; model BL0293-F563 was originally developed by The Jackson 

Laboratory (tumor model TM00016, http://tumor.informatics.jax.org/mtbwi/pdxSearch.do).  

For the study set-up (Figure 1), the four PDTCs-- Huntsman Cancer Institute/Baylor College of 

Medicine (HCI-BCM), MD Anderson Cancer Center (MDACC), Washington University-St. 

Louis (WUSTL), and The Wistar Institute/University of Pennsylvania/MDACC (WIST) were 
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directed to use their standard preclinical study set-up and monitoring SOPs and to use literature 

searches to determine temozolomide dosing and schedule. All PDTCs were kept blinded to 

which models were temozolomide sensitive or resistant and to all other groups’ preclinical study 

set-ups. In addition, none of the PDTCs had previous experience with temozolomide; so the 

reference doses/schedules would need to be determined independently at each center. The 

exceptions to blinding were that all PDTCs were required to use NSG host mice and implant 

PDX material subcutaneously. In addition, the PDTCs used drug prepared by the Developmental 

Therapeutics Clinic (DTP/NCI) to ensure that there were no variations in manufacture. 

The laboratory SOPs for the preclinical study set-ups were collated by the PDMR (Table 1). 

While all centers staged tumors to between 100-200 mm3, implantation methodologies varied. 

Three groups directly implanted ~1 mm3 PDX fragments into each host mouse, one group 

minced a ~1 mm3 PDX fragment into a slurry for implantation, and one dissociated PDX 

material and implanted 3-5 x 106 cells per host.  Comparison of vehicle control growth curves for 

all groups demonstrated overall similar growth kinetics of the models at each site irrespective of 

the implantation methodology used (Supplementary Figure 1).  

Each PDTC independently researched published literature to select a temozolomide dosing and 

schedule for its site, with key references noted: HCI-BCM 20–22, MDACC 23, WUSTL 22,24–27, and 

WISTAR 28,29.  While diverse literature was considered, all sites selected a 50 mg/kg dose and 

one of two different dosing schedules. These schedules were either daily temozolomide 

treatment for 5 days followed by 23 days of rest (28 day cycle) or 5 days of treatment followed 

by 2 days of rest (7 day cycle); 1-4 cycles were used (Table 1). 
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Overall, all sites reported similar responses irrespective of the methodology, dosing, or schedule 

used (Figure 2), with especially strong concordance in the non-responsive and completely 

responsive model results. If the drug x model combination had been performed as part of an 

exploratory study, these independent experiments would likely yield similar decisions about 

treatment efficacy. The intermediate response models showed more variation in growth across 

centers. The intermediate cases were also more clearly affected by the variability in SOP end-

point times, one of the biggest variations among methodologies (Table 1). For example, some 

groups sacrificed all mice once the vehicle control group reached a threshold volume, while 

other groups ended after a defined length of time after the last dosing. This resulted in some 

studies observing strong tumor inhibition through the end of study, while others observed 

regrowth after initial inhibition (Supplementary Figure 2). Nevertheless, the similarities in 

response indicated that the existing range of methodologies is sufficient and robust enough to 

capture the critical cases of strong response and non-response. After discussion of these results, 

the PDXNet Consortium has agreed on a standard of continued monitoring of all cohorts where 

response is observed for at least 1.5-2 cycle lengths beyond the last dosing cycle, provided 

animal health end-points are not reached. Detailed quantitative comparisons are addressed in the 

next section.  

Statistical Robustness of PDX Treatment Response  

Statistical approaches for evaluating cohort drug response 

 

A challenge of evaluation of PDX response is that there is still no standard statistical approach 

for analysis of tumor response for PDX growth data.  Common measures of tumor size include 

percent- or fold-change in volume from baseline to a fixed time end-point; area under the tumor 
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growth curve; tumor growth inhibition, defined as the ratio of the average tumor size at a given 

time point relative to control; and time to event analysis, a potentially censored end-point 

measuring time from baseline until growth to a certain multiple of baseline. Classification of 

growing PDX tumors into RECIST-like categories 30 (Complete Response-CR, Partial Response-

PR, Stable Disease-SD, and Progressive Disease-PD) is another assessment that has the 

advantage of congruence with clinical trials, but it can be strongly dependent on category 

thresholds that do not analogize straightforwardly with patient primary tumors. Each of these 

measures has their own strengths and limitations. For example, the percent change from baseline 

is intuitive, interpretable, and unlike RECIST-like criteria, does not require specification of a cut 

point. In contrast to the area under the curve (AUC) approaches percent- or fold change does not 

use all of the tumor time course information but only the first and last points. Here we consider 

all of these measures and assess concordance of results across analytical strategies as well as 

across growth data from each center. 

PDX tumor volume analysis software 

We have devised an automated analysis script in R that, given data in a prespecified format and a 

time point of interest, will automatically plot the tumor growth curves and group mean curves, 

compute all of these statistical measures and their associated plots, and produce an annotated 

.html report in R markdown that serves as a complete summary of the results (see Methods). In 

the supplementary materials (Supplementary Table 1), we describe a standard format for the 

recorded data that is compatible with our analysis scripts, and we also provide instructions for 

researchers to use this script to analyze their own data. We believe that this automated script can 

enhance reproducibility and transparency of analyses, and can be revised and adapted as a 

standard analysis script for general use. 
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Comparisons across statistical methods 

We statistically assessed drug response for the measures mentioned above across all research 

groups. Table 2 contains the p-values for assessing treatment vs. control differences for each of 

the statistical tests (see Methods), and Figure 3 shows associated plots for the three models from 

the HCI-BCM studies. Associated plots for drug response at other sites i.e. MD Anderson, 

Washington University, PDMR and Wistar are shown in Supplementary Figures 3, 4, 5, and 6, 

respectively. Overall, we found that assessments of drug response were robust across research 

groups, with particularly decisive evaluations for the non-responsive and responsive models. The 

various analytical methods (Supplementary Figures 7, 8, 9 and 10) also gave results consistent 

with one another, with a few exceptions noted below. However, the intermediate group was 

difficult to classify. For the intermediate group most of the statistical measures showed clear 

difference from control, but the results were inconsistent for RECIST-like criteria. 

RECIST yielded qualitatively similar ordering of the models as the other methods, but it had the 

lowest power and showed considerable variability across cut points, complicating its use. The 

percent change in tumor size and area under the curve measures largely agreed, and showed good 

statistical power. The tumor growth inhibition measure also yielded consistent results. The 

natural statistical test is whether this ratio is less than 1, but this should be accompanied by an 

assessment of the clinical significance of the effect size, since it is possible to have a small p-

value with minimal inhibition, e.g. 10% or 20%, that might not be clinically meaningful. We 

recommend statistical testing vs. control while accompanied by an assessment of clinical 

significance that may depend on the context. 
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Cloud Workflows for PDX Sequence Analysis  

Robust sequence analysis pipelines are essential for understanding cancer genetics from PDX 

models. While prior PDX pipelines have been published, e.g. 5,31, it can be time-consuming for 

researchers to implement and evaluate other groups’ methods. To address this problem, five 

PDXNet teams provided sequence analysis workflows for PDX exome-seq mutation calling, and 

the PDXNet Data Commons and Coordinating Center (PDCCC) dockerized these for co-

localized application and sharing with the research community via the National Cancer Institute 

Cancer Genomics Cloud (CGC). The Seven Bridges Genomics team in the PDCCC also 

independently evaluated each of these pipelines. Each submitting group also specified 

parameters as part of the workflow submission. Evaluations were performed on simulated 

benchmark mixtures of human and mouse reads with various mouse/human read ratios and 

variant allele frequencies (see Methods). 

Benchmarking of human-mouse read disambiguation 

We first compared the efficacy of the five pipelines (Supplementary Table 2) for human-mouse 

read disambiguation using a series of simulated benchmark WES and RNA-Seq datasets. The 

WES benchmark dataset consisted of a paired end exome-seq data series with human-mouse 

ratios of 90:10, 80:20, 60:40, 50:50, 40:60, and 20:80 created by computationally mixing two 

100% pure WES human and mouse samples (sample ids 14311X2 and 14311X8, respectively). 

Similarly, the RNA-Seq benchmark dataset consisted of a simulated human-mouse mixture 

series (90:10, 80:20, 60:40, 50:50, 40:60, 20:80) created from human and mouse lung RNA-seq 

samples (ENCSR129KCJ and ENCSR870AQU, respectively). The above-mentioned simulated 

WES and RNA-Seq datasets were used to test the five commonly used human-mouse read 

deconvolution tools: BBSplit, Xenome, Disambiguate, Xenofilter, and ICRG. All tools achieved 
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>99 % precision for both WES and RNA-Seq benchmarks (Figure 4). Xenofilter showed the 

lowest recall (96.60 % and 89.63 % recall in WES and RNA-seq benchmarks, respectively), 

whereas BBSplit showed the best overall performance i.e. highest precision without any loss in 

recall (99.87 % and 99.64 % precision in WES and RNA-seq benchmarks, respectively), 

followed closely by Disambiguate on WES data (99.77 % precision) and Xenome on RNA-seq 

data (99.77 % precision).  

Benchmarking of WES analysis pipelines 

We next compared WES results generated by the five pipelines including variant calling and the 

effectiveness of mouse-human disambiguation. For this analysis, two simulated benchmark 

datasets were created, with two levels of mouse contamination (10% and 50%) and a range of 

variant allele frequencies (VAFs) - 0.025, 0.05, 0.1, 0.2, and 0.3, with spike-ins of point 

mutations and indels (See Methods). For performance metrics, we used precision/recall (across 

SNPs, INS, DELs) and pseudo-ROC curves (see Methods). We observed minimal impact of 

different percentages of mouse contamination on the performance of the five workflows 

(Supplementary Table 3). When analyzing variant caller performances, we observed that 

MuTect2 (used in Workflows 2 and 4) performed consistently well across all samples for all the 

tested VAF levels. Supplementary Figure 11 shows SNP performance across 0.05 and 0.3 

VAFs for BS-DN dataset across different coverage values (although we only show 2 VAF levels, 

the caller performed well across all VAF levels tested i.e. 0.05 - 0.3); however, indel recall 

decreased at lower VAFs (Figure 4). VarScan2 (used in Workflows 3 and 4) called only a small 

number of variants at lower VAFs as evident from the very low recall values depicted in Figure 

4. We also observed marked differences in performance of two VarScan2 PDTC workflows, e.g. 

the DN dataset when processed through workflow 3 at low VAFs i.e. at 0.025 and 0.05 VAF had 
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SNP precision values of 0% and 1.71%, respectively, and when processed through workflow 4 

had SNP precision values of 2.16% and 12.4%. The difference in performance between 

workflows 3 and 4 is possibly due to the fact that in workflow 3 Varscan2 was run 

independently, whereas in workflow 4 the final calls are a union of VarScan2 and Mutect2 calls. 

Recall was good at higher VAFs, but precision varied (Figure 4). For example, the DN dataset 

when processed through workflow 3 at 0.2 and 0.3 VAF had SNP precision values of 98.43% 

and 99.13%, respectively, and when processed through workflow 4 had SNP precision values of 

33.04% and 45.03. Strelka2 (part of workflows 1 and 5) was the most aggressive caller, 

achieving considerable recall even at the lowest VAFs tested (Figure 4). However, Strelka2 

performance varied between the two workflows that used it, i.e. workflow 1 and workflow 5, 

possibly because workflow 1 used the recommended settings for running Strelka (combining it 

with Manta), whereas workflow 5 ran Strelka independently. We observed similar trends in the 

pseudo-ROC curves (not shown) consistent with results described above and depicted in Figure 

4 and Supplementary Figure 11. 

PDXNet Exome, CNV, and RNA-seq workflows 

According to the achieved precision and recall values across SNPs, INS, and DELs (F1 statistic), 

Workflow 2 was the best performing WES workflow for PDX data. Consequently, we 

recommend using Workflow 2 for somatic calling in PDX tumor-normal paired WES samples. 

As the other workflows (Supplementary Figures 12 and 13) may be suited for other datasets 

we are releasing all workflows on the CGC. In addition, we are releasing a tumor-only exome-

seq variant calling pipeline, an RNA-seq expression pipeline, and a CNV calling from exome-

seq pipeline (See Methods and Supplementary Figure 14). The tumor-only exome-seq, RNA-
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seq, and CNV calling pipelines were used to analyze samples from each PDTC in the 

temozolomide experiments. 

Robustness of PDX Sequence Evaluations 

To test the robustness of these sequence analysis workflows, we applied them to PDX samples 

from the temozolomide study. Each PDTC generated an independent biological sample of an 

untreated PDX for each of the three patient models. They then sequenced these independently 

and submitted the sequence data to the coordinating center. 

Variant Calls from Exome-Seq 

FASTQ files from whole exome sequencing were obtained from the four PDTCs (MD Anderson, 

Huntsman Cancer Institute, Washington University in St. Louis, and the Wistar Institute). Each 

center provided WES and RNA sequencing data from the PDX models: JAX-BL0293, PDMR-

172845 and PDMR-625472. No matched normal data were available for these models.  

The WES data were analyzed with the optimal WES pipeline that was modified to take into 

account the lack of normal DNA, i.e. the ‘PDX WES Tumor-Only: Mutect2’ workflow. The 

exome capture kits used by each center covered different regions and total amounts of the 

genome (Supplementary Table 4), resulting in disparate variant calls among centers. (Figure 

4). The length of the genome covered by the intersection of the capture loci across all groups was 

33.71Mb. Applying these filters made the average number of variant calls across centers for each 

model comparable (Supplementary Table 5, Figure 4, Supplementary Figure 15), though 

centers with lower sequencing depth had fewer calls meeting the QC threshold. A distribution of 
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allele frequencies for calls meeting the QC threshold for each sample across each center is shown 

in Supplementary Figure 16. 

Copy number calls from Exome-Seq 

We called the copy number for each sample using CNVkit with a pooled normal approach 

(Talevich et al. 2016) (Supplementary Figure 17). Overall, we observed similar profiles among 

samples from the same model. The most apparent difference between samples was an overall 

shift relative to the baseline. As such, comparing absolute copy number gain and loss calls 

between samples remains challenging. Supplementary Figure 18 shows the Pearson correlation 

coefficients between samples. We observed higher Pearson coefficients (>0.746) for pairwise 

comparisons for samples of the same tumor among the HCI-BCM, WASHU and Wistar centers, 

compared to samples of different tumors. On the other hand, the MD Anderson profiles were 

noisier due to lower coverage, despite us using the “drop low coverage” option in CNVkit, and 

we were unable to identify strong correlations between samples of the same tumor for the MD 

Anderson group. 

Expression calls from RNA-Seq 

Data provided by each center were generated using different RNA-sequencing protocols 

(Supplementary Table 6) and were analyzed with the rsem-1-2-31-workflow-with-star-aligner 

(single-end data) and rsem-1-2-31-workflow-with-star-aligner-pe (paired-end data) workflows 

on the CGC, with small adjustments based on single vs. paired end sequencing or directionality 

parameters (see Methods). To account for differences in library size, data were normalized by 

Trimmed Mean of M-values (TMM), and further converted to count per million (CPM) with the 

R package edgeR 32,33. Following normalization and CPM conversion, significant batch effects 

were still present in these data (Supplementary Figure 19). To correct for batch effect among 
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centers, median polish by center was applied to TMM normalized CPM data as implemented in 

the MBatch R package (github.com/MD-Anderson-Bioinformatics/MBatch). Following batch 

correction, samples tended to cluster by model rather than sample, though with some exceptions 

(Figure 4). 

Discussion 

Our work demonstrates the robustness of PDXs as a model system for studying cancer drug 

response. In particular, we have demonstrated the experimental robustness of PDX response for 

three different models even among research groups blinded to the expected response and who 

followed independently developed preclinical protocols. This is a key result that shows that, even 

when groups are not told what experimental protocol to use, PDXs can yield accurate and 

consistent treatment responses. 

In addition, we have developed standardized PDX sequence analysis pipelines for tumor-normal 

variant calling, tumor-only variant calling, and RNA-seq expression calling. We have provided 

these as public tools on the CGC, making them easily accessible for other researchers and 

applicable to the broad data collections shared on the CGC. Not only have these pipelines been 

tested on extensive benchmark datasets, but we have also applied the tumor-only variant calling 

and RNA-seq pipelines to sequence data generated across the PDTCs in the temozolomide study. 

These give similar results across the groups, demonstrating both the efficacy of the pipelines and 

the minor sequence evolution from PDX to PDX during the process of generating test cohorts 

across groups. 

Importantly, we have also developed biostatistical analysis workflows for tumor volume data, 

which we are releasing here as well. Our results show a high level of concordance among the 
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various biostatistical analysis strategies, but with some caveats. The RECIST criteria are heavily 

threshold dependent, has lower statistical power, and less consistent with results from the other 

strategies. Since each strategy has its own strengths and weaknesses, we recommend testing 

multiple strategies for PDX analyses. It is also important to consider clinical as well as statistical 

significance, considering effect sizes to be sure any effect is of sufficient magnitude to be 

meaningful, a determination that may depend on the clinical context. Classifying PDX volume 

data into meaningful patient-analogous categories of complete response, stable disease and 

partial response remains challenging, though this may become possible as datasets with paired 

clinical and PDX response data increase. In the meantime, our automated analysis scripts, which 

collate the results and analytical steps into an automated report, provide a standard tool for the 

PDX field, and future PDXNet volume data will be released in a data format consistent with 

these scripts. We encourage others to follow the volume data standards we have developed here, 

which will assist in the quantitative application of PDX treatment data for predicting the efficacy 

of drugs in patients. 

Methods 

Animal Models  

Three PDX models were selected based solely on their temozolomide responsiveness. They were 

625472-104-R (colon adenocarcinoma), 172845-121-T (colon adenocarcinoma), and BL0293-

F563 (urothelial/bladder cancer). Cryopreserved PDX tumor fragments were shipped from the 

PDMR to the individual PDTCs, implanted for initial expansion and then passaged for the 

preclinical study. Briefly, cryopreserved PDX material was prepared into implantation size 

pieces as outlined in Table 1. The PDX material plus a drop of Matrigel (BD BioSciences, 
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Bedford, MA.) was then implanted subcutaneously in NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) 

host mice.  Mice were housed in sterile, filter-capped polycarbonate cages, maintained in a 

barrier facility on a 12-hour light/dark cycle, and were provided sterilized food and water, ad 

libitum. Animals were monitored weekly for tumor growth. The initial passage of material was 

grown to approximately 1000-2000mm3 calculated using the following formula: weight (mg)  =  

(tumor length x [tumor width]2)/2 34. Tumor material was then harvested, a portion 

cryopreserved, and the remainder implanted into NSG host mice for the preclinical drug study. 

Related patient data, clinical history, representative histology and short-tandem repeat profiles 

for the PDX models can be found at https://pdmr.cancer.gov; model BL0293-F563 was 

originally developed by The Jackson Laboratory (tumor model TM00016, 

http://tumor.informatics.jax.org/mtbwi/pdxSearch.do). 

Preclinical Studies 

Specific tumor staging size, implantation method, and cohort size at the PDMR and each PDTC 

are outlined in Table 1 based on each site’s standard practices. In general, tumors were staged to 

a preselected size (weight = 100-200 mg). Tumor-bearing mice were randomized before 

initiation of treatment and assigned to each group. Body weight was monitored 1-2 times weekly 

and tumor size was assessed 2-3 times weekly by caliper measurement. For all sites, drug studies 

were performed at passage 3 for 625472-104-R, passage 4 for 172845-121-T, and passage 6 for 

BL0293-F563 (passage 0 = first implanted host). Temozolomide (NSC 362856) was obtained 

from the Developmental Therapeutics Program, NCI and administered at the times and doses 

indicated in Table 1. Animals were sacrificed when the tumors reached an individual PDTC’s 

animal welfare endpoint or a maximum tumor size; if tumor growth delay was observed a 

tertiary endpoint was used by some sites (Table 1). 
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Ethics Statement  

The Frederick National Laboratory for Cancer Research (location of the PDMR) is accredited by 

the Association for Assessment and Accreditation of Laboratory Animal Care International and 

follows the USPHS Policy for the Care and Use of Laboratory Animals. All the studies were 

conducted according to an approved animal care and use committee protocol in accordance with 

the procedures outlined in the “Guide for Care and Use of Laboratory Animals” (National 

Research Council; 1996; National Academy Press; Washington, D.C.). 

All patients and healthy donors gave written informed consent for study inclusion and were 

enrolled on institutional review board-approved protocols of record for the sites that developed 

the PDX models (DCTD, NCI and The Jackson Laboratory). The study was performed in 

accordance with the precepts established by the Helsinki Declaration. The study design and 

conduct complied with all applicable regulations, guidances, and local policies and was approved 

by the institutional review board of record for each PDTC 

Computational Workflows 

All analyses were performed on the CGC (https://cgc.sbgenomics.com/) 35 with workflows and 

tools implemented using Common Workflow Language. Human and mouse data were aligned to 

GRCh38 and mm10 assemblies, respectively. All workflows are available in the Temozolomide 

Pilot Workflows Project on the CGC. CGC users can request access to the workflows by 

emailing cgc@sbgenomics.com. 

Human-mouse read deconvolution 

For the WES data benchmark, an experimental WES series of simulated human-mouse mixtures 

(90:10, 80:20, 60:40, 50:50, 40:60, 20:80) was created by mixing two 100 % pure WES human 
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and mouse samples (sample ids 14311X2 and 14311X8, respectively). A Python script based on 

HTseq (v0.6.1) was used to create the mixtures by randomly subsampling input pairs of human 

and mouse FASTQ.GZ files to a predefined fraction to obtain 56-57 million read pairs per data 

point. We also tested RNA-seq data using a simulated human-mouse mixture series (90:10, 

80:20, 60:40, 50:50, 40:60, 20:80) based on a pair of human and mouse lung tissue RNA-seq 

samples (ENCSR129KCJ and ENCSR870AQU, respectively) 36. The RNA-seq datasets were 

prepared with the same Python script used for mixing WES data.  

We compared several tools for mouse-human read deconvolution. These were Xenome (v1.0.0) 

37, BBSplit (v37.93) 38, Disambiguate (v1.0; commit c52402a) 38, ICRG (Callari et al., 2018) 39, 

and XenofilteR (v1.5) 40. BBtools Seal tool was also initially considered; however, it was 

excluded because of extremely high default RAM requirements. These methods followed three 

main approaches: BBSplit and Xenome operate on raw FASTQ data, with BBSplit aligning 

whole reads and Xenome using k-mers to classify reads. Disambiguate and XenofilteR require 

pre-aligned inputs (i.e. reads aligned to both host and graft reference genomes) and use 

alignment quality scores for classification. ICRG relies on aligning reads to a combined host-

graft reference sequence. 

For tools requiring aligned data inputs (BAM files), BWA-MEM 40 was used for alignment. For 

the mouse-human disambiguation step, only reads unambiguously classified as human by a tool 

were labeled “human.” All other reads were considered “not human” for the true/false 

positive/negative calling. This classification scheme provided a simplified common framework 

for evaluating all benchmarked tools. All metrics were calculated via a Python script based on 

HTseq. 
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Tumor-normal WES variant calling 

Benchmark Datasets 

Two simulated whole exome-seq datasets were used in the benchmark for the tumor-normal 

variant calling workflow. The first dataset (DN) was prepared by researchers from Huntsman 

Cancer Institute and consisted of 100x data based on two normal samples, spiked with 30,466 

SNPs, 1,723 insertions, and 4,192 deletions sampled from ClinVar, at 0.025, 0.05, 0.1, 0.2, and 

0.3 simulated variant allele frequency (VAF) and 10 and 50 % mouse contamination. Germline 

variants were called with HaplotypeCaller and blacklisted before analysis. The second dataset 

(BS) was NA12878 WES data (~250x coverage; with 10 % mouse reads contamination) which 

was spiked with BamSurgeon [i] (default parameters, haplosize 151) at 0.05, 0.1, 0.2, and 0.3 

VAF using both the ClinVar variant set used for the other simulated dataset (BS-DN) and 30000 

TCGA BRCA SNPs combined with indels from the ClinVar set) (BS-BRCA). For both variant 

sets, 0.05 and 0.3 VAF samples were also downsampled to 130x and 65x to analyze coverage 

effects (the experimental coverage of the datasets was 250x). 

Workflow testing 

Five tumor-normal WES data analysis workflows from PDXNet research groups were tested on 

the benchmark sets, as detailed in Supplementary Table 2, with the goal of evaluating the 

accuracy in the presence of variable mouse contamination, coverage, and VAF. Starting from 

FASTQ data the workflows performed mouse-human disambiguation, alignment, and variant 

calling with one or more somatic variant callers. For the variant calling step, Mutect2 41,42, 

VarScan2 43, and Strelka2 14 each featured in two workflows. Manta 44 and Pindel 45 structural 

variant callers were also used, but were not evaluated, as the benchmark focused on small 

variants, i.e. SNPs and indels with length <50 base pairs.  
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Precision/recall and pseudo-ROC curves were used to evaluate the detection of SNPs, insertions 

and deletions. Pseudo-ROC curves are plots of descending false discovery rate (FDR) vs. true 

positive rate (recall). To produce the curves, VCF calls are ranked using a caller-provided 

quantitative score. These were TLOD, SSC, QSS/QSI for MuTect2, VarScan2 and Strelka2, 

respectively. These rankings allowed us to order the calls for the FDR and TPR calculations. 

Python scripts were used to calculate the relevant metrics.  

For all the submitted workflows, default parameters were used as specified by the workflow 

authors. Details are provided in the workflows that are accessible through the CGC upon request.  

Tumor-only WES variant and CNV calling 

Because a substantial number of PDXs among the broader research community lack matched 

normal DNA, we also developed a workflow for tumor-only mutation calling (Supplementary 

Figure 14). All reads were required to meet the quality control cutoff that at least half of the nt 

positions have >20 phred base quality. We removed adaptors using Trimmomatic v 0.36 (Bolger 

et al. 2014). Trimmed reads were aligned to the human genome (build GRCh38.p5) using bwakit 

v0.7.15 (Li and Durbin 2009). Mouse reads were removed with xenome v 1.0.0 (Conway et al. 

2012) at default parameters. The alignments were converted to BAM format using Picard 

SortSam v 1.140 (https://broadinstitute.github.io/picard/), and duplicates were removed by the 

Picard MarkDuplicates utility. BaseRecalibrator from the Genome Analysis Tool Kit (GATK) 

v4.0.5.1 46,47 was used to adjust the quality of raw reads. Training files for the base quality scale 

recalibration were Mills_and_1000G_gold_standard.indels.hg38.vcf.gz, 

Homo_sapiens_assembly38.known_indels.vcf.gz, and dbSNP v151. Mean target coverage was 

determined for each sample by Picard CollectHsMetrics, and a MultiQC 48 report was generated. 

Aligned BAM files were indexed by GATK and passed to GATK Mutect2 v 4.0.5.1. Variants 
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were called in Mutect2 using the Exome Aggregation Consortium 49 database lifted over to 

GRCh38 as a germline reference with the allele frequency of samples not in reference set to 

0.0000082364. Variant calls were then filtered using GATK FilterMutectCalls v 4.0.5.1. Calls 

were segregated by chromosome with SnpSift Split v 4.3 50 and annotated by SnpEff v 4.3 51 

using the snpEff v4.3 GRCh38 database. Two additional annotations of variant calls were done 

with SnpSift dbNSFP using database dbNSFP3.2a, and with SnpSift Annotate using the 

catalogue of somatic mutations in cancer (COSMIC) v80 database 52. A reference 

implementation of this workflow is developed and deployed on the CGC. 

To call copy number, we built a pooled normal reference using CNVkit v0.9.3 53 from the three 

samples that used the same exome-seq capture kit and with sex matching. Afterward we used 

CNVkit to call the CNV segments from each sample using the pooled normal reference. The MD 

Anderson samples exhibited low mean target coverage so we turned on the --drop-low-coverage 

option in CNVkit to reduce the noise in the CNV profile. 

RNA-seq expression calling 

Because the disambiguation of mouse and human reads was sharp for both DNA and RNA data, 

we did not expect expression calling workflows to have issues specific to PDXs. Therefore, we 

dockerized only one PDX RNA-seq expression workflow (Supplementary Figure 14) that was 

submitted by The Jackson Laboratory (JAX). The transcriptomes of hg38 and NOD (based on 

the mm10 mouse genome) were used to construct the xenome (version 1.0.0) 37 indices (k=25), 

and then reads were classified as human, mouse, both, neither or ambiguous at default xenome 

parameters. Reference indices for the alignment were built by rsem-prepare-reference using 

ENSEMBL annotation (version GRCh38.91) for STAR aligner (version 2.5.1b) 54. Human-

specific reads were mapped to reference indices using STAR, and expression estimates were 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 2, 2019. ; https://doi.org/10.1101/790246doi: bioRxiv preprint 

https://doi.org/10.1101/790246


 

 

 

 

 

 

23 

computed using rsem-calculate-expression v1.2.31 33 at default parameters. Picard 

CollectRnaSeqMetrics: (broadinstitute.github.io/picard/picard-metric-definitions.html) was used 

to calculate the post-alignment mapping statistics. An implementation of this workflow has been 

deployed on the CGC. 

Comparisons of xenograft sequence data across PDTCs 

Each PDTC submitted WES and RNA-seq data from untreated xenografts that had been 

successfully grown in mice at the respective sites. Groups were asked to submit xenograft 

sequence data according to their standard practices, without pre-specification of the sample 

passage number or the sequencing protocol. In the intersection analysis, only variants with allele 

frequency > 0.2 were retained. We note that MD Anderson had fewer calls that passed the allele 

frequency filter in comparison to other centers. This is because MD Anderson provided samples 

had mean target coverage ~30X whereas samples from other centers were sequenced to a depth 

of ~150X (Supplementary Table 7).  

For the copy number comparisons, the copy number alteration (CNA) segments obtained from 

CNVkit using a pooled normal were median-centered and visualized in IGV v2.4.13 55. To 

determine the overall concordance of the CNA between each pair of samples, we first intersected 

the CNA segments for each pair of samples and then binned them into 100kb-windows using 

Bedtools v2.26.0 56. 

RNA-seq data provided by each center were generated using different kits and protocols, and the 

data from Huntsman institute was sequenced in single end mode (Supplementary Table 6). 

Sequence data were analyzed with the ‘PDXnet RNA Expression Estimation’ and the ‘PDXnet 

RNA Expression Estimation – SE’ workflows on the CGC. RNA expression estimates were 
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downloaded from CGC for additional analyses. The single-end data provided by Huntsman 

yielded estimates of RNA expression that were twice as high when compared to the paired-ended 

sample provided by other centers due to differential handling of paired-end and single-end data 

by RSEM 33 tool. To eliminate the biases in the count estimation across centers, Huntsman, 

estimated transcript counts were divided in half. From the mapping stats and from automatic 

library type detection algorithm in the tool Salmon, we noted that RNA-Seq library generated at 

MDAnderson are non-directional though the sequencing protocol used is for directional library 

thus we decided to consider MDAnderson library as non-directional during the analysis. 

Statistical Analysis of Tumor Growth Data 

There is not a single consensus in literature in terms of which endpoint to use to measure tumor 

response in PDX models. There are a number of potential options. Rather than considering just 

one, our strategy was to consider a wide range of potential analytical strategies, each of which 

captures different aspects of the response and has its own strengths and weaknesses. Here, we 

compare and contrast them in this pilot study and assess the robustness of sensitivity assessments 

across different analytical strategies, with the goal of making recommendations for the broader 

community. Towards this goal, we built an R analysis pipeline that computes all of the following 

measures as well as generates a set of useful graphical summaries. 

Percent Change in tumor volume (𝛥𝑽𝒕	): For an individual mouse, the response was determined 

by computing percent change in tumor volume from baseline to time as follows: % tumor 

volume change = 𝛥𝑽𝒕	 =
𝑽𝒕	&𝑽𝟎

𝑽𝟎
× 𝟏𝟎𝟎,  where 𝑉+	 is the tumor volume at time t and 𝑉, is the 

tumor volume at baseline. For animals for which there is no tumor volume measurement at time t 
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but which have flanking volume measurements at time 𝑡, and 𝑡. such that 𝑡, < 𝑡 < 𝑡.	, then we 

use linear interpolation to compute the measurement.  That is, we compute  

𝛥01 = 𝛥02 + 𝛽(𝑡 − 𝑡,)	

Where 𝛽 = (𝛥018 − 𝛥012)/(𝑡. − 𝑡,). 

All responses defined below were based on the interpolated tumor volume changes. 

Area under the tumor growth curve up to time t (𝒂𝑨𝑼𝑪𝒕) 

For this measure, we computed the area under the tumor growth curve from baseline up to time t, 

normalized by dividing by t. With this normalization factor, the interpretation of this measure is 

the average percent change in tumor size from baseline to time. If there was no tumor 

measurement at time t but measurements at flanking measurements at time 𝑡, and 𝑡. such that 

𝑡, < 𝑡 < 𝑡.	, then we used linear interpolation to estimate the tumor volume at t. 

Adjusted area under the curve (𝒂𝑨𝑼𝑪𝒎𝒂𝒙) 

We also computed the area under the curve from baseline to the last measurement time point, 

which for animal i is given by notation 𝜏A	. We adjusted the AUC by dividing by the length of the 

interval between the baseline and the last time point for which a tumor volume was computed for 

each mouse,𝜏A, which makes the interpretation of this measure the average percent change in 

tumor size from baseline to last measurement in the study.  

RECIST criteria (𝑹𝑬𝑪𝑰𝑺𝑻𝒕,𝒄) 

This outcome mimics the typical RECIST response criteria commonly used in clinical trials for 

solid tumors to classify each patient as complete response (CR), partial response (PR), stable 

disease (SD), or progressive disease (PD). At prespecified time t, each animal was classified into 
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one of these four categories based on their percent tumor volume change from baseline based on 

cut points 𝑐. < 𝑐J < 𝑐K, with complete response (CR) when 𝛥01 < 𝑐.; partial response (PR) 

when 𝑐. ≤ 𝛥01 < 𝑐J,  stable disease (SD) when  𝑐J ≤ 𝛥01 < 𝑐K, and progressive disease (PD) 

when 𝛥01 ≥ 𝑐K.   

We considered various sets of cut points (𝑐., 𝑐J, 𝑐K), including (-95,-50,10), (-95,-30,20), (-95,-

30,50), (-95,-30,100), (-95,-50,50) and (-95,-50,100), and for our analyses in this paper we 

computed these at time t=21 days. 

Tumor Growth Inhibition (𝑻𝑮𝑰𝒕) 

To measure antitumor activity of the treatment group compared to the control group, we 

considered the tumor growth treatment-to-control ratio (gamma_t) estimated by one way 

ANOVA focused on time t. Let 𝑅A+	be, for animal i, the ratio of tumor size from baseline to time 

t, i.e. 𝑅A+ = 𝑉A,/𝑉A+ where 𝑉A, and 𝑉A+are the tumor volumes for animal i at baseline and time t, 

respectively.  Let 𝑇Abe an indicator of whether animal i was given the active treatment (𝑇A=1) or 

control (𝑇A=0). After log transforming the ratios, we fit the following linear model: 

𝑙𝑜𝑔(𝑅A+) = 𝛼 + 𝛽𝑇A	 + 𝜖A	 with 𝜖A ∼ 𝑁(0, 𝜎J). 

If we define 𝛾 =
\(]^1|`^a.)

\(]^1|`^a,)
 as the ratio of mean tumor/mean control, called the tumor growth 

inhibition it can be shown that 

𝛾 =
bcd(efgfhi/J)

bcd(efhi/J)
= 𝑒𝑥𝑝(𝛽),	
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The degree to which this measure is less than 1 indicates the degree of growth inhibition of the 

treatment. Thus, to test for antitumor activity of the treatment group at time t, we can test the null 

hypothesis of no treatment effect by comparing 

𝐻,: 𝛽 = 0	(𝛾 = 1)vs.	𝐻.:	𝛽 < 0	(𝛾 < 1).	

Time-to-Event Survival Analysis 

Many different events can be evaluated with this method. For example “time to tumor 

doubling/tripling/quadrupling”, “time to tumor halving”, “time to complete response” etc. 

depending on the growth characteristics of the PDX collection in question. In this study, the 

event was defined as the time until the tumor volume increases by a multiple of 𝛿, 𝑚𝑖𝑛(𝜏: 𝛥0v ≥

𝛿 × 100)  (e.g. 𝛿 = 4 corresponds to time until tumor quadruples in size).  This measure will be 

censored at the last measurement value for animals whose tumors never increased by that 

multiple. 

Statistical analysis 

One-way ANOVA or two-sample t-tests were performed to test the difference of tumor Volume 

changes (𝛥01) at day t=21 between treatment and control groups as appropriate, and similar 

analyses were done for the AUC measures. Fisher’s exact test was performed to test the 

association between treatment and drug response (non-PD vs. PD). The log‐rank test was used to 

compare PFS distributions between treatment and control groups. All of the analysis was 

implemented using R.   

We have developed an R markdown script that can be used to automatically run these analyses 

and produce summary plots given the input data is formatted as described in the Supplementary 
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Materials. Email cgc@sbgenomics.com to request the R script that we freely share with this 

publication for other researchers to use to analyze their PDX data. 
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Figures 

 

 

Figure 1. a) Three models were distributed for experimentation to 4 centers: MD Anderson, 

WUSTL, Wistar, and HCI/BCM. These three centers were chosen based on prior results on 

temozolomide treatment response obtained by the PDMR. b) Each of the three models were 

treated with temozolomide by the 4 centers under blinded protocols. c) Treatment responses were 

comparatively assessed under several biostatistical protocols. d) Sequence data were collected by 

each center and assessed. 
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Figure 2. Comparison of PDX tumor volume control and temozolomide treatment arms at the 

PDMR (a-c), HCI-BCM (d-f), MDACC (g-i), WIST (j-l), and WUSTL (m-o).  Model 625472-

104-R (a, d, g, j, m), 172845-121-T (b, e, h, k, n), and BL0293-F563 (c, f, i, l, o). Axes are held 

constant for comparison between studies. Dashed lines, vehicle control groups, Solid lines, 

temozolomide treatment groups. Median ± SD.   
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Figure 3. Analytical Summaries, HCI-BCM Study. Analytical results from the HCI-BCM study 

for progressive model (625472-104-R), stable disease model (172845-121-T) and complete 

response model (BL0293-F563) (columns 1-3, respectively), with interpolated individual curves 

(row 1), mean curves for treatment and control with 95% confidence bands (row 2), waterfall 

plots demonstrating 𝜟𝑽𝟐𝟏(row 3), boxplots of 𝒂𝑨𝑼𝑪𝟐𝟏(row 4) and 𝒂𝑨𝑼𝑪𝒎𝒂𝒙(row 5) for 

treatment and control, and a boxplot of 𝑻𝑮𝑰𝟐𝟏(row 6), along with p-values comparing treatment 

to control for each measure. 
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Figure 4. Workflow Benchmarking and Analysis Summary. a) Panel A shows results of the 

evaluation of mouse-human disambiguation tools (Xenome, BBSplit, Disambiguate, ICRG, 

XenofilteR). Each figures shows precision (blue) and recall (green) for a simulated data. Left 

figure shows results of mouse disambiguation for whole exome data. Right figure shows results 

of mouse disambiguation for RNA-seq data. b) The panel shows the wiring diagram for the 

whole exome workflow selected to process data for this study. The selected workflow was 

selected from 5 workflows submitted by the PDX Development Trial Centers. Wiring diagrams 

for submitted whole exome workflows submitted by the PDX Development and Trials Centers. 

Wiring diagrams include nodes and connections. Nodes depict inputs - , outputs - , tools - 

, and workflows - . Connections between nodes depict that input to a node is from the 

output of another node. Orange nodes -  identify a tool or a workflow with an available 

update. c) Panel shows performance evaluations of five workflows submitted by the PDTC. Each 

workflow was evaluated by SNP (top), INS (middle), and DEL (bottom) with a range of variant 

allele frequencies (0.025, 0.05, 0.3, 0.2, 0.3). Each plot shows recall and precision respectively 

on the x and y axis. Results for each of the workflow are shown with the same color: Workflow 

1- blue, Worfklow 2 – green, Workflow 3- light blue, Workflow 4 – purple, and Workflow 5 – 

black d) A Venn diagram showing the overlap in high-quality variant calls for model JAXBL029 

by model using intersected array and removing lower allele frequency (AF) calls.   e) 

Dendrogram of median polish by center (by MBatch) using TMM normalized count per million 

values  
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Tables 

Table 1. Comparison of preclinical study set-ups and end-points at the PDMR and individual 

PDTCs for the temozolomide Reproducibility Pilot. Abbreviations: QDx5 (Once daily for 5 

days), TV (tumor volume). 

 PDMR HCI-BCM MDACC WUSTL Wistar 

Implantation 

Implantation 

Type 

~1mm3 

Fragment 

~1mm3 

Fragment 

~1mm3 

Fragment 

3-5x106 cells, 

dissociated 

<1 mm3 

fragments in 

slurry, ~150uL 

of slurry 

implanted 

Implantation 

Site 

Subcutaneous, 

single flank 

Subcutaneous 

single flank 

Subcutaneous 

single flank 

Subcutaneous 

single flank 

Subcutaneous 

single flank 

Staging Site 

(mm3) 
200 100-200 200 200 100 

 

Cohort Size 8 8 10 10 8 

Dosing and Schedule 

Temozolomide 

Dose (mg/kg) 
50 50 50 50 50 and 100 

Schedule QDx5 

28d cycle 

QDx5 

28d cycle 

QDx5 

28d cycle 

QDx5 

7d cycle 

QDx5 

7d cycle 

Number of 

cycles of 

Treatment 

2 1 2 4 2 

Route of 

administration 

Oral Oral Oral Oral Intraperitoneal 

Study End -Points 

A Animal Health Animal Health Animal Health Animal Health Animal Health 

B Max. tumor 

size, 4000 mm3 

Max. tumor 

size, 4000 mm3 

Max. tumor 

size, 1600-2000 

mm3 

Max. tumor 

size, 1500 mm3 

Max. tumor 

size, 1500 mm3 

C 300 days, if 

Max. TV not 

reached 

0.5 cycles after 

last dose 

When Control 

TV, 1600-2000 

mm3 

4 weeks after 

last dose 

When Control 

arm TV, 1500 

mm3 

 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 2, 2019. ; https://doi.org/10.1101/790246doi: bioRxiv preprint 

https://doi.org/10.1101/790246


 

 

 

 

 

 

42 

Table 2. Statistical tests of treatment vs. control difference Statistical tests of treatment vs. 

control difference. This table presents the p-values reported for various analytical measures, 

including change from baseline to 21 days (𝜟𝑽𝟐𝟏), adjusted area under the curve for 21 days 

(𝒂𝑨𝑼𝑪𝟐𝟏), adjusted area under the curve until last measurement (𝒂𝑨𝑼𝑪𝒎𝒂𝒙), tumor growth 

inhibition at day 21 (𝑻𝑮𝑰𝟐𝟏), and RECIST-like criteria for various choices of boundaries 

between CR/PR, PR/SD, and SD/PD given by (𝒄𝟏, 𝒄𝟐, 𝒄𝟑).  For RECIST-like, p-values are 

testing PD vs. not PD.  * For the Wistar site, the first row is for TMZ 50mg/kg and the second 

row is TMZ 100 mg/kg. 
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PD (Model 625472-104-R) 

 

Site 

 

𝛥𝑽𝟐𝟏 

 

𝒂𝑨𝑼𝑪𝟐𝟏 
 
𝒂𝑨𝑼𝑪𝒎𝒂𝒙 

 

𝑻𝑮𝑰𝟐𝟏 

𝑹𝑬𝑪𝑰𝑺𝑻𝟐𝟏 

-95,-50,10 -95,-30,20 -95,-30,50 -95,-30,100 -95,-50,50 -95,-50,100 

MDA 0.163 0.236 0.448 0.067 1.000 1.000 1.000 1.000 1.000 1.000 

WU 0.918 0.376 0.470 0.538 1.000 1.000 1.000 1.000 1.000 1.000 

HCI-BCM 0.143 0.072 0.177 0.814 1.000 1.000 1.000 1.000 1.000 1.000 

PDMR 0.404 0.756 0.501 0.751 1.000 1.000 1.000 1.000 1.000 1.000 

 

SD (Model 172845-121-T) 

 

Site 

 

𝛥𝑽𝟐𝟏 

 

𝒂𝑨𝑼𝑪𝟐𝟏 
 
𝒂𝑨𝑼𝑪𝒎𝒂𝒙 

 

𝑻𝑮𝑰𝟐𝟏 

𝑹𝑬𝑪𝑰𝑺𝑻𝟐𝟏 

-95,-50,10 -95,-30,20 -95,-30,50 -95,-30,100 -95,-50,50 -95,-50,100 

MDA <.001 0.003 <.001 <.001 0.048 0.048 0.008 0.048 0.008 0.048 

WU <.001 <.001 <.001 <.001 1.000 0.474 0.211 <.001 0.211 <.001 

HCI-BCM <.001 <.001 <.001 <.001 0.200 0.026 <.001 <.001 <.001 <.001 

PDMR <.001 <.001 <.001 <.001 0.003 <.001 <.001 <.001 <.001 <.001 

Wistar*  <.001 <.001 <.001 <.001 1.000 1.000 1.000 0.200 1.000 0.200 

<.001 <.001 <.001 <.001 1.000 1.000 0.200 0.026 0.200 0.026 

 

CR (Model BL0293-F563) 

 

Site 

 

𝛥𝑽𝟐𝟏 

 

𝒂𝑨𝑼𝑪𝟐𝟏 
 
𝒂𝑨𝑼𝑪𝒎𝒂𝒙 

 

𝑻𝑮𝑰𝟐𝟏 

𝑹𝑬𝑪𝑰𝑺𝑻𝟐𝟏 

-95,-50,10 -95,-30,20 -95,-30,50 -95,-30,100 -95,-50,50 -95,-50,100 

MDA <.001 <.001 <.001 <.001 <.001 0.008 0.008 0.008 0.008 0.008 

WU <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 

HCI-BCM <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 

PDMR <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 

Wistar*  <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 

<.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 
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