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A widespread belief persists that the Boys-Bernardi function counterpoise (CP) procedure “over-
corrects” supramolecular interaction energies for the effects of basis-set superposition error. To
the extent that this is true for correlated wave function methods, it is usually an artifact of low-
quality basis sets, but the question has not been considered systematically in the context of density
functional theory (DFT) where basis-set convergence is generally less problematic. We present a
systematic assessment of the CP procedure for a representative set of functionals and basis sets,
considering both benchmark data sets of small dimers as well as larger supramolecular complexes
including layered composite polymers with ~ 150 atoms and ligand—protein models with ~ 300
atoms. We find that intermolecular interaction energies approaching complete-basis quality can
be obtained using only double-{ basis sets, provided that CP correction is applied. This is less
expensive as compared to using triple- basis sets without CP correction. CP-corrected interaction
energies are also less sensitive to the presence of diffuse basis functions as compared to uncorrected
energies, which is important given that diffuse functions are expensive and often numerically prob-
lematic for large systems. Our results upend the conventional wisdom that CP “overcorrects” for
basis-set incompleteness. In small basis sets, CP correction is mandatory in order to demonstrate
that the results do not rest on error cancellation.

1 Introduction

1.1. Density Functional Theory for Noncovalent
Interactions. The description of noncovalent inter-
actions within density functional theory (DFT) has im-
proved dramatically over the past two decades, rela-
tive to a starting point where generalized gradient ap-
proximations (GGAs) predict interaction potentials that
are unbound for dispersion-dominated complexes such
rare-gas dimers or even (CgHg)o.! The first function-
als to deal with this problem in a generally effective
way were those with empirical atom—atom dispersion po-
tentials added ad hoc.!"? These dispersion-corrected or
“DFT+D” methods remain tremendously important in
contemporary DFT,!3 and modern versions of the dis-
persion corrections resemble proper atomic Cg coeffi-
cients in the separated-atom limit.*®> (Double-counting
of correlation effects at van der Waals contact distances
does remain an issue, however.l'57) Early versions of
the DFT+D approach® were quickly followed by semi-
empirical meta-GGA functionals that significantly out-
performed GGAs for van der Waals complexes,” 2 al-
though not always for the right reasons.'>1® Rather, be-
cause the semilocal meta-GGA framework has a much
longer range in real space, due to its dependence on the
density Laplacian and the kinetic energy density, meta-
GGAs afford non-vanishing interactions in the region of
non-bonded close contacts (unlike typical GGAs), and
noncovalent interactions may therefore emerge upon suf-
ficient parameterization. Separately, the development
of nonlocal correlation functionals,'6722 which have the

*herbert@chemistry.ohio-state.edu

right physics to describe dispersion from first principles,
has paved the way for a new generation of empirical
functionals?>2° based on the B97 model.?® At present,
these B97-based functionals are among the best perform-
ers for noncovalent interactions, with accuracy approach-
ing 1-2 kcal/mol for standard benchmark data sets.?
Other methods attempt to extract in situ atomic Cjg
(or Cs,Cho,...) coeflicients from a DFT density, for a
first-principles approach to modeling dispersion. Exam-
ples include the Becke-Johnson exchange-hole dipole mo-
ment method?” 32 and the Tkatchenko-Scheffler atoms-
in-molecules polarizability approach.?33° Finally there
is double-hybrid (DH-) DFT,3637 in a fraction of the
second-order Mgller-Plesset (MP2) correlation energy is
introduced. These functionals can also describe disper-
sion from first principles, though it is worth mentioning
that MP2 itself is not a benchmark-quality method for
dispersion interactions.34!

In DFT, noncovalent interaction energies AFE;,; are
typically computed via the supramolecular approach:

AFin = Fap — EaA — Ep . (1)

When atom-centered Gaussian basis sets are used, this
approach suffers from the well-known deficiency of basis-
set superposition error (BSSE).*>™6 This reflects that
fact that in the dimer calculation (Eap), either monomer
may use basis functions centered on the other to improve
the quality of its wave function, but that possibility is
precluded in the monomer calculations (Ex and Eg).
This leads to significant overestimation of AF;, that
disappears slowly as the monomer-centered basis sets
approach completeness.*” % The Boys-Bernardi “func-
tion counterpoise” (CP) procedure is a means to sidestep
this problem, which dates to the early days of quantum
chemistry.’! The CP procedure recognizes that eq. 1 is



an unbalanced approximation unless all three energies
are computed in the same (dimer) basis set.

Despite its easy-to-understand provenance, use of the
CP procedure has been controversial,** and remains so
in some more recent work.?? % The chronological evolu-
tion of this controversy is detailed in Section 1.2 but the
gist is a perception that the CP procedure “overcorrects”
AFEin.*27** When small, monomer-centered basis sets are
used, |AFiy| is much too large as compared to the com-
plete basis set (CBS) limit computed at the same level of
theory, but |AEj,| may be too small upon CP correction.
This observation is not an indictment of the CP proce-
dure per se, because BSSE is interwoven with basis-set
incompleteness error (BSIE). Due to partial compensa-
tion of these effects,?® it has been suggested that fixing
one of these issues (namely the BSSE, by means of the
CP procedure) without fixing the other (BSIE, by use
of larger basis sets) results in an approximation that is
also unbalanced.®® The use of a “half-CP” procedure,®®
which averages the CP-corrected and uncorrected values
of AFiy,;, can be seen as a remedy for imbalance. For cor-
related wave function methods, the half-CP average con-
verges to the CBS limit faster than either the corrected
or uncorrected interaction energy on its own.*%%0:55

For DFT, there is an additional consideration in
that the performance for noncovalent interactions varies
greatly from one functional to another, and finite-basis
error may offset inherent functional error in some cases.’”
To the extent possible, one should therefore attempt to
uncouple these errors by examining the performance of
DFT in the CBS limit. Although the CP procedure has
been carefully benchmarked for correlated wave function
models,?®% its behavior in DFT calculations has not
been examined so systematically. A recent comparison
with explicitly-correlated wave function results recom-
mended CP correction for converging DFT to the CBS
limit,?® although the selection of basis sets and func-
tionals was somewhat limited. Another assessment of
dispersion-corrected GGA functionals using Dunning ba-
sis sets concluded that CP-corrected aug-cc-pVDZ results
were close to quadruple-C results but that uncorrected
aug-cc-pVDZ results were not.”® The systematic exami-
nation contained herein considers a wider variety of func-
tionals and basis sets that are more typically used for
DFT calculations.

With the exception of double-hybrid functionals, it can
be expected that BSSE is smaller for DFT than it is
for correlated wave function methods, due to the more
rapid basis-set convergence of DF'T that originates in the
absence of electron coalescence cusps. Dependence on
virtual orbitals also increases the BSSE associated with
correlated wave function methods.”? The much slower
convergence of MP2 as compared to traditional semilo-
cal or hybrid DFT underlies a recent recommendation
to use the half-CP procedure with double-hybrid func-
tionals, versus “full CP” for other functionals.?® In the
early days of molecular DFT calculations, small Pople-
style basis sets were quickly judged to be adequate® and

this recommendation seems to have been ported to non-
covalent problems without careful calibration. However,
the conventional wisdom that double-( basis sets are ad-
equate for DFT does not always hold for modern meta-
GGAs and B97-based functionals, which converge more
slowly than their predecessors with respect to both ba-
sis set?324:60 and quadrature grid.?4%1:62 In view of this,
a thorough assessment of CP correction in DFT seems
timely.

1.2. History of Counterpoise Correction. We
consider the historical record in an effort to under-
stand the emergence of a conventional wisdom that
the Boys-Bernardi procedure “overcorrects” for BSSE.
Evidence debunking that viewpoint had appeared al-
ready in reviews dating to the late 1980s and early
1990s,4>744 nevertheless this sentiment persists in more
recent literature.®? 5463

Very early literature on the efficacy of CP correction
is muddled by the use of low-quality basis sets, for which
both BSSE and BSIE are sizable. It is difficult to take
seriously the early criticisms of CP correction based on
minimal-basis calculations,’* where BSSE can be so large
as to convert repulsive interaction into attractive ones.%
There was also an early suggestion®® that the Boys-
Bernardi procedure erroneously allows the occupied or-
bitals of one monomer to occupy regions of space that
should be taken up by occupied orbitals of the part-
ner monomer in the supramolecular complex, thus caus-
ing the CP procedure to underestimate the true inter-
action energy. This view was later shown to be false,
however.67-69 In fact, spatial restriction of the occupied
orbitals upon formation of the A--- B complex lies at the
heart of the Pauli exclusion principle!**

The erratic nature of BSSE in small basis sets
partly motivated the development of intermolecular per-
turbation theory in the 1970s,”? because this approach
is inherently free of BSSE.™ Gaussian basis sets had
become more systematized by the 1980s, and a 1988
review’® observes that it is “generally accepted” that the
CP correction brings Hartree-Fock interaction energies
closer to the CBS limit, except in the case of minimal
basis sets. However, the effectiveness of the CP proce-
dure was questioned in a 1985 study by Schwenke and
Truhlar,”® who performed calculations on (HF)q using 34
different Pople-style basis sets and found no systematic
improvement when CP was used. That said, there was
little variation amongst the basis sets tested and a subse-
quent study of alanine dimer using many of the same ba-
sis sets reached the opposite conclusion, namely, that CP
correction typically improves the results.”® Other work
from the same time period suggested that the CP proce-
dure actually insulates the results from otherwise erratic
changes in AFEj,; upon relatively small changes in the
basis set.””

This understanding was summarized in a 1994 review
of the “overcorrection debate”.** The Boys-Bernardi pro-
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cedure is not only compatible with the Pauli principle,”
but furthermore CP-corrected supramolecular calcula-
tions afford results of comparable accuracy to intermolec-
ular perturbation theories that are inherently free of
BSSE. 4367769 (In fact, supramolecular perturbation the-
ory calculations may afford non-sensical results for en-
ergy components if these are not corrected for BSSE.*?)
Similarly, comparison of CP-corrected MP2 to the
corresponding “chemical Hamiltonian” version of that
method,”® which is inherently free of BSSE, results in ex-
cellent agreement for basis sets of moderate quality.”%°
By late 1990s (but arguably much earlier than that),*> 44
it was therefore evident that CP correction generally im-
proves the quality supramolecular interaction energies.
Where exceptions can be found in older literature, they
are almost always attributable to the use of low-quality
basis sets. Nevertheless, reviews by van Lenthe et al.
in 1987,%2 and by the same authors again in 1994,* be-
moan the persistent and widespread belief that the Boys-
Bernardi procedure “overcorrects”, as well as the notion
that the CP correction is merely an “estimate” of the
BSSE rather than a well-defined procedure that recog-
nizes the origin of the problem (namely, imbalance in
the supramolecular formula of eq. 1) and eliminates it,
essentially by definition.

To a significant extent, this older discussion was hin-
dered by inability to reach the CBS limit for systems
with more than a few atoms, or to obtain reliable ab ini-
tio benchmarks. Those problems have been overcome,
and correlated wave function benchmarks clearly indi-
cate that CP-corrected and uncorrected energies con-
verge to the CBS limit from opposite directions.’® We
regard this as an incompleteness problem rather than an
“overcorrection”, because the CP-corrected results ex-
trapolate more smoothly to the CBS limit, resulting in
smaller error bars.’ (This behavior was originally pre-
dicted by Dunning.®! ) Half-CP results converge even
faster,”®®> and other molecular properties also converge
more smoothly with CP correction than without.*” Re-
ported cases where uncorrected results converge faster to
the CBS limit,”? or where the basis-set error (relative to
the CBS limit) is larger with CP correction,® typically
involve systems where the difference between the CP-
corrected and uncorrected results is quite small, whereas
the systematic study in Ref. 50 considered a wide range
of cases. As such, we conclude that there is nothing in
wave function theory to suggest that CP correction is
ill-advised.

1.3. Overview of the Present Work. Whereas the
CP correction for correlated wave function methods has
been considered systematically,?®5® as has that of double-
hybrid functionals,”® the latter constitute a relatively
small niche in the overall pantheon of DF'T methods and
the CP correction has not been considered systematically
for other classes of functionals. In addition, we want to
understand how basis sets of double- and triple-¢ quality

behave, as these are the largest basis sets that are typ-
ically employed in DFT calculations. We will therefore
examine the effects of CP correction for interaction ener-
gies computed using a set of density functionals that per-
form well for noncovalent interactions, using basis sets as
small as 6-31G*. These tests span a range of system sizes
because BSSE is size-extensive and large supramolecu-
lar complexes exhibit dramatically larger CP corrections
as compared to small dimers. Finally, we will consider
whether CP correction is more or less economical than
simply enlarging the basis set, as a strategy to obtained
converged DFT/CBS values of AEj,.

2 Methods

Basis sets tested here include Dunning’s correlation-
consistent sequence, aug-cc-pVXZ (with X = D, T,
and Q);%%%3 Karlsruhe “def2” basis sets through def2-
QZVPD:3+85 and Pople basis sets 6-31G*, 6-31+G*, 6-
311G*, and 6-3114+G*.86 Pople basis sets use a common
orbital exponent for s and p functions in a given shell,
which makes them much more efficient than alternatives
with a comparable number of functions,3”88 provided
that the electronic structure program takes advantage
of this simplification. As such, Pople basis sets continue
to see widespread use in DF'T calculations, especially in
large systems.

We selected a small set of functionals that per-
form well for noncovalent interactions.?> These include
BLYP+D3(BJ), a GGA functional that employs the D3
empirical dispersion correction* with a Becke-Johnson
(BJ) damping function;® PBE0+D4, a hybrid GGA using
the relatively new D4 dispersion correction;® wB97X-V,23
a hybrid GGA with nonlocal VV10 correlation;?! and
finally the hybrid meta-GGAs wB97M-V2* and MO6-
2X.'0 Extensive benchmarking suggests that wB97X-
V, wB97M-V, and BLYP+D3(BJ) are amongst the
best all-around options for noncovalent interactions,® al-
though M06-2X remains widely used in that capacity and
PBE0+D4 performs very well for large supramolecular
complexes.?® We also consider the dispersion-corrected
M06-2X+D3(0) functional, where “D3(0)” indicates the
original damping function developed for D3,%* and fi-
nally the meta-GGA functional M06-L.3° The latter per-
forms less well for noncovalent interactions but exhibits
exceptionally poor convergence properties with respect
to basis set,° making for an interesting test. A few
double-hybrid functionals are also tested: PBE-QIDH,"°
B2GP-PLYP,”!, wB97X-2(LP),”?, and wB97M(2).2* For
these functionals, the MP2 correlation energy is evalu-
ated with the resolution-of-identity approximation using
orbitals obtained from the underlying hybrid functional.

The overall performance of these methods is illustrated
in Table 1 using several noncovalent data sets. Impor-
tantly, the DFT calculations used to compute these error
statistics were performed at or near the CBS limit, and
are compared to benchmark values of AFi,; obtained



Table 1: Statistical Accuracy of DFT for Noncovalent Inter-
actions.

. RMSD (kcal/mol)®
Functional NCED? NCBC® NCD? S66°
BLYP+D3(BJ) 0.34 2.18 2.82 0.28
MO06-L 0.55 2.20 1.87 1.16
MO06-2X 0.43 2.52 0.99 0.34
wBITX-V 0.24 0.64 1.23 0.20
wB9TM-V 0.18 0.48 1.13 0.23
PBE0+D4 — — — 0.50
wB97X-2(LP) — — — 0.38
wB9ITM(2) — — — 0.35

“Root-mean-square deviations (RMSDs) with respect to
CCSD(T)/CBS benchmarks. ®Noncovalent “easy” dimers
(NCED), from Ref. 3. “Noncovalent “easy” clusters
(NCEQ), from Ref. 3. ?Noncovalent “difficult” dimers
(NCD), from Ref. 3. “Evaluated as part of the present
work.

at the level of coupled-cluster theory with single, dou-
ble, and perturbative triple excitations [CCSD(T)], also
evaluated in the CBS limit. As such, these error statis-
tics probe the inherent accuracy of DFT itself, free from
BSSE or BSIE. The data in Table 1 are intended to
demonstrate what level of accuracy is presently feasible
with available exchange-correlation functionals. In the
rest of this work, we will mostly be concerned with con-
vergence to the CBS limit for a particular functional and
therefore subsequent error statistics will be defined with
respect to that limit (DFT/CBS), rather than comparing
to CCSD(T)/CBS results.

Often in DFT calculations, quadruple-C energies are
taken to be equivalent to the CBS limit.3%5%:60 Except
for double-hybrid functionals, we will define the DFT/
CBS limit using the average of CP-corrected and uncor-
rected values of AE},; computed using a quadruple-¢ ba-
sis set, namely aug-cc-pVQZ for small dimers and def2-
ma-QZVP®® for larger systems. For the dimers in the
S66 data set,”® CP correction at the aug-cc-pVQZ level
typically amounts to < 0.1 kcal/mol, indicating conver-
gence to the DFT/CBS limit. For larger systems, the
magnitude of the CP correction in the def2-ma-QZVP
basis set affords an estimate of the uncertainty in the
DFT/CBS limit. For double-hybrid functionals we esti-
mate the CBS limit using the SCF /aug-cc-pVQZ hybrid
DFT energy plus a two-point “T/Q” extrapolation of the
MP?2 correlation energy, where the latter is computed us-
ing aug-cc-pVTZ and the aug-cc-pVQZ.%

All calculations were performed using Q-Chem v. 5.4.9°
Integral screening and shell-pair drop tolerances were
both set to Tines = 10712 a.u. and the self-consistent field
(SCF) convergence threshold was set to Tscp = 10~° Ha,
except for the protein-ligand systems in Section 3.3 .2,
for which we use Tints = 10710 a.u. and 7gcp = 1076 Ha.
The SG-2 quadrature grid is used for all B97-based func-
tionals and SG-3 for the Minnesota functionals.%> For
other functionals, we use SG-1.96

3 Results and Discussion

3.1. S66 Data Set. We will use the S66 data set?® to
obtain a systematic understanding of the effect of CP cor-
rection on AFEj,;. The largest of the S66 dimers contains
34 atoms (pentane dimer), and this small size allows us
to use quadruple-( calculations even for computationally-
demanding functionals, and thus to definitively establish
the CBS limit.

3.1.1. Convergence Errors for Conventional DFT. A
statistical summary of basis-set convergence errors for
S66 is provided in Table 2, where the errors are defined
with respect to the DFT/CBS limit for each functional.
More detailed statistics can be found in Tables S1-S7, in-
cluding a breakdown into subsets consisting of hydrogen-
bonded dimers, dispersion-bound dimers, and dimers of
mixed-influence interactions. Data for M06-2X+D3(0)
are omitted from Table 2 but can be found in Table S2.

It proves useful to examine Table 2 by class of ba-
sis set. For the Dunning basis sets, CP correction has
a significant effect only at the double-C level, where for
aug-cc-pVDZ the mean absolute error (MAE) with re-
spect to the DFT/CBS limit is reduced from 0.7 kcal /mol
to 0.2 kcal/mol (averaging across functionals) when the
CP correction is included. (These statistics exclude the
double-hybrid functionals, whose basis-set convergence
is quite different and which are considered later.) With
the exception of the M06-L functional, this difference of
~ 0.5 kcal/mol between CP and non-CP interaction en-
ergies is larger than the difference between DFT/CBS
and CCSD(T)/CBS interaction energies for the same
data set (Table 1). When the basis set is extended
to aug-cc-pVTZ, the CP correction is nearly negligible
(< 0.1 keal/mol), except in the case of M06-L, and for
aug-cc-pVQZ it is negligible in all cases. Notably, the
CP-corrected aug-cc-pVDZ convergence errors are gen-
erally close to the uncorrected aug-cc-pVTZ values, such
that results of triple-( quality can be obtained at double-
¢ cost by applying CP correction.

Most practical DFT calculations do not employ
correlation-consistent basis sets, so we next turn to
the Karlsruhe basis sets that were designed specifically
for SCF calculations. We tested versions with® and
without®* augmentation by diffuse functions, finding that
diffuse functions afford systematically smaller conver-
gence errors both before and after CP correction. Oth-
erwise, the behavior of the Karlsruhe basis sets is similar
to that of the Dunning basis sets, albeit with somewhat
larger convergence errors, especially at the double-( level.
Similar to the aug-cc-pVDZ case, however, def2-SVPD
with counterpoise correction is sufficient to reduce the
convergence error so that it is smaller than the intrinsic
accuracy of the functional itself. Absent the CP cor-
rection, this cannot be said of the double-{ basis sets.
A corollary is that, once again, triple-( basis sets are
not required to reach the intrinsic accuracy limit, as



Table 2: Basis-Set Convergence Errors for S66 Interaction Energies.

Mean Absolute Error (kcal/mol), vs. DFT/CBS*

Basis Set MO06-2X MO6-L

BLYP+D3(BJ)

PBEO+D4 wBITX-V wBITM-V

no with  no with  no
CP CP CP CPp CpP

with no with  no with  no with
CP CP CP CP CP CP CpP

aug-cc-pVDZ  0.75 0.14 0.79 0.43 0.71
aug-cc-pVTZ 0.14 0.07 0.85 0.49 0.11
aug-cc-pVQZ  0.05 0.05 0.20 0.20 0.04

def2-SVP 1.54 043 148 0.60 2.54
def2-SVPD 1.38  0.14 124 0.57 1.52
def2-TZVP 026 019 0.82 0.58 0.48
def2-TZVPD  0.08 0.14 0.75 0.54 0.09
def2-QZVP 0.07  0.11 0.59 0.51 0.12
def2-QZVPD  0.05 0.09  0.59 0.52 0.02

6-31G* 1.36  0.52 1.42 0.75  2.27
6-31+G* 0.63 0.28 0.96 0.68 0.54
6-311G* 1.64 039 1.76 0.78 1.86
6-3114+G* 1.07 045 1.35 0.82 0.69

6-311+4+G**  0.75 0.28 1.08 0.70 0.43

0.16 0.66 0.06 0.65 0.07 0.79  0.08
0.07 0.10 0.05 0.12 0.04 0.17  0.02
0.04 0.04 0.04 0.03 0.03 0.02 0.02

0.26 1.85 0.28 1.82 0.36 2.04 037
0.13 1.37  0.09 1.36 0.10 1.56 0.18
0.15 035 013 034 0.12 042 0.10
0.13 0.09 0.09 0.08 0.08 0.12  0.05
0.06 0.08 0.04 0.07 0.04 010 0.03
0.05 0.02 0.04 0.01 0.04 0.02 0.03

0.39 1.62 0.39 1.62 042 1.84 044
0.29 0.62 024 0.56 0.24 0.63 0.25
0.41 1.63 034 167 032 195 0.37
0.37 093 032 0.88 0.33 1.02 043
0.23 096 032 0.61 0.18 0.75  0.29

“DFT/CBS is defined as the average of CP-corrected and uncorrected aug-cc-pVQZ interaction energies.

CP-corrected def2-SVPD convergence errors are within
~ 0.1 keal/mol of def2-QZVPD values.

Pople basis sets remain workhorses in DFT and it
is therefore interesting to note that in order to reduce
convergence errors below 1.0 kcal/mol, CP correction
is required in most (though not all) cases. With the
exception of the slowly-convergence MO0G6-L functional,
convergence errors for all CP-corrected functionals are
< 0.5 kcal/mol. These errors are systematically smaller
when diffuse functions are added, yet CP correction is
still required to reduce the convergence error to some-
thing comparable to the intrinsic accuracy of the func-
tional in the DFT/CBS limit.

So far this discussion has been confined to error statis-
tics with respect to the DFT/CBS limit but it is impor-
tant not to lose sight of accuracy with respect to bench-
mark interaction energies. Table S8 lists error statistics
with respect to CCSD(T)/CBS benchmarks,”® for the
functionals and basis sets in Table 2. With the exception
of the notably less-accurate M06-L functional, the errors
fall within < 0.6 kcal/mol of the benchmarks when CP
correction is employed, but exceed 2 kcal/mol in some
double-¢ basis sets when the CP correction is omitted.
With CP correction and diffuse functions (i.e., exclud-
ing the basis sets 6-31G* and def2-SVP), the double-¢
errors are < 0.4 kcal/mol. CP correction is thus cru-
cial not only for achieving the CBS limit but also for
improving the accuracy of small-basis interaction energy
calculations.

3.1.2. Convergence Errors for Double-Hybrid Function-
als.  Convergence error statistics with respect to the
CBS limit are summarized for double-hybrid functionals
in Table 3. Inclusion of MP2 correlation means that we
expect the convergence behavior of these functionals to

resemble that of correlated wave function methods, which
is generally much slower than DFT, and the convergence
behavior of MP2 itself is also examined in Table 3. We
observe that MP2 convergence errors in Pople basis sets
and in def2-SVP are large with CP correction than with-
out, which in general can simply be ascribed to the fact
that these basis sets are not appropriate for a correlated
wave function method. A more incisive explanation is
gleaned by examining the raw data for S66 interaction
energies computed at the MP2 level (Table S9), which
reveals that MP2 severely underestimates AFyy,; for the
dispersion-bound subset of S66 when these basis sets are
employed. Since the absence of CP correction leads to
a larger interaction energy, there is a partial error can-
cellation that is upset by CP correction. This behavior
contrasts with the systematically smaller convergence er-
rors obtained when CP correction is applied to GGA and
singly-hybrid functionals, and it sets up a competition
between that behavior and the behavior of MP2 correla-
tion in the case of double-hybrid functionals, when very
small basis sets are employed. This leads to slightly less
systematic convergence behavior than what was observed
for GGA and singly-hybrid functionals; CP correction
generally reduces the convergence errors, but by amounts
that are somewhat functional-dependent.

That said, if we exclude def2-SVP and the Pople ba-
sis sets then convergence to the DH-DFT/CBS limit is
reasonable and is facilitated by CP correction, especially
in double-¢ basis sets such as def2-SVPD. A graphical
example is presented in Fig. 1 for Karlsruhe basis sets;
see Figs. S1-S3 for additional functionals and basis sets.
Using CP correction in conjunction with def2-SVPD re-
sults in a mean convergence error of 0.2 kcal/mol, com-
parable to the CP-corrected def2-TZVPD error. While
diffuse functions prove to be important (e.g., the def2-
TZVP convergence error is a bit larger at 0.3 kcal/mol,



Table 3: Basis-Set Convergence Errors for S66 Interaction Energies.

Mean Absolute Error (kcal/mol), vs. DFT/CBS

Basis Set MP2 PBE-QIDIH  B2GP-PLYP  wBI7X-2(LP)  wBI7M(2)
no with  no with  no with  no with no with
Cp CpP CP CP CP CP CP CP CP CP
aug-cc-pVDZ 1.70 0.80 1.31 0.18 1.29 0.24 1.54 0.28 1.34 0.18
aug-cc-pVTZ 0.78 0.32  0.96 0.10 1.01 0.11 1.31 0.14 0.99 0.11
aug-cc-pVQZ  0.28 0.16  0.36 0.48 0.36 0.10 0.48 0.13 0.39 0.11
def2-SVP 1.02 227 1.52 0.73 1.70 0.87 1.46 1.27 1.65 0.86
def2-SVPD 3.31 0.99 2.35 0.18 2.41 0.26 2.72 0.35 2.43 0.18
def2-TZVP 0.31 0.99 0.42 0.29 0.48 0.31 0.48 0.41 0.44 0.32
def2-TZVPD 0.79 0.63 0.57 0.17  0.61 0.18  0.79 0.22 0.56 0.16
def2-QZVP 0.13 0.34 0.31 0.10 0.34 0.10 0.41 0.13 0.33 0.09
def2-QZVPD  0.27 0.28 0.39 0.09 0.42 0.09  0.57 0.12 0.41 0.09
6-31G* 0.89 234 121 0.85 1.38 0.93 1.09 1.32 1.34 0.93
6-31+G* 0.77 2.00 0.92 0.61 0.84 0.73  0.85 0.85 0.86 0.66
6-311G* 0.84 212 1.36 0.69 1.41 0.82 1.22 1.07 1.42 0.77
6-311+G* 1.07 1.78  1.20 0.55 1.06 0.66 1.13 0.81 1.08 0.57
6-3114+4+G** 0.48 0.39 0.99 0.39 0.86 0.51  0.96 0.66 0.88 0.43

25 is the smallest basis set for which all of the data points lie

b within £0.5 kcal/mol of the CBS limit, which is true in

201 = cv?t: cp ] that case even without CP correction. For aug-cc-pVDZ

convergence error (kcal/mol)

v v T, Lo L, L
& K d g

Fig. 1: Mean absolute convergence errors (with respect to
the CBS limit) for S66 interaction energies computed using
the double-hybrid functional wB97M-(2) in various Karlsruhe
basis sets.

even with CP correction), this analysis demonstrates that
correlation-consistent basis sets are not required to reach
the DH-DFT/CBS limit, which can lead to significant
cost savings. Convergence errors remain larger in Pople
basis sets (see Fig. S3) and are only somewhat mitigated
(in most cases) by CP correction. These basis sets are
therefore not recommended for double-hybrid function-
als.

3.1.3. Error Distributions.  Figure 2 plots how the
basis-set convergence errors are distributed with respect
to zero, for one particular functional using a variety of
basis sets and comparing both CP-corrected and uncor-
rected results. (For other functionals, including double
hybrids, see Figs. S4 and S5.) In larger basis sets, the er-
rors distributions narrow considerably and def2-TZVPD

and def2-SVPD, the CP-corrected errors are much more
tightly grouped together as compared to the uncorrected
results, with a mean signed error that tilts toward un-
derbinding but by a much smaller amount as compared
to the overbinding that is observed in the absence of CP
correction. In the aug-cc-pVXZ data, one can perhaps
find justification for the statement that “CP overcorrects
for BSSE”, yet it is equally true that the uncorrected re-
sults systematically underbind the S66 complexes, and as
a result the half-CP average is more reliable than either
the CP-corrected or uncorrected values of AF;,;. That
said, CP correction reduces the MAE with respect to the
CBS limit and also significantly reduces the spread of
the convergence errors. Quantitative data for each func-
tional and basis set, as measured by root-mean-square
deviations from the DFT/CBS limit, can be found in
Tables S15 and S16.

These trends are more muddled in the case of Pople
basis sets, where CP-DFT does not consistently under-
or overbind the complexes, and the distribution of CP-
DFT convergence errors is centered close to zero. For
example, in the case of the BLYP+D3(BJ) functional the
mean signed errors range from —0.07 to +0.10 kcal/mol
for the four Pople basis sets shown in Fig. 2¢; see Table S4
for the quantitative data. If CP correction is neglected,
the dimers are generally overbound, with a mean signed
errors ranging up to —2.3 kcal/mol. Karlsruhe basis sets
(Fig. 2b) represent something of an intermediate case, in
that CP-corrected results are not always underbound but
convergence to the CBS limit is systematic.

Other functionals behave similarly to BLYP+D3(BJ),
except for the problematic M06-L (Fig. S4), for which
CP-corrected convergence errors show a significant
spread on both sides of zero and the distributions of CP-
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corrected and uncorrected values are difficult to distin-
guish. As such, CP correction may either improve or
degrade the results but does so more-or-less at random,
indicative of an overall failure of systematic convergence
to the CBS limit.%° For the double-hybrid functionals
(Figs. S5), Dunning and Karlsruhe basis sets behave sim-
ilarly to what is seen for BLYP+D3(BJ) in Figs. 2b and
2c¢, but Pople basis sets clearly underbind the complexes
when CP correction is applied, where results without CP
correction are overbound.

In general, it can be said that the CP-corrected con-
vergence errors span a smaller range as compared to con-
vergence errors when CP correction is omitted. This dis-
crepancy is especially prevalent in double-( basis sets and
all Pople basis sets. These observations parallel what has
been observed for wave function methods,® although the
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Fig. 3: Mean absolute convergence errors for BLYP+D3(BJ)
calculations of the S66 complexes (bar graph, axis at left),
versus wall time required for pentane dimer (orange dots, axis
at right). Calculations were performed on a single compute
node with 14 processors.

magnitude of the CP correction is different, reflecting the
different convergence behavior of DFT. The same trends
hold for double-hybrid functionals if Pople basis sets (for
which CP correction has only a modest effect) are ex-
cluded.

3.1.4. Timing Data. We have observed that CP-
corrected double-( calculations often afford interaction
energies on par with uncorrected triple-¢ results, so it
is interesting to consider which of these methods is less
expensive. We assess this using pentane dimer, as it is
the largest of the S66 complexes, and Table S17 presents
timing data using each of the functionals and basis sets
whose convergence statistics are given in Table 2. In any
given basis set, CP correction adds about a factor of 2.5x
to the cost of the calculation, which reflects the cost of
performing two monomer calculations in the dimer rather
than the monomer basis set. This additional overhead
pales in comparison to the increased cost of extending
the basis set from double- to triple-(, however. All three
double-( calculations in the dimer basis set can typically
be performed in 25-50% of the time required for a sin-
gle triple-¢ calculation of the dimer. If a triple-C level of
convergence is desired, then CP correction is about 4x
less expensive than a single quadruple-( calculation on
the dimer.

An illustration of the trade-off between accuracy and
cost is presented in Fig. 3, using convergence errors
for the whole of S66, with BLYP+D3(BJ) and Karls-
ruhe basis sets. (For other functionals and basis sets,
see Figs. S6-S8.) Timing data are shown for pen-
tane dimer. Absent CP correction, double-¢ basis
sets afford unacceptably large convergence errors (1.5—
2.5 kcal/mol on average), which CP correction reduces
below 0.25 kcal/mol, smaller than the intrinsic accuracy
of the functional for this data set. All three calculations
required for the CP-corrected double-¢ result can be ob-
tained in about 75% of the compute time required for
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a single triple-( calculation, yet basis-set convergence er-
rors and and accuracy with respect to CCSD(T)/CBS are
comparable to those obtained using def2-TZVPD. This
comparison demonstrates that a CP-corrected double-¢
calculation is a cost-effective strategy to obtain results of
triple-¢ quality.

3.2. (Coronene), at Displaced Geometries. The
S66 calculations reported above were performed exclu-
sively at equilibrium geometries. Since BSSE arises from
overlapping monomer-centered basis functions, it should
be sensitive to monomer separation, so we next examine
results for coronene dimer, (Co4Hio)2, as a function of
intermolecular separation. We placed the dimer in an
eclipsed cofacial (“sandwich”) orientation, at intermolec-
ular separations ranging from R = 3-10 A. Potential en-
ergy curves, both with and without CP correction, are
shown in Fig. 4 for the wB97M-V functional using Karls-
ruhe basis sets. Results for other functionals and basis
sets can be found in Figs. S9 and S10 but are quite similar
to the data in Fig. 4.

Absent CP correction (Fig. 4a), the minimum-energy
separation of the dimer changes as a function of basis set,
increasing from 3.50 A in double-¢ basis sets to 3.75 A
in larger basis sets. The potential curve is also much
shallower in the larger basis sets, consistent with too-
large values of AFEj, due to BSSE, and the effect is
large than it was for the smaller S66 dimers. The def2-
SVP and def2-SVPD basis sets overestimate AFEj,; by
7.0 and 5.0 kcal/mol, respectively, as compared to the
def2-QZVPD value. On the other hand, triple-( results
are essentially converged to the CBS limit.

Upon CP correction (Fig. 4b), all Karlsruhe basis sets
afford very similar potential energy curves. There is no
longer any meaningful distinction between def2-SVP and
def2-SVPD results, both of which overestimate AFE;
by about 2.0 kcal/mol relative to triple- and quadruple-
¢ results that are indistinguishable from one another.

(b) with CP

AE,, (kcal/mol)
o
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Potential energy profiles for the eclipsed-cofacial configuration of (coronene)s, computed using wB97M-V in various
basis sets (a) without CP correction and (b) with CP correction.

Moreover, the shape of the CP-DFT /double-¢ potentials
are the same as the converged results, with the same
minimum-energy separation of R = 3.75 A. In the ab-
sence of CP correction, we conclude that double-¢ basis
sets cannot be assumed to afford correct geometries.

Table 4:  Accuracy of wB97M-V Interaction Energies for
Coronene Dimer.

Error vs. CCSD(T)/CBS*®

Basis Set absolute (kcal/mol) relative (%)
no CP CPp no CP CP
def2-SVP 7.7 2.9 37 14
def2-SVPD 14.8 3.3 70 16
def2-TZVP 2.5 1.9 12 9
def2-TZVPD 2.8 2.0 13 10
def2-QZVP 2.5 2.2 12 11
def2-QZVPD 2.5 2.2 12 11

?Benchmark from Ref. 97.

A new CCSD(T)/CBS interaction energy has recently
been reported for coronene dimer,”” and in Table 4 we
use that benchmark to assess errors in wB97M-V inter-
action energies using Karlsruhe basis sets. Although this
functional affords sub-kcal/mol errors for the S66 dimers,
that level of accuracy is not realized here, where the er-
rors remain 2-3 kcal/mol upon CP correction. However,
in the absence of CP correction the relative errors (as a
percentage of the total interaction energy) are actually
larger for the S66 data set, where they range from 3%
(def2-QZVPD) to 38% (def2-SVP). For CP-corrected cal-
culations, errors in the S66 data set range from 3% (def2-
QZVPD) to 9% (def2-SVP). These data, combined with
the (coronene)s results, suggest an intrinsic accuracy of
~ 10% for wB97TM-V, but that intrinsic limit cannot be
reached in double-( basis sets unless CP correction is
used.

A peculiarity in the coronene dimer results is that the
def2-SVPD error is significantly larger (at 15 kcal/mol)
than the def2-SVP error (8 kcal/mol). While CP correc-
tion reduces both errors to 3 kcal/mol, the larger error



when diffuse functions are added defies the conventional
wisdom that a good description of the tails of the wave
function is important to the description of non-covalent
interactions. In fact, larger errors for def2-SVPD than
for def2-SVP are a feature of the dispersion-bound sub-
set of S66, for every functional that we have examined
(see Tables S1-S7), although the overall S66 convergence
errors are reduced in the presence of diffuse functions,
primarily due to a reduction in convergence errors for the
hydrogen-bonded subset of S66. (We have observed be-
fore that diffuse functions are particularly important for
the description of hydrogen bonds.®®) For the dispersion-
bound complexes in S66, results with def2-SVP lead to
overbinding (for all functionals examined), and since CP
correction generally reduces interaction energies, these
results benefit from some error cancellation that disap-
pears when diffuse functions are added, leading to less
overbinding with def2-SVPD. This type of error cancel-
lation feels fragile and thus from our point of view, CP-
corrected results obtained using def2-SVPD is a more re-
liable representation of the true performance of double-C
basis sets.

3.3. Large Complexes. For the S66 dimes, CP-DFT
in small basis sets can be used to obtain interaction en-
ergies that are within ~ 0.2 kcal/mol of the DFT/CBS
limit for the same functional, a convergence error that is
smaller than the intrinsic accuracy of the bests contempo-
rary functionals for these same complexes. For coronene
dimer, however, the CP correction is larger in double-C
basis sets. In this section, we examine much larger molec-
ular systems in order to understand how the magnitude
of BSSE grows with system size. Systems examined in-
clude a set of layered complexes of oligothiophenes and
graphene nanoribbons,”®? such as the example shown in
Fig. 5a. These range in size from 134—-174 atoms and have
AFE;y in the range 60-100 kcal/mol, depending on func-
tional and basis set. We also examine four protein-ligand
systems ranging from 261-323 atoms, whose DFT/CBS
interaction energies range from 15-100 kcal/mol; two of
these are shown in Fig. 5b and 5c¢. As in the calcula-
tions reported above, our primary goal is not to evaluate
AFE;,; against some benchmark value but rather to ex-
amine convergence to the DFT/CBS limit and to assess
the efficacy of CP correction in obtaining that limit.

3.3.1. Graphene—Oligothiophene Compleres. We ex-
amine several layered trimers of polythiophene (nPT,
meaning n thiophene units) with graphene nanorib-
bons: (5PT)(038H22)(5PT), (5PT)(C59H20)(5PT), and
(TPT)(CysHa6)(7PT). Geometries are taken from Ref. 99
and are provided in the Supporting Information. As
representative functionals we consider MO06-2X and
wB9TM-V, using a subset of the basis sets examined
above, mostly representative of practical choices for large
systems but including the high-quality def2-TZVPD ba-

Fig. 5: Examples of large molecular assemblies considered in
this work: (a) (5PT)(CssHa2)(5PT), (b) 181L:benzene, and
(c) 1HSG:indinavir. In (b) and (c), the ligand is shown in
a ball-and-stick representation and the protein binding site
using a tubular representation.

sis set. For the S66 dimers, the latter basis affords ab-
solute convergence errors smaller than 0.15 kcal/mol for
the two functionals considered here, and CP-DFT/def2-
TZVPD affords interaction energies comparable to DFT/
def2-QZVPD for the S66 dimers.

Interaction energies for these layered materials are
listed in Table 5. The trends are similar for MO06-
2X and wB97M-V so our discussion will focus on
the latter.  When that functional is used with a
double-¢ basis set, the difference between CP-corrected
and uncorrected interaction energies is large, rang-
ing from 19-48 kcal/mol. It should be noted that
double-¢ basis sets are not recommended for use with
wB97M-V and similar, combinatorially-optimized B97-
based functionals.???4 The def2-SVP basis is specifically
suggested to be “incompatible” with wB97M-V,2* and
def2-TZVPPD is suggested as the smallest recommended
basis set. These recommendations are based in part on
thermochemical data and may be overly conservative for
non-covalent interactions, thus it is relevant to consider
smaller double-( basis sets here. The M06-2X functional,
which is routinely used with small Pople basis sets, actu-
ally converges to the DFT/CBS limit in a manner that is
very similar to wB97M-V, as measured by the difference
between CP-corrected and uncorrected values of AE;,;.

Despite the recommendation against double-( basis
sets, with CP correction the wB97M-V interaction ener-
gies are remarkably close to def2-TZVPD results, within
3 kcal/mol in all cases except 6-31G*. In fact, M06-2X
exhibits slightly larger deviations between CP-corrected
double- and triple-C results. It is perhaps surprising to
note also that diffuse functions have only a small ef-
fect when CP correction is used, e.g., < 4 keal/mol dif-
ference between def2-SVP and def2-SVPD results, and
< 0.5 keal/mol difference between def2-TZVP and def2-
TZVPD. Presumably, the use of a supramolecular basis
set facilitates a good description of the tails of the wave
function, whereas in the absence of CP correction dif-
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Table 5: Interaction Energies (in kcal/mol) for Graphene—Oligothiophene Complexes.
Method (5PT)(Caolla0) (5P T) (5PT)(Caslla) (5P T) (TPT)(Casllas) (7P T)
no CP* CP® Diff.° no CP® CP® Diff.° no CP® CP® Diff€
wB97TM-V /6-31G* —101.0 —75.4 25.6 —76.9 —54.4 22.6 —102.3 —73.2 29.1
wB9TM-V /6-31+G* —103.3 —88.6 14.7 —75.7 —65.2 10.5 —101.6 —87.4 14.2
wB97TM-V /def2-SVP —110.2 —88.0 22.2 —82.0 —63.4 18.6 —110.2 —85.5 24.7
wB97TM-V /def2-SVPD —134.1 —-90.3 43.8 —103.0 —66.9 36.2 —1374 —89.8 47.6
wBITM-V /def2-TZVP —89.6 —86.2 3.4 —65.5 —62.8 3.4 —87.9 —84.4 3.5
wB97TM-V /def2-TZVPD —90.3 —86.7 3.6 —65.8 —63.0 2.8 —88.4 —84.8 3.6
M06-2X/6-31G* —71.2 —51.4 19.8 —58.9 —41.1 17.8 —78.5 —55.2 23.2
MO06-2X/6-31+G* —80.1 —66.2 13.9 —63.5 —53.4 10.1 —85.2 —71.2 14.0
MO06-2X /def2-SVP —84.8 —65.1 19.7 —67.1 —50.6 16.5 —-90.4 —68.1 22.1
MO06-2X /def2-SVPD —109.3 —66.5  42.8 —89.6 -53.9 35.7 —119.6 —72.1 475
MO06-2X /def2-TZVP —65.8 —61.7 4.1 —52.9 —49.5 3.4 —71.0 —66.3 4.7
M06-2X /def2-TZVPD —67.0 —62.0 4.6 —-53.7 —49.9 3.8 -72.0 —66.8 5.2

2 A Fint without CP correction. ®AE;,; with CP correction. ¢Difference between CP-corrected and uncorrected values

of AEint .

fuse functions are needed to describe these tails in the
monomer calculations. This observation is good news for
calculations on systems of this size, where diffuse func-
tions add significantly to the cost and also incur problems
with linear dependencies. That said, when double-{ ba-
sis sets are employed, CP correction is essential in order
to mitigate the effect of the diffuse functions; without it,
def2-SVP and def2-SVPD interaction energies differ by
> 20 kcal/mol in some cases. For triple-¢ basis sets, the
effect of diffuse functions is < 1 kcal/mol even without
CP correction.

Regarding the results with the smallest basis sets, such
as 6-31G* (for which the CP-corrected and uncorrected
values of AF}, differ by as much as 30 kcal/mol), we note
that the ratio |AEjp(no CP)/AE;, (CP)| ~ 1.4. This is
only slightly smaller than the ratio of ~ 1.5 that is ob-
served for the S66 dimers, using the same functional and
basis set. For wB97M-V/def2-SVP, this ratio is ~ 1.3
for the graphene—oligothiophene systems. The similarity
of these ratios suggests that neither the behavior of the
functional, nor that of the CP correction, is fundamen-
tally changed by moving to these larger systems. Instead,
the larger convergence errors observed for the layered
complexes reflects the size-extensivity of BSSE, which is
often overlooked.

When wB97M-V is used with a larger def2-TZVPD
basis set, the magnitude of the CP correction is reduced
below 4 kcal/mol or about 4% of |AEjy| for these com-
plexes. The ratio |AEiy(no CP)/AE;,(CP)| is reduced
to &~ 1.04, which is nearly the same as the ratio of ~ 1.03
that is obtained for S66 calculations in this basis set.

3.3.2. Protein-Ligand Complexes. Finally, we con-
sider four protein-ligand complexes: 181L:benzene
(Fig. 5b),1%9 1LI2:phenol,'°* 1HSG:indinavir (Fig. 5¢),10?
and 1044:(C34H35N309).1%3 In the latter complex, the
ligand is a malonic acid derivative known as RU85052 and
we henceforth refer to this system as 1044:RU85052. The

indinavir and RU85052 complexes involve much larger
ligands as compared to benzene and phenol, and the com-
puted values of AEy,; are correspondingly larger for these
two systems.

The 1HSG:indinavir complex consists of a small ligand
bound to HIV-2 protease and has become a model sys-
tem for testing quantum-chemical methods for noncova-
lent interactions.??:1947197 This structure was taken from
Ref. 105. For the other three complexes, crystal struc-
tures were obtained from the protein data bank,'%® which
were then protonated using the H++ web server.!%? The
resulting structures were relaxed using the GFN2-xTB
semi-empirical quantum chemistry method,''? using a
generalized Born model for water.!!! Relaxed structures
were trimmed, using a 5 A cutoff (with respect to the lig-
and) for the 181L and 1LI2 complexes and a 2.5 A cutoff
in the case of 1044 where the ligand is much larger. The
coordinates that we used in the quantum chemistry cal-
culations can be found in the Supporting Information.

We will again test M06-2X and wB97M-V as repre-
sentative functionals, using a variety of basis sets, and
the corresponding interaction energies are listed in Ta-
ble 6. The basis sets are standard except for minimally-
augmented (“ma”) and heavy-augmented (“ha”) versions
of the Karlsruhe basis sets, which were introduced in
Ref. 88. Due to the size of these complexes, we use
the average of CP-corrected and uncorrected DFT/def2-
ma-QZVP interaction energies to estimate the DFT/CBS
limit for the ligand—protein complexes. By examining the
entries for def2-ma-QZVP in Table 6, one can see that the
two values that are averaged lie within 0.8 kcal/mol of one
another when wB97M-V is used, and within 1.2 kcal/mol
for M06-2X. This provides some measure of the uncer-
tainty in establishing the DFT/CBS limit.

Broadly speaking, these systems exhibit the same
trends observed above, namely, that CP corrections
are sizable in double-( basis sets but modest in triple-
¢ bases. For the more weakly-interacting complexes
where the ligand is benzene or phenol, CP correc-
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Table 6: Interaction Energies (in kcal/mol) for Ligand—Protein Complexes.®
Method 181L:benzene 1LI2:phenol 1HSG:indinavir 1044:RU85052
no CP° CP° no CP° CP° no CP’ CPpe no CP° CPe

WBITM-V/6-311 CF 933 (—2.8) —20.7(—0.2) —25.5 (—3.7) —22.0(—0.2) —143.2(—13.1) —120.3(10.9) —120.2(—12.2) —108.0(4-0.0)
wBITM-V /def2-SVP —23.9 (—3.4) —17.9(+2.6) —27.0 (=5.2) —19.0(+2.8) —175.9(—40.8) —125.6(+4.6) —136.9(—28.9) —106.8(+1.1)
wBY7TM-V/def2-ma-SVP  —25.5 (—5.0) —18.7(+1.8) —27.9 (—6.1) —20.1(+1.7) —151.5(—21.3) —127.6(+2.6) —126.5(—18.5) —108.8(+0.8)
wBITM-V/def2-ha-SVP  —28.9 (—8.4) —20.1(+0.4) —30.0 (=8.2) —21.3(+0.5) —157.9(—27.7) —130.1(+0.0) —128.2(—20.2) —108.7(~0.7)
wBITM-V/def2-SVPD  —32.0(—11.4) —20.5(+1.0) —33.0(—11.2) —21.6(+0.2) —167.5(—37.3) —131.0(—0.9) —132.7(—24.7) —109.1(—1.1)
wBITM-V/def2TZVP ~ —21.6 (—1.1) —20.5(+0.0) —235 (—1.7) —21.7(+0.1) —138.9 (~8.7) —130.6(—0.4) —112.6 (—4.7) —107.8(+0.2)
wBITM-V /def2-ma-TZVP —21.7 (—1.1) —20.5(+0.0) —23.3 (—1.5) —21.8(+0.0) —134.4 (—4.3) —130.1(+0.1) —110.8 (—2.8) —107.8(+0.2)
wBI7TM-V/def2-ha-TZVP —21.3 (—0.8) —20.5(+0.0) —22.7 (—0.9) —21.7(+0.1) —132.8 (~2.6) —131.9(~1.7) —109.3 (~1.3) —107.7(+0.3)
wBITM-V/def2TZVPD ~ —21.3 (—0.8) —20.5(+0.0) —22.6 (—0.9) —21.7(+0.1) —132.8 (—2.6) —130.2(—0.1) —109.3 (—1.3) —107.7(+0.3)
wBITM-V/def2-QZVP  —20.7 (—0.2) —20.4(+0.2) —22.1 (~0.3) —21.6(+0.2) —131.8 (—1.6) —129.9(+0.2) —108.6 (—0.6) —108.3(—0.6)
wBITM-V /def2-ma-QZVP —20.7 (+0.2) —20.4(~0.2) —20.0 (—0.2) —21.5(+0.2) —130.6 (—0.4) —129.8(+0.4) —108.1 (—0.2) —108.3(+0.2)
MO06-2X/6-31+G* —18.3 (=3.1) —16.4(—1.2) —19.8 (—4.0) —16.9(—1.1) —122.6(—15.2) —108.6(—1.3) —105.1(—13.3) —92.2(—0.5)
M06-2X /def2-SVP 164 (—1.1) —11.2(+4.0) —18.7 (-2.8) —12.0(+3.8) —142.1(—34.7) —99.6(+7.7) —114.3(—22.5) —89.2(+2.6)
M06-2X /def2-ma-SVP  —18.7 (—3.5) —12.4(+2.8) —20.6 (—4.7) —13.4(+2.4) —125.5(~18.1) —102.6(+4.7) —109.0(~17.2) —91.6(+0.2)
M06-2X/def2-ha-SVP  —23.3 (—8.1) —14.5(+0.7) —23.6 (—7.7) —13.4(+0.8) —134.3(—26.9) —106.3(+1.1) —111.5(—19.8) —91.8(—0.1)
M06-2X /def2-SVPD —26.3(—11.1) —14.6(+0.6) —26.9(~11.0) —15.4(+0.4) —144.8(—37.5) —107.3(+0.0) —116.5(—24.7) —92.3(~0.5)
MO06-2X /def2-TZVP ~15.2 (—0.0) —14.8(+0.4) —16.4 (=0.5) —15.6(+0.2) —113.1 (=5.7) —106.5(+0.9) —95.1 (=3.4) —90.4(+1.3)
M06-2X /def2-ma-TZVP  —15.3 (—0.1) —14.8(+0.4) —16.4 (=0.6) —15.7(+0.2) —110.7 (=3.3) —106.3(+1.1) —94.3 (-2.6) —90.5(+1.2)
M06-2X /def2-ha- TZVP ~ —14.9 (+0.3) —14.8(+0.4) —15.7(+ 0.1) —15.6(+0.2) —109.1 (~1.8) —106.4(+1.0) —92.7 (~1.0) —90.3(+1.5)
M06-2X/def2-TZVPD ~ —15.0 (+0.2) —14.8(+0.4) —15.7 (+0.1) —15.7(+0.2) —109.0 (—1.7) —106.5(+0.9) —92.5 (—0.8) —90.3(+1.5)
MO06-2X /def2-QZVP ~15.1 (+0.1) —15.2(+0.0) —16.0 (—0.2) —15.6(+0.2) —108.4 (—1.1) —106.7(+0.6) —92.5 (~0.8) —91.0(+0.7)
M06-2X /def2-ma-QZVP  —15.2 (+0.1) —15.3(—0.1) —15.7 (+0.1) —16.0(—0.1) —107.9 (—0.5) —106.8(+0.5) —92.3 (—0.6) —91.2(+0.6)

“Errors relative to the DFT/CBS limit are given in partenthesis. *AEj, without CP correction. “AFEiy, with CP correction.

tion moves AF;, about 2 kcal/mol closer to the
CBS limit for M06-2X/6-31+G* and about 3 kcal/mol
closer for wB97M-V/6-31+G*. For wBI7M-V/def2-
SVP, the CP correction reduces the convergence error
by 1-2 kcal/mol although for MO06-2X/def2-SVP the
CP correction actually increases the convergence error
by 1-3 kcal/mol. CP-wB97M-V/6-31+G* results for
181L:benzene and 1LI2:phenol are essentially converged
to the CBS limit, and CP-M06-2X/6-31+G* results are
only about 1 kcal/mol from that limit. In these cases, the
CP correction improves the agreement with the DFT/
CBS result by 3—4 kcal/mol or 20-25% of the total inter-
action energy. For the more strongly-bound complexes
(1HSG:indinavir and 1044:RU85052), CP-corrected 6-
31+G* results are even more impressive, affording results
that are only about 1 kcal/mol from the DFT/CBS limit.
CP correction is essential and exceeds 10 kcal/mol.

Notably, the addition of diffuse functions to def2-SVP
significantly increases the convergence errors for both
functionals. This behavior was also observed for coronene
dimer (Section 3.2), where it was explained in terms of
the basis-set convergence properties of the dispersion-
bound subset of the S66 complexes. Consistent with
those examples, here we find that CP correction signifi-
cantly insulates the results against this effect. With CP
correction, the def2-ha-SVP basis set (in which hydro-
gen atoms do not have diffuse functions) performs very
similarly to the fully-augmented def2-SVPD, although
results in the minimally-augmented def2-ma-SVP basis
set are noticeably different. This suggests def2-ha-SVP
(with CP correction) as a low-cost choice for large sys-
tems, in which convergence errors have been reduced to
< 1 keal/mol with respect to the DFT/CBS limit. This
basis is defined for most of the periodic table, whereas

6-31+G* is only defined for elements up to argon.

A visual perspective on convergence to the wB97TM-V/
CBS limit for these systems is presented in Fig. 6, for two
of the ligand—protein complexes. (Corresponding plots
for the other two complexes can be found in Fig. S11,
and for M06-2X in Fig. S12.) In small basis sets, the CP-
corrected value of AF;, is much closer to the CBS limit
as compared to the uncorrected interaction energy, which
is systematically overbound. CP correction reduces the
interaction energy in a systematic way as the CBS limit
is approached and although its effect is diminished in
larger basis sets, the CP-corrected interaction energies
hew more closely to the DFT/CBS limit than do the un-
corrected values, with the former being close to conver-
gence already for def2-SVPD. This parallels what we have
seen for other systems and suggest that double-C interac-
tion energies are completely unreliable in larger systems
unless CP correction is employed. Unlike the results in
smaller systems, however, here the triple-( results can-
not be considered to be converged (even in the presence
of diffuse functions) unless CP correction is applied, al-
though the fully-augmented def2-TZVPD basis set comes
close. Timing data for the 1HSG:indinavir complex
(Fig. S13) demonstrate that CP-wB97M-V/def2-SVPD
is 6 less expensive than the def2-ma-QZVP that is oth-
erwise needed to reach the CBS limit.

Finally, in an effort to gauge the absolute accuracy
of these ligand—protein interaction energies, we take ad-
vantage of a recent CCSD(T)/CBS benchmark for the
1HSG:indinavir system.'°” Table 7 shows how wB97M-V
performs against this benchmark using various basis sets.
CP-corrected values of AFE;, lie within 10 kcal/mol of
the benchmark (representing 8% error), even for ba-
sis sets as small as def2-SVP. This is certainly a much
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Table T7: Errors in AFEi, for 1HSG:Indinavir Using
wBITM-V.
Error vs. CCSD(T)/CBS*
Basis Set absolute (kcal/mol) relative (%)
no CP? Ccp¢ no CP? CP°
def2-SVP 54.4 4.1 44.8 3.4
def2-SVPD 46.0 9.5 37.9 7.9
def2-TZVP 17.4 9.1 14.3 7.5
def2-ma-TZVP 12.9 8.6 10.6 7.1
def2-ha-TZVP 11.3 10.4 9.3 8.6
def2-TZVPD 11.3 8.4 9.3 7.2
def2-QZVP 10.3 8.4 8.5 6.9
def2-ma-QZVP 9.1 9.3 7.5 6.8
%Versus the  benchmark  value AFEint =

—121.50 kcal/mol from Ref. 107. PError without
CP correction. “Error with CP correction.

larger absolute error as compared to those obtained for
S66 dimers, but the percentage errors are typically 7—
8% when CP correction is used, although the wB97M-
V/def2-SVP value is slightly more accurate. Errors in-
crease substantially in the absence of CP correction, up to
54 kcal/mol (45% error) in the smallest basis set tested.

4 Conclusions

Far from being an “overcorrection”, the Boys-Bernardi
CP procedure is an essential aspect of non-covalent quan-
tum chemistry that significantly reduces the finite-basis
error in intermolecular interaction energies and thus
showcases the true behavior of the functional in question,
free of error cancellation. CP-corrected interaction ener-
gies computed using double-( basis sets are comparable
in quality to uncorrected triple-C results, and therefore
close to the DFT/CBS limit, even for combinatorially-

optimized functionals such as wB97X-V and wB97M-V
that are considered to be more demanding in their basis-
set dependence.?®?* Perhaps surprisingly, these conclu-
sions hold also for double-hybrid functionals that contain
MP2 correlation and therefore exhibit slower basis-set
convergence (and also increased cost). Even for lower-
cost GGA and singly-hybrid functionals, the use of CP
correction with double-( basis sets results in computa-
tional savings, as this approach is 3-4x faster than com-
puting CP-corrected triple-¢ interaction energies, and
somewhat faster (1.2-1.6x) than computing triple-¢ in-
teraction energies with no CP correction.

For double-¢ basis sets, the use of a supramolecular
basis (i.e., CP correction) significantly reduces the im-
portance of diffuse basis functions, and we find for ex-
ample that CP-corrected def2-SVP and def2-SVPD val-
ues of AFEj, are similar, except in the case of double-
hybrid functionals, whereas in the absence of CP correc-
tion the diffuse functions significantly alter AFEj,. For
the coronene dimer, we find that double-( basis sets pre-
dict an incorrect intermolecular separation unless CP cor-
rection is applied, whereas the CP-corrected double-C ge-
ometry agrees with results obtained using quadruple-C
basis sets. These are important observations, given that
diffuse functions are expensive and numerically problem-
atic for large systems.

In systems with hundreds of atoms, including layered
nanocomposite materials and protein—-ligand complexes,
the magnitude of the CP correction is much larger than
it is in small benchmark dimers, which reflects the size-
extensivity of BSSE. Absent CP correction, double-( re-
sults for systems of this size may be 3040 kcal/mol (or
more) from the DFT/CBS limit and should be considered
unreliable, which is notable given the prevalence of such
calculations in the literature. On the other hand, CP-
corrected interaction energies converge towards the CBS
limit in a systematic manner, and they do so much more



rapidly than the uncorrected results. CP correction again
proves to be cost-effective despite the added expense of
computing the monomer energies in a supramolecular ba-
sis set. We recommend CP-DFT/def2-ha-SVP as a ro-
bust and relatively low-cost approach to compute AFEj,
in large systems.

We find no realistic use cases where the use of CP cor-
rection is disadvantageous. (CP correction can increase
the convergence error when double-hybrid functionals are
used with small Pople basis sets or with def2-SVP, but
this reflects the inadequacy of those basis sets for MP2
correlation rather than a limitation of the CP procedure.)
CP correction increases the cost of the calculation by a
modest factor, typically = 2.5x, even for large protein—
ligand complexes with hundreds of atoms, and is there-
fore feasible whenever the supramolecular calculation it-
self is feasible. CP correction can be used with double-¢
basis sets to obtain reliable results in large systems where
triple-C calculations are intractable. We suggest that it
use should be considered mandatory for supramolecular
calculations of AFEj, in large systems, especially when
only double-( calculations are computationally feasible,
in order to ensure that the results do not suffer from error
cancellation due to BSSE. Even with triple-{ basis sets,
CP correction can compensate for the absence of diffuse
functions and furthermore provides a means to estimate
how far the finite-basis value of AFEj,; may be from the
DFT/CBS limit.
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