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Abstract 10 

Genome-scale metabolic models describe cellular metabolism with mechanistic detail. 11 

Given their high complexity, such models need to be parameterized correctly to yield 12 

accurate predictions and avoid overfitting. Effective parameterization has been well-13 

studied for microbial models, but it remains unclear for higher eukaryotes, including 14 

mammalian cells. To address this, we enumerated model parameters that describe key 15 

features of cultured mammalian cells – including cellular composition, bioprocess 16 

performance metrics, mammalian-specific pathways, and biological assumptions behind 17 

model formulation approaches. We tested these parameters by building thousands of 18 

metabolic models and evaluating their ability to predict the growth rates of a panel of 19 

phenotypically diverse Chinese Hamster Ovary cell clones. We found the following 20 

considerations to be most critical for accurate parameterization: (1) cells limit metabolic 21 

activity to maintain homeostasis, (2) cell morphology and viability change dynamically 22 

during a growth curve, and (3) cellular biomass has a particular macromolecular 23 

composition. Depending on parameterization, models predicted different metabolic 24 

phenotypes, including contrasting mechanisms of nutrient utilization and energy 25 

generation, leading to varying accuracies of growth rate predictions. Notably, accurate 26 

parameter values broadly agreed with experimental measurements. These insights will 27 

guide future investigations of mammalian metabolism.  28 
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Introduction 1 

Cultured mammalian cells are prominent expression systems for large-scale biotherapeutics 2 

manufacturing. However, conventional bioprocess engineering has largely been empirical due to 3 

lacking knowledge of cell biology. Recent advances in high dimensional data and computational 4 

methods are improving and accelerating industrial cell line and bioprocess development1–3. In 5 

particular, metabolism has been a key target in cell line development4–8, given its role in meeting 6 

the anabolic and bioenergetic needs of cell growth and protein production9,10. Correspondingly, 7 

there has been increased interest to investigate the metabolism of mammalian cells, such as 8 

Chinese hamster ovary (CHO) cells, using genome-scale metabolic network models11–18. These 9 

models contextualize large-scale biological data with curated biochemical knowledge, and have 10 

been used with a wide array of in silico methods19,20 to probe the molecular basis of 11 

metabolism21,22, disease23–25, and human-microbiome interactions26,27. More recently, metabolic 12 

network models are being applied to industrial bioprocess development28–30 – e.g. predict 13 

metabolic phenotype31,13,32, identify metabolic bottlenecks16, and optimize media formulation15,33.  14 

A general challenge of genome-scale metabolic network modeling is to identify relevant 15 

insights from an underdetermined solution space34, all the while avoiding overfitting. That is, 16 

these models typically consist of thousands of metabolites, and reactions that far outnumber 17 

experimental measurements available as boundary conditions, often leading to an 18 

underdetermined system that is vulnerable to overfitting. To address this challenge, the following 19 

established steps can be taken: (1) create a context-specific sub-model consisting of the most 20 

relevant metabolic reactions for a given context by interpreting gene expression data17,35,36, (2) 21 

input experimental data as boundary conditions, and (3) hypothesize likely metabolic flux values 22 

by applying optimality principles to the model reaction network37–39. Each of these steps invite 23 

the modeler to make assumptions about cellular features – e.g. cellular makeup40,41, the relevance 24 

of specific pathways42,43 and ‘cellular objectives’38,39,44–46 – that improve the model’s solution 25 

space reflect biology. Here, we define the model implementation of these assumptions as ‘model 26 

parameters.’ In the last two decades, such model parameters have been extensively explored and 27 

refined for model microbes such as Escherichia coli
47,48, Saccharomyces cerevisae

49,50 and 28 

others51,52. However, parameters for higher eukaryotes remain under-characterized, despite 29 

notable recent advances53–55.  30 
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Mammalian cells are distinct from microbes in their metabolic pathways, auxotrophic 1 

requirements, sub-compartmentalization and regulation56, and therefore require parameterization 2 

that capture such differences. A few studies have investigated mammalian-specific parameters 3 

describing cell biomass57, novel metabolic pathways12 and cellular objectives58,14. These 4 

parameters, however, have not been rigorously evaluated against wide-ranging conditions; 5 

meanwhile, other features of mammalian metabolism and growth remain unexplored altogether. 6 

To address this, we systematically investigate a panel of parameters for describing diverse 7 

cultured mammalian cell metabolic phenotypes, with a focus on CHO cells. Our work identifies 8 

key parameters for predicting metabolic phenotypes, challenges conventional parameterization 9 

approaches, and guides future modeling efforts for mammalian metabolism.  10 

 11 

Results 12 

A cell line-specific model was constructed for phenotypically diverse CHO clones 13 

Cultured mammalian cells, such as CHO cells, consume media nutrients – e.g. glucose, 14 

amino acids and cofactors – to produce biomass, recombinant proteins and byproducts. 15 

Depending on genotype and environmental conditions, CHO cells vary in their metabolic rates 16 

and pathway usage, resulting in high metabolic heterogeneity. Here, we have examined a variety 17 

of CHO metabolic phenotypes to identify general modeling principles and avoid overfitting. 18 

Specifically, we investigated 10 CHO clones that differed in recombinant antibody, bioreactor 19 

conditions and gene knockout treatment (see Methods). Consequently, the cells exhibited 20 

varying patterns of nutrient consumption and byproduct secretion (Fig. 1A), ultimately leading to 21 

divergent growth and productivity phenotypes (Fig. 1B; Fig. S1). We also observed the 10 clones 22 

between culture days 4 to 11 (Fig. 1C) for temporal variation in metabolism59,60.  23 

Broadly, we saw several distinct types of metabolisms and nutrient utilization efficiencies. 24 

Some cells displayed high glucose consumption and high proliferation, suggesting an efficient 25 

and fast-moving metabolism (e.g. clones Z2, Z3). Other cells showed low glucose consumption 26 

and low proliferation but high protein production, suggesting an efficient but attenuated 27 

metabolism (e.g. clones A1, A2). Still others displayed high glucose consumption but low 28 
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proliferation and low protein production, suggesting a severely inefficient metabolism under 1 

cellular stress.  2 

We hypothesized that these diverse CHO metabolisms could be described by a well-3 

parameterized metabolic network model. To test this, we constructed a cell line-specific 4 

metabolic network model by modifying a previously published genome-scale model of CHO 5 

metabolism11. Briefly, this was done by the following steps: (1) transcriptomics data were 6 

analyzed to quantify the relative activity of 210 metabolic tasks to hypothesize a list of active 7 

metabolic genes36,61,62, (2) these active genes and their associated model reactions were refined 8 

into a fully functional model via the mCADRE algorithm63, and (3) the subsequent draft model 9 

was manually curated. 10 

 11 

Mammalian-specific parameters embedded biological assumptions onto model 12 

To enable the curated model of describing diverse CHO metabolisms, we identified salient 13 

features of mammalian cell cultures and formulated them as model parameters (Table 1; see 14 

Supplementary Document for detailed and technical discussions on their computational 15 

implementation, including annotated code). First, we considered cellular biomass’ 16 

macromolecular makeup and dry weight (Table 1, parameters 1-2). These parameters are 17 

necessary for the model to describe proliferation via the biomass production reaction37, and to 18 

convert experimental measurements (per cell units) into model-compatible values (per cellular 19 

dry weight units). In other words, these parameters are critical to bounding the model solutions to 20 

experimental data. While the importance of these parameters are well-established 21 

previously57,41,64,40, here we compare them with other novel parameters in the context of 22 

mammalian cell biology.  23 

Second, we considered that cellular dry weight change during fed-batch culture, indicating 24 

internal shifts in metabolism and productivity65. Indeed, in the presented experiments, cellular 25 

mass increased by as much as 40-70% throughout the culture period (Fig. S2). Up to now, 26 

modeling efforts have treated this feature as static, even for multi-week time-course studies. A 27 

dynamic cellular dry weight could facilitate more accurate experiment-to-model unit conversions. 28 

It could also refine calculations between proliferation and biomass production. For example, it 29 
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would enable the model to consider that CHO cells may still produce significant amounts of 1 

biomass during stationary phase when they proliferate more slowly but grow in size (see also Fig. 2 

S2C). The impact of these considerations on model results is unclear. 3 

We also observed cell loss despite high viability (>99%) during the transition between 4 

exponential growth phase and stationary phase (Fig. S4), presumably due to shear stress-induced 5 

apoptosis66,67. The cell loss was primarily observed on clones grown in Fed Batch #1 (Fig. 1, Fig 6 

S4A). Accounting for these lost cells could improve calculations of total biomass produced 7 

during later stages of cell culture. We explore these several bioprocess-related phenomena (Table 8 

1, parameters 3-5) as novel model parameters.  9 

Third, we improved descriptions of mammalian metabolic pathways which are not found in 10 

microbes (Table 1, parameters 6-8). For example, we included in the model an intricate multi-11 

organelle secretory pathway68 to improved estimations of metabolic expenditures towards 12 

producing complex recombinant proteins (Table S3). Similarly, we also considered metabolic 13 

pathways for producing various byproducts from amino acid catabolism69 (Table S4), and 14 

cellular death and turnover70.  15 

Fourth, we reevaluated the biological premises behind applying the optimality principle to 16 

the metabolic network model (Table 1, parameter 9). This mathematical operation assumes that 17 

cellular metabolism operates at some optimal condition and is crucial to constraining the 18 

metabolic network model. As an example, proliferative bacteria have often been described to 19 

maximize biomass production for rapid growth, which is computationally formulated as a 20 

biomass objective function37. This objective function presumes that biomass production is 21 

principally limited by nutrient availability. Meanwhile, a variety of alternative objective 22 

functions have also been explored38,39 – e.g. optimal energy generation per substrate71, 23 

minimized redox potential58,72,73, efficient use of enzyme capacity74,75 and streamlined amino 24 

acid transport14. Compared to microbes, mammalian cells are larger, more complex and wired for 25 

multicellularity, all of which increase the costs of homeostatic maintenance and limit 26 

proliferation. Therefore, we compare the conventional maximize biomass production function 27 

against alternative objective functions describing mammalian metabolism as chiefly limited by 28 

various homeostasis requirements – e.g. thermal76, proteomic77,78, reactive oxygen species or 29 
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redox homeostasis79. These alternative objective functions were realized by imposing ‘penalties’ 1 

on model reactions (see Methods; Table S5, 6). 2 

 3 

Experimental measurements help produce robust model parameters 4 

We investigated how the above-described model parameters impacted model prediction of 5 

metabolism. The nine parameters were randomly permuted in value to within-literature-reported 6 

ranges thousands of times. A resulting set of specified parameter values is called here as a 7 

‘parameter setting’. In total, 4000 distinct parameter settings were generated and used to bound 8 

the solution space. We tested these parameter settings against experimental data for 10 clones 9 

between culture days 4 to 11, resulting in 320,000 model predictions (Fig. 2a; Table S7). Each of 10 

these predictions yielded a model-predicted growth rate that could be compared to experimental 11 

measured growth rates (Fig. 2b). For ease of interpretation, prediction errors were preprocessed 12 

to yield an ‘accuracy’ metric (Fig. 2c). Specifically, the prediction errors were  transformed by a 13 

negative-log function and normalized so that the average error metric for all clones and 14 

timepoints would lie between 0 and 1. For reference, when growth rates were predicted to within 15 

5% of experimental measurements for all 80 points, the accuracy metric equaled 0.8.   16 

 Overall, the various parameter settings resulted in a wide range of prediction accuracies 17 

(Fig. S4). About one-eighth of the parameter settings robustly described at least eight of the ten 18 

clones with high accuracy (accuracy > 0.8). Half of the parameter settings predicted only two or 19 

fewer clones with high accuracy, indicating that the models were highly overfit or poorly 20 

parameterized. The remaining one-third of the parameter settings predicted a moderate range of 21 

clones with high accuracy, suggesting various degrees of overfitting. Overfit parameters of one 22 

clone tended to also describe biologically similar clones better, recapitulating known differences 23 

in cell line lineage and bioprocess conditions (Fig. S5).  24 

Experimental data helped produce robust models. A model parameterized according to 25 

experimental measurements (Table 1, parenthesized) yielded an average accuracy of 0.82 across 26 

all clones and timepoints (Fig. 2b; 2c, blue line). Likewise, parameter settings with values close 27 

to experimental measurements (within ±15%) resulted in comparable accuracies (0.83 ± 0.11). 28 

Only a minority of parameter settings (2%) significantly deviated from experimental values yet 29 
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managed to perform comparably. The value of experimental measurements was especially 1 

apparent for the cell death rate parameter describing late-stage cell death observed only in some 2 

clones. The cell death rate parameter helped the model recapitulate observed cross-clonal 3 

variation (Fig. S6).  4 

 5 

Selection of objective function has greatest influence on model prediction 6 

We estimated the importance of the parameters for prediction accuracy using a linear 7 

regression model (Fig. 3). Of the nine parameters, objective function formulation had an outsized 8 

influence on prediction accuracy. Specifically, the maximize biomass production function was 9 

correlated strongly with poor predictions. In contrast, the minimize cytosolic NADPH 10 

regeneration function was well correlated with accurate predictions. The following parameters 11 

also improved model predictions: cell death rate, biomass composition and consideration of 12 

dynamic dry weights to calculate growth rate (Fig. S8). Interestingly, the time-course of biomass 13 

weight was more important than the baseline weight value itself. The remaining parameters had 14 

negligible impact on model accuracy (effect size < 0.01; see Fig. S7).  15 

The objective function formulations provided detailed and mechanistic hypotheses of the 16 

intracellular metabolic activities underlying the growth rate predictions (Fig. 4), as revealed by 17 

flux sampling analysis (see Methods). The maximize biomass production objective function 18 

predicted an efficient and highly active metabolism, which utilized almost all consumed 19 

substrates towards generating energy and biomass. As a result, the model consistently 20 

overestimated growth rates across clones and timepoints (Fig. S9). Overestimations were 21 

particularly pronounced for inefficient metabolisms, such as clones B1 and B2. In contrast, 22 

several homeostasis-related objective functions predicted less efficient metabolisms that partially 23 

discard consumed nutrients via various shunting mechanisms. This assumption, supported by 24 

carbon balance estimations (Fig. S10), was key to predicting CHO metabolisms with differing 25 

nutrient utilization efficiencies in a well-rounded manner.  26 

Specifically, the homeostasis-related objective functions hypothesized two different carbon 27 

shunting mechanisms: (1) secretion of glycerol, which is converted from the glycolytic 28 

intermediate dihydroxyacetone phosphate via glycerol-3-phosphate dehydrogenase and glycerol-29 
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3-phosphate phosphatase (Fig. 3, B), and (2) secretion of malate, an intermediate of the citric 1 

acid cycle and malate-aspartate shuttle (Fig. 3, D). The objective functions minimize enzyme 2 

costs, minimize Gibbs energy dissipation and minimize cytosolic NADPH regeneration 3 

hypothesized shunting via glycerol, with varied fluxes through glycolysis, glycerol synthesis, 4 

mitochondrial respiration and pyruvate carboxylate. The objective function minimize 5 

mitochondrial NADH regeneration hypothesized shunting via malate. This loss of flux in the 6 

citric acid cycle was then counteracted by converting carbon dioxide from respiration to 7 

bicarbonate, to eventually oxaloacetate via pyruvate carboxylate80 (Fig. 3, F). The secretions of 8 

both glycerol and malate have been reported previously in CHO fed-batch systems81,82,10, 9 

although only glycerol was observed in the present study to accumulate in the spent medium (Fig. 10 

S11). 11 

Lastly, the minimize ROS synthesis objective function hypothesized negligible activities in 12 

glycolysis and citric acid cycle, deviating from known CHO biology83. Instead, most consumed 13 

glucose was diverted to the folate cycle via phosphoserine transamination to produce energy and 14 

byproduct formic acid (Fig. 3, C), resulting in an improbable metabolic phenotype. Additional 15 

comparison of objective functions and their influence on metabolic configurations are also 16 

provided (Fig. S12).  17 

 18 

Discussion 19 

Parameters help constrain metabolic networks sufficiently and accurately by embedding 20 

knowledge and data onto models. We compared thousands of distinct parameter settings for their 21 

ability to describe CHO clones with wide-ranging phenotypes. The resulting analyses lead to 22 

important insights for parameterizing metabolic network models of cultured mammalian cells. 23 

Specifically, this study (1) confirms that experimental data improve model parameterization, (2) 24 

identifies relevant parameters for mammalian metabolic models, most prominently the objective 25 

function formulation, and (3) challenges the popular use of the maximize biomass production 26 

objective function for modeling exponentially growing mammalian cells and explores promising 27 

alternatives.   28 
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Our analysis of model parameters agreed with experimental observations in several notable 1 

ways. First, experimentally measured parameter values resulted in robust and accurate model 2 

predictions, confirming the value of experimental measurements in parameterization. Second, 3 

parameter settings that described one clone well also tended to describe similar clones well, 4 

recapitulating differences in cell line lineages and glucose-feeding strategies. Lastly, parameter 5 

values of cell death rate recapitulated experimental observations at the clone level. These broad 6 

agreements demonstrate that well-parameterized metabolic network models can describe diverse 7 

metabolic states.  8 

Our analysis identified parameters that strongly affected model precision. Of all the 9 

investigated parameters, the objective function formulation had a predominant influence on 10 

model-predicted growth rates and their underlying metabolic activities. Biomass composition 11 

was also reconfirmed as a key parameter, agreeing with previous findings in microbial 12 

models40,64,41. Lastly, novel parameters accounting for time-course changes in cell size and 13 

viability improved model predictions substantially. This emphasizes the relevance of dynamic 14 

and bioprocess-specific features of mammalian cell cultures for parameterization.  15 

Notably, the widely-used maximize biomass production objective function performed 16 

poorly in describing mammalian metabolism. For microbial metabolism, this formulation is 17 

supported by theoretical and experimental evidence84, and has been widely predictive for many 18 

experimental conditions and different models39,73. Accordingly, several recent studies using 19 

mammalian metabolic models (e.g., CHO cells, cancer cells, stem cells, immune cells) adopted 20 

this assumption. In the present study, however, maximize biomass production consistently 21 

overestimated growth rates and intracellular metabolic activity. Alternatively, five other 22 

presented formulations assumed that mammalian cells limit biomass production to maintain 23 

various homeostatic conditions. These homeostasis-limited assumptions performed markedly 24 

better than maximize biomass production by hypothesizing a restrained CHO metabolism. 25 

Objective functions considering cytosolic redox homeostasis and enzyme capacity predicted 26 

metabolic configurations that agreed especially well with observed growth rates and 27 

exometabolomic measurements. Future studies can rigorously refine and validate these 28 

formulations by comparing predicted intracellular flux distributions with experimental flux 29 

measurements, following the well-established footsteps of Escherichia coli models38,39.  30 
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 1 

Conclusion 2 

Proper parameter selection is essential for metabolic network models to provide accurate 3 

descriptions of cellular metabolism. Above all, the objective function parameter is highly 4 

influential in predicting metabolic and bioprocess performance phenotype. For this purpose, 5 

mammalian cells may be described as limiting their metabolic activities to maintain homeostasis. 6 

Various objective functions predicted different growth rates and metabolic pathway usage, 7 

leaving room for further validation and refinements. In addition, parameters describing biomass 8 

and time-course metabolic shifts also improved model predictions, especially when set to 9 

experimentally measured values. These results will guide future efforts to develop and improve 10 

models for mammalian cell metabolism, with applications ranging from biotherapeutic 11 

production18,85 to unraveling the metabolic basis of diverse diseases86–88. 12 

 13 

Methods 14 

Cell culture experiments  15 

Two production fed batch processes were used, Fed batch 1 and Fed batch 2. Both fed 16 

batch processes used chemically defined media and feeds over the 12-day cell culture. Fed batch 17 

1 used a glucose restricted fed batch process called HiPDOG65. Glucose concentration is kept 18 

low during the initial phase of the process, Day 2-7, through intermittent addition of feed 19 

medium containing glucose at the high end of pH dead-band and then glucose was maintained 20 

above 1.5 g/L thereafter. These conditions help restrict lactate production in fed batch cultures 21 

without compromising the proliferative capability of cells. In Fed batch 2 a conventional cell 22 

culture process was used where glucose was maintained above 1.5 g/L throughout the process.  23 

For both process conditions, bioreactor vessels were inoculated at 2 x 106 viable cells/mL. 24 

The following bioprocess characteristics were quantified daily using a NOVA Flex BioProfile 25 

Analyzer (Nova Biomedical, Waltham, MA): viable cell density, average live cell diameter and 26 

concentrations of glucose, lactate, glutamate, and glutamine. Viable cell density (VCD) data was 27 

converted to growth rates by following equation to be compared to model-predicted growth rates.  28 
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In addition, cell cultures were sampled on specific days (Day 0, 3, 5, 7, 10 and 12) for cell 2 

pellets and supernatant for transcriptomic (RNA-Seq), metabolomics analyses, and titer 3 

measurements. Titers were analyzed using a protein A HPLC (model 1100 HPLC, Agilent 4 

Technologies, Inc., Santa Clara, CA, protein A column model 2-1001-00, Applied Biosystems, 5 

Foster City, CA). The RNA libraries were mapped to the CHO genome89,90 using STAR aligner91 6 

and processed to quantify gene expression counts with HTSeq-count92. 7 

Flash-frozen cell pellets (10E6 cells) and supernatant (1 mL) were collected from 8 

bioreactor runs for clones A1 and A2 for each sampling day. Similarly, cell pellet and 9 

supernatant samples were collected from bioreactor runs for clones B1 and B2 for days 7, 10 and 10 

12. Collected samples were sent to Metabolon (Metabolon Inc, Morrisville, NC) for 11 

metabolomics analyses. Proteins were removed by methanol precipitation and the metabolites 12 

were recovered by vigorous shaking and centrifugation. The extracted samples were run for 13 

reverse-phase Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectroscopy with 14 

negative ion mode ESI. Raw data was extracted, peak-identified and processed for quality 15 

control using Metabolon’s hardware and software. The raw ion count data was normalized 16 

against the extracted proteins quantified using a Bradford assay. 17 

 18 

Biomass measurement experiments 19 

During cell culturing of clones Z1-Z4, 20 x 106 cells were sampled during days 0, 3, and 7. 20 

At day 7, an additional 1 mL of culture was sampled. The samples were sub-divided and stored 21 

at -80 °C for the following measurements.  22 

Cellular dry weights were measured by weighing dehydrated cells, as previously 23 

described93. Briefly, for each sample, an aluminum weigh boat was dried at 70 °C for 48 hours 24 

and pre-weighed after being cooled down to room temperature. Stored samples (5 × 106 cells) 25 

were thawed in ice, centrifuged, washed with PBS and centrifuged again. The cell pellets were 26 

resuspended in deionized water and transferred to the pre-weighed aluminum boats and dried for 27 
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48 hours at 70° C. Then, the samples were cooled back to room temperature and weighed in 1 

triplicates. The weighed mass was divided by cell count to calculate cellular dry weights.  2 

Cellular protein contents were quantified by the Bicinchoninic Acid assay using a 3 

commercial kit (Pierce™ BCA Protein Assay Kit; Thermo Fisher, Waltham, MA). Stored 4 

samples (1 × 106 cells) were thawed in ice, centrifuged, and washed with PBS. Assay standards 5 

were prepared as instructed for the range of 0 – 2000 µg/mL protein. The cells were disrupted by 6 

a mixture of cell lysis agent (CelLytic™ M; Sigma Aldrich, St. Louis, MO) and protease 7 

inhibitor cocktail (Sigma Aldrich, St. Louis, MO). A negative control was prepared from the 8 

mixture without cell samples. The standards, samples and control were treated with assay 9 

reagents, incubated and measured following kit instructions. The resulting standard curve was 10 

confirmed to be linear (R2 = 0.988). Measured absorbance values were converted to protein 11 

concentrations following this standard curve and considering background absorbance described 12 

by the negative control. Protein content in biomass was calculated to be 64.9% (±6.8) for days 3 13 

and 7, agreeing well with previously published measurements11,57.  14 

The lipid contents of the cells were extracted using the Blight and Dyer protocol94. Briefly, 15 

for each bioreactor run, 1 mL stored culture samples were centrifuged and re-suspended in water. 16 

Chloroform and methanol were added sequentially in 1:2 ratio and mixed well by vortex. Then, 17 

chloroform and water are sequentially added in 1:1 ratio and mixed well in between by vortex. 18 

The resulting mixture was then centrifuged at 4000 RPM for 15 minutes at 20 °C, resulting in 19 

phase separation. The upper phase and cell debris were carefully discarded. The lower 20 

chloroform phase containing the lipids was carefully transferred to pre-weighed glass beakers. 21 

Chloroform evaporated in a fume hood for 24 hours, after which the lipid samples were weighed. 22 

The measured weights were divided by cell count and measured cellular dry weight, yielding a 23 

cellular lipid content of 21.62% (±2.46), agreeing well with previously published measurements. 24 

 25 

Constraint-based modeling and analysis 26 

Flux balance analyses were conducted using the COBRA Toolbox 2.095 and the Gurobi 27 

solver version 8.0.0 (Gurobi Optimization; Beaverton, Oregon) in MATLAB R2018b 28 

(MathWorks; Natick, Massachusetts, USA).  29 
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Constructing a context-specific model  1 

A community-consensus genome-scale model11 was modified to produce a single cell line-2 

specific model for the cell lines from Pfizer by qualitatively interpreting transcriptomics data for 3 

clone A1, following benchmarking results36,61,62. Specifically, transcript abundance data for each 4 

gene was pre-processed by equation 2 to produce a binary gene score metric (ON: >5, OFF: 0). 5 

The equation’s threshold values were calculated from the mean transcript abundance across all 6 

samples. Genes with transcript abundances of top and bottom 25 percentile were binarized as ON 7 

and OFF, respectively. The binary gene scores were converted to reaction scores by considering 8 

multimeric or isozyme relationships as described by the model’s gene-protein-relationship matrix. 9 

These binary reaction scores were used as input data for model extraction by the mCADRE 10 

algorithm63.  11 

(2) ���� 
���� 	 5 � log��1 �  
��
������� 
����
��	

���	�����
� 12 

(3) �������� 
���� 	 GPR � ���� 
����� … ���� 
������ 13 

The resulting draft model was then manually curated to be consistent with experimental 14 

data and established cell biology. Given the defined media of Pfizer’s bioprocess, we allowed 15 

extracellular transport only for metabolites with experimental basis – e.g. glucose, lactate, 16 

proteinogenic amino acids, oxygen, carbon dioxide etc. We confirmed amino acid essentialities 17 

and CHO-specific auxotrophies for arginine, cysteine and proline. We also ensured the inclusion 18 

of synthesis pathways of non-essential amino acids and degradation pathways for all amino acids. 19 

We confirmed the model utilized glucose via central carbon metabolism reactions, and removed 20 

unlikely reactions – e.g. the methylglyoxal pathway or cross-membrane transport of metabolites 21 

not found in media formulation. We ensured cytosolic and mitochondrial compartmentalization 22 

of redox cofactors such as NAD/H and NADP/H. The final model consisted of 2375 irreversible 23 

reactions, 587 metabolites and 1043 genes (Table S1, S2).  24 

 25 

Model implementation of parameters 26 

Here we detail how the nine parameters were implemented in the model. The workflow and 27 

decision-making described here are also visualized as a flowchart (Fig. S13). The parameter 28 
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value of biomass weight (i.e. cellular dry weight) was used to convert the units of experimental 1 

measurements from [pg·cell-1·day-1] to [mmol·gDW
-1·hr-1]. When considering dynamic dry weight 2 

(I) for data input, the dry weight values were estimated from cell diameter measurements by 3 

assuming a constant cellular density and geometry96. When considering dynamic dry weight (II) 4 

for growth rate calculations, the following equation was used.  5 

(4) Adjusted Growth Rate 	 Growth Rate �
�����	 ��� �	����

����	�� ��� �	����
 6 

The biomass composition parameter was adjusted by altering the stoichiometric 7 

formulation of the biomass production reaction. Specifically, macromolecular protein content 8 

and lipid content were inversely varied, while assuming content of nucleotides and carbohydrates 9 

were stable. This was because protein and lipid contents were observed to vary the most57. 10 

Molecular makeup of amino acids and specific lipid molecules was unchanged from the genome-11 

scale model, which was based on approximations from hybridoma cells. This was because 12 

variations in molecular composition did not affect model predictions. The cell death rate was 13 

implemented by the following equation for timepoints between days 7-11, in accordance to 14 

experimental observations.  15 

(5) Adjusted Growth Rate 	 Growth Rate ) *���� ���� 16 

Consideration of secretion costs was implemented by joining a model of the CHO 17 

secretory pathway68 onto our metabolic network model. The secretory pathway model included 18 

about 100 reactions for folding, transport, post-translational modification and related activities in 19 

the endoplasmic reticulum and Golgi body (Table S3). We approximated the structure, folding 20 

requirements and glycosylation needs of Pfizer’s monoclonal antibodies by that of Rituximab. 21 

Biomass turnover rate was implemented a single ATP hydrolysis reaction.  22 

Consider byproduct synthesis was implemented for the following byproduct molecules: 23 

glycerol, formic acid, 2-hydroxybutyurate, isovalerate, acetic acid, hydroxyphenylpyruvate, 24 

hydroxyphenyl-lactate, phenyl-lactate, homocysteine, indole 3-lactate, citrate, and malate. These 25 

notably include products of amino acid catabolism as well as citric acid cycle intermediates.  26 

Glycerol was assumed to be synthesized from dihydroxyacetone phosphate via glycerol-3-27 

phosphate dehydrogenase and glycerol-3-phosphate phosphatase. Formic acid was assumed to be 28 
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synthesized in the folate cycle during tetrahydrofolate synthesis from 10-formyltetrahydrofolate. 1 

The synthesis of isovalerate, 2-hydroxybutyurate, acetic acid, hydroxyphenylpyruvate, 2 

hydroxyphenyl-lactate, phenyl-lactate, homocysteine, and indole 3-lactate were formulated as 3 

catabolic byproducts, as previously published69.  The model already included synthesis reactions 4 

for homocysteine, acetic acid, citrate and malate. Synthesis and transport reactions were enabled 5 

for all byproducts (Table S4). 6 

 7 

Formulation of the objective function 8 

The most widely used objective function is the maximization of biomass production, which 9 

formulates the model as a linear programming optimization problem around the biomass 10 

production reaction97. Alternatively, we formulated the objective function as a two-step linear 11 

programming optimization to reflect cellular limitations to biomass production. First, we 12 

enumerated possible limitations to biomass production, as discussed above. Second, we 13 

annotated model reactions for ‘penalty’ metrics describing such limitations (Table S5, S6). We 14 

derived penalty values for Gibbs dissipation76 and enzyme costs98 from previous works. Third, 15 

the model was bounded by experimentally measured nutrient consumption rates (Table S8). 16 

Fourth, for a penalty of choice, we calculated the minimal amount of penalty to process the 17 

consumed nutrients. This calculated value was then used as an additional boundary condition. 18 

Fifth, given all these bounds, we calculated the maximum possible amount of biomass 19 

production. This predicted value, then, describes the maximum anabolic activity given nutrient 20 

consumption behavior and theoretical cellular limitations.  21 

This presented workflow builds upon previous work that minimizes network flux99 and 22 

parsimonious flux balance analysis78 and the ‘max biomass per unit flux’ objective38 with 23 

important differences. Previous methods implicitly assumed that biomass production was gated 24 

by substrate availability and therefore first maximized biomass production and then minimized 25 

total unit flux as a penalty metric. Here, we assume cellular limitations restrict growth rather than 26 

substrate availability, and therefore inverse the order of optimization. Also, while previous 27 

methods penalized reactions uniformly, we apply weighted penalties following biological 28 

assumptions. For example, reactions that are catalyzed by complex multimers are penalized 29 
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correspondingly more severely. Like previous methods, this workflow requires the model to be 1 

irreversible.  2 

 3 

Estimation of parameter impact on model accuracy 4 

4000 parameter settings were generated by randomly varying parameters to within a range 5 

based on literature or experimental measurements (Table 1, Table S7). For each setting, 6 

parameter values were implemented to yield a flux balance analysis prediction. The prediction 7 

used as input data the following experimental measurements: specific productivity and the 8 

consumption rates of glucose, lactate and 20 proteinogenic amino acids (Table S8). The 9 

prediction was repeated 80 times by using experimental data from 10 clones across 8 days. The 10 

resulting 80 model-predicted growth rates were compared to their respective experimental values 11 

to yield prediction errors (Table S7). To facilitate human interpretation, the prediction errors 12 

were first transformed by the negative log function. Then, the transformed values were 13 

normalized so that mean metric values for all 80 predictions laid between 0 and 1. The resulting 14 

metric was called ‘accuracy’.  15 

A regression analysis between accuracy and parameter values were performed, using 16 

Python 3.7.3 in the Jupyter Notebook environment. For this analysis, parameter values were 17 

normalized to be between 0 and 1 by referencing minimum and maximum possible values (Table 18 

1). A linear regression analysis was performed according to equation 6, where Bi and Xi 19 

represent respectively the effect size and normalized parameter values of parameter i. The 20 

resulting effect size of parameters and their p-values were used to identify parameter relevance.  21 

(6) Accuracy 	 B� � ∑ /� · X�
�
���  22 

 23 

Flux sampling analysis 24 

We computed distributions of likely fluxes for each reaction in the model by stochastically 25 

sampling 5000 points within the solution space via the Markov chain Monte Carlo sampling via 26 

artificially centered hit-and-run algorithm, as described previously100. First, the metabolic 27 

network model was parameterized according to experimentally observed values. Then, 28 
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experimental measurements for all clones on day 4 were used to constrain model reactions for 1 

biomass production, monoclonal antibody secretion and consumption of glucose, lactate and 2 

proteinogenic amino acids. A set of non-uniform ‘points’ or flux values was generated within the 3 

feasible flux space. Each point was subsequently moved randomly, while remaining within the 4 

feasible flux space. To do this, a random direction was first chosen. Second, the limit for how far 5 

the point can travel in the randomly-chosen direction was calculated. Lastly, a new random point 6 

on this line was selected. This process was iterated until the set of points approached a uniform 7 

sample of the solution space. Thereafter, the sampled fluxes were normalized by total model 8 

flux101. The normalized values were analyzed to explore in detail the impact of objective 9 

functions on model predictions. These analyses were done using Python 3.7.3 in the Jupyter 10 

Notebook environment. 11 

  12 
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Figures 1 

2 

Figure 1: 10 CHO clones with diverse metabolic phenotypes were studied – The examined clones expressed different 3 
monoclonal antibodies (1: ○, 2: △, 3: □) and were subjected to different bioprocess conditions (Fed batch #1: empty; Fed batch #24 
filled). Due to these differences, the cells exhibited diverse metabolic phenotypes: (a) the cells consumed key nutrients such as 5 
glucose at varying amounts, and variously consumed or secreted lactate, (b) resulting in distinct growth and productivity 6 
performances. (c) These clones were observed between culture days 4 and 11, during which the cells traversed exponential and 7 
stationary phases (highlighted). 8 
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 1 

Figure 2: Analysis of model parameters, workflow scheme & results – (a) 4000 parameter settings were evaluated against 80 2 
datapoints to produce thousands of model predictions. (b) Here, we provide an example model prediction of growth rate for 80 3 
points. These particular predictions were made by assuming parameter values equal to experimental measurements – that is, a 4 
baseline biomass dry weight of 280 picograms/cell at day 3, and 65% protein composition of biomass; biomass weight was also 5 
varied according to time-course cell diameter measurements. Biomass production was assumed to be limited by enzyme capacity. 6 
(c) Analysis results were examined by their ‘accuracy’, which was calculated and normalized from the negative-log of mean 7 
prediction residuals. Predictions assuming experimental values, featured in panel (b), resulted in an average accuracy of 0.82 8 
(blue line).  9 
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   1 

Figure 3: Key model parameters impact model accuracy – A regression model estimated the importance of parameters by 2 
their effect size. Objective function formulation was treated as six independent binary parameters representing the various 3 
formulations (italicized and highlighted in grey). Several of these formulations were highly correlated to prediction accuracy. 4 
Other important parameters were cell death rate, biomass composition and consideration of dynamic biomass weight (BW)for 5 
growth rate calculations. The remaining parameters had negligible effects, which are detailed elsewhere (Fig. S6) 6 

  7 

8 

Figure 4: Objective functions vary in hypothesized metabolic activities underlying the predicted growth rates – Objective 9 
functions helped determine the metabolic activities of key reactions in the central carbon metabolism. The heatmap displays the 10 
reactions’ fractional contribution to total metabolic flux. These reactions include the first step of glycolysis catalyzed by 11 
hexokinase 1 (A); carbon shunting variously towards glycerol (B), folate cycle intermediates (C), malate secretion (D); 12 
mitochondrial respiration (E); anaplerosis of respiratory carbon dioxide via bicarbonate and pyruvate carboxylase (F). The 13 
flowchart on the right contextualizes the reactions within the central carbon metabolism. 14 
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Table 1: Parameters varied in this study – the table provides names and descriptions of the parameters, along with range of 1 
values explored in our analysis; mean experimental values of the presented clones are given in parentheses when applicable.  2 

# Parameter name & description Parameter values 

1 
Biomass weight: a baseline biomass dry 
weight value at day 4. 

210 – 400 pg/cell (280) 

2 
Biomass composition: as a percentage of 
protein in cellular biomass. 

45 – 75% (65) 

3 
Consider dynamic biomass weight (I) when 
inputting experimental data as boundary 
conditions. 

TRUE / FALSE 

4 
Consider dynamic biomass weight (II) to 
refine growth rate calculations (Fig. S1). 

TRUE / FALSE 

5 
Cell death rate: a constant cell death rate 
presumably due to shear stress during 
decreased viability (Fig. S3). 

0 – 0.005 hr-1 

6 
Consider secretion costs: to estimated 
energy and material costs for monoclonal 
antibody secretion. 

TRUE / FALSE 

7 
Consider amino acid catabolism byproduct 
synthesis as recently described69.  

TRUE / FALSE 

8 
Biomass turnover rate: a constant rate of 
energy expenditure for biomass maintenance. 

0 – 0.01 mmol g-1 hr-1 

9 

Objective function formulation: the 
assumption of a ‘cellular objective’, which 
renders the metabolic network as a linear 
programming optimization problem. 

• max. biomass production 

• min. enzyme costs 

• min. Gibbs energy dissipation 

• min. ROS synthesis 

• min. cytosolic NADPH regeneration 

• min. mitochondrial NADH regeneration 
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