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Abstract

Background: Chromatin immunoprecipitation followed by sequencing (ChIP-seq) experiments revolutionized

genome-wide profiling of transcription factors and histone modifications. Although maturing sequencing

technologies allow these experiments to be carried out with short (36–50 bps), long (75–100 bps), single-end, or

paired-end reads, the impact of these read parameters on the downstream data analysis are not well understood. In

this paper, we evaluate the effects of different read parameters on genome sequence alignment, coverage of different

classes of genomic features, peak identification, and allele-specific binding detection.

Results: We generated 101 bps paired-end ChIP-seq data for many transcription factors from human GM12878 and

MCF7 cell lines. Systematic evaluations using in silico variations of these data as well as fully simulated data, revealed

complex interplay between the sequencing parameters and analysis tools, and indicated clear advantages of

paired-end designs in several aspects such as alignment accuracy, peak resolution, and most notably, allele-specific

binding detection.

Conclusions: Our work elucidates the effect of design on the downstream analysis and provides insights to

investigators in deciding sequencing parameters in ChIP-seq experiments. We present the first systematic evaluation

of the impact of ChIP-seq designs on allele-specific binding detection and highlights the power of pair-end designs in

such studies.
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Background
Chromatin immunoprecipitation followed by high-

throughput sequencing (ChIP-seq) is widely used for

genome-wide profiling of histone modifications [1] and

transcription factor (TF)-DNA interactions [2, 3]. Popu-

lar applications of ChIP-seq include identifying binding

sites of a TF in one or more samples [4, 5], comparing

histone modifications across two or more samples, and

detecting binding differences between alternative alleles
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(allele-specific binding) when SNP data is available [6–9].

ChIP-seq experiments start with shearing DNA cross-

linked with the protein of interest into short fragments.

Then, fragments associated with the protein or modifi-

cation of interest are enriched by immunopreciptitation

using an antibody specific to the protein or modification

of interest. After purification and size selection, the

remaining fragments are sequenced. Currently, the most

widely used sequencing platform for ChIP-seq exper-

iments is Illumina. This platform offers many options

for experimental design; however, the impact of these

design parameters are not well understood. The two key

design parameters are read length and read type, i.e.,

single-end (SE) in which only one end of the fragments

are sequenced or paired-end (PE) whereby both ends
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are sequenced. Intuitively, long PE reads should capture

more information than the short SE reads; however, they

can cost up to 1.5–2 times more (e.g., one lane of 100

bps PE sequencing costs about 67% more than one lane

of 50 bps SE sequencing at the Biotechnology Center

at UW Madison at the time this paper was submitted

[10]. Thus, understanding design differences is critical

for the cost-effectiveness of genomic research. More

importantly, since different designs may be powered

differently for various types of discoveries, a comprehen-

sive understanding of design implications is crucial for

comparing and integrating ChIP-seq data with different

designs.

Recent works on the design of ChIP-seq experiments

did not adequately address the performance of PE and

SE designs and long and short reads [11–15]. Instead,

these studies discussed systematic biases in data genera-

tion, sequencing depths of the control and ChIP samples,

redundancy of reads, and the impacts of downstream

data analysis algorithms. For Drosophila melanogaster,

they also investigated a limited comparison of PE and

SE designs with the exact same read lengths in terms of

the library complexity and coverage in repetitive regions

using very high depth samples. The human genome has

much more repetitive DNA and a greater genome size,

and although the sequencing depths of human samples

have also been increasing over time, they are still lagging

far behind the Drosophila melanogaster study. Therefore,

it remains largely unclear how the PE and SE designs and

long and short reads influence the alignment rates and

accuracy, coverage of various repetitive elements, sensi-

tivity and specificity in peak calling and in allele-specific

binding detection.

In this paper, we systematically and quantitatively inves-

tigated the impact of ChIP-seq read parameters on the

alignment, peak identification, and allele-specific bind-

ing detection. We first generated PE ChIP-seq data for

CTCF, BHLHE40 (also called DEC1), and NONO from

the human GM12878 cell line andMAFK from the human

MCF7 cell line, as well as the control Input data from

these two cell lines, with a read-length of 101 bps at typical

depths (15–80 million reads per replicate). We generated

data with other read parameters in silico from these full

data, and evaluated short (36 and 50 bps) and long (75

and 101 bps) PE and SE read designs for their impact

on alignment, peak calling, and allele-specific binding

(ASB) detection. We complemented these comparisons

with evaluations on simulated data where the under-

lying truth was known and established advantages and

disadvantages of different designs in terms of accuracy

and power. Our study deepens the understanding on the

impact of design in transcription factor ChIP-Seq experi-

ments, and is likely to provide insights on other types of

ChIP-Seq experiments.

Methods

ChIP-seq data

We generated ChIP-seq datasets for CTCF, NONO, and

BHLHE40 (DEC1) in GM12878 cells and MAFK in MCF7

cells as part of the phase 3 of the ENCODE project

(released at the ENCODE portal [16] in 2014). The infor-

mation on the antibodies used for ChIP is available at the

ENCODE portal and can be accessed using the following

accession numbers CTCF (ENCAB000AXU), BHLHE40

(ENCAB000AEK), NONO (ENCAB134GSH) and MAFK

(ENCAB000AIJ). A detailed protocol for the ChIP-seq

can also be downloaded from the ENCODE portal [17].

Among these factors, CTCF, BHLHE40, and MAFK are

sequence specific transcription factors with knownmotifs

while NONO does not have a well-defined motif. These

data sets were chosen based on the availability within

the ENCODE community at the time of the research and

their ENCODE quality measures [18]. In particular, we

excluded data with severe bottlenecking in library com-

plexity [19]. Due to our interests in motif analysis and

allele-specific binding, we largely focused on sequence-

specific transcription factors, and the cell line with the

most complete diploid sequences available at the time of

the research (GM12878), but also includedMCF7 as a sec-

ond cell line. We used CTCF, MAFK, and NONO in read

alignment comparisons, CTCF, MAFK, and BHLHE40 in

peak detection comparisons, and CTCF and BHLHE40

datasets in the ASB detection comparisons. Additional

file 1: Table S1 provides the numbers of fragments for each

dataset.

In silico generation of ChIP-seq data of other designs from

the original data

We randomly sampled one end from each paired-end read

to generate single-end reads. We used HOMER software

[20] to trim the original reads to 75, 50, and 36 bps for

generating designs with shorter read lengths. Additional

file 1: Table S2 provides the number of fragments, reads,

and sequenced base-pairs in each design.

Alignments by Bowtie and BWA

We initially compared the alignment results of both

Bowtie -v mode [21] and BWA [22]. Bowtie can be set to

report only uniquely mapped reads (uni-reads), whereas

BWA also reports reads that can be mapped to multi-

ple locations (multi-reads). Our simulation results show

that Bowtie and BWA have almost identical coverage and

accuracy when their alignment rules are comparable and

if the multi-reads in BWA output are filtered. However, if

the multi-reads are kept, the alignment accuracy of BWA

could be low (Additional file 1: Tables S15–S16). Thus

we resorted to using only Bowtie alignments for other

comparisons. There are many other different alignment

tools, such as Bowtie2 [23] and GEM [24]. However, since
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alignments with BWA and Bowtie dominate the ChIP-

seq applications, we focused our attention to these two

aligners. In our study, we used Bowtie with the command

“Bowtie -v ϑ -I 100 -X 700 -a –best –strata -m 1”, where

ϑ =0, 1, 2, 3 and “-I 100 -X 700" only applies to PE. Here, ϑ

denotes the number of mismatches allowed in each read,

and 100 and 700 the allowed range of the fragment lengths

in PE alignments. These upper and lower bounds were

chosen based on BWA estimates of the fragment length

from the CTCF dataset to make this parameter compara-

ble between the two aligners.We considered four different

options for BWA: “BWA -q 0 -o 0 -n 0.04", “BWA -q 20 -o 0

-n 0.04", “BWA -q 20 -o 1 -n 0.04", and “BWA -q 20 -o 1 -n

8", where -q 0, -o 1 and -n 0.04 are default options of BWA.

The option -q allows trimming the low quality base-pairs

from their 3′ ends, option -o allows user-specified num-

bers of gaps in the alignment, and option -n controls the

number of allowed mismatches. Specifically, when -n is

an integer, it denotes the number of allowed mismatches.

When -n is between 0 and 1, the number of allowed mis-

matches is set to the quantile of a Poisson distribution

with mean 0.02×read-length (after trimming by option -

q) with tail probability -n. We used “BWA -q 20 -o 1 -n 8"

to generate a relaxed alignment set. After the BWA align-

ment of the PE designs, we considered keeping all aligned

pairs with both ends uniquely mapping (Uni) and addi-

tionally kept those with one uniquely mapping end (UR).

For SE designs, we kept all the reads that are uniquely

mapped (Uni/UR).

Abbreviations of designs and the design-alignment

combinations

For simplicity, we introduced some abbreviations for

the designs and the design-alignment combinations in

Additional file 1: Tables S3–S7. Some illustrative examples

of these abbreviations are as follows. We denoted PE data

with read-length 36 bps as PE36, SE data with read-length

75 bps as SE75; the Bowtie alignments in -v mode allow-

ing one mismatch as BOWTIEv1, BOWTIEv1 alignment

on PE36 data as PE36v1, and the BOWTIEv2 on SE75

as SE75v2. We used BWAq20o1UR to denote the align-

ment strategy where we first ran BWA -q 20 -o 1 -n

0.04 and only kept reads that uniquelymapped to the ref-

erence genome (SE). For PE, we kept the read pairs with at

least one uniquely mapping end.

ENCODE uniform ChIP-seq processing pipeline

We utilized the uniform ChIP-seq processing pipeline

developed and benchmarked by ENCODE [18]. This

pipeline utilizes SPP [2] for calling peaks and generates a

relaxed peak list with both true peaks and some regions

with little or no enrichment of the ChIP-seq signal (3×105

by default). Then the irreducible discovery rate (IDR) [25]

is applied to threshold the relaxed peak list and generate

an optimal peak set for a given IDR level (default 0.02).

IDR also accounts for the randomness between repli-

cates. Calculation of the average fragment length is also

provided within this pipeline.

Coverage analysis

We used SPP to estimate the average fragment length

for SE designs, and extended the SE reads to this length

as their full length. The two ends of the PE reads were

connected to form full length fragments.

Coverage of repetitive elements

We calculated the coverage for each type of repeat ele-

ment by summing over the fragment lengths of all reads

overlapping with the instances of the repeat element and

then normalizing the resulting sum with the total length

of this type of repetitive element. For both the alignments

and the peaks, we only counted those with at least 30%

overlap with repeat elements.

Measuring alignment accuracy of ChIP-seq data using the

relaxed alignment set

We used BWAq20o1n8 results of PE101 as a “gold" stan-

dard relaxed set for benchmarking alignment accuracy

in real ChIP-seq data analysis where the true origins of

the reads were not available. This alignment rule is very

relaxed and the alignment locations under this rule are

not necessarily accurate. However, if a read cannot be

mapped by this rule, it probably should not be mapped

by any. Thus, we marked those reads that cannot be

aligned in this setting as “unmappable". If an unmap-

pable read was mapped under another design and using

another alignment rule, we labeled it as a “false pos-

itive" alignment. We then compared the false positive

rates in the set differences of the alignments by the two

designs. Details of these calculations are illustrated in

Additional file 1: Figure S1, e.g., the false positive align-

ment rate of Design-Alignment 1 is A/(A + B) when it

is compared with Design-Alignment 2. In our simulation

study, we found that BWAq20o1n8 results of PE101 has

very high coverage (median in 5 replicates is 99.15%),

and accuracy (median in 5 replicates is 99.84%). Even

though the simulation settings can never be as complex as

the real data, the above results give us confidence about

the sensitivity and specificity of BWAq20o1n8 alignment

on PE101.

Motif analysis

For CTCF and MAFK, we used ENCODE defined motifs

and corresponding positions weight matrices (PWMs)

from [26]. Transcription factor BHLHE40was not profiled

in GM12878 previously and did not have a PWM; there-

fore, we estimated its PWM from the top 500 peaks of

the analysis of PE101v3 data using MEME [27]. The peaks
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were scanned with these position weight matrices using

FIMO [28] for all the motif analysis.

ChIP-seq peak calling by MOSAiCS + IDR pipeline

Mosaics [5] is a model-based approach for the analy-

sis of ChIP-seq data. We combined it with IDR to get a

set of optimal peaks. The pipeline parameters were set

as follows: thres: 99th percentile of the bin-level ChIP

read count distribution; FDR: 1.0 for generating the set of

relaxed peaks. The relaxed peak set was filtered so that the

ChIP read counts at the summit were at least as large as

the sequencing depth normalized input read counts and

the IDR optimal peak set was filtered to contain peaks

with at least 10 read counts at the summit.

Minimax summit distance of the identified peaks

We define minimax summit distance LM(j) to measure

the spatial distance of the rank j peak among the top M

peaks of the peak lists in the worst-case scenario across all

replicates (Additional file 1: Figure S2). Small LM(j) indi-

cates better reproducibility. If LM(j) is smaller than a given

threshold T, we label rank j peak as reproducible in the top

M peaks lists. Let RM be the proportion of reproducible

peaks among the topM peaks. Large RM indicates that the

topM peaks are more reproducible.

Formally, for a fixed design, let Pij be the rank j peak

identified in simulation replicate i, where i = 1, 2, 3, 4, 5

and j = 1, 2, . . . ,M, and Sij denote its summit location.

The minimax summit distance for rank j peaks under the

given design is defined as

LM(j) ≡ max
i,k,i�=k

{

min
ℓ≤1.5M

|Sij − Skℓ|

}

.

In the analysis presented in this paper, rank j peaks were

labeled as reproducible if LM(j) ≤ 200 bps, and the over-

all reproducibility of the top M peaks was measured by

RM, the proportion of reproducible peaks. We variedM ∈

500 × {1, 2, . . . , 10}. The exact interpretation of RM is as

follows: if we view two peaks with summit-to-summit dis-

tance less than 200 bps as the estimates of the same peak,

then for any simulation replicate, the proportion of the

targets of its topM peaks that can be recovered by the top

1.5M peaks from another simulation replicate is at least

RM.

Analysis of peak set differences

When we compared the ranks of the peaks, if the sum-

mit distance between two peaks from two peak lists was

less than 200 bps, we considered them as two estimates

of the same binding event. We compared rankings of

the two estimates of the same binding event from differ-

ent designs in their respective relaxed peak lists. In the

coverage comparisons of peaks, we only considered the

peaks whose surrounding ± 500 bps windows contained

no other peak summits from the other peak list, so that

the closely-spaced binding events for which the cover-

age comparisons were difficult were excluded. Then we

defined the coverage around a summit as the number of

reads overlapping with its surrounding± 100 bps window.

Allele specific binding detection by a modified AlleleSeq

pipeline

AlleleSeq [8] employs a binomial test of proportions for

allelic imbalance detection. It aligns reads to the paternal

and the maternal sequences of the sample to be analyzed

and assigns each read to one allele based on the number of

mis-matches with the ties broken by random assignment.

During this process, it discards the reads with ambiguous

baseN, and those that align to both alleles but at different

locations. It then applies the binomial test at the phased

heterozygous SNPs with at least 5 reads to test the null

hypothesis of no allelic imbalance and achieves FDR con-

trol via simulation. In our actual data analysis, we set FDR

level to 0.1. AlleleSeq was originally designed for SE reads.

We adapted it to the PE setting with the following mod-

ification. After the reads were aligned to both alleles by

Bowtie, we calculated the number of mis-matches of each

fragment by summing the mis-matches from both ends,

and then assigned the fragment to one allele based on this

total number of mis-matches. We also discarded the reads

that were aligned to both alleles with equal number ofmis-

matches. In both cases, we ranAlleleSeq without a specific

peak set, and then overlapped the output with the optimal

peak set of PE101v3 for detecting ASB events. AlleleSeq

aligns the reads using Bowtie in v mode. We allowed one

mismatch for the designs with read length 36 or 50 bps,

and two mismatches for those with read lengths 75 or 101

bps.

ROC curve in ASB detection

In our simulation study, we ranged the cutoff of p-value

from 0 to 1, and calculated the empirical FDR and true

positive rates. Since AlleleSeq excluded the loci with

insufficient coverage (<5 reads), the true positive rate did

not go to 1, even if we increased the p-value cutoff to 1.

Allele-Specific Open Chromatin (ASOC) regions and

Allele-Specific Co-Binding (ASCB)

We pooled the two replicates of 36mer SE DNase-seq

data fromGM12878 cells from theUCSC ENCODE portal

[16] and ran AlleleSeq to detect allele-specific activity. To

get a high quality set of ASOC regions, we applied more

restrictive rules in filtering and identifying allele-specific

behavior. We discarded the SNPs covered by less than 20

reads, and only reported those with p-values≤ 0.01 and at

least 1.5 fold-change between the coverage of two alleles.

In the ASCB analysis of CTCF and BHLHE40, we

first defined co-binding events as the events with the
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summit-to-summit distance of a CTCF peak and a

BHLHE40 peak less than 200 bps. Then, the co-binding

regions were defined as the union of the ±100 bps win-

dows around these summits. If two or more co-binding

regions overlapped, they were merged into a single region.

We examined the consistency in allele-specific activity

in each of such co-binding regions. We only considered

SNPs that were covered by at least 20 reads, had a with

p-value ≤ 0.1, and the read proportion from the winning

allele were at least 0.7. Within each co-binding region,

there could be many SNPs with ASB for one or both TFs.

We labeled a co-binding region to be Allele-Specific Co-

Binding (ASCB) if both TFs showed ASB in favor of the

same allele, Bi-Allele-Specific Binding (BiASB) if the two

TFs showed ASB in favor of different alleles. In rare cases,

one TF showed ASB in favor of different alleles at dif-

ferent SNPs within the same co-binding region. These

cases did not affect the overall conclusions and were

excluded.

Simulation for paired-end reads from the diploid sequence

of GM12878 chr19

We simulated paired-end reads from the diploid

sequences of chr19 in GM12878 cells using the following

procedure.

1. Simulate fragment length L : we simulated the

fragment lengths by rounding random samples from

a shifted beta distribution

100 + (700 − 100) × Beta(2, 5). This distribution is

similar to the empirical distribution of the fragment

lengths estimated from BWA paired-end alignments.

2. Simulate the middle point positions of the fragment

on the reference sequence z : We utilized a read

model similar to the model underlying CSEM [29]

and cnvCSEM [30]. Specifically, we simulated the

middle point positions of the fragments from a

discrete distribution where the probability is

proportional to the read depth of the pooled CTCF

(or Input) data under PE101v3.

3. Simulate the allele assignment a ∈ {mat, pat}: We

drew a random sample from Unif [ 0.1, 0.9] as the

true maternal probability in each 1000bps window

around SNPs. We further assumed equal maternal

probabilities in overlapping windows and maternal

probability of 0.5 in regions outside of these

windows. We sampled a based on the maternal

probability of the sampled middle point position.

4. Convert z to the corresponding coordinate on the

assigned allele za: We converted z to the

corresponding coordinate on the assigned allele by

the liftOver function in the Bioconductor package

rtracklayer. For the positions on the reference

sequence that cannot be mapped to the assigned

allele, we slightly perturbed z iteratively until it was

properly mapped.

5. Extract the read sequences at both ends for the

sampled fragment from the assigned allele: We

calculated the two end positions of the fragment

based on za and L and extracted the true read

sequences from both ends.

6. Sample quality score: For each read, we sampled the

quality score from the qualities of the CTCF data.

7. Insert read errors based on the quality score: We

calculated the base-wise error probability based on

the sampled quality score, determined the read error

locations based on the error probabilities, and

inserted the read errors based on the error

distribution provided in Additional file 1: Table S8.

We performed simulation experiments for five times.

Each experimental replicate contains one ChIP sample

and one Input sample. The read-densities on the reference

genome were from PE101v3 of pooled CTCF and Input

samples of GM12878. The ChIP samples contain 2×106

reads and the Input sample contains 1.1×106 reads, so

that the coverage of the simulated samples were similar to

the coverage of chr19 in the real data.

In our simulation, the reads were simulated from the

diploid sequence. When assessing the accuracy in their

alignment to the reference sequence, we treated a read

as aligned correctly as long as the extended aligned read

covered the true middle point position on the reference

sequence. When assessing the accuracy of ASB detection,

we defined the true ASB as the SNPs where the ratio

between the maternal and the paternal alleles is larger

than 1.5 (or smaller than 2/3).

Results and discussion
The first step of ChIP-seq data analysis is aligning reads

to a reference genome, and the choice of alignment strat-

egy impacts the downstream analysis. Thus we started

with a detailed comparison of data alignments with differ-

ent read parameters, and throughout this paper, we paid

attention to matching designs and analysis protocols so

that the read error rates, the numbers of reads, and the

numbers of sequenced bases were comparable when nec-

essary. For simplicity, we introduced some abbreviations

for the designs and the design-alignment combinations

in Additional file 1: Tables S3–S7 (See also the corre-

sponding section in “Methods”). We also summarized the

major comparisons of the design and alignment combina-

tions and the rationale for these comparisons in Table 1.

For example, we compared PE36v1 with SE75v2 and also

PE50v1 with SE101v2 for a fair comparison of PE and SE

designs with similar numbers of sequenced bases and read

error rate in alignment. PE designs interrogate the same

number of ChIPed fragments with twice as many reads
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Table 1 Descriptions of the design and alignment combinations

that are compared throughout the paper

Aim Comparisons

Compare PE and SE designs with the same
number of fragments, similar numbers of
sequenced bases, and read error rates

PE36v1 vs SE75v2 and
PE50v1 vs SE101v2

Compare PE and SE designs with the same
numbers of reads, sequenced bases, and
read error rates

PE36v1half vs SE36v1

Compare PE and SE designs with the same
number of fragments, read-lengths, and
read error rates

PE36v1 vs SE36v1, PE50v1
vs SE50v1, PE75v2 vs
SE75v2 and PE101v2 vs
SE101v2

Compare long and short PE reads with the
same number of fragments and similar read
error rates

PE36v1 vs PE75v2 and
PE50v1 vs PE101v2

Compare long and short SE reads with the
same number of fragments and similar read
error rates

SE36v1 vs SE75v2 and
SE50v1 vs SE101v2

compared to the SE designs. We controlled the numbers

of reads by randomly sampling half of the pairs from PE

designs, and denoted such designs as PEhalf (Additional

file 1: Table S7). At fixed read-lengths, PEhalf designs have

the same number of reads and the number of sequenced

bases as their SE counterparts, but they could poten-

tially contain less biological information since the paired

reads are representing information from the same DNA

fragment.

The effect of read parameters on alignment coverage and

accuracy

Alignment rates of Bowtie

Alignment rates have a profound effect on the down-

stream analysis because higher alignment rates lead to

more aligned reads at fixed sequencing depth and typi-

cally yield identification of more true signals with higher

confidence. Our comparison in alignment rates revealed

a complex interplay between the read parameters, align-

ment rules, and other biological factors (Table 2 and

Additional file 1: Tables S9–S14. The alignment of PE

Table 2 Percentages of aligned reads for replicate 1 of MAFK

data

Design v0 v1 v2 v3 q20o1Uni q20o1UR q20o1

SE36 76.76 81.95 82.68 83.00 82.90 82.9 97.49

SE50 78.39 85.30 86.37 86.84 87.24 87.24 96.90

SE75 77.46 86.82 88.36 88.96 90.34 90.34 95.95

SE101 74.45 85.86 87.96 88.72 91.20 91.20 95.35

PE36 75.27 84.40 84.68 84.40 75.45 88.79 95.84

PE50 73.41 85.48 86.56 86.74 81.87 91.21 95.91

PE75 68.39 84.19 86.32 86.85 86.80 92.75 95.77

PE101 63.05 81.55 84.76 85.66 88.28 93.12 95.45

requires both ends of each pair to be mapped. This is

more stringent than its SE counterpart, but also improves

the uniqueness in alignment. As a result, SE designs with

longer reads (50, 75, and 101 bps) usually had higher

alignment rates than the PE designs with the same read-

length, but PE36 had higher alignment rates than SE36

in most cases due to its higher uniqueness in alignment.

For example, the alignment rates of SE75v2 were 2–7%

higher than PE75v2, but those of SE36v1 were 1–7.5%

lower than PE36v1 for most data except one replicate

of CTCF. The effect of read length is more complicated.

Longer SE reads had higher alignment rates than short SE

reads in most cases due to their higher sequence unique-

ness. In contrast, median read lengths seemed to improve

alignment rates for PE, and in most cases, PE50v1 and

PE75v2 outperformed PE101v2 and PE36v1 in alignment

rates, respectively. The observed lower alignment rates of

PE101v2may be largely due to the lower quality near the 3′

end of long reads, a phenomenon commonly observed and

well characterized for Illumina platforms [31]. However,

how much lower it could be depends on the specific qual-

ity profile. When the number of sequenced bases was also

controlled (e.g., PE36v1 vs. SE75v2), SE designs had 0–

5% higher alignment rates than their PE counterparts. In

fact, for all datasets and all the Bowtie alignment settings

considered, we found that (1) SE75v3 yielded the highest

alignment rates for all except one replicate of CTCF where

it was 0.05% less than SE50v3; and (2) PE50v3 yielded the

highest alignment rates in PE for CTCF and BHLHE40,

and the second highest in PE for MAFK, where it was

0.11% and 0.04% less than PE75v3. The results on the

simulated CTCF data showed similar patterns (Additional

file 1: Table S15).

Effective genome coverage of Bowtie alignments

One of the key differences between PE and SE designs is

that once the PE reads are mapped, genomic coverage, i.e.,

the numbers of bases spanned by the aligning reads, are

readily available whereas this quantity relies on the frag-

ment length estimation in SE designs. We evaluated how

the designs differed in coverage, and found that it heav-

ily depended on data quality. In detail, we compared the

designs in terms of multi-coverage that we defined as the

sizes of the genomic regions (number of bases) covered by

at least five reads (Additional file 1: Figure S3).

We used the peak finder SPP [2] to estimate fragment

sizes for the SE designs. We observed that PE designs had

higher multi-coverage than the comparable SE designs

for MAFK and NONO, but not for CTCF. We conjec-

tured that such disagreement is likely due to the antibody

quality. We concluded that all the designs might have sim-

ilar coverage for data with good antibody such as CTCF.

However, for typical TFs, PE designs do provide better

coverage. We did not find apparent pattern of differences
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between different read lengths for either the PE or the SE

design.

Repetitive element coverage of Bowtie alignments of

different designs

Repetitive elements are DNA sequences that occur in

multiple copies throughout the genome. These copies can

be either adjacent to each other or interspersed. Repetitive

genomic elements are important for many biological pro-

cesses including regulation of gene expression [32, 33].We

evaluated the coverage of different designs over the repet-

itive genomic elements, and found that both PE designs

and long reads had higher repetitive element coverage

in most cases. We specifically focused on satellite DNA,

long interspersed nuclear elements (LINE), short inter-

spersed nuclear elements (SINE), long terminal repeat

(LTR) elements, and segmental duplication regions (SDR)

in our evaluation. Figure 1a and Additional file 1: Figure

S3 report the coverage (number of mapped bases) in these

repetitive regions. For NONO and MAFK, we found that

(1) PE designs had up to 46% higher coverage over the

repeats than SE with the same read length; (2) doubling

the read-length (from 36 to 75 bps or from 50 to 101 bps)

improved coverage for up to 35% depending on the TF,

read-length, and the type of repeats; and (3) the effect of

long reads was larger for SE than PE. As an example, for

one replicate of MAFK, the coverage over LINE elements

of PE36v1 and SE75v2 were 11% and 10% more than

that of SE36v1, respectively, and the coverage of PE75v2

was 3.9% more than that of PE36v1 (Fig. 1a). For CTCF,

PE designs and the long reads had much less or even

no advantage, e.g., the coverage over LINE elements for

SE75v2 was only 4.3% more than that of SE36v1, and that

of PE36v1 was even 2.3% less than SE36v1 (Additional

file 1: Figure S4a).We observed a trade-off between longer

SE reads and short PE reads when comparing PE36v1 and

SE75v2 at fixed number of sequenced bases. PE designs

had higher (0–27%) coverage over most repetitive ele-

ments for MAFK and NONO but not for CTCF (from

8.5% lower to 2.6% higher). On the other hand, SE designs

had higher (up to 27%) coverage over SDRs.

Thus, read length appeared to be a more critical param-

eter than the PE or SE aspect for improving coverage in

SDR. Our results agreed with and complemented similar

comparisons in the literature (e.g., Figure 2a in Chen et al.

2012 [11]). One reason for higher coverage of PE designs

a

DNA LINE LTR SDR SINE

0

1

2

3

4

C
o

v
e

ra
g

e

Design SE36v1 SE75v2 PE36v1 PE75v2

MAFK REP1

b

0

2

4

 S
E

3
6

v
1

 P
E

3
6

v
1

 S
E

7
5

v
2

 P
E

3
6

v
1

 S
E

5
0

v
1

 P
E

5
0

v
1

 S
E

1
0

1
v
2

 P
E

5
0

v
1

 P
E

3
6

v
1

 P
E

7
5

v
2

 P
E

5
0

v
1

 P
E

1
0

1
v
2

 S
E

3
6

v
1

 S
E

7
5

v
2

 S
E

5
0

v
1

 S
E

1
0

1
v
2

Pairs of Designs

%
 f

a
ls

e
 p

o
s
it
iv

e

c

99.2

99.4

99.6

99.8

100.0

75 80 85 90

Alignment rate

A
c
c
u

ra
c
y

PE

SE

36

50

75

101

d

94

96

98

100

80 85 90 95 100

Alignment rate

A
c
c
u

ra
c
y

BOWTIEv3

BWAq0o0Uni

BWAq20o0Uni

BWAq20o1Uni

BWAq20o1UR

BWAq20o1

PE50

PE101

SE50

SE101

Fig. 1 Alignment rate and accuracy of actual and simulated data. a Coverage of repeat elements in a MAFK dataset. Total lengths of the reads that

overlapped repeat elements are normalized by the total lengths of the repeat elements. b False positive rates of a CTCF dataset based on the

relaxed alignment set (BWAq20o1n8 on PE101). c and d Alignment rate vs. accuracy of simulation data for Bowtie and BWA, respectively. x and y

axis are percentages of aligned reads and correctly aligned reads. Medians across five replicates are reported for each comparison



Zhang et al. BMC Bioinformatics  (2016) 17:96 Page 8 of 16

in repetitive regions is the increased mappability [34] of

their reads. From this point of view, our results were con-

sistent with the above numerical study, and also revealed

that the tradeoff between read length and PE design in real

data depends on the types of repetitive elements.

Accuracy of Bowtie alignments

False positives in alignment may cause false positives in

detecting enrichment regions. We evaluated the align-

ment accuracy using both experimental data and fully

simulated data, and found that both PE designs and longer

reads improved alignment accuracy.We devised a strategy

for evaluating alignment accuracy with the experimen-

tal data, even though the true origins of the reads were

unknown.We used a relaxed alignment set, BWAq20o1n8

with the PE101 data as the “gold" standard, and labeled

those reads that could not be aligned by this relaxed rule as

false positives. Then we compared the false positive rates

of the sequencing designs in pairs (e.g., SE36v1 vs PE36v1)

and assessed the false positive rates in their alignment set

differences (Fig. 1b). For example, the false positive rate of

the reads that were aligned under SE36v1 but not PE36v1

was 5.47%, and that of the reads aligned under PE36v1 but

not SE36v1 was only 0.33%. Our results in Fig. 1b showed

that PE designs and longer reads led to lower false posi-

tive rates, and the advantage of longer reads was smaller

for PE than for SE. Our simulation results, where the true

origins of the simulated reads were used for measuring

the accuracy, were consistent with the real data analysis

(Fig. 1c and Additional file 1: Tables S15–S16). Figure 1c

also highlighted a trade-off between the alignment rate

and accuracy. Designs with 101 bps reads might have low

alignment rates if the quality at the ends of the long reads

are low, and the alignment rate of SE36 readsmight be also

low due to the lack of uniqueness. Other SE designs had

high alignment rates, but low accuracy, and PE36, PE50,

and PE75 had both high alignment rates and accuracy.

Coverage and accuracy of BWA alignments

BWA is also one of the most popular aligners for ChIP-

seq data. Compared to Bowtie -v mode, it allows more

flexible error control, and trimming of the poor ter-

minal bases (option -q). It also reports one selected

alignment location for reads aligned to multiple loca-

tions (multi-reads). While the majority of our analysis

is based on Bowtie -v mode, we investigated a compre-

hensive set of alignment strategies based on BWA and

compared them to the Bowtie -v mode in this section.

This investigation also led to many practical sugges-

tions on trimming (option -q) and filtering multi-reads

in BWA alignment. In Table 2, where trimming of poor

terminal bases was applied (option -q 20), we observed

that the alignment rates under all designs were similar

when all the multi-reads were kept. In contrast, when

only the uniquely aligning reads were retained, both PE

designs and long reads led to higher alignment rates.

In our simulation study where we conducted a more

comprehensive comparison, we observed a similar pat-

tern (Fig. 1d and Additional file 1: Tables S15–S16).

Additionally, our comparisons of Bowtie and BWA align-

ments indicated that they had almost the same coverage

and accuracy when their alignment rules were compa-

rable (e.g., for SE50, BOWTIEv3 and BWAq0o0n04Uni

are essentially identical rules). In summary, both our data

analysis and simulation experiments led to the following

observations. Discarding multi-mapping reads in BWA

output improved alignment accuracy, especially for SE

designs. When such reads are retained, their inaccurate

alignments were enriched in many regions with a poten-

tial impact on the downstream analysis (Additional file 1).

When filtering multi-mapping reads from BWA output of

PE data, only those pairs with multiple alignment loca-

tions for both ends needed to be removed, and those

with one uniquely aligned end could be kept without loss

in accuracy. Properly trimming by the -q argument in

BWA increased coverage without loss in accuracy, espe-

cially for long SE reads. For example, trimming increased

the alignment rate of SE101 from 88.41% (BWAq0o0Uni)

to 96.42% (BWAq20o0Uni), while the accuracy remained

almost the same (slight decrease from 99.35% to 99.32%)

in the simulated data.

The effect of read parameters on peak calling

Number of peaks by SPP+IDR

We next evaluated the impact of designs on the num-

ber of detected protein-DNA interactions, i.e., peaks. We

adopted the robust ChIP-seq uniform processing pipeline

[18] developed and extensively used by the ENCODE con-

sortium. This pipeline first generates relaxed peaks, a list

of approximately 3×105 regions using peak caller SPP [2].

Then, the optimal set of peaks is selected as the subset of

the relaxed peaks with better peak score than the thresh-

old needed for controlling the irreproducible discovery

rate (IDR) [25] at a given level.

We found that PE designs led to larger numbers of

optimal peaks than SE designs regardless of the IDR level

(Fig. 2a and Additional file 1: Figure S5). This was largely

driven by the number of reads because SPP treats the two

ends of PE reads as two SE reads, instead of processing

the pairs as pairs. When the numbers of reads were con-

trolled (e.g., PE36v1half versus SE36v1), the two designs

resulted in comparable numbers of optimal peaks. Fur-

thermore, read length had no noticeable impact on the

numbers of peaks.

Reproducibility of peaks

Discovery from high throughput assays are often sub-

ject to variability across biological replicates, and, as a
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Fig. 2 Effect of designs on peak calling. a Number of MAFK peaks by the SPP+IDR pipeline. b Reproducibility of the top SPP peaks of the simulated
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result, reproducibility of the discovered signals is a recur-

rent concern. The ChIP-seq uniform processing pipeline

of ENCODE uses IDR to capture the reproducibility of the

peaks between two replicates. In our simulations, we com-

pared the designs using the reproducibility of the peaks

across five replicates, and found that PE designs had better

reproducibility. We measured the reproducibility by the

minimax summit distances of the highest ranked peaks,

which can be viewed as the maximal distance between

the estimates of the same target in the five replicates. We

labeled a peak as reproducible if its minimax summit dis-

tance was less than 200 bps, and higher proportion of

reproducible peaks among the top peaks indicated better

reproducibility. Overall, PE peaks were more reproducible

than the SE peaks (Fig. 2b), which further elucidated why

PE designs led to more peaks for fixed IDR levels.

Peaks in repetitive elements

In the previous section, we compared the designs in terms

of their alignment coverage of repetitive elements. In this

section, we revisited the repetitive regions, and investi-

gated their peak coverage (percentages of peaks) under

different designs. We overlapped the top peaks of each

design with satellite DNA, LINE, SINE, LTR elements, and

SDRs (Additional file 1: Figure S6). We compared these

observations with those at the alignment level (Fig. 1a and

Additional file 1: Figure S4), and found that the two did

not necessarily exhibit the same pattern. For example, PE
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designs yielded higher coverage of MAFK reads in SINE

elements (Additional file 1: Figures S4e,f ) but smaller por-

tion of MAFK peaks within the same type of repeats

(Additional file 1: Figure S5o). In contrast, long reads

led to both higher CTCF coverage and higher portion of

CTCF peaks in SDR (Additional file 1: Figures S4a,b and

Additional file 1: Figure S6j). We remark that, since PE

designs identified more optimal peaks, they also yielded

more peaks overlapping with repetitive elements than

their SE counterparts, even if the overall proportion was

slightly smaller.

Evaluation of the peak sets bymotif occurrence and

motif-to-summit resolution

The peaks of a sequence-specific DNA binding transcrip-

tion factor typically harbor DNA motifs that the TF binds

to. A commonly used metric for the quality of the peak

lists is the proportion of the reported peaks with at least

one motif. We found that a slightly higher proportion of

the SPP peaks from PE designs harbor a motif than the SE

peaks for MAFK, but not for CTCF or BHLHE40 (Fig. 2c

and Additional file 1: Figure S7).

Another commonly used criteria for evaluating peak

quality is their resolution, the distance between the sum-

mit of the peak and the nearest motif. A shorter distance

between the motif and the summit indicates better res-

olution in peak calling. In our motif analysis, PE designs

yielded slightly better resolution than SE for peaks of sim-

ilar ranks for CTCF and MAFK (Fig. 2d and Additional

file 1: Figure S8). The parameters that impact the peak-

summit resolution include fragment size and numbers of

correctly aligned reads. SPP estimates the fragment size

with the same procedure for both SE and PE designs and

utilizes a single estimated fragment size for all the reads.

Although Chen et al. (2012) [11] showed that the SPP esti-

mates of the fragment sizes are within 10–20 bps of the

average value obtained from PE data, the use of a single

fragment size discards the variation in the estimated frag-

ment size, and SPP does not fully utilize the information

of individual fragment lengths available in PE reads.

The majority of the currently available peak callers are

developed for SE data, and only few of them are read-

ily adapted for PE [5, 35, 36]. To evaluate the gain due to

using read-specific fragment sizes which are readily avail-

able in PE data, we re-analyzed CTCF andMAFK datasets

withMOSAiCS [5] andMACS2 [36].MOSAiCS processes

PE reads by acknowledging that every read pair repre-

sents a single fragment. We combined MOSAiCS with

IDR to make the error control compatible with the uni-

form processing pipeline. For each peak, MOSAiCS has

the capability of reporting two types of summits: a ChIP-

seq signal-based summit and a sequence-based summit

which incorporates sequence information into summit

detection. We focused on the resolution analysis of the

signal-based summit because these summits were more

comparable to the summits reported by SPP. As expected,

we observed a larger advantage of PE over SE in terms

of motif-to-summit resolution (Fig. 2e and Additional

file 1: Figure S9). MACS2 [36] also processes PE reads

properly. We ran a similar analysis using MACS2 output

with default parameters without IDR control, because we

did not have a reliable pipeline that combines IDR and

MACS2. Nevertheless, the MACS2 results were consis-

tent with MOSAiCS results (Fig. 2f and Additional file 1:

Figure S10). This analysis confirmed that fully leveraging

the PE designs might improve peak calling in terms of

resolution.

Analysis of peak set differences

The optimal peak sets reported under different designs

were highly similar (overlap between any two >85%).

Such consistency indicated that all designs targeted the

same overall signal pattern. In this section, we focused on

the peak set differences, and investigated to what extent

the differences could be attributed to the change in the

ranking of the relaxed peaks and the alignment differences

that led to significant changes in coverage. We first used

SE36v1 as the baseline and investigated the changes in

peak ranking and peak region coverage when switching to

PE36v1 or doubling the read-length (SE75v2). Additional

file 1: Tables S17–S19 summarize the results of these

comparisons. For each pair of designs under investiga-

tion (e.g., PE36v1 vs. SE36v1), we overlapped their top

M peaks, i.e., two peaks were declared as overlapping if

their summit-to-summit distance ≤ 200 bps, treated the

overlapping peaks as the estimates of the same target,

and compared their ranks. For each TF, we chose nine M

values ranging from 12% to 120% of the size of its opti-

mal peak list. For example, among the top 80,000 CTCF

peaks under PE36v1, 75,354 of them overlapped with

the top 80,000 SE36v1 peaks, another 3,181 peaks over-

lapped with the the SE36v1 peaks ranked between 80,000

and 1.2×80,000, another 767 overlapped with SE36v1

peaks ranked between 1.2×80,000 and 3×105, and the

remaining 48 did not overlap with any of the SE36v1

relaxed peak. This comparison indicated that the ranks

of the 75,354 of the top 80,000 PE36v1 peaks effectively

remained unchanged under SE36v1 (still among the top

80,000 peaks under SE36v1), 3,181 of them underwent

moderate rank change (still in the top 1.2×80,000), 767

of them suffered from large changes in rank, and at most

48 of them were specific to PE36v1, and could not be

recovered under SE36v1. In summary, we observed that

(1) more than 80% of the ranks effectively remained

unchanged in any comparison; (2) the majority of the

rank changes were moderate; and (3) only a small por-

tion (usually less than 2%) of the peaks seemed specific

to one design, with the exception of BHLHE40, where
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10–15% of the SE peaks were specific to the SE designs.

We focused on the peaks in the last category (specific to

one design), and further examined their ChIP and Input

coverage. Surprisingly, we found that even for these peaks,

the coverage around the summits were usually similar

in different designs, and only a small percentage (≤50%

except for one case) exhibited a fold-change of at least

1.5 in any replicate of ChIP or Input samples (Additional

file 1: Table S20). Thus, if more than 3 × 105 peaks were

included in the relaxed peak list, an even larger portion

of peak set differences could be explained by rank change.

We next investigated the motif occurrence and repetitive

element coverage of the design-specific peaks with at least

1.5 fold-change in coverage between the designs (Addi-

tional file 1: Tables S21–S23). We observed that there

were barely any motifs except in one case (SE75v2 spe-

cific peaks when comparing with PE36v1), and SDR were

enriched for all the peaks that were specific to PE or long

read designs. We visualized two such BHLHE40 peaks

with motifs in the UCSC Genome Browser, and found

that both were in low mappability regions (Fig. 2g,h and

Additional file 1: Figure S11).

The effect of read parameters on allele-specific binding

detection

Allele-specific binding detection by AlleleSeq

Allele-specific binding (ASB) detection searches for dif-

ferences in TF binding between the two alleles of the

same individual at a given set of loci (SNPs). ASB stud-

ies provide insights in understanding genomic imprinting

[37] and non-coding disease variants [38], and a well-

controlled model for understanding the population effects

of functional variations in TF binding [8] and other epige-

nomic processes [9]. Although there are currently a num-

ber of methods for ASB detection [8, 9], the impact of

design on ASB detection has not been studied. In the fol-

lowing comparison, we utilized the current AlleleSeq [8]

pipeline for SE designs and adapted it to the PE designs.

Numbers of ASB loci detected by different designs

We compared the numbers of ASB loci detected by

different designs at AlleleSeq default FDR level of 0.1

and observed an increasing trend with the number of

sequenced bases (Fig. 3a,b). At fixed number of sequenced

fragments, i.e., PE versus SE comparisons, longer reads

detected more ASB loci, and PE designs yielded 1.4 to

4 times more detected ASB loci than SE with the same

read-length. When both the number of fragments and the

number of sequenced bases were similar (e.g., PE36v1 vs

SE75v2), PE designs yielded 7 to 11% more detected ASB

loci for CTCF, and 42–51% more for BHLHE40. At fixed

read-length, PEhalf designs, which have half of the frag-

ments of SE designs, were overall comparable to the SE

designs in the numbers of detected ASB loci.

Sensitivity and specificity of ASB detection

We next assessed the impact of sequencing designs on the

sensitivity and specificity of ASB detection with a simula-

tion study.We applied AlleleSeq on the simulated data and

thresholded the p-values at 0.05 to compute the empiri-

cal FDR. We found that PE designs and longer reads had

higher true positive rates regardless the range of the true

maternal probability (Fig. 3d), at the expense of slightly

higher FDR levels (Fig. 3c).We then evaluated the true and

false positive trade-off with an ROC curve (Fig. 3e), and

observed that (1) the differences in performances were, to

a large extent, driven by the number of sequenced bases;

hence, long reads performed better than short reads, and

PE designs better than the SE designs with the same read-

length; (2) the advantage of long reads over short reads

was larger for SE than for PE, and the 101 bps reads did

not perform much better than 75 bps reads; and (3) when

the number of sequenced bases was controlled, PE50 per-

formed better than SE101 and the performances of PE36

and SE75 were similar.

Consistency among designs in ASB detection

When we overlapped the set of ASB loci identified

by different designs, we observed low overlapping rates

for many comparisons (Additional file 1: Figure S12),

e.g., AlleleSeq identified 2086 ASB loci for CTCF under

PE50v1, and 1994 ASB under SE101v2, and only 1356

of them were identical, roughly a 2/3 overlapping rate.

Figure 4a,b provide illustrative examples of PE50v1 spe-

cific and SE101v2 specific ASB events, respectively. In

these two figures, some reads were only mapped and cov-

ered the SNP under one design (blue rectangles). Others

were mapped in both designs and covered the SNP (yel-

low rectangles). Although both designs had low coverage

in this example, low coverage was not generally correlated

with the differences in ASB detection. In fact, the overall

read counts at the ASB loci that were identified only by

PE50v1 (or SE101v2) were comparable to all ASB detected

under each design (Additional file 1: Table S24).

Motif comparison of the two alleles at the ASB loci

We next evaluated the accuracy of ASB detection in the

CTCF dataset using motif information, and found that PE

and long reads led to higher detection accuracy. Specifi-

cally, we compared the p-values of the FIMO [28] reported

matches to the CTCF motif in the winning, and losing

alleles. If the p-value of the motif match in the win-

ning allele was smaller than that of the losing allele, this

ASB loci was deemed more likely to be a true positive

because the winning allele supported binding with a bet-

ter motif match. However, we did not expect the ASB loci

without this property to be false positives because ASB

might be manifesting itself through other factors such

as open chromatin structure and binding of co-factors.
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We considered the intersection and set differences of the

ASB loci for each pair of designs under investigation (e.g.,

PE50v1 and SE101v2) and compared FIMO p-values of

the motif matches in both alleles (Additional file 1: Figure

S13). We further reported the number of ASB loci with a

motif in both alleles, only in the winning, only in the los-

ing allele, and in neither of the alleles in Additional file 1:

Table S25 using the default threshold for the FIMO p-

values (<0.0001). In summary, we concluded that SE75v2

design was better than PE36v1 in ASB detection accuracy.

This is largely because, for the ASB loci only identified

under SE75v2 but not PE36v1, the overall improvement

of the motif score in the winning allele over the losing

allele was larger than those that were only identified under

PE36v1 (Additional file 1: Figure S12a). Furthermore, 11

of the ASB loci that were only identified under the PE36v1

design but not SE75v2 design had a motif only in the

winning allele, and 8 of them had one only in the losing

allele. In contrast, the set of ASB loci specific to SE75v2

had 15 loci with motif only in the winning allele and

one locus with motif only in the losing allele (Additional

file 1: Table S25). These analysis further indicated that

(1) for the same read-length, PE designs performed better

than SE; (2) long reads performed better than short reads

for both PE and SE, with a possible exception of PE101v2

vs. PE50v1; and (3) when the number of sequenced bases

were controlled, PE36v1 under-performed compared to

SE75v2, but PE50v1 was better than SE101v2. Overall,

the best design from this perspective was among PE50v1,

PE75v2, and PE101v2; and in each pairwise comparison,

the ASB loci identified under both designs were better

than the others that are specific to one design in terms of

accuracy.

Consistency between DNase-seq and ChIP-seq in

allele-specific behavior

DNase-seq experiments elucidate broader regions of open

chromatin which often exhibit transcription factor occu-

pancy [39–41]. Therefore, it is natural to expect inter-

actions between allele-specific open chromatin (ASOC)

structure and ASB. Towards this end, we examined the

consistency between the detected allele-specific behav-

ior from DNase-seq [42] and ChIP-seq data from the

same cell line. We identified a conservative list of loci
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with allele-specific behavior in DNase-seq as high confi-

dence allele-specific open chromatin (ASOC) regions. We

expected these loci to be ASB loci in favor of the same

allele if they also overlapped ChIP-seq peak regions. There

were 94 and 153 loci with ASOC in CTCF and BHLHE40

peaks, respectively. Figure 4c,d evaluate the sensitivity of

ASB detection by the number of loci with both ASOC

and ASB in favor of the same allele, and the detection

errors by the number of loci with ASOC and ASB in favor

of different alleles. For the same read-length, PE designs

had higher sensitivity than SE designs, at the expense

of slightly elevated error levels. The sensitivity gain for

CTCF ranged in 3–22% for CTCF, and in 32–88% for

BHLHE40. In both cases, the gain was driven by the num-

ber of sequenced bases. When the number of bases were

controlled (e.g., PE36v1 vs. SE75v2), PE and SE designs

performed similarly.

Allele-specific co-binding of CTCF and BHLHE40

We defined allele-specific co-binding (ASCB) events as

the peak regions where two or more TF bound in favor of

the same allele. In contrast, we defined the peaks where

binding by those factors favored different alleles as bi-

allele-specific binding (BiASB). Partially due to the inter-

action between binding and open chromatin structure,

we expected ASCB to be more common than BiASB. We

then investigated ASB behaviors of CTCF and BHLHE40

in their co-binding regions. Similar to the last section,

we adopted a more conservative criteria for ASB detec-

tion. We observed that the designs with similar amounts
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of sequenced bases yielded similar numbers of ASCB and

BiASB, and the numbers of BiASB were much smaller

than the numbers of ASCB as expected (Fig. 4e).

Conclusions
The impact of sequencing design on the downstream

analysis is profound and complicated. It relies heavily on

research goals, data quality, and the computational tools

chosen for the analysis. Our results suggest that both PE

designs and long reads improve the alignment accuracy

of Bowtie and coverage in repetitive regions. The trade-

off between PE designs and long reads depend on the

expected data quality. For peak calling, PE designs yield

more peaks with comparable quality (in terms of motif

occurrence and resolution) to their SE counterparts, and

the quality of PE peaks can be further improved if the peak

caller is able to properly process PE information. On the

other hand, read-length does not have much effect in peak

calling. For ASB detection, both PE designs and long reads

lead to more detected ASB with higher accuracy.

Our computational and data-driven experiments sup-

port PE designs for their higher alignment accuracy and

higher coverage in repetitive elements especially for TFs

where the antibody or other experimental conditions are

far from ideal. We did not observe a clear advantage of

read length of 101 bps. PE36 worked as good as other

PE designs for peak calling and PE50 and PE75 worked

best for ASB. One reviewer suggested that the observed

design differences may depend on the particular error

profiles of the data used. While this could be true, the

typical error profiles from Illumina platforms have been

well characterized and lower quality near the 3′ end of

reads is commonly seen [31]. Thus the insights we learned

in this study could be generalized with reasonable cau-

tion. In addition, variation in read error profiles is not

the only factor that may affect the generality of the stud-

ies on sequencing design. Numerous technical and human

factors are potential contributors.

While it is up to the individual investigator to decide

whether the potential improvement in biological findings

is worth the costs of themore expensive designs, this study

provides a computational perspective and highlights the

importance of using appropriate computational tools to

maximize the power of the chosen design. For BWA align-

ments, we found that filtering improves the alignment

accuracy, especially for SE and short reads, and trimming

by option -q improves the coverage in aligning the long

reads. However, despite the evidence presented in this

paper and in the literature [31], we acknowledge that trim-

ming could be a contentious topic due to the potential

bias it introduces in read density. When identifying peaks

from PE designs, we suggest using a peak caller that fully

leverages the paired-end information of the data. With-

out using appropriate computational tools in the analysis

protocol, the extra cost of paired-end ChIP-Seq experi-

ments may not be justified.

We systematically investigated the design effects using

in silico data generated from ChIP-seq experimental data,

instead of comparing publicly available ChIP-seq exper-

iments using the same antibody and the cell line, but

different designs. This is because our approach avoids

the unnecessary variations in ChIP-seq experiments per-

formed by different investigators using different facilities

at different times. For example, ENCODE PE data are

generally two to three years newer than their SE coun-

terparts. In addition, generating in silico data via sub-

sampling and trimming methods is common practice in

the literature [11, 12]. Hence it is reasonable to expect

similar conclusions being drawn from the comparisons

of the ChIP-seq experiments performed in exactly the

same way except the read designs. We only considered

Bowtie and BWA as aligners in our current study because

they are currently the most commonly used read map-

pers in ChIP-seq analysis. We mainly used SPP for peak

calling, because it works well with IDR, which allowed

us to assess reproducibility. The majority of the popu-

lar peak detection tools (including SPP) do not process

PE information appropriately. Thus we only included

MOSAiCS and MACS2, two representative peak callers

with such capability, instead of comparing all popular

peak-calling tools. We focused on ChIP-seq experiments

for transcription factors, and designed and adopted sys-

tematic evaluation criteria. Interesting extensions include

cross-species comparisons of the design effects, and

investigating the sequencing design effects on ChIP-seq

experiments for histone modifications, and other exper-

iments such as Bisulfite sequencing [43], and 5-hmC

sequencing [44].

The impact of sequencing depth on the detection

of enrichment regions and many other factors that

affect alignment and peak calling in the context of

ChIP-seq have been investigated by others [11, 12]. Our

work extends the current literature in multiple important

perspectives by focusing on the sequencing design param-

eters, considering multiple alignment strategies and

evaluating the combinations of design and alignment

strategies. Most importantly, our study represents the first

systematic evaluation of the impact of ChIP-seq designs

on ASB detection and highlights the power of PE designs

for ASB detection.
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