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The most widely used method for detecting genome-wide protein–DNA interactions is chromatin

immunoprecipitation on tiling microarrays, commonly known as ChIP-chip. Here, we conducted the first objective

analysis of tiling array platforms, amplification procedures, and signal detection algorithms in a simulated ChIP-chip

experiment. Mixtures of human genomic DNA and “spike-ins” comprised of nearly 100 human sequences at various

concentrations were hybridized to four tiling array platforms by eight independent groups. Blind to the number of

spike-ins, their locations, and the range of concentrations, each group made predictions of the spike-in locations. We

found that microarray platform choice is not the primary determinant of overall performance. In fact, variation in

performance between labs, protocols, and algorithms within the same array platform was greater than the variation

in performance between array platforms. However, each array platform had unique performance characteristics that

varied with tiling resolution and the number of replicates, which have implications for cost versus detection power.

Long oligonucleotide arrays were slightly more sensitive at detecting very low enrichment. On all platforms, simple

sequence repeats and genome redundancy tended to result in false positives. LM-PCR and WGA, the most popular

sample amplification techniques, reproduced relative enrichment levels with high fidelity. Performance among signal

detection algorithms was heavily dependent on array platform. The spike-in DNA samples and the data presented

here provide a stable benchmark against which future ChIP platforms, protocol improvements, and analysis methods

can be evaluated.

[Supplemental material is available online at www.genome.org. The microarray data from this study have been

submitted to Gene Expression Omnibus under accession no. GSE10114.]

With the availability of sequenced genomes and whole-genome

tiling microarrays, many researchers have conducted experi-

ments using ChIP-chip and related methods to study genome-

wide protein–DNA interactions (Cawley et al. 2004; Hanlon and

Lieb 2004; Kim et al. 2005; Carroll et al. 2006; Hudson and

Snyder 2006; Kim and Ren 2006; Lee et al. 2006; Yang et al. 2006;

O’Geen et al. 2007). These are powerful yet challenging tech-

niques, which are comprised of many steps that can introduce

variability in the final results. One potentially important factor is

the relative performance of different types of tiling arrays. Cur-

rently the most popular platforms for performing ChIP-chip ex-

periments are commercial oligonucleotide-based tiling arrays

from Affymetrix, NimbleGen, and Agilent. A second factor

known to introduce variation is the DNA amplification protocol,

which is often required because the low DNA yield from a ChIP

experiment prevents direct detection on microarrays. A third fac-

tor is the algorithm used for detecting regions of enrichment

from the tiling array data. Several algorithms have been devel-

oped, but until this report there was no benchmark data set to

systematically evaluate them. In this study, we used a spike-in

experiment to systematically evaluate the effects of tiling micro-

arrays, amplification protocols, and data analysis algorithms on
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ChIP-chip results. There are other potentially important factors

that are not assessed here, and that from a practical standpoint

are more difficult to systematically control and evaluate. These

include the skill of the experimenter, the amount of starting

material (chromatin, DNA, and antibody) used, the size of DNA

fragments after shearing, the DNA labeling method, and the hy-

bridization conditions.

There have been several studies evaluating the performance

of gene expression microarrays and analysis algorithms (Choe et

al. 2005; Irizarry et al. 2005; MAQC Consortium 2006; Patterson

et al. 2006). However, tiling arrays present distinct informatics

and experimental challenges because large contiguous genomic

regions are covered with high probe densities. Thus the results

from the expression array spike-in experiments are not necessar-

ily directly relevant to tiling-array experiments. One recent study

compared the performance of array-based (ChIP-chip) and se-

quence-based (ChIP-PET) technologies on a real ChIP experiment

(Euskirchen et al. 2007). However, because this was an explor-

atory experiment, the list of absolute “true-positive” targets was

and remains unknown. Since the experiment (Euskirchen et al.

2007) was performed without a key, the sensitivity and specific-

ity of each technology had to be estimated retrospectively by

qPCR validation of targets predicted from each platform.

In our experiment, eight independent research groups at

locations worldwide each hybridized two different mixtures of

DNA to one of four tiling-array platforms and predicted genome

location and concentration of the spike-in sequences using a to-

tal of 13 different algorithms. Throughout the process, the re-

search groups were entirely blind to the contents of the spike-in

mixtures. Using the spike-in key, we analyzed several perfor-

mance parameters for each platform, algorithm, and amplifica-

tion method. While all commercial platforms performed well, we

found that each had unique performance characteristics. We ex-

amined the implications of these results in planning human ge-

nome-wide experiments, in which trade-offs between probe den-

sity and cost are important.

Results

Creation of the simulated ChIP sample

To create our simulated ChIP spike-in mixture, we first randomly

selected 100 cloned genomic DNA sequences (average length 497

bp) corresponding to predicted promoters in the human genome

(Cooper et al. 2006), individually purified them, and normalized

the concentrations of each preparation to 500 pg/µL (Fig. 1). To

create enrichment levels that ranged from 1.25-fold to 196-fold

relative to genomic DNA (Supplemental Tables 1 and 2), we

added the appropriate volume of these stock solutions to a com-

mercial human genomic DNA preparation (Methods; Supple-

mental Tables 1 and 2). The clones were validated by sequencing

and PCR both before and after dilution (Supplemental Methods).

We prepared one clone mixture to be directly labeled and hy-

bridized to arrays at the given concentration (“undiluted,” 77

ng/µL), and a different clone mixture that was diluted such that

amplification would be necessary before labeling and hybridiza-

tion (“diluted,” 3 ng/µL). The diluted mixture was created be-

cause all of the array platforms require microgram quantities of

DNA, and a typical ChIP experiment produces ∼50 ng of DNA,

making amplification essential for most ChIP-chip experiments.

Each amplification method is known to cause under- and over-

representation of certain sequences (Liu et al. 2003), which we

aimed to assess in this context.

After the mixtures were prepared, the clones and their rela-

tive concentrations were again validated by sequencing and

quantitative PCR (qPCR). Note that while the same spike-in

clones were present in the diluted and undiluted mixtures, they

were used at different enrichment levels in the two samples. In

each mixture, most of the selected enrichment levels were rep-

resented by 10 distinct clones. To challenge the sensitivity of the

array technologies, spike-in enrichment levels were biased to-

ward enrichment levels less than 10-fold. We also prepared two

samples containing genomic DNA at 77 ng/µL and 3 ng/µL, re-

spectively, without any spike-ins to serve as controls. We sheared

the DNA mixtures with a standard chromatin sonication proce-

dure (Johnson et al. 2007).

Amplification, labeling, and DNA microarray hybridization

of the simulated ChIP

We sent aliquots of the control DNA and the two mixtures to

participating groups, who labeled, amplified (the diluted

samples), and hybridized the mixtures to DNA microarrays cov-

ering the ENCODE regions (The ENCODE Project Consortium

2007) using their standard procedures (Fig. 1; Supplemental

Methods). None of the individuals involved in hybridizations or

predictions described below was aware of the identity of any of

the clones in the spike-in mixtures, the number of spike-in

clones, or the range of fold-enrichment values. For the samples

requiring amplification, we tested the effect of three different

amplification procedures: ligation-mediated PCR (LM-PCR), ran-

dom-priming PCR (RP), and whole-genome amplification (WGA)

(O’Geen et al. 2006; Supplemental Methods).

The groups labeled and hybridized the mixtures to one of

three different types of tiling arrays (NimbleGen, Affymetrix, or

Agilent). Each of the tiling array technologies covers the 1% of

the human genome selected for study by the ENCODE Consor-

Figure 1. Workflow for the multi-laboratory tiling array spike-in experi-
ment.
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tium (The ENCODE Project Consortium 2007). Because each ar-

ray technology is unique, the total number of nucleotides and

percentage of the ENCODE regions covered varies among the

platforms. However, we ensured that all of the regions corre-

sponding to the spike-in clones were well represented on all of

the platforms. Affymetrix ENCODE arrays contained short 25-

mer probes at a start-to-start tiling resolution of 22 bp (1.0R ar-

rays) or 7 bp (2.0R arrays) (http://www.affymetrix.com). The

probes were chosen from RepeatMasked (Jurka 2000) sequences

and synthesized on the arrays in situ using photolithographic

technology. Agilent ENCODE arrays consisted of isothermal 44–

60-mer probes that are unique in the human genome printed at

100-bp resolution using inkjet technology (http://www.agilent

.com). NimbleGen ENCODE arrays were comprised of unique

50-mers at 38-bp resolution, with the probes being synthesized in

situ using maskless array synthesizer technology (http://www.

nimblegen.com). We performed all hybridizations in at least du-

plicate, with a matched comparative hybridization using geno-

mic DNA where appropriate. Affymetrix does not use two-

channel comparative hybridization, thus spike-in and controls

were hybridized on separate arrays.

This study also initially included a PCR tiling-array platform

consisting of 22,180 consecutive ∼980-bp PCR products cover-

ing the ENCODE regions spotted on glass slides. However, the

PCR arrays performed poorly according to our choice of evalua-

tion metrics, apparently because of the low resolution of the

PCR array platform relative to the oligonucleotide platforms.

This prevented an equitable comparison of the results, and there-

fore the PCR array results are presented separately (Supplemental

Fig. 1).

Analysis algorithms

We used 13 different algorithms (Supplemental Methods) to

make predictions of enriched regions from the array measure-

ments. While most of the algorithms function only on a single

platform, we used two algorithms, MA2C (Song et al. 2007) and

Splitter (H. Shulha, Y. Fu, and Z. Weng; http://zlab.bu.edu/

splitter), for multiple platforms. To standardize the results across

algorithms, we required that each prediction consist of a rank-

ordered list of predicted spike-in regions, with each region rep-

resented by a single chromosome coordinate and a quantitative

value that corresponded to a predicted enrichment level. We

considered a region to be predicted correctly if the single pre-

dicted coordinate was within the spike-in region. Because the

total number of spike-ins was unknown to the predictors, each

predictor was also asked to estimate a cutoff score above which

the selected predictions were considered significant. We then

used the spike-in key to assess the performance of each microar-

ray platform, amplification method, and analysis algorithm

(Fig. 2).

Assessment of sensitivity and specificity using ROC-like curves

We used an ROC (receiver operating characteristic)-like curve

analysis to assess the sensitivity and specificity of the predictions

from the array measurements across all spike-in concentrations

(Fig. 2). All spike-in regions were considered true positives regard-

less of the degree of enrichment. All remaining regions repre-

sented on the array were considered true negatives. Standard

ROC curves are created by plotting the sensitivity (true-positive

rate; Y-axis) against 1-specificity (false-positive rate; X-axis) ob-

tained at every rank value of predicted sites. In our simulated

ChIP experiment and in many actual ChIP-chip experiments,

true negatives are represented by >99% of the arrayed probes.

This results in a large absolute number of false positives even at

extremely low false-positive rates (false positives/true negatives).

Therefore, to represent the performance of each experiment, on

the X-axis we plotted the (number of true positives)/(number of

spike-in clones), and on the Y-axis we plotted the (number of

false positives)/(number of spike-in clones). Presented in this

way, the value on either axis represents the same absolute num-

ber of true positives (Y-axis) or false positives (X-axis). Under

this framework, the best possible array prediction would yield

a graph that has a point in the upper left corner of the plot,

which would represent a case with correct prediction of all

true positives (100% sensitivity) without any false positives

(100% specificity). Our benchmark for this analysis is the area

under this ROC-like curve (AUC), which conceptually repre-

sents the average sensitivity over a range of specificities. We stan-

dardized the AUC values so that randomly selected sites would

have an AUC of nearly zero, and a perfect performance would

have an AUC of 1.

Microarray platform choice is not the primary determinant

of overall performance

For all three microarray platforms, the best combination of data

and analysis algorithm in the unamplified spike-in experiments

generally detected ∼50% of the spike-in clones at a 5% false dis-

covery ratio (number of false positives/total number of spike-in

clones; this corresponds to about a 10% false discovery rate) (Fig.

2). Most of the missed calls were for spike-ins at very low enrich-

ment values (see below) (Fig. 3). However, the AUC values

spanned a wide range, from 0.31 (NimbleGen data from Lab 4,

Tilescope algorithm) to 0.71 (NimbleGen data from Lab 2, TA-

MALg algorithm) (Fig. 2A). Among the platforms, the Splitter

algorithm was the best on Agilent tiling arrays (AUC = 0.64),

while MAT (Johnson et al. 2006) was best for Affymetrix

(AUC = 0.59). For the amplified spike-in experiments, the AUC

values also spanned a wide range, from 0.12 (RP amplifica-

tion method, Affymetrix arrays, TiMAT [David Nix; http://

sourceforge.net/projects/timat2] algorithm) to 0.57 (WGA ampli-

fication method, NimbleGen arrays, and TAMALg [Bieda et al.

2006] algorithm) (Fig. 2B). Through bootstrapping, we found the

confidence interval of AUC within each array/lab/algorithm

combination around �0.07 (Supplemental Methods), thus small

AUC differences may not reflect significant performance differ-

ences.

The wide range of AUC values was not limited to compari-

sons across microarray platforms. In fact, the variance of AUC

values between experiments performed within the same platform

is similar to, if not greater than, the variance observed between

the different platforms (Fig. 2C,D). This indicates that among

commonly used experimental and analysis procedures, microar-

ray platform choice is not the primary determinant of overall

performance. Differences within a platform could arise from a

variety of factors, most prominently by between-lab variability in

experimental procedures and differences in the analysis algo-

rithm used. For example, the hybridizations done in Lab 3 had a

lower AUC than the hybridizations done in Lab 7 using the same

Agilent microarray platform (Fig. 2A). There was at least one ma-

jor difference in the experimental protocol between these labs:

Lab 3 used Alexa dyes, whereas Lab 7 used Cyanine dyes for DNA

labeling and detection.

Genome Research 3
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All platforms were very sensitive at high enrichment levels;

at extremely low enrichment levels, long oligonucleotide

platforms are more sensitive

The enrichment levels produced by a typical ChIP experiment

vary, from less than twofold to several thousandfold. Therefore,

of particular interest is the sensitivity of arrays, amplification

methods, and analysis methods across

various ranges of fold enrichment. For

each array, amplification method, and

analysis algorithm combination, we cal-

culated the sensitivity at high (64–192-

fold), medium (sixfold to 10-fold), low

(threefold to fourfold), and ultra-low

(1.25–2-fold) enrichment ranges (Fig. 3).

Generally, as expected, sensitivity de-

creases with decreasing fold enrich-

ment. All technologies show a steep de-

crease in sensitivity at absolute enrich-

ments (as opposed to measured

enrichments) below threefold. Our

analysis demonstrated that at a false dis-

covery ratio of 5%, the NimbleGen plat-

form (with four replicates) is the most

sensitive platform at lower levels of en-

richment (less than threefold), followed

closely by Agilent (with two replicates).

The differences in sensitivity among the

platforms are not significant at levels of

enrichment higher than threefold.

These data are consistent with previous

studies that showed that longer oligonu-

cleotides are more sensitive than shorter

probes (Hughes et al. 2001).

Sensitivities were lower for ampli-

fied samples than for unamplified

samples regardless of the amplification

method across all spike-in enrichment

levels. Again, at lower-fold enrichments,

lower sensitivity was observed. Holding

the analysis method constant, Ligation

Mediated-PCR (LM-PCR) afforded the

least reduction in AUC from unampli-

fied to amplified sample on Agilent ar-

rays. On Affymetrix arrays, LM-PCR per-

formed significantly better than RP am-

plification. The WGA method was used

only on the NimbleGen platform, but

also produced results with very little re-

duction in AUC.

The simulated ChIP-chip sample

can be used to objectively assess cutoff

selection

When making predictions of enriched

regions based on ChIP-chip measure-

ments, the ideal significance threshold

or “cutoff” for selecting targets is gener-

ally unknown. This is because many

ChIP-chip experiments are discovery ef-

forts in which very few true binding

sites are known. Therefore, it is impos-

sible to calibrate the cutoff based on a truth model. Specificity

can be improved at the cost of sensitivity, and vice versa, but in

most cases a cutoff that optimally balances sensitivity and speci-

ficity produces the most useful outcome. In the context of ChIP-

chip experiments, false-positive and false-negative calls are

equally problematic. Because our simulated experiments have a

truth model, we can calibrate the optimal threshold for each of

Figure 2. Summary performance statistics for spike-in predictions. (A) Undiluted and Unamplified
samples. Raw data were provided by seven different labs, which are designated as follows: (1) M.
Brown; (2) P. Farnham and R. Green; (3) R. Myers; (4) B. Ren; (5) M. Snyder; (6) K. Struhl and T.
Gingeras; (7) S. McCuine. AUC (Area Under ROC-like Curve) values were calculated based on the
ranked list of spike-in calls provided by each group. The references for the algorithms are: (8) Johnson
et al. 2006; (9) D. Nix, http://sourceforge.net/projects/timat2; (10) Cawley et al. 2004; (11) H. Shulha,
Y. Fu, and Z. Weng, http://zlab.bu.edu/splitter; (12) Song et al. 2007; (13) Bieda et al. 2005; (14) Lucas
et al. 2007; (15) Zhang et al. 2007; (16) Scacheri et al. 2006); (17) Kim et al. 2005; (18) A. Karpikov
and M. Gerstein, unpubl. (B) The same as A, for Diluted and Amplified samples. (C) ROC-like plots for
Unamplified spike-in predictions. As an aid in interpretation, the dashed vertical line represents the
point at which a group’s number of false-positive predictions equal 5% of the total number of true-
positive spike-ins. At this point, all platforms correctly identified ∼50% of the true-positive spike-ins.
Error bars represent the two-sided 95% confidence interval of the average sensitivity at each false-
positive ratio (X-axis). (D) The same as C, for Amplified samples.
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the array experiments and peak-calling algorithms. We define

the optimal threshold as the point on the ROC-like curve that is

closest to the upper left corner, so long as the value on the X-axis

is �10%. This point equally penalizes false positives and false

negatives, and therefore minimizes false positives and false nega-

tives simultaneously. The distance in rank between empirical

threshold (submitted by each group) and the optimal threshold

along the ROC-like curve (hereafter called the E-O distance) is a

rational evaluation of the accuracy of threshold selection (Fig.

4A).

Estimates of the significance threshold are often too aggressive

or conservative, but do not vary with enrichment level

Overly aggressive threshold selection will produce a larger num-

ber of predicted peaks and many false positives, resulting in a

positive E–O distance. Conservative threshold selection will iden-

tify fewer false positives at the cost of more false negatives than

the optimal, resulting in a negative E–O distance. In the optimal

situation, the empirical threshold is exactly the same as the op-

timal threshold, so that the E–O distance will be 0. In our simu-

lated ChIP experiments, we found a broad range of E–O values,

from �59 (very conservative, Agilent arrays, LM-PCR amplified,

ADM-1 algorithm) to 74 (very aggressive, NimbleGen arrays,

LM-PCR amplified, Splitter algorithm) (Fig. 4B). However, several

analysis methods produced a cutoff very near the ideal threshold.

In particular, MAT always produced calls with a near-optimal

cutoff. We also examined the E–O distance metrics at various

spike-in enrichment levels (Supplemental Fig. 2). Across all

array platforms and peak prediction algorithms, E–O distances do

not generally vary significantly among known spike-in enrich-

ment levels. This suggests that it may not be necessary to

calibrate prediction thresholds based on presumed enrichment

levels in a ChIP experiment. Proper determination of E–O dis-

tance requires perfect knowledge of a truth model, thus spike-in

experiments such as ours will remain important for labs inter-

ested in calibrating E–O distance on their particular analysis al-

gorithm.

All platforms and most analysis methods accurately estimated

actual enrichment values

In ChIP-chip experiments, investigators are often interested in

the magnitude of the relative enrichment value for any particular

locus. These enrichment values may reflect an important aspect

of biology such as the affinity of a transcription factor to its

Figure 3. Enrichment-specific sensitivity. (A) Enrichment-specific sensitivity for Unamplified spike-in mixtures. The spike-in clones were divided into
four levels of enrichment: High fold-change (64–192); Medium fold-change (6–10); Low fold-change (3–4); and Ultra Low fold-change (1.25–2).
Enrichment-specific array prediction sensitivity (Y-axis) is defined as the percentage of correctly predicted enrichment-specific clones, with the total
number of false positives equal to 5% of the total number of spike-in clones. Letters under each bar refer to the experiment description in Figure 2A.
(B) The same as A, but for Amplified samples. Letters under each bar refer to the experiment description in Figure 2B.
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recognition sequences, or recruitment of multiple copies of one

transcription factor to clusters of binding sites. Therefore, we

evaluated the quantitative predictive power of different peak pre-

dictions from array measurements using our known quantitative

truth model (Fig. 5). For each array type and peak-calling algo-

rithm instance, we calculated Pearson’s correlation coefficient (r),

between the log2 of the provided enrichment scores and the log2

of the actual spike-in fold-change of the top 100 predicted sites

plus all the false-negative sites, and used this statistic as the final

quantitative measurement for each prediction. Among the un-

amplified samples, there was a broad range of r-values across the

various platforms and algorithms, ranging from 0.201 for the

ACME (Scacheri et al. 2006) algorithm on the NimbleGen plat-

form to 0.938 for Agilent arrays using the Splitter algorithm (Fig.

5A). Peak finding algorithms vary in their quantitative ability. A

single data set produced by Lab 2 using NimbleGen arrays was

analyzed with seven different peak detection algorithms, with

one resulting in an r-value of 0.201, while all the other six meth-

ods produced r-values of greater than 0.7. The ability of each

algorithm to quantitatively detect peaks in the array measure-

ments appears to be largely unaffected by amplification (Fig. 5B).

This demonstrates that each amplification method reproduces

the relative enrichment levels found in the original diluted mix-

ture with fidelity, although as shown previously, the sensitivity

and specificity after amplification are usually lower.

Simple tandem repeats and segmental duplications

are often associated with false calls

The ability of a tiling microarray to correctly identify a particular

sequence often depends on the nucleotide content of that se-

quence, probe coverage in low-complexity sequences, and poten-

tial for cross-hybridization (Okoniewski and Miller 2006; Royce

et al. 2007). Therefore, we used each list of predictions to exam-

ine the false positives, false negatives, and true positives with

relation to GC content, repeat content, and simple tandem re-

peat content (Benson 1999).

The spike-in mixtures are based on predicted promoters,

which are often biased toward high GC content. However, the

average GC content of our spike-in clones was actually lower

than the average across the entire genome (38% vs. 41%, respec-

tively). We found that across all platforms, peak detection algo-

rithms, and amplification methods, GC content does not vary

among false positives, false negatives, true positives, and the

spike-in key. Our spike-in clones harbor a significant number of

RepeatMasked regions (28% of total nucleotides across all

clones), which results in reduced probe coverage on most array

platforms. For one algorithm, MA2C, RepeatMasked sequences

accounted for a disproportionate number of false-positive predic-

tions on both the Agilent and NimbleGen platforms, and in am-

plified and unamplified experiments. The other algorithms and

platforms generally had fewer RepeatMasked sequences among

false positives than across all spike-in clones (Supplemental

Tables 3 and 4).

Simple tandem repeats (Benson 1999), which are often not

masked by RepeatMasker, were frequently associated with false

positives and false negatives (Supplemental Tables 3 and 4). For

many algorithms and labs, false-positive predictions on Nimble-

Gen arrays contained more than 10 times as many simple tan-

dem repeat nucleotides as the spike-in sample key. Also, particu-

larly in the amplified samples, false negatives on the NimbleGen

platform also had significantly higher simple tandem repeat con-

tent than the spike-in sample key. Therefore, the data indicate

that simple tandem repeat regions are associated with both false-

positive and false-negative calls, particularly in amplified

samples. It appears that a simple post-processing filter that re-

moves peak predictions rich with simple tandem repeats could

significantly reduce false positives.

Segmental duplications (Bailey et al. 2001) that are not Re-

peatMasked often have tiling-array coverage, but may frequently

appear as false positives under normal hybridization conditions

if present in sufficient copy number. We used BLAT (Kent 2002)

to query the RepeatMasked spike-in clone sequences against the

human genome and found that 12% of the clones in the undi-

Figure 4. Evaluation of cutoff selection used for spike-in prediction. (A) We define the optimal threshold as the point on the ROC-like curve that is
closest to the upper left corner, so long as the value on the X-axis �0.10. The distance in rank between empirical threshold (submitted by each group)
and the optimal threshold along the ROC-like curve (hereafter E–O distance) is a rational evaluation of the accuracy of threshold selection. Aggressive
and conservative thresholds will have positive and negative E–O distances, respectively. (B) The E–O distance for each set of experiments and predictions
performed on the Unamplified samples. Letters under each bar refer to the experiment description in Figure 2A. (C) The same as B for the Amplified
samples. Letters under each bar refer to the experiment description in Figure 2B.
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luted and diluted spike-in samples had more than one significant

BLAT match in the genome (Supplemental Tables 3 and 4). The

same analysis on the false-positive predictions for each array and

algorithm combination found that predictions on Agilent arrays

consistently contain fewer regions with multiple BLAT hits ge-

nome-wide than those on other platforms. Regardless of the

peak-calling algorithm or whether the samples were amplified,

false positives on the NimbleGen platform had consistently more

across-genome redundancy as indicated by BLAT than was pres-

ent in the spike-in mixtures. In one experiment, nearly 80% of

the false positives matched at least one other region in the ge-

nome (Supplemental Tables 3 and 4). The absolute number of

false positives in this experiment is small, thus eliminating se-

quences with this simple analysis could greatly improve the over-

all predictions.

Cost versus detection power

As ChIP-chip efforts scale to the full genome, the considerations

of sensitivity and specificity are complicated by the fact that

for many laboratories, oligonucleotide densities practical for

Figure 5. Analysis of quantitative predictive power. (A) Unamplified samples. Bar plots represent the Pearson’s correlation coefficient r, between the
log2 predicted score and the log2 actual spike-in fold-change of the top 100 predicted sites. Arrows below each bar graph point to scatterplots
representative of data from each microarray platform. In the scatterplots, true positives are shown as black dots, with the number of true positives
indicated above the dots in black type at each fold-change level. The number of false negatives is indicated in purple type below the points at each
fold-change level. The solid line represents the LOWESS smoothed curve for all true positives. False positives are shown as green triangles, and are on
the far left of the graph because of their actual log2 fold-change values of 0. (B) The same as A, but for Amplified samples.
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ENCODE-scale (∼30 Mb) arrays are not currently practical for

genome-wide (∼3 Gb) arrays. Different platforms offer various

depths of coverage of the genome, and often the coverage is

flexible even within a platform type. The cost of performing such

experiments varies widely (Fig. 6A). Given the variety of options,

we used our simulated ChIP-chip measurements to model the

prospective performance of arrays with lower probe densities

(Fig. 6B).

Our spike-in clones covered only ∼500 bp, but in a typical

ChIP experiment ∼1 kb of DNA surrounding a site of protein–

DNA interaction is enriched. To account for this in our estima-

tion of array performance with respect to probe density, we

evenly deleted probes in silico so that the absolute number of

probes covering the 500-bp spike-in region would be equivalent

to the number covering a 1-kb region normally enriched in a

ChIP experiment. For example, an ∼1-kb region enriched in a

hypothetical ChIP-chip experiment might span 10 NimbleGen

probes at the 100-bp whole-genome tiling resolution, whereas an

∼500-bp spike-in clone is covered by 13 NimbleGen probes on

the 38-bp resolution ENCODE array. In this scenario, to simulate

whole-genome tiling array performance, we deleted NimbleGen

probes (Methods) such that 10 probes would be left to cover each

500-bp region (∼50-bp resolution). For each platform, we used

the same probe deletion approach, and the best and the most

pragmatic current estimate for probe densities of whole-genome

tiling arrays available (Fig. 6A). Since some platforms allow cus-

tom designs that make any density and number of probes theo-

retically possible, we extended our analysis by gradually deleting

an increasing percentage of probes on the arrays so as to provide

performance estimates over a wide range of potential probe den-

sities (Fig. 6B). Lower-resolution arrays generally have a lower

AUC than their denser counterparts. Furthermore, replicates are

essential to increase the AUC for experiments with lower probe

densities, especially for Affymetrix, which requires at the very

least three replicates to generate an AUC greater than 0.4 at the

projected genome-wide tiling resolution. Researchers must cali-

brate their desired AUC values based on the number of arrays and

probe densities that are practical (Fig. 6B).

Next, we examined sensitivity at different probe densities as

a function of the true enrichment values (Fig. 6C). We again find

that arrays perform significantly better at higher enrichment lev-

els, but at lower probe densities, none of the platforms were able

to detect ultra-low enrichment. Particularly for the Low (three-

fold to fourfold) enrichment values, higher probe densities are

critical for acceptable levels of sensitivity. For example, on Af-

fymetrix arrays at the 0.5 AUC level, one would detect 100% of

the High (64–192-fold), 80% of the Medium (sixfold to 10-fold),

45% of the Low (threefold to fourfold), and almost no Ultra Low

(1.25–2-fold-change) targets. Therefore, investigators may wish

to characterize levels of enrichment in their ChIP samples to

determine the best array platforms to use and to calibrate the

optimal probe density and number of replicates to perform with-

out incurring unnecessary expenditure.

Finally, we examined the number of probes and cost re-

quired to achieve various AUC values across the three platforms.

Affymetrix offers the greatest probe density of any platform, al-

though it also requires far more probes than Agilent and Nimble-

Gen platforms to achieve similar AUC values (Fig. 6D). However,

the much lower cost per probe afforded by Affymetrix makes the

cost to achieve less than 0.5 AUC values lower overall, relative to

other platforms (Fig. 6E). If AUC levels greater than 0.5 are de-

sired, the cost of the three platforms becomes virtually identical.

Discussion

We have conducted the most comprehensive study to date of

tiling microarray platforms, DNA amplification protocols, and

data analysis algorithms, with respect to their effect on the re-

sults of ChIP-chip experiments.

Tiling arrays from all commercial companies tested worked

well at the 5% false discovery ratio (∼10% FDR) level, especially

using the optimal experimental protocol with the best analysis

algorithm. NimbleGen and Agilent arrays are more sensitive at

detecting regions with very low enrichment (1.25- to twofold),

likely owing to longer oligonucleotide probes and probe se-

quence optimization. The results of Affymetrix experiments ben-

efit more from replicates than other platforms. The variation be-

tween laboratories, protocols, and analysis methods within the

same platform is similar to, if not greater than, the variation

between the best results from different platforms. Clearly, even

investigators using the same platform must work toward better

standard operating procedures and develop quality control met-

rics to monitor quality of reagents and arrays.

We found that both the WGA and LM-PCR protocols pro-

duce results comparable to corresponding undiluted samples and

are very effective at detecting low-enrichment regions. Different

analysis algorithms are appropriate for different tiling-array plat-

forms. MAT seems to work best on Affymetrix tiling arrays. Split-

ter and Agilent’s internal WA or ADM-1 algorithms are the best

for Agilent tiling arrays. For NimbleGen tiling arrays, TAMALg,

Splitter, and NimbleGen’s internal permutation algorithms work

better for the unamplified samples, and TAMALg, MA2C, and

Tilescope (Zhang et al. 2007) work better for the amplified

samples.

We note that the conclusions we report are supported by

many aspects of the data in aggregate, rather than being depen-

dent on a specific property of any individual experiment. There-

fore, although factors such as the inclusion or exclusion of indi-

vidual investigators, the particular batches of reagents or arrays

used, or sets of algorithm parameters might have slightly

changed the results of individual experiments reported here, the

overall conclusion of the evaluation is robust with respect to

these variables. Nonetheless, as with any study, there are short-

comings here. For example, NimbleGen seems to be the relatively

more successful commercial platform in this study, but it is pos-

sible that this is a result of more experiments and analyses being

performed with this platform. In the same way that between two

people randomly drawing numbers from the same normal distri-

bution N(µ, �
2), a person drawing 10 numbers is more likely to

get the highest number than a person drawing only five, the

platform with the most replicates, laboratories, and algorithms

tested has an advantage among closely matched competitors.

Another note of caution concerns our analysis of whole-genome

array performance. All commercial tiling-array companies have

proprietary algorithms for probe selection based on the hybrid-

ization quality of oligonucleotide probes. However, the effective-

ness of these algorithms diminishes when probes are tiled at very

high resolution, since there are simply not enough biochemically

optimal probes to choose from at such resolution. Therefore,

probes on the ENCODE arrays might be less optimal than those

in the whole-genome arrays (which are at a lower tiling resolu-

tion) from the same platform. As a result, our simulated probe

deletion analysis might underestimate the actual whole-genome

array performance, especially for Affymetrix tiling arrays. Finally,

the spike-in DNA used in this study has a different fragment
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Figure 6. Cost versus detection power: simulation of whole-genome experiments. (A) Summary statistics for the simulation of commercial whole-
genome tiling array experiments. (B) Array performance as a function of replicate number and tiling resolution (see Methods). AUC values are indicated
by color (key at bottom). Black numbers on the top indicate the percentage of probes remaining on the ENCODE array in the simulation. The red
coordinates at the bottom indicate the corresponding array resolution, assuming a 1-kb region of ChIP enrichment. The currently available (August 2007)
commercial whole-genome tiling array resolution is underlined. (C) Array sensitivity according to enrichment level. As in Figure 3, the spike-in clones
were divided into four levels of enrichment: High (64–192 fold); Medium (6–10 fold); Low (3–4 fold); and Ultra Low (1.25–2 fold). Sensitivity at each
enrichment level is defined as the percentage of correctly predicted clones, with the total number of false positives equal to 5% of the total number of
spike-in clones (color key at bottom). The array platforms are indicated along the X-axis. (D). Using our deletion analysis and current (August 2007) list
prices for each commercial array technology, we calculated the number of probes and dollar amount required to produce a given AUC value (left panel).
The minimum number of probes required to achieve a given AUC was determined by using the information in panel B for each platform, assuming a
1.5-Gb nonrepetitive genome. For Affymetrix, a single-channel platform, the need to perform separate ChIP and control/input hybridizations was
accounted for in calculating probe number. In the righthand panel, the minimum cost required to achieve a given AUC value is plotted.
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length distribution than a real ChIP-chip sample. Real ChIP-

enriched regions often have peak-shaped profiles instead of uni-

form enrichment across the entire region, thus algorithms mod-

eling peak shapes may perform better with real ChIP-chip data

than the spike-in signal. Nonetheless, the spike-in strategy we

used provides the most feasible benchmark for the factors we are

evaluating.

In this simulated ChIP-chip experiment, we have found that

commercial tiling arrays perform remarkably well even at rela-

tively low levels of enrichment. We also found that the cost to

achieve similar sensitivity between the commercial tiling-array

platforms is comparable. Tiling microarrays from all commercial

companies continue to get less expensive and to deliver continu-

ally higher probe densities. Simultaneously, new detection tech-

nologies such as high-throughput sequencing are emerging

(Johnson et al. 2007). To date, there has been no systematic com-

parison of ChIP-chip and ChIP-seq, or ChIP-seq performed on

different sequencing platforms. Our spike-in library and data set

might be used for such a purpose, and we hope that this study

and our spike-in library will encourage continued rigorous com-

petition and comparison between all of the genomic detection

platforms.

Methods

Validation of the simulated ChIP sample

The simulated ChIP sample was validated in three ways: (1) se-

quencing of the original clone preps before dilution, (2) sequenc-

ing of the diluted clones with PCR preamplification using uni-

versal primers, and (3) inserting specific PCR of the diluted

clones, followed by agarose gel electrophoresis. Our experimental

validation revealed no anomalies in the spike-in mixtures, and

our analysis of the array predictions adds extra evidence that the

libraries were mixed at the proper stoichiometries and that the

clone identities were correct.

Simulated ChIP amplification, array hybridization, and data

analysis

Detailed descriptions of each experimental procedure and analy-

sis algorithm are described in the Supplemental material.

Probe and replicate deletion simulation

We evenly and gradually deleted probes in silico at 2% intervals,

such that at each step there are 100%, 98%, 96%, . . . , 2% of

probes left on the arrays. At each step, we repeated this probe

deletion five times with randomly selected starting positions to

form five different array designs. Shown in this study is the av-

erage area under the ROC curve of all replicate combinations on

all five array designs. For example, the Affymetrix analysis was

generated from 15,750 different array predictions, based on 63

possible replicate combinations derived from the six available

experiments (from one to six replicates: 6 + 15 + 20 + 15 + 6 + 1 = 63),

five different array designs, and 50 different probe deletion

steps.

Sequence analysis of array predictions

For each group of array predictions, we binned the predicted

regions into false negatives, false positives, and true positives. For

false positives, 200 bp of reference human sequence was added 5�

and 3� of the predicted location. We then calculated the percent

GC, the percent RepeatMasked, and the percent simple tandem

repeats across the sequences in each group based on UCSC ge-

nome annotations (http://genome.ucsc.edu). For the BLAT (Kent

2002) analysis, we used a cutoff score >30 to find similar se-

quences in the genome for each clone.
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