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Abstract In this article we describe Professor, a new pro-

gram for tuning model parameters of Monte Carlo event

generators to experimental data by parameterising the per-

bin generator response to parameter variations and numeri-

cally optimising the parameterised behaviour. Simulated ex-

perimental analysis data is obtained using the Rivet analysis

toolkit. This paper presents the Professor procedure and im-

plementation, illustrated with the application of the method

to tunes of the Pythia 6 event generator to data from the

LEP/SLD and Tevatron experiments. These tunes are sub-

stantial improvements on existing standard choices, and are

recommended as base tunes for LHC experiments, to be

themselves systematically improved upon when early LHC

data is available.

1 Introduction

It is an inevitable consequence of the physics approxima-

tions in Monte Carlo event generators that there will be a

number of relatively free parameters which must be adjusted

if the generator is to describe experimental data. Such para-

meters may be found in most aspects of generator codes,

from the perturbative parton cascade to the non-perturbative

hadronisation models, and on the boundaries between such

components. Since non-perturbative physics models are by

necessity deeply phenomenological, they typically account

for the majority of generator parameters: typical hadroni-

sation models require parameters to describe e.g. the kine-

matic distribution of transverse momentum (p⊥) in hadron

fragmentation, baryon/meson ratios, strangeness and {η,η′}

suppression, and distribution of orbital angular momentum

[1–4]. The result is a proliferation of parameters, of which

between O(10–30) are of particular importance for collider

physics simulations.
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Apart from rough arguments about their typical scale,

these parameters are freely-floating: they must be matched

to experimental data for the generator to perform well.

Even parameters which appear fixed by experiment, such as

ΛQCD, should be treated in generator tuning as having some

degree of flexibility since the generator (unlike nature) can

only apply them in a fixed-order scheme, albeit augmented

with “resummation” of radiation in divergent (particularly

soft and collinear) regions of emission phase space. It is also

important that the experimental data to which parameters are

tuned covers a wide range of physics, to ensure that in fitting

one distribution well, others do not suffer unduly. Perform-

ing such a tune manually is slow, does not scale well, and

cannot be easily adapted to incorporate new results or gener-

ator models. In addition, the results are always sub-optimal:

a truly good tuning of a generator, which can highlight de-

ficiencies in the physics model as well as provide improved

simulations for experimentalists, requires a more systematic

approach.

In this paper, we describe the Professor1 tuning system,

which eliminates the problems with manual and brute-force

tunings by parameterising a generator’s response to para-

meter shifts on a bin-by-bin basis, a technique introduced

by TASSO and later used by ALEPH and DELPHI [5–10].

This parameterisation, unlike a brute-force method, is then

amenable to numerical minimisation within a timescale

short enough to make explorations of tuning criteria pos-

sible. Adding new data or generator models to the system

is also relatively simple. We then apply the Professor sys-

tem to optimisations of the Pythia 6 event generator against

e+e− event shape and flavour spectrum data from LEP 1 and

SLD, and to minimum bias (MB) and underlying event (UE)

data from CDF. The resulting tunes (one for each of the two

Pythia 6 parton shower/multiple parton interaction (MPI)

1Originally derived from the construction “PROcedure For EStimating
Systematic errORs”, but aesthetics compel us otherwise.
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models) are substantial improvements on existing tunes, and

demonstrate the Professor system as an important tool for

LHC event simulation both before data taking, and in re-

sponse to early measurements in the new energy regime.

The Professor system is based on simulated experimental

analysis data, which is conveniently provided by the Rivet

analysis library [11]. As Professor and Rivet development

have been closely linked, we first briefly summarise Rivet;

however, Professor is not limited to tuning on data from

Rivet—any source of comparable histogram data is a valid

input.

2 Rivet

The Rivet library is a successor to the HERA-oriented HZ-

Tool generator analysis library [12]. Like its predecessor,

Rivet is both a library of experimental analyses and of tools

for calculating physical observables from an event record. It

is written in object-oriented C++, and in particular empha-

sises the separation of analysis from generator steering: the

analyses are performed on HepMC [13] event record objects

with no knowledge of or ability to influence the generator

behaviour. The reference data files for the O(40) included

analyses are bundled with the package and used to synchro-

nise the Monte Carlo simulation (MC) and reference data

binnings. For efficiency, observable calculators cache their

results between analyses for each event, ensuring that there

are no redundant expensive computations. Standard tool li-

braries from inside and outside high energy physics are used

where prudent; for example, almost all jet algorithms are

used via the FastJet [14] package.

Unlike HZTool, the emphasis of Rivet’s analysis collec-

tion is currently focused on e+e− and hadron collider ob-

servables, with only a few analyses ported from the HZ-

Tool collection. It is not expected that many more HERA

routines will be implemented in Rivet: upgrades in HZ-

Tool to handle HepMC input will eventually make the two

packages complementary for comprehensive physics stud-

ies.

For the purposes of the tuning and validation studies pre-

sented here, we used the AGILe interface library to pass pa-

rameters to generators (primarily Pythia 6, as will be seen)

and to populate HepMC events from the HEPEVT common

block. AGILe provides programmatic and command-line in-

terfaces to several generators, including the Fortran Her-

wig 6 [2] and Pythia 6 [1] shower/hadronisation codes, op-

tionally combined with the AlpGen multi-jet merging gen-

erator [15], the Charybdis black hole generator [16], and

the Jimmy hard underlying event generator [17] for Her-

wig.

3 Tuning methods

While Rivet provides a system for comparing a given gen-

erator tuning to a wide range of experimental data, it has

no intrinsic mechanism for improving the quality of that

tune. Historically, the main methods of generator tuning

have been the purely manual “by eye” method, and a brute-

force scan of the parameter space.

Manual tunes Tuning any complex system by eye is evi-

dently non-optimal, and would barely be worth mentioning

were it not the most widely used method until now! Man-

ual methods require significant insight into the algorithmic

response to parameter choices for even semi-reasonable re-

sults, and are intrinsically slow since the procedure typically

involves a lot of iterations of parameter choices—even with

unhappily low statistics, the turn-around time of a set of runs

is a day or more. The scaling is also poor: few humans can

cope with manual optimisation of more than five or so pa-

rameters, guided by a similar number of comparison plots.

The responsiveness to new data or models is similarly defi-

cient, since tuning a different generator essentially involves

starting from scratch and, having done a tune once, few peo-

ple are enthusiastic to repeat the exercise! The prevalence

of manual tunings, despite their myriad shortcomings, is a

major motivator for the development of Professor.

Brute force tunes This label includes any direct approach

which involves running generators very many times.

Naïvely, one can think about dividing a parameter space up

into a grid and then sampling on the grid line intersections.

It will be readily seen that such an approach does not scale:

a comprehensive scan of 5 parameters, with 10 divisions in

each parameter will require 100,000 generator runs, each

perhaps making 10 million events—even then, the sampling

granularity will be insufficient for meaningful results. Ran-

domly sampling the space, looking for serendipitous best-χ2

values has more merit, but is similarly bedevilled by scaling

problems and a lack of satisfying ways to either system-

atically improve the “best” point, or to know whether the

minimum that was stumbled into is local or global.

Finally, the approach of putting a generator code into

a Markov Chain Monte Carlo (MCMC) optimiser such as

Minuit may be summarily dismissed. While the approaches

above have the benefit of being parallelisable, MCMC is an

intrinsically serial method: one must wait for the nth “func-

tion” evaluation to decide where the (n+ 1)th will be. Since

generator runs take days, and even the burn-in periods of

MCMC samplers may require thousands of samples, this ap-

proach is clearly unrealistic.

Parameterisation-based tunes The final approach, which

has a lengthy history [5–10], is to parameterise the genera-

tor behaviour. Since the fit function itself is expected to be
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complicated and not readily parameterisable, there is a layer

of indirection: the polynomial is actually fitted to the gener-

ator response, MCb , of each observable bin b to the changes

in the P -element parameter vector p = (p1, . . . , pP ).

Having determined, via means yet undetailed, a good pa-

rameterisation of the generator response to the steering pa-

rameters for each observable bin, it remains to construct a

goodness of fit (GoF) function and minimise it. The result

is a predicted parameter vector, ptune, which should (mod-

ulo checks of the technique’s robustness) closely resemble

the best description of the tune data that the generator can

provide.

In parameterisation-based tuning, the run time is domi-

nated by the time taken to run the generator and generate

the reference data points. Assuming that sufficient CPU is

available to run several hundred MC jobs in parallel, this

is at most a few days; the time taken to convert this to a

predicted set of best parameters is a few minutes (and can

again be parallelised for different configurations as a safety

check). Presuming the details elided above to be tractable,

this technique offers the possibility of systematic tuning on a

timescale compatible with rapid and exploratory re-tunings,

ideal for responding to early LHC measurements.

Parameterisation-based optimisation is the approach

taken by the Professor system. The following sections doc-

ument the details of the Professor method and implementa-

tion, and tests of its robustness.

4 The professor method

To summarise, the rough formalism of systematic generator

tuning is to define a goodness of fit (GoF) function between

the generated and reference data, and then to minimise that

function. The intrinsic problem is that the true fit function

will certainly not be analytic and any iterative approach to

minimisation will be doomed by the expense of evaluating

the fit function at a new parameter-space point. What we re-

quire is an optimisation method designed for very computa-

tionally expensive functions whose form is not known a pri-

ori. Parameterisation-based optimisation meets these criteria

by using numerical methods to mimic the behaviour of an

expensive function by using inexpensive ones, and by being

amenable to parallelisation in the critical stages. The details

to be described in this section are: the choice of general pa-

rameterisation function, the method for fitting the general

function to the specific response of a MC event generator,

the goodness of fit function to be used, and the method of

maximising its quality.

4.1 The parameterised response function

As already mentioned, the function to be parameterised is

not the overall goodness of fit function between the simu-

lation and the reference data, but the large set of observ-

able bin values for every bin, b, in every distribution. Ac-

cordingly, the output of the first stage of Professor is a set

of functions f (b)(p), which model the true MC response,

MCb , of each observable bin to changes in the P -element

parameter vector, p.

This ensemble of parameterisations is useful in two ways:

first (and most importantly), it provides safety against devi-

ations from the form of the parameterising function, since

such deviations are not likely to be correlated between a

majority of the bins in normal regions of parameter space.

This incoherence of failure to describe the bin-wise gener-

ator response ensures that the aggregated measure of gen-

erator modelling is faithful to the true behaviour. Second,

by breaking the problem down to a fine-grained level, it is

possible to select particular regions of distributions as more

interesting than the rest—say, the peak of the Zp⊥ spectrum

or the thrust distribution, which are particularly sensitive to

QCD modelling.

To account for lowest-order parameter correlations, a

polynomial of at least second-order is used as the basis for

bin parameterisation:

MCb(p) ≈ f (b)(p) = α
(b)
0 +

∑

i

β
(b)
i p′

i +
∑

i≤j

γ
(b)
ij p′

ip
′
j , (1)

where the shifted parameter vector p′ ≡ p − p0. Here p0

is a reference point in the parameter hypercube, formally

arbitrary but chosen to be the centre point of the hypercube

to minimise numerical precision issues. The choice of p0 af-

fects the coefficients, but not the shape of the fitted function;

clearly α
(b)
0 = f (b)(p0), with the other coefficients express-

ing the deviations from that value.

The number of parameters and the order of the polyno-

mial determine the number of coefficients to be determined.

For a second order polynomial in P parameters, the number

of coefficients is

N
(P )
2 = 1 + P + P(P + 1)/2, (2)

since only the independent components of the matrix term

γ
(b)
ij are to be counted. For a general polynomial of order n,

the number of coefficients is

N (P )
n = 1 +

n
∑

i=1

1

i!

i−1
∏

j=0

(P + j). (3)

How the number of parameters scales with P for 2nd and

3rd order polynomials is tabulated in Table 1.

A useful feature of using a polynomial for the fit func-

tion, other than its general-purpose robustness, is that the

actual choice of p0 is irrelevant: a shift in the reference point

simply redefines the {α,β, γ } coefficients, but the function

remains the same. Hence we are free to choose a numer-

ically stable value within each parameter’s chosen range
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Table 1 Scaling of number of polynomial coefficients N
(P )
n with di-

mensionality (number of parameters) P , for polynomials of second or-
der (n = 2) and third order (n = 3)

Num params, P N
(P )
2 (2nd order) N

(P )
3 (3rd order)

1 3 4

2 6 10

4 15 35

6 28 84

8 45 165

10 66 286

without loss of generality: we use the centre of the hyper-

cube [pmin,pmax], as will be defined in the next section.

4.2 Fitting the response function

Given a general polynomial, we must now determine the co-

efficients α,β, γ for each bin so as to best mimic the true

generator behaviour. This could be done by a Monte Carlo

numerical minimisation method, but there would be a dan-

ger of finding sub-optimal local minima, and automatically

determining convergence is a potential source of problems.

Fortunately, this problem can be cast in such a way that an

efficient and deterministic method can be applied.

One deterministic way to determine the polynomial co-

efficients would be to run the generator at as many para-

meter points, N , as there are coefficients to be determined.

A square N × N matrix can then be constructed, mapping

the appropriate combinations of parameters on to the co-

efficients to be determined; a normal matrix inversion can

then be used to solve the system of simultaneous equations

and thus determine the coefficients. Since there is no rea-

son for the matrix to be singular, this method will always

give an “exact” fit of the polynomial to the generator behav-

iour. However, this suggestion fails to acknowledge the true

complexity of the generator response: we have engineered

the exact fit by restricting the number of samples on which

our interpolation is based, and it is safe to assume that tak-

ing a larger number of samples would show deviations from

what a polynomial can describe, both because of intrinsic

complexity in the true response function and because of the

statistical sampling error that comes from running the gen-

erator for a finite number of events. What we would like is

to find a set of coefficients (for each bin) which average out

these effects and are a least-squares best fit to the oversam-

pled generator points. As it happens, there is a generalisation

of matrix inversion to non-square matrices—the pseudoin-

verse [18]—with exactly this property.

As in our matrix inversion example, the set of “an-

chor” points for each bin are determined by randomly sam-

pling the generator from N parameter space points in a P -

dimensional parameter hypercube [pmin,pmax] defined by

the user. This definition requires physics input—each pa-

rameter pi should have its upper and lower sampling lim-

its pmin,max chosen so as to encompass all reasonable val-

ues. In practice, we find that generosity in this definition is

sensible, as Professor may suggest tunes which lie outside

conservatively chosen ranges, forcing a repeat of the proce-

dure. On the other hand, the parameter range should not be

too large, to keep the volume of the parameter space small

and to make sure that the parabolic approximation gives a

good fit to the true Monte Carlo response. Each sampled

point may actually consist of many (parallel) generator runs,

which are then merged into a single collection of simulation

histograms. The simultaneous equations solution described

above is possible if the number of sampled points is the same

as the number of coefficients between the P parameters, i.e.

N = N
(P )
min = N

(P )
n . The more robust pseudoinverse method

applies when N > N
(P )
min : we prefer to oversample by at least

a factor of 2.

The numerical implementation of the pseudoinverse uses

a standard singular value decomposition (SVD) [19]. First,

the polynomial is cast into the form of a scalar product,

MCb(p) ≈ f (b)(p) =

N
(P )
min∑

i=1

c
(b)
i p̃i, (4)

where the c
(b)
i coefficients are the independent components

of α
(b)
0 , β

(b)
i , and γ

(b)
ij in equation (1), and p̃ is an extended

parameter vector containing all the corresponding combi-

nations of the parameter vector components. Given sets of

sampled points {p} and generator values {MC(b)}, the above

implies the matrix equation,

v(b) = P̃c(b), (5)

where v(b) contains the generated bin values at the sample

points, and the rows of P̃ are composed of extended parame-

ter vectors like p̃.

For a two parameter case with parameters x and y, the

above may be explicitly written as

⎛

⎜
⎜
⎜
⎝

v1

v2

...

vN

⎞

⎟
⎟
⎟
⎠

︸ ︷︷ ︸

v (values)

=

⎛

⎜
⎜
⎜
⎝

1 x1 y1 x2
1 x1y1 y2

1

1 x2 y2 x2
2 x2y2 y2

2
...

1 xN yN x2
N xNyN y2

N

⎞

⎟
⎟
⎟
⎠

︸ ︷︷ ︸

P̃ (sampled parameter sets)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

α0

βx

βy

γxx

γxy

γyy

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

︸ ︷︷ ︸

c (coeffs)

, (6)

where the numerical subscripts indicate the N generator

runs. Note that the columns of P̃ include all N
(2)
min = 6 combi-

nations of parameters in the polynomial, and that P̃ is square

(i.e. minimally pseudoinvertible) when N = N
(P )
min .
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The c
(b)
i can then be determined by pseudoinversion of P̃,

c(b) = Ĩ[P̃]v(b), (7)

where Ĩ is the pseudoinverse operator.

Except for demanding more sample points than can be

computed in reasonable time on the available batching fa-

cilities, the order of the polynomial has no influence on the

functioning of the parameterisation. Hence the method may

be extended in accuracy of the fitting function as required.

In practice, a 2nd order polynomial suffices for almost every

MC generator distribution studied to date, i.e. there is no

correlated failure of the fitted description across a majority

of bins in the vicinity of best generator behaviour.

It is worth justifying a little more our apparent obsession

with polynomial parameterisations, other than their general

ubiquity and robustness. The key point is that a translational

free parameter like p0 is hard to express as part of the lin-

ear combination of parameters required by this inversion

method; the invariance of the fitted polynomial function un-

der shifts in the reference point is one simple way to neatly

avoid this problem.

4.3 Goodness of fit function

We choose a heuristic χ2 function, but other goodness of fit

(GoF) measures could certainly be used instead. Since the

relative importance of various distributions in the observ-

able set is a subjective thing—for example, given 20 event

shape distributions and one charged multiplicity, it would

certainly be sensible to weight up the multiplicity by a fac-

tor of at least 10 or so to maintain its relevance to the GoF

measure—we include per-observable weights, wO for each

observable O, in our χ2 definition:

χ2(p) =
∑

O

wO

∑

b∈O

(f (b)(p) − Rb)
2

∆2
b

, (8)

where Rb is the reference value for bin b, and the error ∆b

is the total uncertainty of the reference for bin b. In practice

we attempt to generate sufficient events at each sampled pa-

rameter point that the statistical MC error is much smaller

than the reference error for all bins. For future tuning stud-

ies on C++ MC generators, we will include a “theory” er-

ror corresponding to the degree of disbelief (≈10%) that the

generator authors feel is appropriate to avoid any single ob-

servable biasing the GoF heavily (overtuning). In computing

the number of degrees of freedom, the weights again enter:

Ndf =
∑

O

wO

∣
∣{b ∈ O}

∣
∣. (9)

It should be noted that there is unavoidable subjectiv-

ity in the choice of these weights, and a choice of equal

weights is no more sensible than a choice of uniform pri-

ors in a Bayesian analysis. Physics input is necessary in

both choosing the admixture of observable weights accord-

ing to the criteria of the generator audience—for example,

a b-physics experiment may prioritise distributions that a

general-purpose detector collaboration would have little in-

terest in—and to ensure that the end result is not overly sen-

sitive to the choice of weights.

4.4 Maximising the total GoF

The final stage of our procedure is to minimise the para-

meterised χ2 function. It is tempting to think that there is

scope for an analytic global minimisation at this order of

polynomial, but not enough Hessian matrix elements may

be calculated to constrain all the parameters, and hence we

must finally resort to a numerical minimisation. This is the

numerically weakest point in the method, since the weighted

quadratic sum of hundreds of polynomials is a very complex

function and there is scope for getting stuck in a non-global

minimum. Hence the choice of minimiser is important.

The output from the minimisation is a vector of parame-

ter values which, if the parameterisation and minimisation

stages are faithful, should be the optimal tune according to

the (subjective) criterion defined by the choice of observable

weights.

4.5 Final checks

On obtaining a predicted best tune point from Professor, it

is prudent to check the result by running the generator again

at the predicted tune: this can be done directly with Rivet.

It is also useful to verify that the generator behaves in the

vicinity of the predicted point as predicted by the parameter-

isation by scanning the generator along a line which passes

through the “best” point and comparing to the Professor pre-

diction of how the χ2 will change. This also enables explicit

comparisons of default/alternative tunes to Professor’s pre-

dictions, by making the scan line intersect both points and

plotting the slice of the GoF function along the line. Such a

line scan can be seen in Fig. 1.

A final important point of procedure remains: so far we

have spoken entirely of the procedure as a single set of runs

entering the parameterisation and minimisation procedure.

However, this is rather dangerous: it may be that we are pick-

ing an inappropriate set of runs, or that a subset of points are

skewing the fit and minimisation away from the true behav-

iour. Even if this is not the case, the lack of any alternative to

which we can compare means that we have little knowledge

of the procedure’s systematic uncertainties. Hence, we have

also found it to be useful to oversample by a considerable

fraction, N ≫ N
(P )
min , and then to perform the parameteri-

sation and χ2 minimisation for a large number of distinct
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Fig. 1 The results of an example line-scan in χ2/Ndf through
nine-dimensional (flavour-) parameter space, demonstrating the agree-
ment between Professor’s predicted values (lines, interpolation versus
data) and the true values (white dots, MC-scan versus data). Shown are
100 interpolations that use 299 out of 399 available runs (grey band)
and the interpolation that uses all available runs which fits in perfectly
(black line). The histogram displays the distribution of minimisation
results derived from these interpolations. The scan line is chosen such
that it pierces a hypercube that is symmetric around one of the pre-
dicted minima, such that in the linear line-scan parameter p̃, the pre-
dicted minimum is at p̃ = 0.5, and the hypercube boundaries are at
p̃ = {0,1}. Its volume is about 0.03% of the total volume of the pa-
rameter sampling hypercube, illustrating the futility of attacking this
optimisation problem via a grid scan of the space

run-combinations, Ntune, where N
(P )
min ≪ Ntune ≤ N . The set

of different predicted responses and tunes from all the dif-

ferent Ntune-run combinations provides a systematic control.

It is important that the tuning run combinations need a sig-

nificant degree of independence from one another if their

indication of systematics is to be believed, i.e. Ntune ≪ N

for most of the tune run-combinations. In practice, using

Ntune = N typically gives good results, but not necessarily

the best possible.

5 Implementation

In this section we describe the implementation of the Pro-

fessor method as a class library and a set of programs which

use it. The majority of the code is written in Python, but

makes use of the NumPy numerical library [20] and the

SciPy scientific library [21], in which most of the core func-

tions are implemented in CPU-efficient C code. Addition-

ally, the SciPy “weave” functionality can be used to auto-

matically generate C code which is compiled and cached

for later use automatically at run-time, with a correspond-

ing speed-up factor of ∼5. The Professor user interface is

a set of distinct Python scripts which produce tunes based

on input data, explore line scans in the parameter space, and

so on. Many parts of the process are designed to be paral-

lelisable on a batch system, and a standard templating sys-

tem [22] is used to build batch scripts for this purpose.

5.1 Data generation

Having decided what parameters to tune to what observ-

ables, the random parameter points need to be sampled.

This is done using the prof-scanparams script which only

needs a file of parameter ranges and the desired number of

parameter points as input. We are using Python’s uniform

random generator random.uniform to independently sam-

ple values in all dimensions of a hypercube defined by the in-

put file. To deal with parameters whose effect is non-linear,

it is recommended that the parameters themselves be invert-

ibly transformed to a more linear form, rather than sampling

the space non-uniformly: this can be easily added by modi-

fying the script, but is not an intrinsic feature.

The default output format is a list of simple (name, value)

pairs, suitable for use with the AGILe generator interfaces,

but more complex templating can also be used for native

use with generators, such as Herwig++, which have a more

complex configuration system.

The number of runs must be at least N
(P )
min ,2 but we typi-

cally use several times this number, so that the parameterised

function is not artificially anchored to the sampled values but

may float away from them to exploit the least-squares prop-

erty of the pseudoinverse. This is important independently

of the considerations about considering many independent

run combinations—this higher-level bet hedging is less than

useful if all of the available combinations are intrinsically

untrustworthy.

It is worth noting that despite the scaling of N
(P )
min , the

volume of the hypercube still scales exponentially with P

and that the number of samples had better keep approximate

pace with this scaling, especially in wide scans where many

different generator behaviour regimes may be encountered.

The power law scaling of the polynomial does not obviate

the responsibility to ensure that the fitting method sees a rep-

resentative sample of the space to be fitted. It is also wise to

ensure that the sample ranges are chosen so as to include the

default tune, at least in the first phase of a tuning: hopefully

this would automatically be the case, since a first set of sam-

pling ranges should at least include all “reasonable” values

of each parameter.

The job of running the generator and Rivet (and of merg-

ing the output histograms from different kinematic regions,

if required) is mainly left up to the user. This is because

2To clarify, P here is the number of independent parameters to be sam-
pled, i.e. the dimensionality of the sample space. The constrained pa-
rameters do not contribute to this parameter count.
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different system configurations, the variety of batching sys-

tems, the choice of contributing Rivet analyses, etc. effec-

tively mandate some user customisation of run scripts. At-

tempting to automate this process would likely lead to dis-

astrously algorithmic tuning efforts, but we note that our

choice of observables for Pythia 6, as described in Sect. 6,

is as good a template as any currently available.

For most of the Professor procedure, the analysis data is

defined by a directory structure containing a reference di-

rectory and a set of run directories, each of which contains

histogram files from Rivet. The same structure may be con-

veniently used to store output from different tunes. It is also

possible for analysis programs other than Rivet to provide

input for Professor tuning, provided that their data format is

in a format which can be used by Professor, or can be con-

verted to such a format. The currently most-used data format

is the “AIDA” XML format, as this is the main Rivet output

format. When, as planned, Rivet’s data format is upgraded

to use the simpler “YODA” data files, Professor will also

support this format. Yet more formats can also be supported

in response to demand.

Loading of the data files is currently “eager”, i.e. all data

files are read in and stored in memory during processing. For

large data sets, e.g. ∼1000 sampled parameter points with

distributions amounting to ∼104 bins per point, this pro-

duces a lead time of ∼1 minute on a typical workstation and

large memory occupancy. For larger input sets, where this

lead time may be less tolerable, a “lazy” loading and pro-

active garbage collection on unused bins will be explored.

5.2 Tuning

The main tuning stage is accessed via the prof-tune pro-

gram. This performs the combination of parameterisation

and optimisation against reference data for each of a set of

MC run combinations, based on the runs found in the input

directory. The run combinations can either be uniquely and

randomly generated at run-time by prof-tune, or can be

supplied via a plain text file in which each line is a white-

space separated list of run names. This latter method is most

useful for parallelising the tuning for a large number of run

combinations.

5.2.1 Parameterisation and fitting

Professor currently supports second- and third-order poly-

nomials for parameterisation—as previously discussed,

these are robust against origin-translation in a way necessary

for the pseudoinverse method to work, and our experience is

that a second-order polynomial has so far been sufficient for

almost all purposes in generator tuning.

For the numerical evaluation of the pseudoinverse proce-

dure, NumPy’s implementation of the singular value decom-

position is used.

5.2.2 GoF optimisation

To have an intuitive way of excluding single bins from

the GoF calculation, the implemented χ2 function differs

slightly from (8) in that weights are not applied on a per-

observable but on a per-bin scope. The Ndf definition is

changed accordingly. By this, single bins can be left out of

the χ2 calculation by setting their respective weights to zero.

We use this to veto bins with zero error as this usually indi-

cates that these bins were not filled during the data gener-

ation. After applying the weights and vetoes all bins with

zero weight are filtered out. From the resulting bins the Ndf

is computed and a χ2 function χ2(p) is constructed, which

is passed to the minimiser.

The optimisation of the heuristic χ2/Ndf function is im-

plemented using minimisers from SciPy and also PyMi-

nuit [23], a Python interface to the CERN Minuit pack-

age [24]. As Minuit uses a Markov chain method, which

copes with high dimensional problems better than the SciPy

Nelder-Mead simplex minimiser, and also offers error esti-

mates and covariance calculations, it is the preferred and de-

fault choice. Professor is also able to apply limits to each pa-

rameter in minimisation, to exclude unphysical results. The

limits used in such cases should not just be the sampling lim-

its, unless those were determined by physical restrictions,

since a minimisation falling outside the sample limits is ac-

tually a useful result which should not be obscured.

By default the starting point for the minimiser is the cen-

tre of the parameter space defined by our parameter sam-

pling ranges. It is also possible to specify a manual or ran-

dom starting point. Minuit evaluates the parameter uncer-

tainties by calculating those parameter points at which the

χ2/Ndf value exceeds that of the minimum by 1: for a truly

χ2-distributed test statistic this should correspond to a “1σ ”

68% confidence limit estimate.

A successful minimisation will write out its details to file,

including the optimal parameters and their correlations, a

file of parameterised histograms for each of the observables

included in the fit (based on the parameterisation at the tune

point), and information about the number of parameters, op-

timal GoF value(s), etc. These can then be studied and plot-

ted as described in the next section.

5.2.3 Tuning output and visualisation

The result of the tuning stage, in the form of the prof-tune

program, is a file of tune points, including their GoF scores.

If the tuning has been parallelised, there will be several such

files, which can be merged together if desired. The tunes can

be visualised either textually or graphically.

Graphical visualisation is particularly useful, and comes

in several different forms:
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GoF vs. parameter value Each tuning parameter produces

a plot of GoF vs. parameter value, with parameter sam-

pling boundaries indicated. Run combinations of different

size are represented in different colours, and points which

lie outside any of the sampling boundaries are indicated by

lighter shades of their point colour: this makes it easy to

see how predicted tunes fit into the high-dimensional sample

space without having to perform feats of mental gymnastics.

Clearly, if a cluster of points falls outside one or more sam-

pling boundaries, their GoF values are less than trustwor-

thy and a re-run of the generator sampling, with expanded

boundaries is recommended.

GoF vs. weight combination If several combinations of

weights have been tested, they can be graphically displayed

side-by-side to verify that the tune is robust against reason-

able shifts of GoF definition.

Correlation display For each minimisation result we also

store the covariance matrix between parameters and values,

as calculated by the minimiser. The Professor-system pro-

vides the user with the possibility to calculate the coeffi-

cients of correlation ρij for each pair of parameters (i, j)

from the (symmetric and real) P -dimensional covariance

matrix C :

ρij =
Cij

√

Cii Cjj

. (10)

The resulting parameter-parameter correlations can be dis-

played as colour-map plots or as tables such as in Table 9.

Sensitivities It is desirable to tune to those observables

most sensitive to parameter changes. Clearly, if a parame-

ter has no effect on an observable at all the minimiser is

very likely to yield useless results or it might even fail to

converge. The Professor package offers the calculation of a

bins sensitivity to changes of the values of the parameters in

question for tuning based on the parameterisation:

S
(b)
i (p) ≈

f (b)(p + ε) − f (b)(p)

f (b)(p)
·

p

p + ε
, (11)

where the εi are conveniently set to one percent of the inter-

val [pmin
i ,pmax

i ].

A side-by-side comparison of an observables sensitivity

to all parameters included in the parameterisation is avail-

able as colour-map plots. These plots may be used to iden-

tify and remove those observables that have little or no im-

pact at all. They could also be seen as an a posteriori justifi-

cation for the choice of observables included in a tuning.

Interactive parameterisation explorer The script prof-I

can be used to interactively explore the effect of shifts in

parameter space on the shapes of observables. All parame-

ter values can be adjusted via sliders in a graphical user in-

terface. The resulting shapes of the observables, calculated

from the parameterisations, are updated in real time as the

sliders are moved, and static data or MC histograms can also

be shown for comparison. As the goodness of fit is also dis-

played, prof-I can be also used as an aid in manual tun-

ings.

Histogram prediction prof-tune also helpfully produces

a directory of histogram files, one for each tuning, which

makes it possible to see how each distribution is predicted

to behave at that point without running the generator and in-

curring the usual (typically multi-day) delay. This is partic-

ularly useful when choosing how to weight distributions to

achieve the desired quality of fits—a subjective prioritising

of particular physics which cannot be avoided and usually

requires some iteration.

These visualisations of tunes are extremely useful, not

least for iterating the choice of sample boundaries in the

early stages of a tune. At this point, the sampling bound-

aries must be wide enough to include the predicted tunes—

if the prediction consistently falls outside the boundaries,

it is probably indicative of a problem with the generator

physics model—but also narrow enough that the sampling is

representative of the space. A too-wide initial scan may be

too coarse to yield stable results. Care should also be taken

when tightening boundaries for secondary tune stages, since

in the case of strong parameter–parameter correlations the

optimum may unexpectedly appear once again outside the

boundaries due to the improved description of the correla-

tions. The main rule is that there are no truly reliable rules,

and some iteration will certainly be required.

Once the boundaries have been chosen for a final stage

of tuning, if there are observed cases where the polynomial

does not sufficiently describe the generator, it is worth trying

the third-order polynomial.

5.3 Validation

Before parameterising real MC-generated data, the parame-

terisation algorithm was tested for robustness against the

distribution of the anchor points and its behaviour when

dealing with data which cannot fit exactly to the parame-

terising polynomial: such troublesome data was simulated

by smeared sampling from polynomials of various orders.

This round of validation also sought to verify that the GoF

calculated from the parameterised bins resembles that ob-

tained directly from the MC-generated data, and is described

briefly in this section.

5.3.1 Robustness of the parameterisation algorithm

The Professor GoF function can be influenced by several ob-

servable weight combinations, wO , and also by the number
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of runs in each random run combination used for the para-

meterisation. This offers possibilities to check the predicted

minima for systematic errors due to improper parameterisa-

tion or overtuning to a specific set of observable weights.

In addition, the minimisation results obtained from

quadratic interpolations were compared to those obtained

from cubic interpolations. We did not find a significant dif-

ference between the predictions, although the cubic interpo-

lation describes the generator response better in regions that

are far away from the minimum.

The basic functioning of the polynomial parameterisation

was tested with input data generated with a second-order

polynomial with random coefficients—the known coeffi-

cients were compared to those of the resulting parameterisa-

tions. The robustness of parameterising error-smeared and

data from non-second-order distributions was also tested.

Example input data were generated using second- to fourth-

order polynomials, especially polynomials of the form

f (p) = (p − m1)
2(p − m2)

2 + a · p, (12)

and were smeared using an Gaussian error. Then, the

unsmeared original polynomial and the parameterisation

were evaluated at 10,000 randomly located points and a

simple χ2/Ndf and “pull” statistics were calculated as GoF

measures, where the pulls were calculated as follows:

p =

10,000
∑

i=1

funsmeared(xi) − fparam(xi)

σ
, (13)

with the xi being the test points, funsmeared and fparam

the unsmeared polynomial and parameterisation respec-

tively, and σ the width of the Gaussian error distribution. A

Gaussian distribution was then fitted to the pull histogram.

This procedure was followed for several different dimen-

sions of parameter space P and different numbers of sample

points N = N
(P )
min ,N

(P )
min + 2, . . . .

Using the minimal N
(P )
min sample points resulted in wide

variation of fit quality, with observed χ2/Ndf varying across

several orders of magnitude, and broad—in the low dimen-

sional case even biased—pull distributions. Using additional

sample points reduced all this unwanted behaviour, e.g. in

the case of a 7-dimensional parameter space and data gen-

erated from a fourth-order polynomial, the average width of

pull distribution fell from 7.9 for N
(7)
min samples to 3.2 for

N
(7)
min +6 samples, and the corresponding ranges of observed

χ2/Ndf fell from O(10–103) to O(1–10). Consequently, we

discourage use of parameterisations based on the minimal

number of sample points: the evidence is simply that they

do not provide reliable descriptions of the parameter space.

Examples of pull distributions are shown in Fig. 2.

Finally, the influence of the distribution of the sample

points in the parameter hypercube on the parameterisation

Fig. 2 Example pull distributions: Parameterisations of data generated
with a smeared fourth-order polynomial (see (12)) in 7 dimensions are
compared to the unsmeared polynomial. The parameterisations have

been created (a) using the minimal number of anchor points N
(7)
min = 37

and (b) using N
(7)
min + 6 = 43 anchor points. One can clearly observe

that the pull distribution narrows when using additional sample points

quality was tested. We performed 5000 parameterisations

based on error-smeared data. χ2/Ndf values were computed

as above, along with several different measures of the anchor

point distributions

– Average and minimal Cartesian distance

– Average and minimal distance of the projections on the

parameter axis

These were studied as 2D histograms. Analysing the low-

dimensional cases revealed a dependence of the GoF on

the averaged distances for infrequent anchor point samples,

which again could be eliminated by oversampling. The more

relevant high-dimensional cases did not show this depen-

dence; however oversampling narrowed the range of ob-

served χ2/Ndf by several orders of magnitude. The pa-

rameter space dimensionality for these latter tests ranged

from P = 1 to 10, and the number of anchor points from

N = N
(P )
min to N

(P )
min + 10.

5.3.2 Tune verification

As mentioned, it is useful to visualise Professor tunes along

lines in parameter space, particularly lines which intersect

both the predicted tune and an alternative or default config-

uration. Professor provides a program, prof-scanchi2, to

perform this scan for saved parameterisations and/or to gen-

erate generator/Rivet batch scripts from supplied templates.

This enables verification that the GoF really behaves as pa-

rameterised and that the chosen point really is close to a GoF

extremum.

To reduce the risk that a minimum returned by the nu-

merical minimisation is a local minimum, prof-tune can

perform several minimisations with different starting points.

A tighter tune, either Professor or grid-scan based, could

be performed based on the correspondence between the true

and parameterised GoF in the tune region, although in prac-

tice the deviations are small enough that we have not risked

overtuning by attempting to do so.
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Fig. 3 Two dimensional χ2/Ndf versus parameter value plot showing
minimisation results derived from 100 interpolations that use 299 out
of 399 available runs and one result that uses all available runs for
the probability that a strange meson has spin 1. The observable-weight
combination used can be found in Table 6. The parameter errors are
estimated by the minimiser by going up one unit in χ2

5.3.3 Tuning stability

The Professor system offers two different ways to get an

estimate of how well a predicted minimum is defined.

We can benefit from oversampling the parameter space

with respect to N
(P )
min in such a way that numerous run combi-

nations3 may be chosen for different parameterisations sim-

ply by omitting a fraction of all the available Monte Carlo

runs. In order to reduce the correlation between run combi-

nations we usually choose this fraction to be about one-third.

This is clearly a compromise between the quality of the pa-

rameterisation and the degree of correlation introduced by

choosing several run combinations.

The outcome of all minimisations can be displayed

parameter-wise such as in Fig. 3. We observe that the min-

imisation result derived from all available Monte Carlo runs

always lies within the distribution of χ2/Ndf from random

run combination tunes, illustrating that certain interpolations

fit the data better than others but that using all the informa-

tion available always gives a good average description.

Instead of varying the parameterisation it is also possible

to influence the GoF function. This can be done by indepen-

dently applying a weight to each observable included in the

tuning. This more-or-less subjective approach is justified by

two facts. Firstly, we certainly do not expect the generator’s

response function to be a simple polynomial, and secondly

we know that most models should not be expected to be ca-

3We usually do about 100 minimisations. The run combinations are
chosen in a randomised procedure, and it is explicitly checked that
there are no duplicates.

pable of describing all observables: for example, all genera-

tors fail to describe the pout
⊥ distribution in e+e− data.

5.4 Performance and comments

The focus in testing and commissioning the Professor sys-

tem has until recently been focused on Pythia 6 tunes against

LEP, SLD, and Tevatron data. Here we were able to interpo-

late and minimise up to 10 parameters at a time for roughly

100 distributions, but beyond this the minimisation time be-

came large and we were less satisfied with the resulting min-

ima. The latter effect probably represents the fact that N
(P )
min

only specifies the minimum number of samples needed to al-

gebraically constrain a curve in P -space, but tells us nothing

about the number of points needed to adequately represent

the space—this depends on more complex things like the

rate of change of the function, the extent to which it oscil-

lates, and the degree of correlation between parameters: in

general it will rise much faster than the algebraic constraint.

We advise that a maximum of 10 parameters be ob-

served whenever possible, and less than that is advisable.

Since generators usually have many more parameters than

this, some approximate factorisations into semi-independent

groups must be found. As usual, this requires appreciation of

the generator physics, and ideally input from the generator

authors.

6 Complete tuning of Pythia 6

For the first production tuning we chose the Pythia 6 event

generator, as this is a well-known generator which has been

tuned before and which we expected to behave well. Addi-

tionally, the tuning of Pythia 6 was arguably more pressing

than that of any other generator as it is used for the majority

of LHC experiment MC simulation, and the newer parton

shower/MPI model had never before been tuned in detail.

All results in this paper are based on the version 6.418.

Our multi-stage approach to tuning was to fix the flavour

composition and the fragmentation parameters to the pre-

cision data from LEP and SLD before continuing with the

parameters related to hadron collisions, for which we use

data from the Tevatron. We do not include data from HERA

e−p collisions in these tunes, mainly because of the lack of

availability of such data in Rivet, but also because the dis-

tinct initial state places demands on model universality with

which we do not wish to obscure the current study.

6.1 Parameter factorisation strategy

In Pythia, the parameters for flavour composition decouple

well from the non-flavour hadronisation parameters such as

the Lund string parameters a, b, σq , and from the shower pa-

rameters (αs, cut-off). Parameters related to the underlying
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event and multiple parton interactions are decoupled from

the flavour and fragmentation parameters. In order to keep

the number of simultaneously tuned parameters small, we

decided to follow a three-stage strategy. In the first step the

flavour parameters were optimised, keeping almost every-

thing else at its default values (including using the virtuality-

ordered shower). In the second step the non-flavour hadro-

nisation and shower parameters were tuned—using the opti-

mised flavour parameters obtained in the first step. The final

step was tuning the underlying event and multiple parton

interaction parameters to data from the two Tevatron exper-

iments CDF and DØ.

6.2 Flavour parameter optimisation

The observables used in the flavour tune were hadron multi-

plicities and their ratios with respect to the π+ multiplicity

measured at LEP 1 and SLD [25], as well as the b-quark

fragmentation function measured by the DELPHI collabo-

ration [26], and flavour-specific mean charged multiplici-

ties as measured by the OPAL collaboration [27]. For this

first production we chose to use the Lund-Bowler fragmen-

tation function for b-quarks (invoked in Pythia 6 by setting

MSTJ(11) = 5) with a fixed value of rb = 0.8 (PARJ(47)),

as first tests during the validation phase of the Professor

framework showed that this setting yields a better agreement

with data than the default common Lund-Bowler parameters

for c and b quarks.

For the tuning we generated 500,000 events at each of

180 parameter points. The tuned parameters are the basic

flavour parameters like diquark suppression, strange sup-

Fig. 4 Pythia 6 (Q2 shower) χ2/Ndf variation along a line in the
9D flavour-hyperspace, linearly parameterised by p̃ ∈ [0,1]. The line

shown runs between the default and the Professor flavour tuning. The
white dots are the true generator χ2/Ndf values, and the grey lines

an ensemble of parameterisations from the Professor procedure that
use about two-thirds of the available MC-runs. The black line rep-
resents the interpolation calculated from all available runs. The his-

togram displays the distribution of minimisation results (if projected
on the scan-line) derived from these interpolations

pression, or spin-1 meson rates. All parameters are listed in

Table 2 together with the tuning results and a χ2/Ndf line-

scan plot comparing the default with tuned parameter sets

in Fig. 4. The physics observables and their weights for the

tuning are listed in Table 6.

Since the virtuality-ordered shower was used for tuning

the flavour parameters, we tested our results also with the

p⊥-ordered shower in order to check if a separate tuning was

necessary. Turning on the p⊥-ordered shower and setting

ΛQCD = 0.23 (the recommended setting before our tuning

effort) we obtained virtually the same multiplicity ratios as

with the virtuality-ordered shower. This confirms the decou-

pling of the flavour and the fragmentation parameters and

no re-tuning of the flavour parameters with the p⊥-ordered

shower is needed.

In Table 12, we compare several measured mean hadron

multiplicities in e+e− collisions at 91 GeV to Pythia predic-

tions with default settings and with our tune. In particular,

the strange sector is significantly improved, although there

is a slight degradation for charm and bottom mesons.

6.3 Fragmentation optimisation

Based on the new flavour parameter settings, the non-flavour

hadronisation and shower parameters were tuned separately

for the virtuality-ordered and for the p⊥-ordered shower.

The observables used in this step of the tuning were event

shape variables, momentum spectra, and the mean charged

multiplicity measured by the DELPHI collaboration [10],

momentum spectra and flavour-specific mean charged mul-

tiplicities measured by the OPAL collaboration [27], and

the b-quark fragmentation function measured by the DEL-

PHI collaboration [26]. All observables and their weights

are listed in Table 7.

We tuned the same set of parameters for both shower

types (Table 3). To turn on the p⊥-ordered shower,

MSTJ(41) was set to 12. In the case of the virtuality-ordered

shower, this parameter stayed at its default value. For both

tunes, we generated 1 million events at each of 100 parame-

ter points.

During the tuning of the p⊥-ordered shower it transpired

that the fit prefers uncomfortably low values of the shower

cut-off PARJ(82). Since this value needs to be at least

2 ·ΛQCD, and preferably higher, it was manually fixed to 0.8

to keep the parameters in a physically meaningful regime.

Then the fit was repeated with the remaining five parame-

ters.

The second issue we encountered with the p⊥-ordered

shower was that the polynomial parameterisation f (b) for

the mean charged multiplicity differed from the real Monte

Carlo response by about 0.2 particles. This discrepancy was

accounted for during the χ2 minimisation, so that the final

result does not suffer from a bias in this observable.
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Fig. 5 Some example distributions for e+e− collisions using the
virtuality-ordered shower. The solid line shows the new tune, the
dashed line is the default. Even though the virtuality-ordered shower
is well-tested and Pythia has been tuned several times, especially by

the LEP collaborations, there is still room for improvement in the de-

fault settings. Note the different scale in the ratio plot of the rapidity

distribution. The data in these plots has been published by DELPHI

[10, 26]

Figure 5 shows some comparison plots between the

Pythia default and our new tune of the virtuality-ordered

shower. Even though this shower has been around for many

years, and Pythia has been tuned before in this mode, there

was still clearly room for improvement in the default set-

tings.

Figure 6 shows comparisons of the p⊥-ordered shower.

This shower is a new option in Pythia and has not been tuned
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Fig. 6 Some example distributions for e+e− collisions using the p⊥-
ordered shower. The solid line shows the new tune, the dashed line is
the old recommendation for using the p⊥-ordered shower (i.e. chang-
ing ΛQCD to 0.23), and the dashed–dotted line is produced by switch-

ing on the p⊥-ordered shower leaving everything else at its default
(the choice made for the ATLAS tune). The data has been published by
DELPHI [10, 26]

systematically before. Nevertheless, the Pythia manual rec-

ommends to set ΛQCD to 0.23. The ATLAS collaboration in

their 2008 production tune chose to leave this parameter as

set for the Q2 shower, so for a full breadth of comparison

our plots show our new tune, the default with ΛQCD = 0.23,

and the settings used by ATLAS [28].

6.4 Underlying event and multiple parton interactions

For the third step we tuned the parameters relevant to the un-

derlying event, again both for the virtuality-ordered shower
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Fig. 7 The upper plots show the Zp⊥ distribution as measured by
CDF [29] compared to different tunes of the virtuality-ordered shower
with the old MPI model (left) and the p⊥-ordered shower with the in-
terleaved MPI model (right). Except for tune A, all tunes describe this
observable; the fixed version of tune A, called AW, is basically identi-

cal to DW. The lower plots show the average track p⊥ as a function of
the charged multiplicity in minimum bias events [32]. This observable
is quite sensitive to colour reconnection. Only the recent tunes hit the
data here (except for ATLAS)

and the old MPI model, and for the p⊥-ordered shower

with the interleaved MPI model. This was based on vari-

ous Drell-Yan, jet physics, and minimum bias measurements

performed by CDF and DØ in Run-I and Run-II [29–35].

Table 8 lists all observables and their corresponding weights

used in the tuning.
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Fig. 8 These plots show the average charged multiplicity in the toward
and transverse regions as function of the leading jet p⊥ in minimum
bias events [30]. The left side shows tunes of the virtuality-ordered
shower with the old MPI model, while on the right side the p⊥-

ordered shower with the interleaved MPI model is used. The old model
is known to be a bit too “jetty” in the toward region, which can be seen
in the first plot. Other than this, all tunes are very similar

The new MPI model differs significantly from the old

one, hence we had to tune different sets of parameters for

these two cases. For the virtuality-ordered shower and old

MPI model we took Rick Field’s tune DW [36] as guideline.

In the case of the new model we consulted Peter Skands,

author of the new MPI model, and used a setup similar to

his tune SØ [37, 38] as starting point. All switches and pa-

rameters for the UE/MPI tune, and our results, are listed in
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Fig. 9 These plots show the average track p⊥ in the transverse region
(top) and the

∑

p⊥ density in the transMIN region (bottom) in leading
jet events [34]. The new model (on the right) seems to have a slight

advantage over the virtuality-ordered shower with the old MPI model
shown on the left, both in the turn-on hump and in overall activity

Tables 4 and 5. Correlation coefficients for the fragmenta-

tion and p⊥-ordered UE parameters are listed in Tables 10

and 11.

One of the main differences we observed between the

models is their behaviour in Drell-Yan physics. The old

model had difficulties describing the Zp⊥ spectrum [29] and

we had to assign a high weight to that observable in order to

force the Monte Carlo to get the peak region of the distri-

bution right (note that this is the only observable to which

we assigned different weights for the tunes of the old and
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Fig. 10 In Drell-Yan [33] the new MPI model consistently produces
less underlying event activity than for the old model (top plots). This
underestimation is particularly pronounced for the ATLAS tune. Nev-

ertheless, most of the recent tunes are able to describe the multiplicity
dependence of the Zp⊥ (bottom plots)

the new MPI model). The new model on the other hand gets

the Zp⊥ correct almost out of the box, but underestimates

the underlying event activity in Drell-Yan events as mea-

sured in [33]. The same behaviour can be observed in Peter

Skands’ tunes [39]. We are currently investigating this issue

together with the generator authors.

Another (albeit smaller) difference shows in the hump of

the turn-on in many of the UE distributions in jet physics.

This hump is described by the new model, but mostly miss-

ing in the old model. Although the origin of this hump is

thought to be understood as an ambiguity in defining the

event direction for events with only little and soft activity,



348 Eur. Phys. J. C (2010) 65: 331–357

Fig. 11 Some more plots showing the behaviour of the interleaved
MPI model and the p⊥-ordered shower. The two upper plots focus on
the underlying event in Drell-Yan [33]. On the left we see again that
the new model underestimates the activity in Drell-Yan events (like
in Fig. 10). Regardless of that, the top right plot shows that the aver-

age track p⊥ as function of the charged multiplicity is described well,
except by the ATLAS tune. The ATLAS tune also shows strong dis-
agreement with the multiplicity distribution in minimum bias events,
even at the reference energy of 1800 GeV, as shown in the lower two
plots [31]

the model differences responsible for its presence/absence

in the two Pythia models is not yet known in any detail.

It should be noted that the parameters PARP(71) and

PARP(79) could not be constrained very well with the ob-

servables tuned to.

Figures 7, 8, 9, 10, 11 show some comparisons between
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our new tune and various other tunes. For the virtuality-

ordered shower with the old MPI model we show Rick

Field’s tunes A [40] and DW [36] as references, since they

are well-known and widely used. For the p⊥-ordered shower

and the new MPI framework we compare to Peter Skands’

new “Perugia 0” tune [39]. We also include the 2008 AT-

LAS tune [28] in our comparison, since it is widely used at

the LHC, but note that the energy scaling is strongly dis-

favoured by the existing data, as well as the issues discussed

in Sect. 6.3.

6.5 Tune verification

Much effort has been put into the verification of the new

tune. We have performed line-scan validations along the di-

rections in parameter space that correspond to the largest

and the smallest uncertainty based on the covariance matrix,

C , of the new tune’s minimisation result. These directions

should coincide with those where the GoF-function is very

flat or very steep, respectively. The eigen-decomposition of

C can be written as

C = T TΣT (14)

where T is a rotation matrix and Σ a diagonal matrix. The

eigenvalues of Σ are related to the axes of the rotated hyper-

ellipsoid of C . The eigenvectors σmax, min of the largest and

the smallest (absolute) eigenvalues are rotated back into the

original system and used to define the scan-lines:

dmax, min = T σmax, min. (15)

A schematic illustration of this procedure for a two dimen-

sional case can be found in Fig. 12(a). It was checked that

the parameter points sampled from these lines are kept in the

region of interpolation. From the parameterisations avail-

able, only those where the obtained minima project onto

the according scan line were chosen for the line-scan. The

line-scans can be found in Figs. 12(b) and 12(c). It shows

that the parameterisations and the actual generator response

are in very good agreement, especially in the region of the

minimum. However, in the case of Fig. 12(c) the quadratic

interpolations seem to shift the line-scan a little to the left

but the deviation is inside the parameter uncertainties indi-

cated by the grey vertical band. In both cases we observe

an even better description of the generator response by the

cubic interpolation, especially in regions further away from

the minimum.

6.6 Tuning stability

An example parameter-wise comparison of the goodness of

fit of minimisation results obtained from 100 quadratic pa-

rameterisations that use 194 runs as well as from two para-

meterisations (one quadratic, one cubic) that use 393 runs

Fig. 12 Line-scan validation of the best tuning estimate obtained with
Professor for the underlying event (p⊥-ordered shower). The sketch
in (a) illustrates how the directions of largest and smallest uncertainty
are found based on a best tune’s covariance matrix for a toy two di-
mensional case—the real UE tune has 10 parameters. The line-scans
are done along the direction of the smallest uncertainty in (b) and the
largest uncertainty in (c), parameterised by p̃ ∈ [0,1]. The histograms

on top of the line-scans show the distribution of minimisation results
obtained with the corresponding parameterisations. The gray band in
(c) indicates the parameter uncertainties (estimated by the minimiser)
of the best tune estimate as quoted by Minuit. The corresponding band
in (b) is a thin line, since the best tune value is very well-defined
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Fig. 13 Examples of parameter-wise distributions of minimisation
results obtained for the underlying event (p⊥-ordered shower) with
the weights found in Table 8 and various Ntune and polynomial orders.
For each parameter the goodness of fit of each minimisation result is
projected on to the corresponding parameter axis. The minimum is
clearly well-defined for some parameters like PARP(78) or PARP82;
others are scattered over the whole parameter range, e.g. PARP(93),
indicating that we are not sensitive to these parameters, i.e. they are
not very important for a good description of the data we tuned to. The
best tune estimate, indicated by a star, was derived from a quadratic
parameterisation that uses 194 runs

can be found for the three parameters PARP(78), PARP(82)

and PARP(93) in Fig. 13. In the case of PARP(78) we find a

very well defined minimum, indicating that the used observ-

ables are sensitive to this parameter. A similar picture with

a somewhat larger spread is found for PARP(82). Here, the

cubic parameterisation predicts a slightly larger value than

the quadratic ones do. PARP(93) does not show a well de-

fined minimum, indicating that the observables we tuned to

are not very sensitive to this parameter, i.e., that PARP(93) is

not very important for a good description of the data. How-

ever the goodness of fit values suggest that a large value

(>5 GeV) is preferred.

It has been observed that the scattering of the minimi-

sation results among each other is larger compared to the

errors calculated by Minuit, indicating that for the tuning of

the underlying event the choice of run-combinations is ac-

companied by a systematic error. This stands in opposition

to the tunings of flavour- and fragmentation parameters.

7 Conclusions and outlook

MC generator tuning is currently in something of a boom

era: there has been much activity in systematising tuning and

validation in the past years, driven by the growing realisa-

tion that MPI effects will be a highly significant effect at the

LHC and that existing data places only relatively weak con-

straints on their scale. In the last year, interest has been grad-

ually converging on the Rivet and Professor tools; as demon-

strated in this paper, these are now in a state where they can

be used to achieve real physics goals and the Pythia 6 tunes

described in Sect. 6 have been a significant success, bring-

ing new accuracy, speed and systematic control to this pre-

viously vague topic.

Our development plans in the near future are primar-

ily aimed at tuning of the newer C++ generator codes

(Pythia 8, Sherpa & Herwig++) to e+e− and hadron col-

lider data as we have done here for Pythia 6. As well as

the hadron collider data shown here, Rivet’s coverage of

analyses is being extended to include low energy data from

UA1, UA5, RHIC and other experiments. B-factory data, if

it can be obtained, and HERA data via HZTool will help to

improve further the MPI, parton shower, and hadronisation

tunes and to challenge existing models. We have also been

able to use Professor in the setup described here for similar

tunings of Pythia 6 to alternative PDFs, to be described in a

separate note.

Professor is under consideration within the LHC collab-

orations as part of the machinery to perform re-tunes of MC

generators to early QCD-dominated data: this is a crucial

step for understanding the underlying event at LHC ener-

gies, since low energy data provides little constraint on the

evolution of the total pp cross-section. We are collaborating

with both ATLAS and CMS to ensure that pre-publication
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data can be best used to rapidly improve the simulation of

backgrounds to new physics searches.

There is clearly more potential for exploration and in-

novation in connection with the Professor method and tools.

One idea currently being investigated is the provision of rep-

resentative “error tunes” (cf. “error PDFs”) and uncertainty

bands to give a quantitative estimate on how much models

and tunes may be expected to deviate from data; this is par-

ticularly relevant for extrapolations such as the UE energy

evolution. Other ideas include the use of Professor to make

fast predictions of generator distributions for e.g. SUSY pa-

rameter space scans, optimisation of parameterised observ-

ables such as jet measures against user-defined goodness of

fit functions, or even multidimensional fits in experimental

analyses, e.g. a simultaneous fit of top mass and jet energy

scale using MC templates. We look forward to challenging

current MC models with the combination of LHC data and

the new trend for statistically robust parameter exploration.
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Appendix A: Tables

Table 2 Tuned flavour
parameters and their defaults Parameter Pythia 6.418 default Final tune

PARJ(1) 0.1 0.073 Diquark suppression

PARJ(2) 0.3 0.2 Strange suppression

PARJ(3) 0.4 0.94 Strange diquark suppression

PARJ(4) 0.05 0.032 Spin-1 diquark suppression

PARJ(11) 0.5 0.31 Spin-1 light meson

PARJ(12) 0.6 0.4 Spin-1 strange meson

PARJ(13) 0.75 0.54 Spin-1 heavy meson

PARJ(25) 1 0.63 η suppression

PARJ(26) 0.4 0.12 η′ suppression

Table 3 Tuned fragmentation
parameters and their defaults for
the virtuality and p⊥-ordered
showers

Parameter Pythia 6.418 default Final tune (Q2) Final tune (p⊥)

MSTJ(11) 4 5 5 Frag. function

PARJ(21) 0.36 0.325 0.313 σq

PARJ(41) 0.3 0.5 0.49 a

PARJ(42) 0.58 0.6 1.2 b

PARJ(47) 1 0.67 1.0 rb

PARJ(81) 0.29 0.29 0.257 ΛQCD

PARJ(82) 1 1.65 0.8 Shower cut-off

Table 4 Tuned parameters for
the underlying event using the
virtuality-ordered shower

Parameter Pythia 6.418 default Final tune

PARP(62) 1.0 2.9 ISR cut-off

PARP(64) 1.0 0.14 ISR scale factor for αS

PARP(67) 4.0 2.65 Max. virtuality

PARP(82) 2.0 1.9 p0
⊥ at reference Ecm

PARP(83) 0.5 0.83 Matter distribution

PARP(84) 0.4 0.6 Matter distribution

PARP(85) 0.9 0.86 Colour connection

PARP(86) 1.0 0.93 Colour connection

PARP(90) 0.2 0.22 p0
⊥ energy evolution

PARP(91) 2.0 2.1 Intrinsic k⊥

PARP(93) 5.0 5.0 Intrinsic k⊥ cut-off
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Table 5 Tuned parameters
(upper table) and switches
(lower table) for the underlying
event using the p⊥-ordered
shower

Parameter Pythia 6.418 default Final tune

PARP(64) 1.0 1.3 ISR scale factor for αS

PARP(71) 4.0 2.0 Max. virtuality (non-s-channel)

PARP(78) 0.03 0.17 Colour reconnection in FSR

PARP(79) 2.0 1.18 Beam remnant x enhancement

PARP(80) 0.1 0.01 Beam remnant breakup suppression

PARP(82) 2.0 1.85 p0
⊥ at reference Ecm

PARP(83) 1.8 1.8 Matter distribution

PARP(90) 0.16 0.22 p0
⊥ energy evolution

PARP(91) 2.0 2.0 Intrinsic k⊥

PARP(93) 5.0 7.0 Intrinsic k⊥ cut-off

Switch Value Effect

MSTJ(41) 12 Switch on p⊥-ordered shower

MSTP(51) 7 Use CTEQ5L

MSTP(52) 1 Use internal PDF set

MSTP(70) 2 Model for smooth p0
⊥

MSTP(72) 0 FSR model

MSTP(81) 21 Turn on multiple interactions (new model)

MSTP(82) 5 Model of hadronic matter overlap

MSTP(88) 0 Quark junctions → diquark/Baryon model

MSTP(95) 6 Colour reconnection

Table 6 Observables and
weights included in the flavour
tune

Observable Weight

b quark frag. function f (xweak
B ) 1

Mean of b quark frag. function f (xweak
B ) 1

uds events mean charged multiplicity 1

c events mean charged multiplicity 1

b events mean charged multiplicity 1

All events mean charged multiplicity 1

π± multiplicity 1

π0 multiplicity 1

π0/π± multiplicity ratio 6

K+/π± multiplicity ratio 6

K0/π± multiplicity ratio 6

η/π± multiplicity ratio 2

η′(958)/π± multiplicity ratio 1

D+/π± multiplicity ratio 1

D0/π± multiplicity ratio 1

D+
s /π± multiplicity ratio 2

(B+,B0
d )/π± multiplicity ratio 1

B+/π± multiplicity ratio 1

B0
s /π± multiplicity ratio 2
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Table 6 (continued)
Observable Weight

ρ0(770)/π± multiplicity ratio 9

ρ+(770)/π± multiplicity ratio 9

ω(782)/π± multiplicity ratio 9

K∗+(892)/π± multiplicity ratio 2

K∗0(892)/π± multiplicity ratio 2

φ(1020)/π± multiplicity ratio 1

D∗+(2010)/π± multiplicity ratio 1

D∗+
s (2112)/π± multiplicity ratio 1

B∗/π± multiplicity ratio 1

p/π± multiplicity ratio 3

Λ/π± multiplicity ratio 4

Σ0/π± multiplicity ratio 2

Σpm/π± multiplicity ratio 2

Ξ−/π± multiplicity ratio 1

∆++(1232)/π± multiplicity ratio 1

Σpm(1385)/π± multiplicity ratio 1

Table 7 Observables and
weights included in the
fragmentation tune

Observable Weight (Q2) Weight (p⊥)

pin
⊥ w.r.t. thrust axes 1 2

pout
⊥ w.r.t. thrust axes 1 1

pin
⊥ w.r.t. sphericity axes 1 2

pout
⊥ w.r.t. sphericity axes 1 1

Scaled momentum, xp = |p|/|pbeam| 1 3

Log of scaled momentum, log 1/xp 1 3

Mean pout
⊥ vs xp 1

Mean p⊥ vs xp 1

1 − thrust, 1 − T 1 6

Thrust major, M 1 4

Thrust minor, m 1 4

Oblateness = M − m 1 1

Sphericity, S 1 1

Aplanarity, A 1 1

Planarity, P 1 1

C parameter 1 1

D parameter 1 4

Energy-energy correlation, EEC 1

Mean charged multiplicity 160 181

b quark frag. function f (xweak
B ) 1 2

Mean of b quark frag. function f (xweak
B ) 1 4

uds events mean charged multiplicity 20 10

c events mean charged multiplicity 20 10

b events mean charged multiplicity 20 10

uds events scaled momentum, xp = |p|/|pbeam| 1

c events scaled momentum, xp = |p|/|pbeam| 1

b events scaled momentum, xp = |p|/|pbeam| 1

uds events log of scaled momentum, xp = |p|/|pbeam| 1

c events log of scaled momentum, xp = |p|/|pbeam| 1

b events log of scaled momentum, xp = |p|/|pbeam| 1
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Table 8 Observables and
weights used for the tuning of
the underlying event

Observable Weight

CDF underlying event in min-bias events:

p⊥(Z) 40 (Q2) / 10 (p⊥)

Nch density vs leading jet p⊥ (toward), min-bias 1

Nch density vs leading jet p⊥ (transverse), min-bias 1

Nch density vs leading jet p⊥ (away), min-bias 1
∑

p⊥ density vs leading jet p⊥ (toward), min-bias 1
∑

p⊥ density vs leading jet p⊥ (transverse), min-bias 1
∑

p⊥ density vs leading jet p⊥ (away), min-bias 1
∑

p⊥ density vs leading jet p⊥ (toward), JET20 1
∑

p⊥ density vs leading jet p⊥ (transverse), JET20 1
∑

p⊥ density vs leading jet p⊥ (away), JET20 1

p⊥ distribution (transverse), leading p⊥ > 30 GeV 1

CDF multiplicity measurement:

Nch distribution at 630 GeV 2

Nch distribution at 1800 GeV 2

CDF underlying event in leading jet events:

Nch density vs leading jet p⊥ (transverse) 1

Nch density vs leading jet p⊥ (transMAX) 1

Nch density vs leading jet p⊥ (transMIN) 1

Nch density vs leading jet p⊥ (transDIF) 1
∑

p⊥ density vs leading jet p⊥ (transverse) 1
∑

p⊥ density vs leading jet p⊥ (transMAX) 1
∑

p⊥ density vs leading jet p⊥ (transMIN) 1
∑

p⊥ density vs leading jet p⊥ (transDIF) 1

〈p⊥〉 (transverse) 1

CDF min-bias:

〈p⊥〉 vs Nch 2

CDF underlying event in Drell-Yan events analysis:

Nch density vs lepton pair p⊥ (toward) 1

Nch density vs lepton pair p⊥ (transverse) 1

Nch density vs lepton pair p⊥ (transMAX) 1

Nch density vs lepton pair p⊥ (transMIN) 1

Nch density vs lepton pair p⊥ (transDIF) 1

Nch density vs lepton pair p⊥ (away) 1
∑

p⊥ density vs lepton pair p⊥ (toward) 1
∑

p⊥ density vs lepton pair p⊥ (transverse) 1
∑

p⊥ density vs lepton pair p⊥ (transMAX) 1
∑

p⊥ density vs lepton pair p⊥ (transMIN) 1
∑

p⊥ density vs lepton pair p⊥ (transDIF) 1
∑

p⊥ density vs lepton pair p⊥ (away) 1

〈p⊥〉 (toward) 1

〈p⊥〉 (transverse) 1

〈p⊥〉 (away) 1

pmax
⊥ (toward) 1

pmax
⊥ (transverse) 1
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Table 8 (continued)
Observable Weight

pmax
⊥ (away) 1

〈p⊥(lepton pair)〉 vs Nch 1

〈p⊥〉 vs Nch 1

〈p⊥〉 vs Nch, p⊥(Z) < 10 GeV 1

DØ dijet angular correlations:

dijet azimuthal angle, pmax
⊥ ∈ [75,100] GeV 2

dijet azimuthal angle, pmax
⊥ ∈ [100,130] GeV 2

dijet azimuthal angle, pmax
⊥ ∈ [130,180] GeV 2

dijet azimuthal angle, pmax
⊥ > 180 GeV 2

Table 9 Correlation
coefficients for flavour
parameters as calculated by
Minuit

PARJ(1) PARJ(2) PARJ(3) PARJ(4) PARJ(11)

PARJ(1) 1 0.32 −0.75 −0.34 0.41

PARJ(2) 1 −0.39 −0.26 0.71

PARJ(3) 1 0.63 −0.35

PARJ(4) 1 −0.33

PARJ(11) 1

PARJ(12) PARJ(13) PARJ(25) PARJ(26)

PARJ(1) 0.05 0.05 0.20 0.31

PARJ(2) −0.08 0.13 0.44 0.43

PARJ(3) 0.04 −0.05 −0.15 −0.33

PARJ(4) −0.04 −0.08 −0.50 −0.27

PARJ(11) 0.01 0.07 0.41 0.28

PARJ(12) 1 0.02 0.09 −0.04

PARJ(13) 1 −0.01 0.08

PARJ(25) 1 0.04

PARJ(26) 1

Table 10 Correlation
coefficients for fragmentation
parameters as calculated by
Minuit

PARJ(21) PARJ(41) PARJ(42) PARJ(47) PARJ(81) PARJ(82)

PARJ(21) 1 0.55 0.40 0.22 −0.33 0.50

PARJ(41) 1 0.95 0.40 0.15 0.74

PARJ(42) 1 0.47 0.31 0.52

PARJ(47) 1 0.07 0.18

PARJ(81) 1 0.04

PARJ(82) 1

Table 11 Correlation
coefficients for underlying event
parameters (p⊥-ordered shower)

PARP(64) PARP(71) PARP(78) PARP(79) PARP(82)

PARP(64) 1 0.26 −0.17 −0.15 −0.65

PARP(71) 1 0.39 0.04 −0.26

PARP(78) 1 −0.45 −0.17

PARP(79) 1 0.15

PARP(82) 1
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Table 11 (continued)
PARP(83) PARP(90) PARP(91) PARP(93)

PARP(64) 0.48 −0.18 −0.18 −0.19

PARP(71) 0.42 −0.18 −0.24 −0.38

PARP(78) 0.44 −0.12 −0.36 0.20

PARP(79) −0.18 0.17 0.00 −0.26

PARP(82) −0.58 0.65 0.15 0.10

PARP(83) 1 −0.21 −0.18 0.12

PARP(90) 1 −0.09 −0.08

PARP(91) 1 0.27

PARP(93) 1

Appendix B: Comparisons

Table 12 Mean hadron
multiplicities in e+e− collisions
at 91 GeV for data [25],
Pythia 6.418 default and our
tune using the virtuality-ordered
shower. While there is a slight
degradation in charm and
bottom mesons, the strange
sector is significantly improved
(mesons and baryons), and also
particles like ρ and ω clearly
benefit from the tuning

Particle Data Pythia 6.418 default Final tune

π+ 17.02 ± 0.19 17.10 17.23

π0 9.42 ± 0.32 9.69 9.78

K+ 2.228 ± 0.059 2.311 2.126

K0 2.049 ± 0.026 2.211 2.068

η 1.049 ± 0.08 1.012 1.014

η′(958) 0.152 ± 0.02 0.301 0.171

D+ 0.175 ± 0.016 0.166 0.219

D0 0.454 ± 0.03 0.494 0.490

D+
s 0.131 ± 0.021 0.128 0.101

B+,B0
d 0.33 ± 0.052 0.346 0.373

B+
u 0.178 ± 0.006 0.173 0.186

B0
s 0.057 ± 0.013 0.052 0.037

ρ0(770) 1.231 ± 0.098 1.523 1.267

ρ+(770) 2.4 ± 0.43 2.86 2.40

ω(782) 1.016 ± 0.065 1.367 1.150

K∗+(892) 0.715 ± 0.059 1.111 0.740

K∗0(892) 0.738 ± 0.024 1.106 0.743

φ(1020) 0.0963 ± 0.0032 0.1942 0.1006

D∗+(2010) 0.1937 ± 0.0057 0.2395 0.1974

D∗+
s (2112) 0.101 ± 0.048 0.090 0.058

B∗ 0.288 ± 0.026 0.299 0.221

p 1.05 ± 0.032 1.221 1.117

Λ 0.3915 ± 0.0065 0.3922 0.3507

Σ0 0.076 ± 0.011 0.075 0.096

Σ− 0.081 ± 0.01 0.069 0.091

Σ+ 0.107 ± 0.011 0.074 0.095

Σ± 0.174 ± 0.009 0.143 0.186

Ξ− 0.0258 ± 0.001 0.0278 0.0282

∆++(1232) 0.085 ± 0.014 0.193 0.147

Σ−(1385) 0.024 ± 0.0017 0.037 0.025

Σ+(1385) 0.0239 ± 0.0015 0.0389 0.0266

Σ±(1385) 0.0462 ± 0.0028 0.0757 0.0516
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