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Abstract 

Substitution boxes (S-boxes) are a crucial component of DES-like block 

ciphers. This research addresses problems with previous approaches towards 

constructing S-boxes, and proposes a new definition for the robustness of S­

boxes to differential cryptanalysis, which is the most powerful cryptanalytic 

attack known to date. A novel method based on group Hadamard matrices is 

developed to systematically generate S-boxes that satisfy a number of critical 

cryptographic properties. Among the properties are the high nonlinearity, the 

strict avalanche characteristics, the balancedness, the robustness against differ­

ential cryptanalysis, and the immunity to linear cryptanalysis. An example is 

provided to illustrate the S-box generating method. 
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1 Introduction 

Differential cryptanalysis discovered by Biham and Shamir [3, 4] is currently the 

most powerful cryptanalytic attack to (secret-key) block ciphers, especially to DES­

like substitution-permutation ciphers. The attack applies also to other cryptographic 

primitives such as one-way hash functions. 

Since differential cryptanalysis was introduced, researchers have devoted a large 

number of efforts to designing substitution boxes (S-boxes) in order to strengthen the 

security of a block cipher against the attack [13, 1, 14, 16, 15, 2]. Although these 

S-boxes are interesting in terms of their security against differential cryptanalysis, 

they bear a number of shortcomings which render them unattractive in practice. 

These shortcomings will be fully addressed in Section 3. Here we mention briefly 

two of them: (1) The S-boxes are based on permutation polynomials on finite fields, 

and hence have an equal number of input and output bits. Note that existing ciphers 

including DES, LOKI and FEAL employ S-boxes with less output bits than input bits. 

Though dropping an appropriate number of component functions from a permutation 

polynomial yields an S-box with less output bits, there is no guarantee that the 

resulting S-box is robust against differential cryptanalysis. (2) None of the component 

functions of the S-boxes satisfies the strict avalanche criterion (SAC). The SAC is 

considered as an indispensable requirement for S-boxes employed by a modern block 

cipher. 

This research initiates the investigation of methods for systematically construct­

ing S-boxes with a number of essential cryptographic properties. These properties 

include: security against differential cryptanalysis, immunity to the very recently 

discovered linear cryptanalysis [12], the SAC, balancedness, high nonlinearity, and 

uncorrelatedness. (Two or more Boolean functions are said to be uncorrelated if their 

sum gives a nonlinearly balanced function). A novel S-box construction method based 

on group Hadamard matrices is presented. An n-input s-output S-box (namely, an 

n x s S-box) constructed using this method, where s > L n /2 J, has the features now 

described. 

1. It is at least (1 - 2-t)-robust against differential cryptanalysis, where t is a 

parameter subject to the condition that (s - Ln/2J) > t ~ 3. For instance, 

when t =3, 5, or 7, the robustness is 0.875, 0.97 or 0.99 respectively. (See 

Section 3 for the definition of robustness.) 

2. The sum of any subset of the component functions is a nonlinearly balanced 

function. Hence the component functions are all uncorrelated. 

3. The nonlinearity of any component function is at least 2n
-

1 
- 2,,-t-l, which is 

a very high value, and its maximum algebraic degree is n - s + t + 1. 

4. All component functions satisfy the SAC. 

5. For each s-bit vector y, there are exactly 2n
-

s n-bit vectors that are mapped to 

y. That is, the S-box is a regular many-to-one mapping. 
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These statements are very informal. The interested reader is directed to Section 6 for 

precise descriptions. 

Section 2 introduces basic notations and definitions, and Section 3 addresses prob­

lems with previously proposed methods for constructing S-boxes. A new definition 

for robustness against differential cryptanalysis is introduced in the same section. 

Our first attempt to construct S-boxes is described in Section 4, while improvements 

towards the robustness of the S-boxes are described in Section 5. This is followed by 

a discussion of further refinement in Section 6. An analysis of the number of different 

S-boxes that can be obtained by our method is conducted in Section 7. Section 8 

shows that the S-boxes constructed are also immune to linear cryptanalysis. An in­

teresting relation between the SAC and the profile of the difference distribution table 

of an S-box is revealed in the same section. To illustrate the construction method, an 

example is shown in Section 9. The extended abstract is closed by some final remarks 

in Section 10. 

2 Basic Definitions 

The vector space of n tuples of elements from GF(2) is denoted by Vn . Vectors in 

Vn and integers in [0,2n - 1] have a natural one-to-one correspondence. This allows 

us to switch from a vector in Vn to its corresponding integer in [0,2n - 1], and vice 

versa. 

Let 1 be a (Boolean) function from Vn to GF(2) (or simply, a function on Vn). 
The sequence of 1 is defined as (( -1 )f(O'o), ( -1 )f(O't), ... , ( -1 )f(0'2n -l»), while the truth 

table of 1 is defined as (I(ao), I(al), ... , l(a2n _t}), where ai, i = 0,1, ... , 2n 
- 1, 

denote the vectors in Vn • 1 is said to be balanced if its truth table has an equal 

number of zeros and ones. 

We call h( x) = al Xl EB· .. EB anxn EB c an affine function, where X = (Xl, ... , xn) and 

aj, c E GF(2). In particular, h will be called a linear function if c = 0. The sequence 

of an affine (linear) function will be called an affine (linear) sequence. 

The Hamming weight of a vector x, denoted by W(x), is the number of ones in x. 

Let 1 and g be functions on Vn. Then d(l,g) = Lf(x)¢g(x) 1, where the addition is over 

the reals, is called the Hamming distance between 1 and g. Let <po, . .. ,<P2n+1-1 be the 

affine functions on Vn. Then Nf = millj=0, ... ,2n+1_1 d(J, <Pi) is called the nonlinearity 

of I. It is well-known that the nonlinearity of 1 on Vn satisfies Nf :s; 2n- 1 
- 2tn-l. 

An extensive investigation of highly nonlinear balanced functions has been carried 

out in [22]. 

Let a = (at, ... ,an) E Vn and {3 = (b}, ... ,bn) E Vn. Then the scalar product of 

a and {3, denoted by (a, (3), is defined by (a, (3) = Eel=l ajbj , where the addition and 

the multiplication are over GF(2). A function 1 on Vn is said to be bent if 

2-~ L (_I)f(x)Ell(P,x) = ±1 

xEVn 

for every (3 E Vn , where X = (xt, ... ,xn ) [18]. Here I(x) EB (/3, x) is considered as a 

real valued function. Bent functions exist only when n is even, and they achieve the 

maximum nonlinearity of 2n- 1 
- 2tn- 1 [18, 10]. 
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The concept of SAC was originally introduced in [26]. 

Definition 1 Let f be a function on Vn and let x = (Xl, ... ,Xn). If f(x)ffif(xffia) 

for every a E Vn with W (a) = 1, we say that f satisfies the strict avalanche criterion 

(SAC). 

Let fo and It be functions on \.'t. Then f(xo, Xt, . .. , xt} = (1 ffi xo)fo(xt, ... ,Xt) ffi 

xoIt(xt, ... ,Xt) is a function on \.'tH. The truth table of f is obtained by concatenat­

ing the truth tables of fo and fl. For this reason we say that f is the concatenation of 

fo and fl. Similarly we can define the concatenation of 2S functions on \.'t. To simplify 

the description of the concatenation of functions, we introduce a new notation. Let 

s ~ 1 and 8 = (it, ... , is) be a vector in Va. Then D6 is a function on Va defined by 

D6(Y) = (i~ ffi yt} ... (i~ ffi Ys) 

where y = (yt, ... ,Ys) and z = 1 ffi i. For instance, when s = 2 we have Do,o(yt, Y2) = 
(1 ffi Yl)(1 ffi Y2), and when s = 3 we have Dl,o,l(Yb Y2, Y3) = Yl(1 ffi Y2)Y3. Clearly 

D6(Y) = 1 if and only if y = 8. To further simplify our description, D6 will also be 

denoted by Di where i is the integer in [0,28 
- 1] whose binary representation is 8. 

Let fo, It, ···,12'-1 be functions on \.'t. Then the concatenation ofthese functions 

IS 
2>-1 

f(y,x) = EB[Di(y)fi(X)] 
i=O 

where Y = (YI, .. . ,Ys) and x = (XI, . .. ,Xt). Note that f is a function on Va+t. The 

following lemma is derived from Theorems 4 and 5 of [23]. 

Lemma 1 Let t ~ s, fo, It, ... , f2>-1 be distinct nonzero linear functions on \.'t, and 

r be an arbitrary function on Va. Also let 

2,-1 

g(y,x) = EB[Di(y)Ji(x)] ffi r(y). 
i=O 

Then 

1. g is balanced, 

2. the nonlinearity of 9 satisfies Ng ~ 28
+1-1 - 2t-1, 

3. g(z) ffi g(z ffi ,) is balanced for all, = (j3, a) with W(j3) =f. 0, where j3 E Va and 

a E \.'t. 

A mapping (tuple of functions) (II, ... , f8)' where each fi is a function on Vn and 

n > s, is said to be regular if for each vector y E Va there are exactly 2n
-

s vectors in 

Vn that are mapped to y. In [24], the following result is proved: 

Theorem 1 A mapping (II, ... , fll), where each fi is a function on Vn and n ~ s, is 
regular if and only if all nonzero linear combinations of It, ... , fs are balanced. 

A good S-box must be a regular mapping. Otherwise some output vectors appear 

more often than others when the input to the S-box is chosen uniformly at random, 

and a cryptosystem that employs the S-box might be vulnerable to a cryptanalyst 

who exploits the bias. 
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3 Differential Cryptanalysis 

The essence of differential cryptanalysis is that it exploits particular entries in the 

difference distribution tables of S-boxes employed by a block cipher. Entries with 

higher values are particularly useful to the attack. The difference distribution table 

of an n x s S-box is a 2n x 28 matrix. The rows of the matrix, indexed by the vectors 

in Vn , represent the change in the input, while the columns, indexed by the vectors 

in Va, represent the change in the output of the S-box. An entry in the table indexed 

by (~X, ~Y) indicates the number of input vectors which, when changed by ~x 

(in the sense of bit-wise XOR), result in a change in the output by ~y (also in the 

sense of bit-wise XOR). Note that an entry in the table can only take an even value, 

the sum of the values in a row is always 2n
, and the first row is always (2\ 0, ... ,0). 

Also note that the first column indicates the smoothness of the S-box, namely the 

characteristic that a change in the input does not result in a change in the output. As 

is discussed below, the smoothness is an extremely useful characteristic to differential 

cryptanalysis. 

To thwart differential cryptanalysis, the difference distribution tables of the S­

boxes employed by a DES-like block cipher must not contain entries with large values 

(not counting the first entry in the first row). Based on this observation, the ini­

tial reaction was to construct S-boxes with flat (i.e. uniform) difference distribution 

tables [13, 1]. However, as was pointed out in [4, 5], having no large values is not 

sufficient to prevent differential cryptanalysis, and in fact, a block cipher that em­

ploys S-boxes with flat difference distribution tables is easily breakable by differential 

cryptanalysis that exploits the iterative characteristics ofthe cipher (see Definition 12 

of [3]). Among the various possible iterative characteristics, the one that uses the 

smoothness of an S-box, i.e., values in the first column of the difference distribution 

table, is particularly effective. In conjunction with other techniques, this character­

istic can be used to break, at least in principle, a DES-like block cipher with an 

arbitrary number of rounds. Sections 6 and 7 of [3] provide a comprehensive descrip­

tion of this topic. Therefore, in addition to the requirement of having no large values, 

the difference distribution table of an S-box should also contain as less nonzero entries 

as possible in its first column. This motivates us to introduce the following definition: 

Definition 2 Let F = (It, ... ,fs) be an n x s S-box, where fi is a function on Vn , 

i = 1, ... , s, and n :::: s. Denote by L the largest value in the difference distribution 

table of F, and by R the number of nonzero entries in the first column of the table. 

In either case the value 2n in the first row is not counted. Then we say that F zs 

c-robust against differential cryptanalysis, where c is defined by 

R L 
c = (1 - 2J { 1 - 2J . 

The robustness of an n x s S-box is small if R or L is large. For instance, the 

robustness of an n x s S-box is merely 2
1
n (1 - f,.) < 2

1
n if its difference distribution 

table contains only nonzero entries in its first column. Such an S-box is extremely 

prone to differential cryptanalysis. Examples of such weak S-boxes include those with 

flat difference distribution tables proposed in [13, 1]. 
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Large robustness is obtained only when both Rand L are small. For the S-boxes 

to be constructed in the coming sections we have R ~ 2sn and L = 2s
-

t
, where t is 

parameter satisfying (s -In/2J) > t ~ 3. An S-box attains the maximum robustness 

when Rand L achieve their smallest possible values simultaneously. Clearly, the 

smallest possible value for L is 2n
-

s
• As an S-box which achieves this value has a 

flat difference distribution table, we have R = 2n 
- 1 and hence the robustness is less 

than 2
1
n. Therefore to make R small, L must be at least 2n

-
s+1. In the following 

discussions we suppose that L ~ 2n - s+1
• Two cases, n > sand n = s, are considered 

in order to determine the set of possible small values for R. 
When n > s, an S-box defines a many-to-one mapping. For such an S-box, we 

have R ~ 1. Thus the robustness against differential cryptanalysis is bounded from 

above by (1 - 2
1n)(1 - 2-s

+1). To decide S-boxes which achieve the upper bound 

for robustness, consider an n x s S-box whose difference distribution table has the 

following profile: each row, except the first, of the table contains an equal number of 

zero and nonzero entries, and the nonzero entries all contain a value 2n
-

s+1. Thus 

we have L = 2n
-

s
+1. The upper bound would be achieved if R = 1. However, it has 

been proved in [24] that if each row, except the first, of the table contains an equal 

number of zero and nonzero entries, then R must be 2n
-

1 
- 28

-
1

• Consequently the 

robustness of the S-box is less than ~. This example indicates that finding a good 

combination of Rand L is not easy. It is not clear to the authors whether or not the 

upper bound (1 - 2~)(1 - 2-s
+1) is actually attainable. Nevertheless, it will be seen 

in Sections 5 and 6 that there exist S-boxes whose robustness is very close the upper 

bound. 

Next we consider the case when n = s, namely when an S-box is a permutation 

Vn • As any change in the input to a permutation results in a change in the output, 

the first column of its difference distribution table contains only zeros except for 

the first entry. Therefore the maximum robustness against differential cryptanalysis 

is (1 - 2-n+1
). The maximum robustness is attained by a permutation with the 

following difference distribution table: except for the first row, half of the entries in a 

row contain the value 2 while the other half contain the value O. Such S-boxes have 

been extensively investigated in [14, 16, 15, 2]. These S-boxes, however, suffer some 

or all of the drawbacks described below, which render them unattractive in practice. 

1. Their component functions are quadratic. This is true for all the permutations 

in [17, 16], the first type of permutations in [15], and some of the permutations 

in [2]. A block cipher that employs functions with such a low algebraic degree 

as S-boxes would be vulnerable to more classic cryptanalytic attacks than the 

state-of-the-art differential cryptanalysis. 

2. It has been suggested that an n x s S-box, where s < n, be constructed by omit­

ting component functions from a permutation on Vn [14, 16, 15, 2]. However, in 

general, omitting component functions of a (1- 2-n
+1 )-robust permutation does 

not yield a robust n x s S-box. In particular, we have proved in [24] that for any 

n x n S-box whose component functions are quadratic, dropping a component 

function results in an n x (n - 1) S-box whose robustness against differential 

6 
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cryptanalysis is only 2;:1 (1 - 2-n+2) < !. The robustness decays drastically 

as more component functions are dropped. We conjecture that a similar phe­

nomenon happens even in the more general case where component functions of 

an n X n S-box are not quadratic. 

3. An S-box is said to satisfy the SAC if its component functions all satisfy the 

SAC. This property is considered to be at least as essential as the robustness 

against differential cryptanalysis. This issue has been completely neglected 

in [17, 14, 16, 15, 2], and none of the S-boxes constructed in those papers 

satisfies the SAC. 

4. The S-boxes, with the following two exceptions, only accept an odd number of 

input bits. Applications of such S-boxes are limited. 

The first exception is some of the S-boxes constructed in [2] which accept an 

even number of input bits. Unfortunately the component functions of these 

S-boxes are all quadratic. 

The second exception is the inverse function on G F(2n) defined by 

F(X) _ { 0 if X = 0 
- 1/ X otherwise 

Results proved in [15] indicate that the robustness of F(X) against differential 

cryptanalysis is (1 - 2-n+1) when n is odd, and (1 - 2-n+2) when n is even. As 

the input to the function has to be checked against the value zero, it would be 

very inconvenient to use the function in practical applications. Although this 

inconvenience can be removed by using look up tables, the amount of memory 

required in storing the tables becomes intolerable when n is large. 

Interesting results on constructing S-boxes have been presented in [9]. These 

include a few 5 x 5 S-boxes which are (1-2-4 )-robust against differential cryptanalysis. 

Although these S-boxes satisfy the SAC, they all bear the other three shortcomings. 

In addition, since the method relies on exhaustive search, it is beyond the currently 

available computing power to find a larger, say 7 x 7, S-box with similar properties. 

A final remark is that the construction methods used in [17, 14, 16, 9, 15, 2] are 

essentially the same from a technical point of view: they are all based on permutation 

polynomials on GF(2n). Although such permutations are easy to analyze, they have 

a very restricted form and consist of only a small portion among all the permutations 

on GF(2n). 

In the following sections we take a completely different approach, which is based 

on group Hadamard matrices, towards constructing S-boxes. The S-boxes generated 

using the new approach will free of all the drawbacks addressed above. Before going 

into the description of the new approach, we note that DES employs eight 6 x 4 S­

boxes. The difference distribution tables of the S-boxes can be found in [3]. Table 1 

shows that the robustness of the eight S-boxes against differential cryptanalysis is 

between 0.316 - 0.469. The values are far less than (1 - 6~)(1 - 2-3
) = 0.861, the 

upper bound for the robustness of a 6 x 4 S-box. This might partially explain why 

differential cryptanalysis of DES was so successful. 
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Table 1: Robustness of S-boxes Used by DES 

I S-Box I La 

SI 16 37 0.316 

S2 16 33 0.363 

S3 16 37 0.316 

S4 16 24 0.469 

S5 16 31 0.387 

S6 16 33 0.363 

S7 16 35 0.340 

88 16 36 0.328 

a L: The largest value in the difference 

distribution table, not counting the value 

26 in the first row. 

b R: The number of nonzero entries in 

the first column of the difference distribu­

tion table, not counting the first entry con­

taining a value 26
. 

c€ = (1 - ~)(1 - fr): Robustness 

against differential cryptanalysis. 

4 Constructing S-boxes (Part I) - The First At­

tempt 

We present our method for constructing robust S-boxes in three steps. The first step 

which is described in this section shows how to construct S-boxes whose component 

functions are highly nonlinear and also satisfy the SAC. A shortcoming of these S­

boxes is that they are not robust against differential cryptanalysis. This shortcoming 

is removed in the second step which is described in the next section. This is followed 

by another section describing the third step which discusses further refinement on the 

results. 

4.1 Bent Functions Which Form a Group 

In [19], bent functions which form an additive group were constructed. These func­

tions are the starting point of our method for generating S-boxes, and hence are 

reviewed in the following. 

A (1, -I)-matrix of order n will be called a Hadamard matrix if H HT = nln' where 

HT is the transpose of H [25]. A Sylvester-Hadamard matrix ( or Walsh-Hadamard 

matrix) is a matrix of order 2n generated in the following way: 

Hn = [HH
n
-

l 
_HH

n
-

l 1 ,n = 1, 2, ... , Ho = l. 
n-l n-l 

8 



Let G be a group under operation· (dot), and let P = (PI, ... ,Pn), q = (qb ... , qn) 

be two vectors of length n, whose entries Ph qj come from G. Define the operation 8 

such that p8q = (PI ·ql, ... ,Pn ·qn), and the inverse of q such that q-l = (qll, ... ,q;;l). 

We say that P and q are s-orthogonal if P 8 q-l = (Pl· ql1 
, ..• ,Pn . q;;l) contains every 

element in G precisely s times. 

A generalized Hadamard matrix [6, 7] of type s for the group G is a square ma­

trix with entries from G whose rows and columns are both s-orthogonal. A group 

Hadamard matrix [8] is a generalized Hadamard matrix whose rows and columns 

both form a group under the operation 8. Note that in a group Hadamard matrix 

of type s for G, there exist a row acting the role of identity, and each of the other 

rows contains each element of G precisely s times. A similar observation applies to 

the columns of the matrix. 

Now let c be a primitive element of GF(2k), and let C be a (2k - 1) X (2k - 1) 

matrix whose (i,j)th entry, 0 ~ i,j ~ 2k - 2, is defined as Cij = c j +i (mod 2k_l) 

Denote by D the extended 2k x 2k matrix [o ~: CO]. 

Note that each entry of D is a polynomial in c, whose algebraic degree is at most 

k - 1. Therefore each entry can be expressed as ao EEl alC EEl ... EEl ak_ICk-l, where 

ai E GF(2). Replacing ci by Xi+l, where 0 < i ~ k - 1, we obtain a multi-variable 

polynomial aOXI EEl alX2 EEl ... EEl ak-lxk, which can be viewed as a linear function on 

Vk • Denote by E be the matrix obtained from D by applying the replacement to all 

its entries. In [19], the following interesting result was proved 

Lemma 2 Denote by fk the additive group consisting of all linear functions on Vk. 

Then E is a group Hadamard matrix of type 1 for f k • That is, both the rows and the 

columns of the matrix E form a group under the component-wise polynomial addition 

with the zero row and the zero column as their identify elements respectively, and 

each linear function on Vk appears precisely once in each nonzero row and also in 

each nonzero column. 

Concatenating the linear functions in the ith row of E results in a function fi on 

V2k: 

2k_l 

fi(y,x) = EB [Dj(y)ej;{x)] (1) 
j=O 

where y = (Yb ... , Yk) and x = (x}, ... , Xk). From [19], we know that fl' 12, ... , 
f2k-l are all distinct bent functions on \12k, and that fo, fb ... , f2k-l form a additive 

group with fo = 0 as its identify element. In the same paper it was also shown that 

Theorem 2 The following statements hold: 

(i) let f be a nonzero linear combination of the k functions fI! f2' ... , fk that 

are defined by (1), namely f(y, x) = Eaj=l[Cj!J(y, x)], where y = (Yb· .. , Yk), 

x = (Xb ... , Xk) and Cj E GF(2). Then f = fi for some 1 < i < 2k - 1. 
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Conversely, any fi' 1 ~ i ~ 2k - 1, can be expressed as a nonzero linear 

combination of it, 12, ... , fk; 

(ii) for any 1 <j < 2k - 1, write 

elj = allxl EB ••. EB alkxk, 

e2j = a21 x l EB •.• EB a2kx k, 

then A = (aij), whose entries come from GF(2), is a nondegenerate matrix of 

order k. 

4.2 S-boxes Satisfying the SAC 

We have shown that concatenating the functions in a row of E, except the first row, 

results in a bent function. Note that a bent function is not balanced. In the following 

we consider the concatenation of an incomplete or partial row in E. 

Let n be an integer with k < n < 2k. We select 2n
-

k distinct columns from the 

2k - 1 nonzero columns of E. Denote by H = (hiJ the 2k X 2n
-

k matrix consisting 

of the 2n
-

k selected columns, where 0 ~ i ~ 2k - 1 and 0 ~ j ~ 2n
-

k - 1. 

Let gi be the function obtained by concatenating the ith row of H = (h ij ), namely 

2n -lI:-l 

gi(y,X) = EB [Dj(y)hjj(x)] (2) 
j=O 

Lemma 3 Let 9 be a nonzero linear combination of gI, ... , gk that are .defined in 

(2), namely g(y,x) = EB7=I[Cigi(y,X)], where Ci E GF(2). Then 

(i) 9 is balanced, 

(ii) the nonlinearity of 9 satisfies Ng ::: 2n
-

l 
- 2k

-
1

, 

(iii) g( z) EB g( z EB 'Y) is balanced for any 'Y = (13, a) with W (13) i- 0, where 13 E Vn - k 
and a E Vk, 

(iv) the maximum algebraic degree of 9 is n - k + 1, 

(v) G = (g}, ... ,gk) is a regular mapping. 

Proof. (i) of Theorem 2 implies that g, a nonzero linear combination of gl, ... , gk, 

matches gi for some 1 ~ i < 2k - 1. Note that gI, .•• , g211:-1 are all concatenations of 

nonzero linear functions. By Lemma 1, (i), (ii) and (iii) hold. 

Now we show that (iv) is true. First we note that since the rows of the matrix E 

from which H is obtained form a group (see Lemma 2), there is a 1 ~ t < 2k - 1 such 
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that 9 can be expressed as the concatenation of the functions in a row of H indexed by 

t, namely, 9(Y,X) = E9;:~/c-l[Dj(y)htj(x)]. Consider the function 91 which is defined 

by 91(y,X) = E9;:~/c-l[Dj(y)hlj(X)]. When the following condition is satisfied 

2n -/c_l 
EB hlj(x) =I- 0 (3) 
j=O 

the term Yl ... Yn-k E9;:~/c -1 h1j (x) will not be canceled in the final expression of 9t, 
and hence 91 achieves the maximum algebraic degree n - k + 1. 

Now suppose that the the condition (3) is satisfied. Recall that the columns of 

E form a group as well (see Lemma 2), and that each linear function in Vk appears 

precisely once in each nonzero column. These properties of E, together with the fact 

that E9;:~/c-l hoj ( x) = 0, implies that when the condition (3) is satisfied, we have 

E9;:~/c-l hij(x) =I- 0 for all 2 ~ i ~ 2k -1. In other words, 92, ... , 92/c-l all achieve the 

maximum algebraic degree n - k + 1. 

To ensure that the condition (3) is satisfied, first we select 2n
-

k 
- 1 columns from 

the nonzero columns of E. Next we select a column from the nonzero columns of 

E that have not been touched so far, and check E9;:~/c-l h1j{x). The selection and 

checking step continues until the condition (3) is satisfied. Since each linear function 

on Vk appears precisely once in a nonzero row of E, after the first 2n
-

k 
- 1 columns 

are selected, there is at most one column in the untouched columns of E such that 

EB;:~/c-l h1j{x) = O. Therefore the maximum algebraic degree is always achievable. 

This proves (iv). 

(v) follows from (i) and Theorem 1. 0 

A problem with G = (91, ... , 9k) is that it does not satisfy the SAC. Using the 

following Lemma 4 which was first proved in [21], the problem can be circumvented 

by a suitable nondegenerate linear transformation on the coordinates of the mapping. 

Note that the balancedness, the nonlinearity and the algebraic degree of a function 

are not affected by a non degenerate linear transformation on coordinates [22]. 

Lemma 4 Let ft, 12, ... , fm be functions on Vn . Suppose that A is an n x n non­

degenerate matrix on GF(2) with the property that for each row ai of A, 1 < i ~ n, 

and for each function Ii, 1 < j ~ m, Ii(x) EB Ii(x EB ai) is balanced. Then fl(xA), 

h(xA), ... , fm{xA) all satisfy the SAC. 

Let A be a n x n non degenerate matrix with nonzero values in the first n - k 

entries of its rows. A simple example follows: 

A = [ In- k O(n-k)xk 1 
Jkx(n-k) h 

(4) 

where I denotes the identity matrix, 0 the zero matrix, and J the matrix whose entries 

are all ones. Another example that introduces more inter-coordinate dependencies is 
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as follows: 

A [ 
In-k 

Bkx(n-k) 

[ 
In-k 

Bkx(n-k) 
(5) 

where B is a matrix not containing zero rows and C is an arbitrary matrix, both on 

GF(2). 

Denote by II the mapping after applying the linear transformation A to the coor­

dinates of G = (gl," . ,gk), namely, 

II(x) (1I"1(X), ..• ,1I"k(X)) 

(gl(xA), ... ,gk(xA)). 

From (iii) of Lemma 3 and Lemma 4 it follows: 

(6) 

Theorem 3 The nonzero linear combinations of the component functions of II = 

(11"1, ... , 1I"k) which is defined by (6) are all nonlinearly balanced and fulfill the SA C. 
Their nonlinearity is at least 2n- 1 - 2k- 1, and their maximum algebraic degree is 

n-k+1. 

Although II = (11"1, ... , 1I"k) satisfies some of the main requirements for an S-box 

with regard to nonlinearity, SAC and balancedness, the majority of the rows in its 

difference distribution table contain no zeros. By a similar argument to that for 

Lemma 7 in Subsection 5.3, it can be shown that the difference distribution table has 

the following profile: 

1. in 2k - 1 cases, 2n- k out of the 2k entries in a row contain a value-2\ while the 

other 2k - 2n- k entries contain a value zero; 

2. in the other 2n - 2k cases (not counting the first row), all the entries in a row 

contain a value 2n-k. 

Hence the robustness of II against differential cryptanalysis is only ;: (1- 2n~k) < 2n~'" 
This shortcoming will be removed in the following section. Before going into the 

detailed description of how it is removed, we note that Lemma 3, together with the 

discussions about the SAC fulfilling properties and the difference distribution tables 

of G = (g1, ... ,gk) and II = (11"1,"', 1I"k), also holds in the case when gj is defined in 

the following more general form: 

2n - k _l 

gi(y,X) = EB [Dj(y)hjj(x)] EEl ri(y) (7) 
j=O 

where ri is an arbitrary function on Vn-k. 
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5 Constructing S-boxes (Part II) _I Improvement 

This section discusses how to strengthen S-boxes constructed in (6) so that they are 

much more robust against differential cryptanalysis. We start with a permutation 

on V3 which has many desirable properties. Next we combine an s x k S-box G = 

(91,'" ,9k) with the permutation on V3 to obtain an n x (k + 3) S-box, where 9i 

is constructed by (2). Then we show that the new S-box is very robust against 

differential cryptanalysis. 

5.1 A Permutation on Va 

Recall that each primitive polynomial defines an m-sequence (see [11]). Consider 

(1,0,0, 1,0, 1, 1), an m-sequence of length· 7 generated by the primitive polynomial 

1 EB x EB x3 with (1,0,0) as its starting vector. Shifting cyclically the m-sequence to 

the left gives two new m-sequences (0,0,1,0,1,1,1) and (0,1,0,1,1,1,0). The three 

m-sequences can be viewed as the truth tables of functions on V3 after appending 

a zero at the left end of each of the sequences. The functions corresponding to the 

three truth tables are 

ml(W) = Yl EB Y3 EB Y2Y3 } 

m2( w) = Yl EB Y2 EB YIY2 EB Y2Y3 

m3( w) = YIY2 EB Y2Y3 EB YIY3 

where w = (Yl, Y2, Y3)' The three functions define a mapping on V3: 

M3 = (ml,m2,m3)' 

(8) 

It is not hard to verify that M3 is a permutation on Va. In addition, by using properties 

of m-sequences or by straightforward verification, one can see that M3 has the two 

properties described below. 

1. Let m( w) = Cl ml (w) EB C2m2( w) EB C3m3( w) be a nonzero linear combination 

of ml, m2, m3, where Cl, C2, C3 E GF(2). Then m is a nonlinearly balanced 

function. The nonlinearity of m is 2. Note that 2 is the maximum nonlinearity 

of a function on Va. 

2. Let a be a nonzero vector in Va. When w runs through Va, M 3 ( w) EB M 3 ( wEB a) 
runs through 4 vectors in Va twice each, and never through the other 4 vectors. 

5.2 Robust S-boxes 

Now we combine the permutation on Va with functions constructed by (2) to obtain 

an S-box much more robust against differential cryptanalysis. Let nand s be integers 

with n 2: s > (l n/2J + 3), and let k = s - 3. Also let rl = r2 = ... = rk = 0, 

rkH = mil rk+2 = m2 and rk+3 = m3. Define s = k + 3 functions on Vn in the 

following way: 

fi(Yl,·· . ,Yn-k, Xl, . .. ,Xk) 

9i(Yl,· .. , Yn-k, Xl, ... ,Xk) EB ri(Yl, Y2, Y3) (9) 
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where gi is defined by (2) and i = 1, ... , k + 3. 

The following lemma will be used in discussing properties of the functions con­

structed by (9). 

Lemma 5 Let g(xt, ... , xs) be a function on Va. Extend 9 into a function I on 

Va+t by adding t dummy-coordinates, namely, f(xt, .. . , Xs , Yb ... , Yt) = g(xt, . .. , xs). 
Then 

(i) if 9 is balanced then I is balanced, 

(ii) N f ~ 2t Ng , where N f and Ng denote the nonlinearities of I and 9 respectively. 

Proof. Note that 

f(xt, . .. , xs, yt, ... , Yt) 

- f(YI, ... ,yt,xt, ... ,xs ) 

21_1 

EB [Di(yt, ... , Yt)g(Xll . .. , xs)]. 
i=O 

Thus f is obtained by concatenating 9 for 2t times. This proves (i). 

Let e be the sequence of g. Then", = (e, ... , e) is the sequence of f. Let L 

be an arbitrary affine sequence of length 2t+s. By Lemma 10 of [20], L is a row 

of Ht+s = Ht ® Hs, where Hn is the Sylvester-Hadamard matrix of order 2n and 

® denotes the Kronecker product. Then L can be expressed as L = f t ® fs where 

f t is an affine sequence of length 2t and is is an affine sequence of length 2s
• Let 

it = (at, ... , a21). Then L = (aIls, ... , a2ds) and 

21 

I(""L)I ~ L l(e,fs)1 = 2t
l(e,ls)l· 

j=l 

Since the nonlinearity of 9 is Ng , by Lemma 12 of [20], we have l(e,is)1 ~ 2s - 2Ng • 

Hence 

1("" L)I ~ 2t(2S - 2Ng ) 

As L is arbitrary, again by Lemma 12 of [20], we have N f ~ 2t Ng • 

Now we have the following result: 

o 

Lemma 6 Let Y = (YI, ... , Yn-k), X = (Xl' ... ' X k), w = (YI, Y2, Y3) and z = (y, x) . 

Let I(y, x) = EBj~ncjli(Y, x)] be a nonzero linear combination 01 Ill ... , 1k+3 that are 
defined in (9). Then 

(i) f is balanced, 

(ii) when I(z) =f EBj~Z+I[cjrj(w)], the nonlinearity of f is at least 2n
-

1 
- 2k-I, and 

the maximum algebraic degree of I is n - k + 1. Otherwise, the nonlinearity of 

f is at least 2n- 2, and the algebraic degree of f is 2, 
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(iii) when J(z) =J ffij~Z+1[cjrj(w)), J(z) E!1 J(z E!1 I) is balanced for any I = (/3,a) 
with W(,8) =J 0, where ,8 E Vn - k and a E Vk, 

(iv) (JI! ... , Jk+3) is a regular mapping. 

Proof. Note that J can be written as 

k+3 k+3 
J(z) = EB[Cjgj(z)] E!1 EB [cjrj(w)]. 

j=l j=k+l 

It is easy to see that J(z) =J 0, and there are only two cases to be considered 

Case 1 - J(z) = ffij~ncjgj(z)] E!1 ffij~Z+1[cjrj(w)] with ffij~f[cjgj(z)] =J o. 
Case 2 - J(z) = ffi;~Z+1 [cjrj{ w)] = Ck+1 ml (w) E!1 Ck+2m2( w) E!1 Ck+3m3( w). 
From Lemma 3 and the discussion on the construction (7) at the end of Subsec­

tion 4.2, it follows that J is balanced in Case 1. And due to the first property of the 

permutation on V3 (see section 5.1) and (i) of Lemma 5, J is balanced in Case 2. This 

proves (i). 

The first half of (ii), which corresponds to Case 1, follows from Lemma 3, as well 

as the discussion on the construction (7). In Case 2, the algebraic degree of J is 

clearly 2. By (ii) of Lemma 3, the nonlinearity of f is at least 2n
-

3 ·2 = 2n
-

2
• 

Finally (iii) follows from Lemma 1, while (iv) follows from (i) and Theorem 1. 0 

Let A be a (k+3) x (k+3) nondegenerate matrix, whose ith row Ii, i = 1, ... , k+3, 

can be written as Ii = (,8i, ai), where ,8i E Vn-k, W(,8i) =J 0 and ai E Vk. Then by 

Lemma 4, It, 12, ... , Jk+3 defined by (9) can all be transformed into SAC-fulfilling 

functions: 

q,(z) = (1Pt(Z), ... , tPk+3(Z)) 

= (It(zA), ... ,Jk+3(zA)). (10) 

Thus we have the following theorem: 

Theorem 4 Let q" tPI! ... , tPk+3 and A be the same as in (10). Let tP( z) = 
ffij~f[cjtPj(z)] be a nonzero linear combination oJtPt, ... , tPk+3, where z = (Zl, ... , Zk+3) 

and Cj E GF(2). Then 

(i) tP is balanced, 

(ii) in 2k+3 - 8 cases, which include the cases when tP = tPj, j = 1, ... , k + 3, the 

nonlinearity oj tP is at least 2n
-
1 - 2k-1, and the maximum algebraic degree of 

tP is n - k + 1. In the other 7 cases, the nonlinearity oj tP is at least 2n- 2, and 

the algebraic degree of tP is 2, 

(iii) tP satisfies the SAC if tP(z) =J ffij~Z+1 [cjrAzA)), 

(iv) q, = (tPt, ... ,tPk+3) is a regular mapping. 

In the following we prove that the robustness of q, = (tPl, ... , tPk+3) against differ­

ential cryptanalysis is G + 2-n+k- 3 - 2-2n+2k ). When n = k + 3, q, is a permutation 

on Vn, and its robustness against differential cryptanalysis is ~. 
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5.3 Profile of the Difference Distribution Table 

Now we discuss the difference distribution table of \l1 = (tPt, ... , tPk+3) constructed 

by (10). The following results will simplify our discussions. 

Let gj be a function on Vn, j = 1, ... , s, and let G = (gt, .. . , gs). Also let A be 

a nondegenerate matrix of order s over GF(2). Consider F(x) = (gl(X), ... ,gs(x))A. 

Note that A is applied to the output of G. For any T E Va, G( x) = (gl (x), ... , gs( x)) = 

T if and only if F(x) = (gl(x), ... ,gs(x))A = TA. Therefore, while x runs through 

Vn, G( x) runs through T exactly the same number of times as that F( x) runs through 

TA. 

Now let B be a nondegenerate matrix of order n over GF(2), and let F(x) = 
(gl(xB), ... ,gs(xB)). Since G(x) = F(xB-l), G(x) = T if and only if F(xB-I) = T, 

where T E Va. This implies that, while x runs through Vn, G(x) and F(x) run through 

T the same number of times. 

In summary, the profile of the difference distribution table of an S-box is not 

altered by a nondegenerate linear transformation on outputs or a non degenerate lin­

ear transformation on inputs. The observation is used in analyzing the difference 

distribution table of \l1 = (tPl, ... , tPk+3). 

Lemma 7 Let \l1 = (tPt, ... , tPk+3) be an S-box constructed in (10). Also let z = 

(ZI, ... , zn) and I = (j3, a) be a nonzero vector in Vn. Then 

(i) for 2k - 1 cases of" \l1 (z) EEl \l1 (z EB ,) runs through 2n- k vectors in Vk+3 2k 
times each, but not through the other 2k+3 - 2n- k vectors, 

(ii) for other 2n- 3 - 2" cases of" \l1(z) EB \l1(z EB ,) runs through 2k vectors in Vk+3 
2n- k times each, but not through the other 2k+3 - 2k vectors, 

(iii) for the remaining 2n_2n- 3 cases of" \l1(z)EB\l1(zEB,) runs through 2k+2 vectors 

in Vk+3 2n- k- 2 times each, but not through the other 2k+2 vect~rs, 

\ 
(iv) the first column contains a value 2n- k in (2n- k- 3 - 1)2k entries, and a value 

zero in the other entries (not counting the first entry). 

Proof. Let F = (It, ... , fk+3) , where Ii is constructed by (9). Then \l1(z) = F(zA), 
and hence \l1(z) EB \l1(z EB ,) = F(zA) EB F(zA EB ,A). Thus the problem of discussing 

the difference distribution table of \l1 is reduced to that of F. 

Let z = (y,x), Y = (Yt, ... ,Yn-k), x = (xt, ... ,Xk) and w = (Yt,Y2,Y3). Write 

,= (j3,a), where j3 E Vn-k and a E Vk, and j3 = (J.L,v) where J.L E V3 and v E Vn - k- 3. 
By (9) we have 

F(z) (gl(Z), ... ,gk(Z),gk+I(Z) EB ml(w), 

gk+2(Z) EB m2(w),gk+3(Z) EB m3(w)). 

Hence 

F(z) EB F(z EB ,) 
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- (9t(Z) 61 9t(Z 61 ,), ... ,9k(Z) 61 9k(Z 61 ,), 

9k+t(Z) 61 9k+t(Z 61 ,) 61 mt(w) 61 mt(w 61 /-L), 

9k+2(Z) 61 9k+2(Z 61 ,) 61 m2(W) 61 m2(W 61 /-L), 

9k+3(Z) 61 9k+3(Z 61 ,) 61 m3(W) 61 m3(W 61 /-L)). 

As 9k+1' 9k+2 and 9k+3 are nonzero linear combinations of 9t, ... , 9k, F( z) 61 F( Z 61,) 

can be written as F(z) 61 F(z 61 ,) = (Q(z) 61 Q(z 61 ,))B for some nondegenerate 

matrix B, where 

Thus the problem is further simplified, and we only have to discuss how Q( z )61Q( z61,) 
runs through the vectors in Vk+3. 

From (9), we have 

Q(z) 61 Q(z 61 ,) 

( EB [Dq(y)(ht,q(x)] 61 ht,q(fJ{3(x 61 a)), ... , 

mt(w) 61 ml(w 61 /-L), m2(w) 61 m2(w 61 /-L), 

m3( w) 61 m3( W 61 /-L)). 

Note that we have switched from integers to vectors in describing indexes. We dis­

tinguish the following two cases: W (13) = ° and W (13) i= 0. 

Case 1: W(j3) = ° and hence W(a) i= ° and W(/-L) = 0. In this case we have 

Q(z) 61Q(z61,) = ( EB [Dq(y)ht,q(a)]' ... , 

EB [Dq\y)hk,q(a)],O,O, 0) 
qEV

n
_

k 

where hi,q(a) = hi,q(x) 61 hi,q(x 61 a) (Note that hi,u(x) is a linear function). 

As D6(y) = 1 if and only if y = fJ, for any fixed fJ E Vn-k, we have 

(Q(z) 61 Q(z 61 ,))ly=6 = (h t,6(a), ... , hk,6(a), 0, 0, 0). 

Now let y = fJ run through Vn - k • Then (Q(z) 61 Q(z 61 ,))ly=6 will run through 2m
-

k 

vectors in Vk+t, 2k times each. This follows from the fact that, if fJ i= fJ', then 

(Q(z) 61 Q(z 61 ,))ly=6 i= (Q(z) 61 Q(z 61 ,))ly=61 • 

To show that the fact is true we only have to show 

or equivalently 
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Since the rows of the matrix E introduced in Subsection 4.1 form a group, there exists 

a 6" 1= (0, ... ,0) such that 

(ht,c5(a) EB ht,c5(a), ... , hk,c5(a) EB hk,c5(a)) 

= (ht,c5,,(a), ... , hk,c5,,(a)). 

As W(a) 1= 0, it becomes clear that 

(h t ,c5,,(a), ... ,hk,c5,,(a)) 1= (0, ... ,0). 

This shows that the fact is indeed true. 

To summarize Case 1, while z runs through Vn , Q(z) EB Q(z EB,) runs through 

2n - k vectors in Vk+3, 2k times each, and not through the other 2k+1 - 2n
-

k vectors. 

Case 2: W(,8) 1= O. Then 

( Q ( z) EB Q (z EB ,)) I y=c5 

(ht,c5(X) EB ht ,c5ffJ/3(X EB a), ... , hk,c5(X) EB hk,c5(J)(3(X EB a), 

mt(p) EB mt(p EB p), m2(p) EB m2(p EB p), 

m3(p) EB m3(p EB p)) 

where 6 = (p, u), P E Va, U E Vn - k - 3 • Note that since hij is a linear function, we have 

ht ,c5(f)(3(X EB a) = ht ,c5(f)(3(X) EB ht,c5(f)(3(a) 
Again as the columns of E defined in Subsection 4.1 form a group, there is a 

6' 1= (0, ... ,0) such that 

(Q(z) EB Q(z EB,) )ly=c5 

(h t ,c5'(X) EB dt, ... , hk,c5'(X) EB dk, 

mt(p) EB mt(p EB p), m2(p) EB m2(p EB p,), 

m3(p) EB m3(p EB p,)) 

where di = hi,c5(f)(3(a), i = 1, ... ,k. 

Recall that ,8 = (p" v) where p, E Va and v E Vn -k-3. Two cases should be 

considered: W(p) = ° and W(p) 1= O. 

Case 2.1: W(,8) 1= 0 and W(p,) = 0. We have 

(Q(z) EB Q(z EB ,))ly=c5 = (h t ,c5'(X) EB db . .. , hk,c5'(X) EB dk, 0, 0, 0). 

By (ii) of Theorem 2, (ht,c5'(X)EBdt, ... , hk,c5,(X)EBdk) forms a permutation on Vk when 

6, and hence 6', is fixed. Thus for any 8 E Vn - k, (ht,c5'(X)EBdt, ... ,hk,c5'(X)EBdk) runs 

through each vector in h once while x runs through Vk. This is equivalent to say 

that (Q(z) EB Q(z EB,))ly=c5 runs through each (Cll .. . ,Ck,O,O,O) E Vn precisely once. 

Consequently, when y = 8 runs through all the 2n- k vectors in Vn-k, (Q(z) EB Q(z EB 

,)) ly=c5 runs through each (ct, ... , Ck, 0, 0, 0) 2n
-

k times, but never through the other 

vectors in Vn . 

Case 2.2: W (,8) 1= 0 and W (p) 1= 0. Recall that for any p, with W (p,) 1= 0, while p 
runs through Va, (mt (p )EBmt (pEBp), m2(p )EBm2(pEBp,), m3(p )EBm3(pEBP,)) runs through 
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4 vectors in V3 twice each, but not through the other 4 vectors. Since b = (p, g), p 
runs through each vector in V3 2n- k- 3 times while y = b runs through Vn- k. Taking 

into account the fact that (h1,8'(X) ED db"" hk,8'(X) ED dk) forms a permutation on Vk 
for any fixed bE Vn-k, we can see that in the case when W(p) =f. 0, Q(z) ED Q(z ED,) 
runs through 4 ·2k = 2k+2 vectors in Vk+3, 2· 2n- k- 3 = 2n- k- 2 times each, but never 

through the other 2k+2 vectors in Vk+3. 

Note that, can take 2k -1 different nonzero vectors in Vn for Case 1, 2n- 3 - 2k in 

Case 2.1, and 2n 
- 2n

-
3 in Case 2.2, and that Q(z) EDQ(zED,) and F(z) ED F(zED,) are 

related by F(z) ED F(z ED,) = (Q(z) ED Q(z ED ,»B, while F(z) and w(z) are related 

by w(z) = F(zA). This proves the first three parts of the theorem. 

Finally we consider the first column of the difference distribution table. Recall 

that the first column differs from the rest of the table in the sense that it indicates 

the smoothness of the S-box and that it is of particular importance to differential 

cryptanalysis. When s = k + 3 = n, the S-box is a permutation on Vn , and the first 

column in its difference distribution table is (2n
, 0, ... ,of. To examine the case when 

n > s, we consider the solutions of the equation 

w(z) ED w(zED,) = (0, ... 0,0,0,0), (11) 

where, = (13, a) =f. (0, ... ,0), 13 E Vn - k and a E Vk • 

Similarly it can be discussed in the two cases: Case 1 where W(f3) = ° and Case 2 

where W(f3) =f. 0. The latter can be further divided into Case 2.1 where W(f3) =I- ° 
and W(p) = 0, and Case 2.2 where W(f3) =I- ° and W(p) =f. 0. It is not hard to verify 

that the equation (11) has 2n
-

k solutions for z in Case 2.1, but no solutions in Case 1 

and Case 2.2. The number of rows corresponding to Case 2.1 is (2n- k- 3 -1)2k. This 

completes the proof. 0 

The difference distribution table of the S-box has the following profile: 

1. the largest number in the 2k - 1 rows corresponding to Case 1 is 2k, while it is 

2n- k for the 2n - 2k rows corresponding to Case 2. When n is large, the number 

of rows for Case 2 is significantly larger than that for Case 1; 

f 
2. the first column contains a value 2n- k in (2n- k- 3 -1 )2k entries, and a value zero 

in the other entries (not counting the first entry); 

3. each row contains zero entries. 

As a consequence, the robustness c of W = (tPl," . , tPk+3) against differential crypt­

analysis is 

c [1 - (2n- k - 3 - 1)2k j2n](l _ 2-n+k) 

~ + 2-n+k-3 _ 2-2n+2k 
8 

2 7 
8' 

Thus we have proved: 
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Theorem 5 \II = (.,pI, ... ,.,pk+3) constructed in (10) isG+2-n+k-3-2-2n+2k)-robust 

against differential cryptanalysis. 

Another issue with the profile of a difference distribution table is the fraction of 

nonzero entries contained by the table. For an S-box constructed by (10), the fraction 

of nonzero entries in its difference distribution table is between 0.5 - 2-4 ~ 0.44 and 

0.5. For the more general construction method described in the next section, the 

fraction is between 0.5 - 2-(t+1) and 0.5, where t :::: 3. In general, if an S-box is 

not robust against differential cryptanalysis, then the smaller the fraction of nonzero 

entries in the table, the faster the differential cryptanalytic attack [3,4]. This problem, 

however, is not significantly relevant to robust S-boxes, including those constructed 

in this extended abstract. 

6 Constructing S-boxes (Part III) - Refinement 

We have shown that S-boxes constructed by (10) are at least ~-robust against differ­

ential cryptanalysis, and that they are also very promising in terms of their nonlinear­

ity, algebraic degrees and strict avalanche characteristics. Recall that (10) is obtained 

from (9) by applying a suitable non degenerate linear transformation on coordinates, 

while (9) is the result of combining an S-box defined in (2) with a permutation M3 on 

V3 whose component functions are defined by (8). We have used the two properties 

of M3 (see Subsection 5.1) in proving that combining (2) with (8) gives much better 

S-boxes. This approach can be generalized to further improve the robustness of an 

S-box. 

Let t ~ 3 and M t = (mI, ... , mt} a permutation on Vt that has the following 

properties: 

1. any nonzero linear combination m of ml, ... , mt is a nonlinearly balanced func­

tion; 

2. for any nonzero vector a E Vt, when w runs through Vt, Mt(w) EB Mt(w EB a) 

runs through half of the vectors in Vt twice each, qut never through the other 

half vectors. 

For odd t > 3, permutation polynomials based on the "cubing" technique [17, 14, 16, 

9, 15, 2] satisfy the two requirements. 

Let n, sand t be integers with n > s > (In/2J + t) and t ~ 3, and let k = s - t. 
Now (9) can be generalized to 

h(yI, ... ,Yn-k, XI, . .. , Xk) 

= gi(yt, ... , Yn-k, XI, ... , Xk) EB ri(Yt,· .. , Yt) (12) 

where i = 1, ... , k + t, gi is defined by (2), and rl = r2 = ... = rk = 0, rk+1 = mt, 

... , rk+t = mt· 
Let J be a nonzero linear combination of the k + t functions. Then when J(z) i­

EBj;;k+1[cjrj(w)], J(z) EB J(z EB ,) is balanced for any, = ({1,a), where {1 E Vn-k, 
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W(,8) =I- 0 and Q E Vk • Let A be a (k + t) x (k + t) nondegenerate matrix, whose ith 

row Ii, i = 1, ... , k + t, can be written as Ii = (,8i, Qi)' where ,8i E Vn - k , W(,8i) > 1 

and Qi E Vk • Then (10) is generalized to: 

\II(Z) (tPl(Z), ... ,tPk+t(z)) 

- (fl(zA), ... , Ik+t(zA)). (13) 

Note that all but 2t - 1 nonzero linear combinations of the component functions of 

\II satisfy the SAC. 

Theorem 4 is generalized to: 

Theorem 6 Let n, sand t be integers with n ~ s > In /2 J + t. Also let \II, tPb 
... , tPs and A be the same as in (13), and tP(z) = EBj=l[CjtPj(z)] be a nonzero linear 

combination of tPt, ... , tP" where z = (Zi, . .. ,zn) and Cj E GF(2). Then 

(i) tP is balanced, 

(ii) in 2k+t - 2t cases, which include the cases when tP = tPj, j = 1, ... , k + t, the 

nonlinearity of tP is at least 2n
-

1 
- 2k

-
1

, and the maximum algebraic degree of tP 
is n - k + 1. In the other 2t - 1 cases, the nonlinearity of tP is at least 2n- t N M

t
, 

and the algebraic degree of tP is at least 2, where NMt denotes the minimum 

among the nonlinearities of mb ... , mt, 

(iii) tP satisfies the SAC, except in 2t - 1 cases. In particular, tP satisfies the SAC 

when tP = tPj, j = 1, ... ,k+t, 

(iv) \II = (tPt, ... , tPk+t) is a regular mapping. 

And Theorem 5 is generalized to: 

Theorem 7 The robustness of \II = (tPI, ... , tPs) constructed in (13) against differ­
ential cryptanalysis is (1 - 2- t + 2-n+s- 2t 

- 2-2(n+s-t)). The lower bound 1 - 2-t is 

attained only when \II is a permutation. 

When t = 5, the robustness is larger than 0.96875, and when t = 7 it is larger 

than 0.9921875. 

7 Counting Robust S-boxes 

Two S-boxes F = (It, ... , fll) and G = (gl, ... , gil) are said to be different if the two 

function sets {II, ... , III} and {gl, ... , gs} differ. We are interested in the number of 

different S-boxes that can be generated by our method. 

Let n, sand t be integers with n ~ s > (l n/2J +t) and t > 3, and let k = s-t. The 

matrix H consists of 2n
-

k columns selected from the matrix E (see Subsection 4.2.) 

The total number of ways in which H is a selected is ( 2;n-=k 
1 

). Each way gives 

a different matrix H. To achieve the maximum algebraic degree n - k + 1, we first 
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select 2n
-

k 
- 1 columns from E and then select a column from the rest of the columns 

of E in such a way that the condition (3) is satisfied. This shows that the number of 

ways of achieving the maximum algebraic degree is ( 2:~k-_11 ) (2k - 2n- k - 1). 

It is easy to verify that permuting the 2n
-

k columns of the matrix H results in 

a different matrix, and that discussions made above, in particular Lemma 3, and 

Theorems 6 and 7, also hold in this case. Note that there are 2n
-

k ! different ways to 

permute the columns of H. 

It should be pointed out that S-boxes generated in the above two steps, select­

ing and permuting, contain all those which can be obtained by selecting a different 

primitive polynomial of algebraic degree k - 1. In other words, selecting a different 

primitive polynomial does not yield more S-boxes. 

On the other hand, Theorems 6 and 7 also hold when 9k+l' ... , 9k+t, which are 

used to obtain fk+t, ... , fk+t in the construction (12), are replaced by any distinct 

functions chosen from 91, ... , 92k-l. There are ( 2k ; 1 ) possible choices, each of 

which gives a different S-box. 

Finally, we can obtain more S-boxes by selecting a different nondegenerate matrix 

in transforming fl' ... , fk+t into SAC-fulfilling functions. These transformations, 

however, do not always produce different S-boxes. 

In summary, the total number of different S-boxes is at least 

2n- k! ( 2k; 1 ) ( 2;n~kl ) 

and when the maximum algebraic degree n - k + 1 is required, it is at least 

2n- k! ( 2k; 1 ) ( 2:~k-_11 ) (2k _ 2n- k 
_ 1). 

8 Remarks 

This section discusses the following two additional issues: immunity of the S-boxes 

against linear cryptanalysis and a relation between the SAC and the profile of a 

difference distribution table. 

8.1 Immunity to Linear Cryptanalysis 

Linear cryptanalysis is yet another powerful cryptanalytic attack discovered very 

recently by Matsui [12]. This cryptanalytic method exploits the low nonlinearity of 

S-boxes employed by a block cipher, and it has been successfully applied in attacking 

FEAL and DES. 

Given an n x s S-box (II, . .. ,fa), where each fi is a function on Vn, a linear 

cryptanalyst calculates the number of times that 

n a 

f(xt, ... ,xn) = E!1(aix i) EB E!1[bJi(Xb ... ,xn)] (14) 
i=1 i=1 
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assumes the value zero, for all nonzero vectors (al,' .. , an) E Vn and nonzero vectors 

(b l , ... , bs ) E Vs. The cryptanalyst then examines how far the numbers deviate from 

2n
-

l
. Those which deviate the farthest are particularly useful for linear cryptanalysis. 

In the original exposition of linear cryptanalysis [12], only counting the number of 

times that f assumes the value zero was described. This approach, however, captures 

only half of the information that is useful for linear cryptanalysis. The other half is 

obtained by counting the number of times that f assumes the value one. The two 

halves complement each other in the sense that one can be derived from the other. 

We can treat these two halves in a unified way by calculating the number of times 

that 

n s 

g(xt, ... , Xn) = [aD e $(aiXi)] e $[biIAxt, ... , Xn)] (15) 
i=l i=l 

assumes the value one, where ao E G F(2). The first half of the information is obtained 

when ao = 1, while the second half is obtained when ao = O. 

Note that the number of times that the function 9 defined by (15) assumes the 

value one is the Hamming distance between E9j=l [biIi(xt, . .. ,xn)], a nonzero linear 

combination of the component functions, and ao e E9i=l (aiXj), an affine function on 

Vn . To immunize an S-box against linear cryptanalysis, it suffices for the Hamming 

distance between any nonzero linear combination of the component functions and 

any affine function not to deviate too far from 2n-I. Alternatively we have, if the 

nonlinearity of each nonzero linear combination of the component function is high, 

then the S-box is immune to linear cryptanalysis. 

With S-boxes constructed in [13, 1, 19], any nonzero line~r combination of the 

component functions is a bent function. Hence these S-boxes have the strongest pos­

sible immunity to linear cryptanalysis. Unfortunately, as was discussed before, .. their 

component functions are not balanced, and even worse, their difference distribution 

tables are flat and hence they are not immune to differential cryptanalysis. 

As is indicated by Theorem 6, for the S-boxes constructed in this extended abstract 

all nonzero linear combinations of the component functions are highly nonlinear. 

Hence we conclude that they are immune against linear cryptanalysis. 

8.2 SAC vs Difference Distribution Table 

We have shown that the component functions of a robust S-box \lI = (tPI,' .. , tPHt) 
constructed by (13) in Section 6 all satisfy the SAC. In fact we have shown a much 

stronger result, namely, all but 2t - 1 of their nonzero linear combinations satisfy 

the SAC. This should be compared to II = (7I"t, ... , 7I"k) constructed by (6). II is not 

robust against differential cryptanalysis. However, all nonzero linear combinations 

of its component functions satisfy the SAC. This raises a question as to whether all 

nonzero linear combinations of the component functions of a very robust S-box, whose 

difference distribution table contains zero entries in all its rows, can satisfy the SAC. 

We prove that the answer to the question is negative. In other words, for any 

S-box whose difference distribution table contains zero entries in all its rows, at least 

one nonzero linear combinations of its component functions does not satisfy the SAC. 
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Theorem 8 Let F = (fll ... , fs) be an n x s S-box, where fi is a function on Vn and 
n > s. If the difference distribution table of F contains zero entries in all its rows, 

then at least one nonzero linear combination of h, . .. ,fs does not satisfy the SA C. 

Proof. Let x = (XI, ... ,xn ). Since all rows in the difference distribution table of F 

contain zero entries, we know that for any nonzero vector a E Va, F(x) EB F(x EB a) 

does not run through some vectors in Va, while x runs through Vn , or equivalently, 

F(x) EB F(x EB a) is not a regular mapping. Note that 

F(x) EB F(x EB a) = (h(x) EB h(x EB a), ... ,fs{x) EB fs(x EB a)). 

Theorem 1 implies that there is at least one nonzero vector (a1, ... , as) E V, such 

that 

s 

E9{ai[fi(x) ED fi(x EB a)]} 
i=l 

s s 

- E9[adi(x)] EB E9[adi(x EB a)] 
i=1 i=l 

is not balanced, where fOt(x) = EBi=l[adi(x)]. In particular, the argument is true 

when W(a) = 1. That is, fOt does not satisfies the SAC. 0 

9 An Example 

The procedure for generating an n x s S-box, where n ~ s > In/2:J + t, can be 

described in the following steps. 

1. ~t::: ;r:~:~:i:o:::::i~ ~::::~c rr:·k 

0 1', ::: : -=S(:;I;, :~: 
cj+i (mod 2

k
_1), 0 ~ i,j ~ 2k_2. Note that only Co = (Coo, Co}, ... , Co,2k-3, Co,2k-2) 

has to be calculated. The other rows of C can be obtained by rotating Co to 

the left. That is, Cl = (Co}, Co2, ... , Co,2k_2' Coo), C2 = (Co2, Co3, ... , Coo, Cod, and 

so on. 

2. Obtain from D a matrix E of linear functions on Vk by substituting ci with 

xi+!, where 0 < i < k - 1. Note that E is a 2k x 2k matrix, and that the first 

row and the first column of E contain only zeros. 

3. Obtain a 2k X 2n
-
k matrix H by selecting 2n

-
k distinct nonzero columns from 

E. When the maximum algebraic degree n - k + 1 is required, E should be 

chosen so that the condition (3) is satisfied. 
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4. Permute the columns of H. 

5. Construct k + t functions 11, ... , Ik+t by (9). Note that gk+l, ... , gk+t can be 

any distinct functions chosen from g1, ... , g2"-1. 

6. Select a (k + t) x (k + t) nondegenerate matrix A so that its ith row Ii, i = 

1, ... , k + t, can be written as Ii = (f3i, ad, where f3i E Vn-k, W(f3i) ~ 1 and 

ai E Vk. 

7. Output (fl(zA), ... , h+t(zA)) as an S-box. 

Now we construct a 12 x 10 S-box to illustrate the generating procedure. Let 

n = 12, s = 10, t = 3 and k = 7. Choose x7 EB x EB 1 as the primitive polynomial. Let 

c: be a root of x 7 EB x EB 1 = o. 
The first row of the 127 x 127 matrix C (see Subsection 4.1) is c:o, c:1

, ••• , c: 126 , 
that is 

1 234 S 61 2 1 6 ,c:,c:,c:,c:,c:,c:, EBc:,C:EBC:, ... , EBc:. 

The second row of C is obtained by rotating the first row to the left by one position, 

the third row by rotating the second row to the[ ~~.eft by o;e] p. osition, and so on. Then 

we have an extended 128 x 128 matrix D = C By substituting c: i with 

Xi+1, i = 0,1,2,3,4,5,6, we obtain a matrix E = (eij), 0 ~ i,j ~ 127. In particular, 

the first row of E contains only zeros, and the second row of E is 

Next we select 212
-

7 = 32 different nonzero columns from .... E so that the condi­

tion (3) is satisfied. Then we permute randomly the selected rows. In this way we 

obtain a matrix H = (hij), where 0 ~ i ~ 127 and 0 :s j ~ 3l. 

Now let Y = (Yl,Y2,Y3,Y4,YS), x = (X},X2,X3,X4,XS,X6,X7), w = (Y},Y2,Y3), z = 
(y,x), and let 

31 

gi(Y,X) = EB[Dj(y)hij(x)),i = 1,2,3,4,5,6,7. 
j=O 

Let g8, g9 and glO be three distinct nonzero linear combinations of gI, ... , g7. Set 

Ji(z) gj(z),j = 1,2,3,4,5,6,7, 

Ji+7(z) - gj+7(x) EB mj(w),j = 1,2,3 
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where mj(w) = mj(YbY2,Y3) is constructed in Subsection 5.1. Let A be the following 

non degenerate matrix 

1 0 1 1 1 0 1 0 0 0 0 1 

1 1 0 1 1 1 0 1 1 1 0 0 

1 1 1 1 1 0 0 0 0 0 1 1 

1 1 1 0 0 0 1 0 0 1 1 1 

1 0 0 1 0 0 1 1 1 0 1 0 

A= 
1 1 0 1 1 0 1 1 1 0 0 0 

1 0 0 0 0 1 1 1 0 0 1 0 

1 0 1 0 1 0 0 1 1 0 0 1 

1 0 0 1 1 1 1 1 0 1 1 0 

1 1 0 0 0 1 1 1 1 1 0 0 
1 0 0 0 1 0 0 1 1 1 0 0 

1 0 1 0 1 0 1 0 0 1 0 0 

The final S-Box is \II = ('If 1 , ... , tho), where 'If(z) = li(zA). 
Let 'If = E9}~I[Cj'lfj] be a nonzero linear combination of 'lft, ... , 'lf1O. By Theorem 4, 

'If has the properties described here. 

1. .,p is balanced. 

2. In 210 
- 8 = 1016 cases including 'If = Ii, i = 1, ... ,10, the nonlinearity of 'If 

satisfies N"" ~ 212- 1 - 27- 1 = 1984, and the algebraic degree of 'If is 6. In the 

other 7 cases, N"" ~ 212- 2 = 1024, and the algebraic degree of 'If is 2. 

3. 'If satisfies the SAC except when 'If(z) = E9J~:[cjrj(zA)]. 

The difference distribution table of the S-box has the profile d~cribed here: 

1. In 27 - 1 = 127 cases, 212- 7 = 32 out of the 210 = 1024 entries in a row contain 

a value 27 = 128, and the other 210 - 25 = 992 entries contain a value zero. 

2. In other 29 
- 27 = 384 cases, 27 = 128 out of the 1024 entries in a row contain 

a value 25 = 32, and the other 210 - 27 = 896 entries contain a value zero. 

3. In the remaining 212 - 29 = 3584 cases (not counting the first row), half of the 

1024 entries in a row contain a value 23 = 8, and the other half contain a value 

zero. 

4. In the first column, the first entry contains a value 212 = 4096, (212- 10 
- 1 )27 = 

384 other entries contain a value 212- 7 = 32, and the remaining 3711 entries 

contain a value zero. 

Consequently, the robustness of the S-box against differential cryptanalysis is (~ + 
2-5 )(1 - 2-5

) ~ 0.878. 
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10 Conclusion 

We have presented a method for systematically generating cryptographically strong 

S-boxes. The method is based on an interesting combinatorial structure called group 

Hadamard matrices. We have shown that the method is much superior to previous 

approaches, and that it generates promising S-boxes in terms of their robustness 

against differential cryptanalysis, immunity to linear cryptanalysis, SAC fulfilling 

properties, high nonlinearities and algebraic degrees. We have also illustrated the 

construction method by an example of 12 x 10 S-boxes. Future research directions 

include the investigation of possible further improvements on the algebraic degrees, 

the nonlinearities and the profiles of the difference distribution tables of the S-boxes. 
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