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Colorectal cancer (CRC) has a high incidence rate and poor prognosis, and the

available treatment approaches have limited therapeutic benefits. Therefore,

understanding the underlying mechanisms of occurrence and development is

part icular ly crucial . Increasing attent ion has been paid to the

pathophysiological role of cancer-associated fibroblasts (CAFs) in the

heterogeneous tumour microenvironment. CAFs play a crucial role in

tumorigenesis, tumour progression and treatment response. However,

routine tissue sequencing cannot adequately reflect the heterogeneity of

tumours. In this study, single-cell sequencing was used to examine the

fibroblast population in CRC. After cluster analysis, the fibroblast population

was divided into four subgroups. The distribution and role of these four

subgroups in CRC were found to be different. Based on differential gene

expression and lasso regression analysis of the main marker genes in these

subgroups, four representative genes were obtained, namely, TCF7L1, FLNA,

GPX3 and MMP11. Patients with CRC were divided into the low- and high-risk

groups using the prognostic risk model established based on the expression of

these four genes. The prognosis of patients in different risk groups varied

significantly; patients with low-risk scores had a greater response to PDL1

inhibitors, significant clinical benefits and significantly prolonged overall

survival. These effects may be attributed to inhibition of the function of T

cells in the immune microenvironment and promotion of the function of

tumour-associated macrophages.

KEYWORDS
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Introduction

As the third most common malignancy, colorectal cancer

(CRC) causes more than 8% of all deaths worldwide each year (1,

2). Routine treatment of CRC includes surgery, radiotherapy and

chemotherapy, which are invasive and may have a greater

impact on the quality of life of patients (3). After

comprehensive treatment, the 5-year survival rate of patients

with early-stage CRC is 90%; however, treatment options for

patients with advanced-stage CRC who are ineligible for surgery

are limited (4). Immunotherapy may be beneficial for patients

with advanced-stage CRC. Because of its strong anti-tumour

activity, immunotherapy is used for treating several solid

tumours, including melanoma, kidney cancer, non-small cell

lung cancer and prostate cancer (5). In addition to targeted and

anti-vascular therapies, immunotherapeutic strategies have

gradually improved. PD-1/L1 and CTLA-4 are the main

immunotherapeutic agents; however, their clinical efficacy

remains unclear. Studies have shown that only patients with

CRC with defective mismatch repair (dMMR) or high

microsatellite instability (MSI-H) are eligible for checkpoint

inhibition and may benefit from it (6, 7). Therefore, dMMR/

MSI-H is considered a predictive biomarker for the application

and efficacy of immunosuppressants (8). However, the efficacy of

dMMR/MSI-H is only 30–40% (9), which considerably limits the

application of immune checkpoint inhibitors for the treatment

of colon cancer. Therefore, understanding the underlying

mechanisms of the occurrence and development of CRC is

necessary to screen for more effective predictors and improve

the currently available treatment approaches.

In addition to the role of tumour cells, the tumour

microenvironment (TME) is another major auxiliary factor in

the onset and growth of tumours. Several studies have associated

TME with the occurrence and growth of tumours, survival and

clinical treatment sensitivity (10, 11). TME has an extremely

complex system comprising stromal cells, tumour cells, various

cytokines and an extracellular matrix (ECM) (12). Fibroblasts

are the main cellular component of the matrix and are called

cancer-associated fibroblasts (CAFs). They interact with cancer

cells (13, 14) and are significantly associated with the prognosis

of tumours (15). A recent study has demonstrated that CAFs

play a significant role in various tumours. For example, matrix

SOX2 upregulation promotes tumorigenesis by producing CAFs

expressing SFRP1/2 (16), and Wnt-induced phenotypic

transformation of CAFs inhibits EMT in CRC (17). However,

most studies have focused only on the involvement of tumour

cells in fibroblast remodelling or the effects of fibroblasts on

tumour cells, and systematic analysis of tumours and TME

including the whole fibroblast population is lacking.

In this study, we identified fibroblast subsets based on

single-cell sequencing analysis and identified hub genes

significantly related to fibroblasts by differential analysis,
Frontiers in Immunology 02
correlation analysis, univariate cox analysis and lasso cox

analysis. Further, we analysed the roles of hub genes in

tumors from various aspects by studying the mutations and

immunity of these genes. Finally, we constructed a multi-gene

signature and confirmed its role in predicting patient outcomes

and immunotherapy predictions.
Materials and methods

Extraction and preprocessing of
scRNA data

The read count expression profile data of 16 cancer

tissues and 7 adjacent tissues were extracted from the

single-cell sequencing dataset GSE200997 from the NCBI

database Gene Expression Omnibus (GEO). First, the single-

cell data were filtered by ensuring that each gene was

expressed in at least three cells, and at least 250 genes

were expressed per cell. The PercentageFeatureSet function

was used to determine the proportion of mitochondria and

rRNA and ensure that <3000 genes are expressed per cell

and the Unique molecular identifier (UMI) of each cell is at

least >100.

The data were standardised through log-normalisation, and

highly variable genes were identified using the FindVariableFeatures

function (variance-stabilising transformation was used to identify

variable characteristics). Subsequently, the ScaleData function was

used to scale all genes, and Principal components analysis (PCA)

was used for dimensionality reduction to identify anchor points

(dim = 40). The FindNeighbors and FindClusters functions

(resolution = 0.2) were used to cluster the cells, and the

RunTSNE function was used to reduce t-SNE dimensionality to

screen for fibroblasts.
Extraction and preprocessing of the
cancer genome atlas data

The clinical phenotype data of CRC were downloaded from

TCGA database, and samples lacking data on survival time and

survival status were removed. Samples were further filtered to

ensure that the survival time in each sample was >0 days. In

addition, the gene expression profile data were downloaded from

TCGA database, and 431 tumour samples and 41 para-

cancerous samples were selected for further analysis.

The copy number variation (CNV) of CRC samples were

downloaded from TCGA database and integrated using the

GISTIC2 software.

The single nucleotide variants (SNVs) data of TCGA-COAD

cohort were downloaded from TCGA database and integrated

using the Mutect2 software.
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Extraction and preprocessing of
GEO data

The GSE17536 and GSE17537 datasets were downloaded

from GEO, and the probe IDs were converted to gene symbols

according to the annotation files. A probe ID that corresponded

to multiple genes was deleted, and the expression of several

probes for a gene was averaged. Normal tissue samples were

removed, and only tumour samples were retained. In addition,

samples without clinical follow-up and OS data were removed to

ensure that the survival time of all patients was >0 days. A total

of 177 tumour samples and 21,655 genes were obtained from the

GSE17536 dataset, and 55 tumour samples and 21,655 genes

were obtained from the GSE17537 dataset.
Single-cell clustering
dimensionality reduction

The R language Seurat package was first used to filter the single-

cell data by setting each gene to be expressed in at least 3 cells, and

each cell expresses at least 250 genes, calculating the proportion of

mitochondria and rRNA through the PercentageFeatureSet

function, and ensuring that each cell The expressed genes are less

than 3000, and the UMI of each cell is at least greater than 100.

Then, we normalized the data of 23 samples separately by log-

normalization.The FindVariableFeatures function was used to find

highly variable genes [identify variable features based on variance

stabilizing transformation (“vst”)], then scaled all genes using the

ScaleData function, and perform PCA dimensionality reduction to

find anchors, we chose dim=40, pass The FindNeighbors and

FindClusters functions cluster the cells (set Resolution=0.2),

divided the subgroups, and used the RunTSNE function for

TSNE dimensionality reduction,
Annotation and further segmentation of
fibroblasts

The fibroblasts were screened with the four genes of ACTA2,

FAP, PDGFRB and NOTCH3, and then the fibroblasts were

extracted and clustered by the functions of FindNeighbors and

FindClusters (setting Resolution=0.2), and the fibroblasts were

further divided into 4 groups subpopulations and re-TSNE

dimens iona l i ty reduct ion of fibrob las ts us ing the

RunTSNE function.
Identification of marker genes

The FindAllMarkers function of the Seurat package was used

to identify marker genes of fibroblasts by LogFC=0.5,
Frontiers in Immunology 03
Minpct=0.35 (minimum expression ratio of differential genes)

and identified marker genes with a corrected p<0.05.
Functional annotation of subgroups

KEGG enrichment analysis was performed on marker genes

of fibroblast subpopulations using the compareCluster function

of the clusterProfiler package in R language, and screening was

performed with pvalue Cutoff=0.05.
Identification of malignant and non-
malignant cells

Four fibroblast subpopulations were analyzed using the R

language copykat package to differentiate between tumor cells/

malignant cells and normal cells/non-malignant cells in each

sample by changes in the cnv of the cells.

Copykat’s statistical workflow combines Bayesian methods

with hierarchical clustering to calculate genomic copy number

profiles of individual cells and to define clonal substructures

from high-throughput 3’ scRNA-seq data. The workflow takes a

gene expression matrix of Unique Molecular Identifier (UMI)

counts as input to the calculation. Analysis begins with rows of

gene annotations, ordered by their genomic coordinates.

Freeman-Tukey transformation (FTT) was performed to

stabilize variance, followed by polynomial dynamic linear

modeling (DLM) to smooth out outliers in single-cell UMI

counts. A subset of diploid cells with high confidence was then

examined to infer baseline copy number values for normal 2N

cells. To do this, we pooled individual cells into several small

hierarchical clusters and estimated the variance of each cluster

using a Gaussian mixture model (GMM). By following strict

classification criteria, the cluster with the smallest estimated

variance was defined as “confident diploid cells”. Potential

misclassification can occur when the data have only a few

normal cells, or when tumor cells have near-diploid genomes

and limited CNA events. In this context, Copykat provides a

“GMM-defined” model to identify diploid normal cells one by

one, where a mixture of three Gaussian models of gene

expression in a single cell is assumed to represent genomic

gain, loss, and neutral states. A single cell is defined as a

“confident diploid cell” when the genes in the neutral state

account for at least 99% of the expressed genes.
Tumour-related pathways.

As reported in a previous study, the 10 pathways related to

tumours and genes associated with these pathways are shown in

Supplementary Table 1. The scores of each cell for the 10
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pathways were calculated via Single-sample GSEA (ssGSEA).

The proportion of malignant and non-malignant cells and the

MSI status in fibroblast subpopulations were compared via the

chi-square test, and the scores of different fibroblast

subpopulations associated with the 10 tumour-related

pathways were compared via the Wilcoxon test.
Potential regulatory pathways of
key genes

Using h.all.v7.5.1.symbols.gmt as a background, the

enrichment scores of patients in TCGA cohort for each

pathway were calculated using the GSVA package in R.

Subsequently, the correlation between gene expression and

pathway enrichment scores was analysed using the

Hmisc package.
Construction of a risk model for
predicting the response to PD-L1
inhibitor immunotherapy

The PD-L1 cohort (IMvigor210) was used to assess the

relationship between risk scores and immunotherapy. The

effects of PD-L1 inhibitors were different among 348 patients

in the IMvigor210 cohort, which were characterised by stable

disease (SD), progressive disease (PD), partial response (PR) and

complete response (CR). In addition, differences between

immunotherapy and chemotherapy were analysed in the

IMvigor210 cohort. The risk model was used to evaluate the

possible clinical outcomes of immunotherapy using the TIDE

(http://tide.dfci.harvard.edu/) software. The likelihood of

immune escape increased with increasing TIDE prediction

scores, indicating that immunotherapy is less likely to

benefit patients.
Statistical analyses

The Shapiro–Wilk test was used to compare the normality of

variables between two groups. The unpaired Student’s t-test was

used to determine the statistical significance of differences

between normally distributed variables, and the Mann–

Whitney U test was used to analyse non-normally distributed

variables. The Kruskal–Wallis test and one-way ANOVA were

employed as non-parametric and parametric methods,

respectively, for comparing more than two groups. Spearman

and distance correlation analyses were used to examine the

correlation. The Kaplan–Meier method was used to compute

survival rates, and the log-rank test was used to assess the

significance of variations in survival curves.
Frontiers in Immunology 04
Results

Identification of fibroblasts from scRNA-
seq data

A total of 49,698 cells were obtained after filtering single-cell

sequencing data. The PercentageFeatureSet function was used to

calculate the proportion of mitochondria and rRNA, and 48,755

cells were obtained. As shown in Figure S1A, a significant

correlation was observed between the number of UMI and

mRNA but not between the number of UMI/mRNA and the

content of mitochondrial genes. A violin diagram created before

and after QC analysis is shown in Figures S1B, C.

Furthermore, the data of 23 samples were standardised via log-

normalisation. A total of 16 subgroups were obtained, and the

RunTSNE function was used to reduce t-SNE dimensionality.

Fibroblasts were screened based on the expression of ACTA2,

FAP, PDGFRB and NOTCH3. Because these four genes were

mainly expressed by cells in subgroup 9, the cells were defined as

fibroblasts (Figures S2A, B) and extracted for cluster analysis. These

fibroblasts were further divided into four subgroups, and the

RunTSNE function was used to reduce t-SNE dimensionality.

The t-SNE map of the four fibroblast subpopulations and marker

gene expression is shown in Figures S2C, D.

Figure 1A shows the t-SNE diagram of 23 samples, Figure 1B

shows the t-SNE diagram of different tissues (cancer and

adjacent tissues), Figure 1C shows the t-SNE diagram of the

MSI status and Figure 1D shows the t-SNE diagram of fibroblast

subsets after cluster analysis. The number of cells in each sample

before and after data filtration is shown in Table 1.

The marker genes of the four subpopulations were identified

using the FindAllMarkers function (logfc = 0.5 [difference

multiple], Minpct = 0.35 [minimum expression ratio of

different genes] and corrected p-value < 0.05). The expression

of the top five marker genes with the most prominent

contribution was analysed in each subgroup (Figure 1E).

Furthermore, the proportion of the four fibroblast

subpopulations was analysed in each sample (Figure 1F), and

the clusterprofiler package in R was used for KEGG enrichment

analysis of marker genes in each subgroup (Figure 1G).

The copykat package in R was used to screen for tumour/

malignant cells and normal/non-malignant cells in each sample

based on CNVs (to ensure that normal cells were not included).

A total of 297 cancer cells (malignant cells) and 491 normal cells

(non-malignant cells) were eventually identified (Figure 1H).
Expression of fibroblasts in tumour-
related pathways

Genes involved in 10 important pathways associated with

tumorigenesis and development were extracted from previous
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studies. Figure 2A shows the enrichment of fibroblasts in the 10

tumour-related pathways. In addition, the proportion of

malignant and non-malignant cells and the MSI status in the

fibroblast subpopulations were compared (Figures 2B, C), and

the scores of different fibroblasts in the 10 pathways were

compared (Figures 2D–G).
Identification of key genes in fibroblasts

A total of 1424 upregulated and 1245 downregulated genes

were identified in TCGA dataset using the limma package (FDR <

0.05 and |log2 (fold change)| > 1). Figure 3A shows a volcano map

of differential analysis.

Based on the results of single-cell sequencing analysis, the

scores of the CAF subgroups in TCGA dataset were calculated

using ssGSEA to screen for marker genes in each subgroup. The

results revealed that the scores of the CAF_0 subgroup were

higher in cancer tissues, whereas those of CAF_1, CAF_2 and

CAF_3 subgroups were higher in paracancerous tissues

(Figure 3B). Subsequently, the survminer package was used to

select optimal truncation based on the total survival time, and the

scores of the four fibroblast subgroups were divided into the high-

and low-score groups. The KM curve revealed that the high-score

group of the four subgroups had a poor prognosis (Figures 3C–F).
Frontiers in Immunology 05
Furthermore, the Hmisc package was used to examine the

correlation between 2669 DEGs associated with tumorigenesis

and development and the scores of the four CAF subgroups. A

total of 248 key genes significantly associated with the four

fibroblast subpopulations were identified (p < 0.001; cor > 0.7)

and subjected to univariate cox analysis using the coxph function

of the survival package. The results revealed 36 genes with a high

prognostic impact, which were considered prognostic risk

factors (p < 0.01) (Figure 4A).

These 36 key genes were further filtered using lasso

regression to decrease the number of genes used for

constructing a risk model. Lasso regression is a compression

estimation technique. By creating a penalty function, which

causes certain coefficients to be compressed and some

coefficients to be set to zero, lasso regression helps to create a

more refined model. Therefore, lasso regression retains the

benefit of subset contraction and is a biased estimation for

analysing data with complex collinearity. It selects variables

during parameter estimation and improves the method of

dealing with multicollinearity in regression analysis. In this

study, the R software package glmnet was used to perform

lasso–Cox regression. The change in each independent variable

was assessed (Figure 4B), and the number of independent

variable coefficients tending to 0 was found to gradually

increase with the increase in lambda. The risk model was
A B D

E

F G H

C

FIGURE 1

(A) t-SNE diagram of 23 samples; (B) Distribution of t-SNE in cancer and adjacent tissues; (C) t-SNE distribution diagram of MSI status; (D) t-SNE
map of four fibroblast subpopulations after cluster analysis; (E) Dot map of the expression of the top five marker genes in the subpopulations;
(F) The proportion and cell number of subpopulations in cancer and adjacent tissues; (G) KEGG enrichment analysis of the four fibroblast
subpopulations; (H) Distribution of t-SNE in malignant and non-malignant cells predicted using the copykat package.
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constructed using 10-fold cross-validation, and the confidence

interval of each lambda was evaluated (Figure 4C).

The performance of the model was optimal at a lambda of

0.0251. The four genes obtained based on this value were

selected as target genes for further analysis, and multivariate

cox analysis revealed that the genes were prognostic risk

factors (Figure 4D).
Mutation analysis of key genes

The SNVs of the four genes were examined in TCGA

dataset, and FLNA was found to have the highest mutation

frequency (Figure 5A). Subsequently, we examined the

collinearity and mutual exclusiveness of these four and the top

10 genes with most mutations in CRC and found that the

mutations of these four genes did not exhibit significant

collinearity (Figure 5B). Furthermore, the CNVs of the four

genes were analysed, and only a few samples were found to have

copy number amplification/deletion (Figure 5C).

The molecular characteristics of TCGA-COAD cohort were

obtained from previous pan-cancer studies. Correlation analysis

revealed that MMP11 and TCF7L1 were significantly positively

correlated with aneuploidy scores, homologous recombination

defects and the fraction altered (Figure 5D).
Frontiers in Immunology 06
Potential regulatory pathways of
key genes

The enrichment scores of each pathway in TCGA cohort were

calculated using the gsva package in R, and Pearson correlation

analysis between the expression of the four genes and the pathway

enrichment scores was performed using theHmisc package in R. A

total of 22 significantly related pathwayswere identified (|cor| > 0.4

and p < 0.001). Figure 6A shows a heat map of the relationship

between the 4 genes and 22 pathways. Figure 6B shows a heat map

of the enrichment scores of 22 pathways.
Relationship between key genes
and immunity

The immune scores of each sample in TCGA dataset were

evaluatedusing theESTIMATEalgorithmandwere found tohave a

significant positive correlationwith the four genes (Figure 7A). The

samples were divided into the high- and low-expression groups

based on the median expression level of the four genes, and

significant differences in immune scores were observed between

the high- and low-expression groups (Figure 7B).

The CIBERSORT method was used to determine the

immune cell scores of samples in TCGA dataset. Correlation

analysis revealed that the expression of the four genes was

significantly negatively correlated with T cell scores but was

significantly positively correlated with macrophage-related

scores (Figure 7C). The samples were divided into the high-

and low-expression groups based on the median expression level

of the four genes, and significant differences in some immune

cel l scores between the high- and low-express ion

groups (Figure 7D).
Construction of a risk model based on
key genes

The results of multivariate Cox analysis are shown in

Figure 4D. The risk scores of samples were calculated using

the following formula: RiskScore = S bi × Expi, where i refers to

the expression levels of the four key genes, and b is the

multivariate Cox regression coefficient of the corresponding

genes. The final formula for calculating risk scores based on

the 4-gene signature is as follows:

RiskScore = 0:173 * FLNA + 0:079 * MMP11

+ 0:146 * TCF7L1 + 0:082 * GPX3

TCGA cohort was used as the training dataset to determine the

risk score of each sample. ROC analysis was performed to examine

the efficiency of the riskmodel in predicting prognosis at 1–5 years

using theRsoftwarepackage timeROC(Figure8A).TheAUCvalue
TABLE 1 Counting of cell counts before and after sample filtration.

Samples raw_count clean_count Percentage (%)

B_cac10 2823 2823 100

B_cac11 4644 4611 99.29

B_cac14 4764 4722 99.12

B_cac15 1034 1030 99.61

B_cac4 2666 2652 99.47

B_cac6 717 712 99.3

B_cac7 1565 1554 99.3

T_cac1 1692 1586 93.74

T_cac10 697 690 99

T_cac11 2865 2761 96.37

T_cac12 4038 4018 99.5

T_cac13 2642 2642 100

T_cac14 4071 4020 98.75

T_cac15 3675 3651 99.35

T_cac16 1381 1243 90.01

T_cac2 1674 1649 98.51

T_cac3 1183 1093 92.39

T_cac4 1584 1575 99.43

T_cac5 169 169 100

T_cac6 1690 1643 97.22

T_cac7 1494 1480 99.06

T_cac8 990 903 91.21

T_cac9 1640 1528 93.17
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for predicting prognosis at 4 and 5 years was 0.7. In addition, z-

scoreswere evaluated for risk scores, and sampleswith risk scores of

>0 were included in the high-risk group, whereas those with risk

scores of <0were included in the low-risk group. Subsequently, KM

curves were plotted, and significant differences were observed

between the two groups (p < 0.0001) (Figure 8B).

The GSE17536 dataset was used to verify the robustness of the

model using the abovementioned method. A risk model was

constructed, and its efficiency in predicting prognosis at 1–5 years

was analysed using the R software package timeROC (Figure 8C).

The AUC value for predicting prognosis at 1 year was 0.7. In

addition, z-scores were evaluated for risk scores, and samples with

riskscoresof>0were included in thehigh-riskgroup,whereas those

with risk scores of <0 were included in the low-risk group.

Subsequently, KM curves were plotted, and significant differences

were observed between the two groups (p < 0.05) (Figure 8D).
Frontiers in Immunology 07
The GSE17537 dataset was analysed using the same method.

As shown in Figures 8E, F, the AUC value for predicting

prognosis at 1–4 years was >0.7, and substantial differences

were observed between the high- and low-risk groups.
Combination of risk scores and
clinicopathological features to improve
survival prediction

Multivariate and univariate Cox regression analyses of the

risk score and clinicopathological features showed that the risk

score was the most significant prognostic factor (Figures 9A, B).

A nomogram integrating the risk scores and other

clinicopathological parameters was constructed for

quantifying the risk assessment and survival probability of
A B

D E

F G

C

FIGURE 2

(A) Heat map of the scores of 10 tumour-related pathways enriched in CAFs; (B) Comparison of CAF subpopulations in malignant and non-
malignant cells; (C) Comparison of CAF subpopulations in terms of MSI status; (D) Comparison of the scores of 10 tumour-related pathways
between malignant and non-malignant cells in the CAF_0 subgroup; (E) Comparison of the scores of 10 tumour-related pathways between
malignant and non-malignant cells in the CAF_1 subgroup; (F) Comparison of the scores of 10 tumour-related pathways between malignant
and non-malignant cells in the CAF_2 subgroup; (G) Comparison of the scores of 10 tumour-related pathways between malignant and non-
malignant cells in the CAF_3 subgroup; (Wilcoxon test; *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001). ns, no significant.
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patients with CRC (Figure 9C). The risk score had the most

influence on survival rate prediction. The predictive accuracy of

the risk model was further assessed using a calibration curve

(Figure 9D). The calibration curve plotted for predicting

prognosis at 1, 3 and 5 years and the standard curve yielded

similar results, indicating the good predictive performance of the

nomogram. Additionally, decision curve analysis was performed

to assess the reliability of the model, and the benefits of the

nomogram and risk score were found to be considerably greater

than those of the extreme curve. The performance of the

nomogram and risk score in predicting survival was superior

to that of other clinicopathological features (Figures 9E, F).
Prediction of the response to
PD-L1 inhibitor immunotherapy
via the risk model

The capability of the risk score to predict the response of

patients to ICB therapy was assessed to study its association with

immunotherapy. The results showed that patients with low risk

scores had significant clinical benefits and prolonged OS in the

anti-PD-L1 cohort (IMvigor210 cohort) (Figure 10C, p < 0.05).

PD-L1 inhibitors had different effects among 348 patients in the

IMvigor210 cohort, which were characterised by progressive
Frontiers in Immunology 08
disease (PD), stable disease (SD), partial response (PR) and

complete response (CR). The risk scores of patients with SD/PD

were higher than that of patients with other types of reactions

(Figure 10A). Additionally, patients with low-risk scores

experienced considerably superior treatment outcomes

(Figure 10B). In addition, differences in survival among

patients with different CRC stages in the IMvigor210 samples

were analysed. The results revealed that stage I+II samples

showed substantial survival differences (Figure 10D); however,

stage III+IV samples did not show significant survival

differences (Figure 10E).

Furthermore, differences in immunotherapy and

chemotherapy responses were analysed among patients in the

IMvigor210 cohort. The risk model was used to assess the

potential clinical impacts of immunotherapy using the TIDE

(http://tide.dfci.harvard.edu/) software. The likelihood of

immune escape increased with increasing TIDE prediction

scores, indicating that patients were less likely to benefit from

immunotherapy. With regard to immunotherapy, the risk and

TIDE scores of patients unresponsive to immunotherapy were

found to be higher, which also showed that the high-risk group

was less likely to benefit from immunotherapy (Figures 10F, G).

In addition, Pearson correlation analysis revealed a strong

pos i t i v e cor re l a t ion be tween the TIDE and r i sk

scores (Figure 10H).
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FIGURE 3

(A) Volcano map of differential gene expression between cancer and adjacent tissues in TCGA dataset; (B) The scores of the four fibroblast
subgroups were compared between cancer and adjacent tissues (Wilcoxon test); (C) KM curve of the high- and low-score groups in the CAF_0
subgroup; (D) KM curve of the high- and low-score groups in the CAF_1 subgroup; (E) KM curve of the high- and low-score groups in the
CAF_2 subgroup; (F) KM curve of the high- and low-score groups in the CAF_3 subgroup. **P < 0.01, ****P < 0.0001.
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Discussion

The proliferation of connective tissue is one of the key

hallmarks of tumours, and the components involved in

proliferation include fibroblasts, macrophages, immune cells

and dense ECM (18). Fibroblasts are the main cell type in

ECM, which are called CAFs. Recently, a consensus statement

was issued, which stated that cancer cells with slender

morphology; a lack of mutations and negative markers of

epithelial cells, endothelial cells and leukocytes may be

considered CAFs (19). The characteristic markers of CAFs are

a-SMA and fibroblast-activating protein (FAP), and the

expression of fibroblast-specific protein 1 (FSP1), platelet-

derived growth factor receptor (PDGFR)-a/b and vimentin is

high in CAFs. These proteins are transcribed from ACTA2, FAP,

PDGFRB and NOTCH3 genes, respectively. Because

morphological features are subjective and not conducive to

quantification, we used ACTA2, FAP, PDGFRB and NOTCH3
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genes as markers to screen for CAFs in CRC samples via single-

cell sequencing. Compared with single-cell sequencing

technology, the traditional transcriptome sequencing

technology (bulk RNA-seq) is based on tissue samples (cell

population), which reflects the average expression level of

genes in the cell population. However, several studies have

indicated that CAF is heterogeneous, and certain CAF

subtypes stimulate tumour growth, whereas some inhibit it.

For instance, in a study by Costa et al., CAF subgroup 1

created an immunosuppressive microenvironment by

suppressing CD4+CD25+ T cells in breast cancer (20). Su

et al. (21) reported that the new subset, CD10+GPR77+ CAFs,

can facilitate the formation of tumours in patients with breast

and lung cancers. Therefore, conventional sequencing

technology cannot reflect the role of CAFs in tumours. In this

study, cells in subgroup 9 mainly expressed ACTA2, FAP,

PDGFRB and NOTCH3 and were, therefore, defined as

fibroblasts. The fibroblasts of subgroup 9 were extracted,
A
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C

FIGURE 4

(A) A total of 248 candidate DEGs were identified; (B) The locus of each independent variable changing with lambda; (C) Confidence interval
under lambda; (D) Multivariate Cox regression analysis (coefficient of prognosis-related genes).
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A B
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FIGURE 5

(A) Waterfall diagram of SNVs in the 4 key genes; (B) Collinearity and mutual exclusion analysis of the 4 key genes and 10 genes with the most
mutations in CRC; (C) CNVs in the 4 key genes; (D) Heat map of the correlation between the 4 key genes and aneuploidy scores, homologous
recombination defects, fraction altered, number of segments and non-silent mutation rates.
A B

FIGURE 6

(A) Heat map of the correlation between genes and pathways; (B) Heat map of the enrichment scores of key pathways. *P< 0.05, **P < 0.01,
***P < 0.001.
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subjected to cluster analysis and further divided into four

subgroups. KEGG enrichment analysis of marker genes in

each subgroup revealed that the genes were mainly enriched in

pathways associated with ‘ECM’ and ‘focal adhesion’, which play

an important role in tumours. However, this finding does not

indicate that the four CAF subgroups play the same role

in tumours.

Consistent with previous studies, this study revealed that the

four CAF subpopulations may play different or contradictory

roles in tumours. The distribution of malignant and non-

malignant cells among the CAF subpopulations was

significantly different. In the CAF_0 subpopulation, the

proportion of malignant cells was higher, and that of cells with

MSI-H was lower. However, in the other three subpopulations,

the proportion of malignant cells was lower, and that of cells

with MSI-H was higher. Furthermore, single-cell sequencing was

used to screen for marker genes in the CAF subgroups, and the

scores of the subgroups in TCGA dataset were calculated via

ssGSEA. The results showed that the scores of the CAF_0

subgroup were higher in cancer tissues, and those of CAF_1,

CAF_2 and CAF_3 subgroups were higher in adjacent tissues,

which was consistent with the previous results, that is, the

proportion of malignant tumour cells was higher in the in
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CAF_0 subgroup and lower in the other three subgroups.

However, no significant differences in prognosis were observed

among the four subgroups, and subgroups with high gene

expression had a better prognosis. This finding indicates that

CAFs in the same subgroup have some heterogeneity and hence

cannot adequately predict the survival of patients in

different subgroups.

Several studies have shown that CAFs promote tumour

progression in various ways, such as by remodelling ECM (22,

23), interfering with drug delivery (24), producing collagen in

ECM and regulating the hardness of the tumour matrix (25).

CAFs can secrete chemokines (26, 27) and cytokines (28),

leading to lymphatic angiogenesis (29), so as to promote the

endocrine function of cancer cells. In addition, they change the

immune cell environment by recruiting immunosuppressive

cells and inhibiting the activity of immune effector cells (30).

In this study, the role of different CAF subtypes in tumorigenesis

and development of CRC was examined, and the scores of 10

tumour-related pathways in 4 CAF subtypes were compared

between malignant and non-malignant cells. The PI3K pathway

was found to be highly expressed in malignant cells. Studies have

shown that the PI3K pathway promotes tumour progression.

The EphA2–PI3K signal can simulate angiogenesis induced by
A
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C

FIGURE 7

(A) Heat map of the correlation between key genes and immune scores predicted using the ESTIMATE algorithm; (B) Comparison of immune
scores in the high- and low-expression groups (Wilcoxon test); (C) Heat map of the correlation between key genes and immune cell scores
predicted using the CIBERSORT algorithm; (D) Comparison of the scores of 22 immune cells between the high- and low-expression groups
(Wilcoxon test; *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001). ns, no significant.
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CAFs in gastric cancer cells (31). CAF-derived HGF promotes

cell proliferation and drug resistance by upregulating the c-Met/

PI3K/Akt and GRP78 signalling pathways in ovarian cancer cells

(32). The results of this study are consistent with those of

previous studies, suggesting that CAFs promote tumour

progression through the PI3K pathway.

To decrease the heterogeneity among subgroups, the marker

genes of different CAF subgroups were used to classify CAFs.

After differential expression analysis, four genes were selected

via lasso regression analysis, namely, TCF7L1, FLNA, GPX3 and

MMP11. TCF7L1 is a member of the TCF/lymphoid enhancer

(LEF) family of transcription factors, which is involved in

maintaining stem cell pluripotency (33) and skin epithelial

tissue homeostasis (34). Studies have shown that ectopic

TCF7L1 expression impairs the growth and invasion of highly

metastatic breast cancer cells (35). In addition, overexpression of

TCF7L1 can induce the growth of colorectal tumour cells (36).

FLNA, the most abundant and widely distributed member of the

filamin family, is a non-muscle actin filament cross-linked

protein (37). Some studies have shown that FLNA is

associated with multiple functional non-cytoskeletal proteins

and participates in several related pathways regulating cell

migration and adhesion (38). FLNA acts as a pro-oncoprotein
Frontiers in Immunology 12
in various human malignancies, including metastatic melanoma

and hepatocellular carcinoma (39, 40). However, the expression

of FLNA is decreased in breast cancer, which is negatively

correlated with lymph node metastasis. FLNA knockout can

promote cell migration and invasion (41). In CRC, FLNA

promotes chemotherapy resistance by inducing epithelial–

mesenchymal transformation and the Smad2 signalling

pathway (42). Therefore, the controversial role of FLNA in

human malignant tumours has been reported in several

studies. GPX3 is a tumour suppressor gene and the main

antioxidant enzyme in plasma. It plays an important role in

scavenging hydrogen peroxide and other oxygen free radicals

and protecting cells from oxidative stress-induced damage (43–

45). As an important member of the MMP family, MMP11

regulates a series of physiological processes and signalling

events, manipulates some bioactive molecules on the cell

surface, changes the biological behaviour of cells and plays an

important role in TME (46, 47). In addition, studies have shown

that MMP is closely related to tumorigenesis. The most

important MMP is MMP11, which is overexpressed in

tumours and participates in the proliferation and malignant

development of tumour cells (48, 49). However, according to

previous studies, CAFs can also degrade ECM by releasing
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FIGURE 8

(A) ROC curve of the risk model constructed based on 4 genes in TCGA dataset; (B) KM curve of the risk model constructed based on 4 genes
in TCGA dataset; (C) ROC curve of the risk model constructed based on 4 genes in the GSE17536 dataset; (D) KM curve of the risk model
constructed based on 4 genes in the GSE17536 dataset; (E) ROC curve of the risk model constructed based on 4 genes in the GSE17537
dataset; (F) KM curve of the risk model constructed based on 4 genes in the GSE17537 dataset.
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MMPs and synthesising new matrix proteins to provide

structural support for tumour invasion and angiogenesis (50,

51). Therefore, MMP11 can be used for the evaluation

of prognosis.

The four genes identified via lasso regression were subjected

to enrichment analysis, and 22 significantly related pathways

were identified including those associated with ‘angiogenesis’,

‘apical junction’, ‘apoptosis’ and ‘IL2–STAT5’. The four key

genes were used to establish a prognostic risk model, which

had good stability and accuracy in predicting prognosis in both

training and validation sets. The prognosis of patients in the

high-risk group was worse. To quantify the risk assessment and

survival probability of patients, the risk score was combined with

other clinicopathological features, and it was found that the risk

score adequately predicted clinicopathological features,

especially the M stage, indicating that patients with high risk

scores may be more predisposed to distant metastasis. In

addition, to examine the relationship between the risk score

and immunotherapy, the ability of risk score to predict the

response of patients to ICB therapy was examined. Patients with

low risk scores had significant clinical benefits and significantly

prolonged OS in the anti-PD-L1 cohort. Furthermore, mutation

analysis of the four genes in TCGA cohort revealed that FLNA

had the highest mutation frequency, and there was no significant

collinearity among the mutations of the four genes. Moreover,
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only a few samples had copy number amplification/deletion.

Because the mutation frequency of the four genes is not

significant, their role may be directly realised through their

expression levels.

Furthermore, the correlation between the prognostic risk

model and infiltrating immune cells was analysed, and a

significant positive correlation was observed between the four

genes and immune scores, indicating that high gene expression

increased the abundance of infiltrating immune cells in ECM.

Moreover, these four genes had a significant negative correlation

with T cell-related scores. Therefore, CAFs labelled by these

genes can promote tumour progression by inhibiting T-cell

function. This result is consistent with that of previous studies.

CAFs can induce immune evasion of cancer cells (52, 53) and

restrict the recruitment of immune effector cells (such as CD8+

T cells) to tumour tissues by secreting different chemokines (54).

In this study, a significant positive correlation was observed

between the four genes and the score of macrophages, which is

consistent with the finding of a previously reported study,

indicating that CAF can induce M2 polarisation (55). These

results suggest that the interaction between stromal cells and

immune-related cells in TME promotes tumour progression.

However, this study has certain limitations. First, the results

of single-cell sequencing were not verified in actual clinical

samples. The screened key genes lack basic in vivo and in vitro
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FIGURE 9

(A, B) Univariate and multivariate Cox analyses of the risk score and clinicopathological features; (C) Nomogram model; (D) Calibration curve of
the nomogram (1, 3 and 5 years); (E) Decision curve of the nomogram; (F) Compared with other clinicopathological features, the nomogram
exhibited a superior capacity for survival prediction.
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experimental verification, and the prognostic model should be

verified in actual clinical samples, which is our next research

direction. In addition, there are some contradictory and

unexplained results. For example, the distribution of different

CAF subpopulations among malignant and normal cells is

different; however, the prognosis among these populations was

not different. Whether their distribution in malignant cells also

plays an important role warrants further investigation

and verification.

In conclusion, the fibroblast population screened via single-cell

sequencing in CRC was divided into four subpopulations through

cluster analysis. The distribution and role of these four

subpopulations are different in CRC. In addition, by analysing the

differential expression of the main marker genes in these

subpopulations, four representative genes were identified via lasso

regression, namely, TCF7L1, FLNA, GPX3 and MMP11. Using the

prognostic risk model constructed based on the expression of these

four genes, patients with CRC were divided into the high- and low-

risk groups. Patients with low risk scores had significant clinical

benefits from immunotherapy and had significantly prolonged OS,

which may be attributed to inhibition of T-cell function in the

immune microenvironment and promotion of the function of

tumour-associated macrophages.
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FIGURE 10

(A) Differences in immunotherapy responses and risk scores in the IMvigor210 cohort; (B) Immunotherapy response among different risk groups
in the IMvigor210 cohort; (C) Prognostic differences between different risk groups in the IMvigor210 cohort; (D) Prognostic differences between
different risk groups of patients with early-stage CRC in the IMvigor210 cohort; (E) Prognostic differences between different risk groups of
patients with middle- and late-stage CRC in the IMvigor210 cohort; (F) Differences in immunotherapy response and different risk scores in the
IMvigor210 cohort were analysed using the TIDE software; (G) Differences in TIDE scores and immunotherapy responses in the IMvigor210
cohort; (H) Correlation analysis between the risk and TIDE scores in the IMvigor210 cohort. *P< 0.05, **P < 0.01, ****P < 0.0001.
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SUPPLEMENTARY FIGURE 1

(A) Correlation between mitochondrial genes and UMI/mRNA quantity as
well as between UMI and mRNA quantity; (B) Correlation among the

mRNA/UMI/mitochondrial content/rRNA content of samples before
filtration; (C) Correlation among the mRNA/UMI/mitochondrial content/

rRNA content of samples after filtration; (D) Dimensionality reduction and
identification of anchor points via PCA.

SUPPLEMENTARY FIGURE 2

(A) Distribution of subpopulations of all cells after cluster analysis; (B) t-
SNE map of marker gene expression in fibroblasts; (C) Distribution of

fibroblast subgroups after re-clustering; (D) t-SNE map of marker gene
expression in four small fibroblast subpopulations.
References
1. Castells A. Hereditary forms of colorectal cancer. Gastroenterol y Hepatol
(2016) 39 (Suppl 1):62–7. doi: 10.1016/S0210-5705(16)30176-5

2. Ma H, Brosens LAA, Offerhaus GJA, Giardiello FM, de Leng WWJ,
Montgomery EA. Pathology and genetics of hereditary colorectal cancer.
Pathology (2018) 50(1):49–59. doi: 10.1016/j.pathol.2017.09.004

3. Venook A. Critical evaluation of current treatments in metastatic colorectal
cancer. Oncol (2005) 10(4):250–61. doi: 10.1634/theoncologist.10-4-250

4. Chibaudel B, Tournigand C, Bonnetain F, Richa H, Benetkiewicz M, André T,
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