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Abstract

We present a novel method for the identification of sets of mutually exclusive gene alterations in a given set of
genomic profiles. We scan the groups of genes with a common downstream effect on the signaling network, using a
mutual exclusivity criterion that ensures that each gene in the group significantly contributes to the mutual exclusivity
pattern. We test the method on all available TCGA cancer genomics datasets, and detect multiple previously
unreported alterations that show significant mutual exclusivity and are likely to be driver events.

Background
Only a small fraction of genomic alterations present in

a tumor are selected directly because of their ability

to increase cellular proliferation and to unlock barri-

ers against growth and metastasis. The majority of the

observed alterations, the so-called passengers, are indi-

rectly selected due to incidental co-occurrence with a

driver alteration or other selected event [1]. Differenti-

ating drivers from passengers in cancer can help us to

identify tumorigenic mechanisms and drug targets, and to

design patient-specific therapeutic interventions.

Pivotal driver events, such as TP53 loss-of-function

mutations, can be identified simply by their significantly

high alteration rate in a set of tumors. More often, how-

ever, not one but several alternative driver alterations in

different genes can lead to similar downstream events.

In those cases, the selection bonus is divided among the

alteration frequencies of these genes. For current can-

cer genomics studies where the number of samples is

two orders of magnitude smaller than the number of

profiled genes per sample, the statistical power of naive

frequency-based methods is not sufficient to differentiate

these substitutive drivers from passengers (Figure 1).
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A key observation is that when a member of a substi-

tutive set is altered, the selection pressure on the other

members is diminished or even nullified. As a result, we

expect significantly less overlap in alterations of the alter-

native driver genes, creating a mutual exclusion pattern

between their alterations. Supporting this expectation, it

was previously shown that some functionally related genes

are altered mutually exclusively in thyroid tumors [2,3]

and in leukemia [4].

This principle was first applied systematically by Yeang

et al. to detect substitutive driver groups in cancer [5].

Their method calculates all pairwise mutual exclu-

sion relations with a hypergeometric test. Miller et al.

improved this approach by developing a statistical signif-

icance measure for the modules identified via pairwise

exclusivity [6]. Ciriello et al. use a protein interaction

graph for searching sets of mutually exclusive gene alter-

ations [7]. They test each clique in the interaction network

by random permutations to see if the observed overlap is

significantly small. By using prior interaction knowledge,

this approach can dramatically limit the search space.

Vandin et al. suggest a weight function to score mutually

exclusive alterations, which rewards coverage (number of

samples altered in at least one of the genes in the group)

while penalizing overlap [8]. They, then, search for sub-

sets of genes that maximize the weight function. Zhao

et al. and Leiserson et al. use the same weight function

and expand on the search technique [9,10]. Szczurek et al.
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Figure 1 Distribution of CDKN2A, CDK4 and RB1mutations and copy number changes. These are from the The Cancer Genome Atlas (TCGA)
glioblastoma dataset, as provided by cBioPortal. At least one of the genes is altered in 78% of the cases, with an overlap in only two samples. Even
though RB1 is mutated only in 11% of the cases, its activity is potentially affected by alterations of the other two genes, which encode for upstream
proteins in the signaling network.

propose a generative model for mutual exclusivity and test

if the observed distribution of alterations fits this model

better than a random model [11]. Their generative model

assumes that genes in a module have an equal chance of

being altered, hence their result modules typically contain

genes with similar alteration ratios.

We are expanding on these approaches by combining

detailed prior pathway information with a novel statistical

metric to improve both accuracy and biological inter-

pretation and to validate the results. Specifically, we are

using a large aggregated pathway model of human sig-

naling processes to search groups of mutually exclusively

altered genes that have a common downstream event. To

enable this search, we also define a new statistical test that

satisfies the following criteria:

1. Soft: There are two kinds of mutual exclusivity

defined in the statistical literature: hard and soft.

Hard mutual exclusivity [12] tests for two events that

are assumed to be strictly mutually exclusive and the

null hypothesis is that overlaps between them can be

explained by random errors. The biological

mechanism we are testing for, however, should lead

to soft mutual exclusivity where two otherwise

independent events overlap less than expected by

chance because of a statistical interaction – in this

case partially overlapping selective advantages.

2. Analytical: Scoring the mutual exclusion of a set of

alterations with random permutation testing is

computationally expensive. Ciriello et al. use such a

metric for detecting significant cliques because the

number of tested cliques is limited. In a wider search

that includes non-clique subgraphs, such as

upstream signaling pathways, the number of

hypotheses that need to be tested increases by several

orders of magnitude, making the permutation testing

infeasible. We, therefore, need an analytical test that

can scale up to large datasets and a very large number

of searches.

3. N-ary: For two genes, soft mutual exclusivity can be

measured analytically with the hypergeometric test,

also known as Fisher’s exact test. There is no

consensus, however, for testing the mutual exclusivity

of more than two genes analytically. Yeang et al. test

whether all pairwise interactions are significant in

the group. This, however, is an overly strict test as a

gene set can exhibit a strong mutual exclusion

pattern as a group even if none of the pairs are

significantly mutually exclusive. The weight function

used in Vandin et al., Zhao et al. and Leiserson et al.

can test arbitrarily large sets. This metric, however,

has a strong bias toward highly altered genes, and in

some cases can select randomly occurring high

coverage and high overlap sets, resulting in both false

positives and negatives. We provide examples for

these cases in the fourth section of Additional file 1.

Our proposed metric is an extension of the

hypergeometric test to quantify the mutual

exclusivity between more than two measurements

while retaining the analytical and soft properties.

Our scoring metric can be applied to a wide spectrum

of searches with or without the prior information. In both

types of scenarios, it compares favorably to the existing

methods (see Results). In this manuscript, we focus on

searching for mutually exclusively altered groups where

members have a common downstream signaling target as

defined in the public pathway databases. The rationale

behind this is to limit the search space to a subregion that

has a higher density of true positives. At the cost of some

recall, this reduction mitigates the statistical power loss

due to multiple hypothesis testing. Another advantage of

this reduction is that it nominates a preliminary mecha-

nistic explanation for the observed mutual exclusivity –

specifically a common effect on a downstream gene. It is,

however, important to note that this is just one potential

mechanism out of many – it should be treated as a starting

point for further biological inquiry. The statistical signifi-

cance of the observedmutual exclusivity is independent of

the hypothetical mechanism that nominated it for testing.

We tested our method on 17 different cancer datasets

from The Cancer Genome Atlas (TCGA) in cBioPortal
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[13], and identified multiple significantly altered gene

groups that are functionally related. We also present a

comparison of the performance of existing methods on

simulated datasets.

Results

Measure for mutual exclusion

To measure mutual exclusion of a group of genes, we test

each gene against the union of all other alterations in the

group, and use the least significant P value as the initial

score of the group. To correct for multiple hypothesis test-

ing, we estimate the member genes’ probability to have

the observed P value in a result group by chance, and

derive the corrected P values. We use the least significant

of this second set of P values as the final score of the group

(Figure 2a, also see Methods).

Searching the mutually exclusive group

We built a large, directed gene network collecting inter-

actions from the Pathway Commons [14], SPIKE [15] and

SignaLink [16] databases. This network is available in the

Additional file 2 archive and its generation was described

previously [17]. We use this network to search for groups

of mutually exclusive genes that have a common down-

stream target in the network. We start the search by

initializing a group with an altered gene as the seed of the

group, and greedily expand with the next best candidate

gene. We define candidate genes such that after addition

of a candidate, the members will still have a common

downstream gene that can be reached without traversing

any non-member genes (Figure 2b). Note that a com-

mon downstream gene can also be a member. We greedily

expand the group with the candidate that best improves

the group score. The search terminates when there are

no remaining candidates or when the group size reaches

a preset threshold. The algorithm returns a group and its

score for each seed gene. To control the false discovery

rate (FDR) in the resulting groups, we estimate the null

distribution of the final scores by running the same anal-

ysis on a set of permuted datasets, where gene alteration

ratios and network connectivity are preserved, but sample

distributions of alterations are shuffled.

We used this algorithm to identify mutual exclusion in

the mutation and copy number profiles from 17 TCGA

studies [18-25], deposited in cBio Portal [13]. We cropped

the gene network to the proximity of significantly mutated

genes (provided by MutSig [26]) and copy number signifi-

cantly altered genes (provided by Gistic [27]). Here, prox-

imity means the neighbor genes and the genes that have

a common downstream target. Thresholds of 2 and −2
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Figure 2 Searching and scoring method. (a)Mutual exclusivity of a group of gene alterations is evaluated by comparing each gene with the
union of the other genes. The initial score is the least significant P value. To correct for multiple hypothesis testing, we estimate the significance of
the initial P values during a search with permuted alterations. The least significant of these second P values is the multiple hypothesis testing
corrected group score. (b) At each step of the greedy search, we expand the group with the next best candidate gene from the surrounding genes
that have a common downstream target with the group members, or they are a common downstream target themselves. In this illustration, four
sample steps of the search are shown for a sample network. Thick-bordered genes are current group members and genes with a gray background
are candidates for the next expansion. The best-scoring candidate gene is added to the group if it increases the score, and the candidates are
re-assessed for the next phase. The search will stop if the group cannot expand anymore or a threshold group size is reached.



Babur et al. Genome Biology  (2015) 16:45 Page 4 of 10

were used for copy number amplification and deletion,

respectively, for discretized Gistic values. We used only

the copy number changes that are confirmed by an expres-

sion change (see Materials and methods). For each study,

we filtered out genes that have a low alteration rate to

reduce the noise in the data. We searched groups up to

size 5. We ran 10,000 permutations for estimating the null

distribution of the member P values of genes in groups,

and we used 100 iterations for estimating the null distribu-

tion of the final group scores in the result. For each study,

we selected the FDR cutoff that maximizes the expected

value of true positives − false positives in the results.

The distribution of alterations in endometrial cancer

samples is exceptional in the sense that samples are

strongly dominated by either copy number alterations or

mutations (Additional file 1: Figure S1). Because of this,

many of the copy number changes are mutually exclusive

with many of the mutations. Since mutual exclusion of

the copy number alterations and mutations result from a

higher order event, the mutual exclusivity for these two

subtypes have little additional biological implication. To

remove the effect of these highly distinct subtypes, we

divided the endometrial cancer samples into two, and

treated them as different studies.

Results for TCGA datasets

This section contains an overview of the results, while

we provide the detailed analysis results of individual stud-

ies in Additional file 1. There are a total of 199 genes in

Mutex results, and we observe that 31 genes appear in

the results of at least two studies. We also observe that

many gene pairs are recurrently co-present in the result

groups (Figure 3). Not surprisingly, the most recurrent

gene in the results is TP53, followed by PTEN, KRAS,

MYC, PIK3CA, BRAF, EGFR and NRAS – all well-known

tumor suppressors or oncogenes. The two next most

recurrently found genes areOBSCN andARID1A.OBSCN

functions in myofibrillogenesis, and is known to activate

Rho GTPases [28,29]. Motif-based studies also predict

that it binds to PIK3R1 – the regulatory component of the

PI3K complex [30]. ARID1A was previously shown to be a

tumor suppressor in gastrological cancers.

To demonstrate the novelty of our results, we searched

for co-citation of the recurrent genes with the word

‘cancer’ in the literature using CoCiter [31] (Additional file

1: Table S2). We observe that the last ten genes in the list

(TRRAP, AGAP2, CERS2, RORC, NCSTN, LAMA2, RIT1,

OBSCN, RYR1 and SPTB) have less than 25 co-citations,

while well-known genes have hundreds or thousands of

co-citations. Since these ten genes are not well-known

cancer drivers, we looked for other evidence that supports

their cancer relevance; specifically if they are recurrently

mutated or copy number recurrently altered enough to be

detected by MutSig or Gistic, respectively, and checked

whether they containmutation hotspots (Additional file 1:

Table S2). MutSig can detect RIT1 in lung adenocarci-

noma and OBSCN in adrenocortical carcinoma. Gistic

can detect nine of these genes in different cancers, but

note that Gistic results are considered to be very weak

evidence because copy number alterations generally affect

large portions of the chromosomes, and most of the

recurrent copy number changes are considered to be pas-

sengers. For the total of 17 studies, Gistic reports 13,123

genes using 5% FDR cutoff, while Mutsig reports only 388.

Mutation hotspots are considered to be evidence of

driver mutations, because mutations in different parts of

a driver gene are likely to bring different amounts of selec-

tive advantage to a cancer cell, while passenger mutations

are expected to be randomly distributed. Of these ten less-

known genes, we find that five of them (TRRAP, OBSCN,

RIT1, AGAP2 and RORC) contain mutation hotspots

(Additional file 1: Figure S45). Note that among the

remaining five genes, two of them (CERS2 and NCSTN)

are mostly copy number altered in the results. A literature

survey of these ten genes helps us understand their cancer

context, as we summarized in Table 1.

The most frequent common targets in the result groups

are PIK3R1, HRAS, BRAF, MYC, RAC1 and RHOC. We

detect mutually exclusive alterations at the upstream of

RHOC in five datasets (Figure 4). RHOC is a member of

Rho GTPases, whose members function in the regulation

of cell shape, attachment andmotility. Even though RHOC

alterations are not frequent in TCGA samples, its over-

expression was previously shown to promote metastasis

of cancer cells [41,42]. We observe that it is expressed in

a great majority of the TCGA samples (Additional file 1:

Figure S46). These mutually exclusive alterations at the

signaling upstream of RHOC in several different cancers

suggest that activation of RHOC could be one of themajor

downstream effects of driver alterations.

Comparison of methods that detect mutually exclusive

gene alterations

We compared the performance of our method (Mutex)

with the performance of previously published methods –

Pairwise search [5], RME [6], Dendrix [8], MEMo [7],

MDPFinder [9], Multi-dendrix [10] and ME [11] – for

simulated datasets.

In our first trial, we derived a large dataset from the

breast cancer dataset in cBioPortal (using mutations and

expression-confirmed copy number changes), which con-

tains 830 genes with an alteration rate of at least 3% in

958 samples. The derivation steps are: (i) randomize the

sample distribution of gene alterations while preserving

alteration ratios, (ii) determine 50 non-overlapping groups

of genes, each with three members that are upstream

of a common target in the signaling network, (iii) iter-

ate over gene alterations in groups and re-randomize
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Figure 3 Network constructed using recurrent genes in the results. The genes in the graph appear in the results of at least two different
studies. Thick edges represent recurrent co-presence of gene pairs in the same mutually exclusive set. Thin edges represent non-recurrent
co-presence of gene pairs, and are only used to connect the genes that lack a recurrent edge. Note that there are many other non-recurrent edges
between recurrent genes, which are omitted from the graph to reduce complexity. See Additional file 1: Figure S44 for a complete graph with all
non-recurrent genes and co-presences.

the overlapping alterations, and repeat once more. The

last step decreases the chance of overlaps in the seeded

groups. With this large dataset, we were not able to obtain

results fromMEMo andMEmethods – neither algorithm

scaled to the large data size. A comparison of receiver

operating characteristic (ROC) curves (Figure 5a) shows

a dramatic improvement over existing methods. However,

note that this trial only captures the difference in perfor-

mance for the groups of mutually exclusive genes whose

members have a common downstream target in the sig-

naling network. In a real case, there would be other groups

missed by the gene network, but it is not easy to estimate

their amount and to include these in a performance test.

Mutex outperforms the other methods for two reasons:

(i) the reduction in search space and (ii) it has a more

precise search metric. To understand how these two com-

ponents contribute to the improvement, we compared

a modified version of Mutex that does not use the sig-

naling network and does not reduce the search space,

with other methods that do not reduce the search space

(Figure 5d). As expected, the ROC performance of Mutex

decreased and became comparable with the other meth-

ods. The difference, however, is still substantial in terms of

the number of results in a realistic use case. If we use a 5%

FDR cutoff for the large dataset, modified Mutex recov-

ers 49 true positive genes in the results while the next-best

method, RME, recovers only 12.

This experiment validates that Mutex’s statistical met-

ric is an improvement over other methods even without

search space reduction. It also clearly demonstrates that

exploiting the prior pathway information can improve

precision. There is one caveat though – for real data, a

common downstream molecule is one possible pattern

out of many that can lead to mutually exclusive alteration

patterns. The algorithm, however, is pattern agnostic and

can be readily extended to other patterns – a research

direction that we are exploring.

To include MEMo and ME in the comparison, we pre-

pared a smaller simulated dataset (156 genes and 463 sam-

ples), and seeded 20 groups, each with three members,

using the same procedure, and compared ROC curves

(Figure 5b). Again, Mutex outperformed all other meth-

ods. In this comparison, most of the advantage of Mutex

is from reducing the search space. MEMo is the only other

method that reduces the search space. MEMo, however,

has a disadvantage in this comparison because we did not

select the seeded groups to appear also as nodes of a clique

in the interaction network that MEMo uses. For a fair

comparison, we added new interactions between seeded

group members to MEMo’s interaction network database.

This modification creates a clique for each seeded group

that can be detected by MEMo. In this case (Figure 5c),

the performance difference between Mutex and MEMo is

mostly due to the more stringent metric used by Mutex,

which ensures that each member contributes significantly

to the group thus decreasing the number of false positives.

This evaluation indicates that among the published

methods that do not use prior information, there were

no performance improvement posterior to RME. Den-

drix, MDPFinder and Multi-dendrix share the same

weight function, and we previously noted its tendency

to favor noise over signal. Confirming this behavior, for

the large dataset we observe exceptionally poor per-

formance (Figure 5a). ME uses a generative model for
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Table 1 Ten recurrent genes that are least associated with

cancer in the literature

Gene Possible relevance for cancer

TRRAP This is a member of the PIK-related kinases family, and
previously it was suggested itmediates transcriptional control
of TP53 on MDM2 [32]. We find TRRAP in result groups both
with PIK3CA and with TP53 for two subtypes of endometrial
cancer.

AGAP2 Known to be over-expressed in cancer cells, and it was
suggested it carries anti-apoptotic signals by activating
nuclear phosphoinositol 3 kinases [33].

CERS2 A ceramide synthase. Ceramide was previously classified as a
tumor-suppressor lipid [34].

RORC This is a nuclear receptor and it was previously associated
with secondary lymphedema formation after breast cancer
surgery [35].

NCSTN This is a component of the gamma-secretase complex, which
cleaves many target proteins including Notch and Ecadherin.
In a study, it was found to be over-expressed in about half of
breast cancer cells, and its knock-down was shown to reduce
cell invasion [36].

LAMA2 The alpha subunit of laminin. It functions in cell attachment
and mobility. It is also known to function in a complex that
activates Rho GTPases [37].

RIT1 This is a Ras-related GTPase, and is involved in the Ras-MAPK
signaling cascade. Its mutations were recently classified as
driver for lung adenocarcinoma cells [38].

OBSCN This gene functions in myofibrillogenesis, and is known to
activate Rho GTPases [28,29].

RYR1 Ryanodine receptors are calcium release channels found in
skeletal muscle and neuronal cells. It was previously reported
that RyR expression occurs frequently in breast cancer and
correlates with tumor grade [39].

SPTB This is a member of the spectrin family, which are membrane
cytoskeletal proteins that function in cell membrane
organization and stability. It was previously shown that
another spectrin, SPTBN1, functions in TGF-beta signaling,
and its loss can contribute to hepatocellular cancer [40].

mutually exclusive alterations and scores the tested groups

according to their fit to this model, compared to a ran-

dom model. Their generative model assumes an equal

chance for each gene in the group to be altered, so it

only detects groups whose members have similar alter-

ation ratios. Since we do not control for alteration ratios

of genes in the seeded groups, ME performs poorly in our

simulations (Figure 5b).We chose not to control it because

there is not sufficient biological reason to expect genes

in a group to have similar alteration ratios. We improve

on both RME’s scoring criteria and MEMo’s search space

reduction using gene networks.

The performance tests also demonstrate that Mutex

scales well to large datasets and large groups, both in

terms of memory usage and run time. It has similar run-

time characteristics as RME and MDPFinder and is much

more efficient than Dendrix, MEMo or ME (Additional

file 1: Table S3).

Discussion
Our approach detects many interesting genes and

groups that are candidate cancer drivers and would

not be detected by frequency-based methods such as

MutSig. Additionally, mutually exclusive groups cou-

ple less known, less frequently altered genes with well-

characterized cancer drivers, suggesting a mechanism of

action. We also observe that many result groups are over-

lapping. We speculate that this suggests a highly cou-

pled selection advantage between genomic modifications

instead of well-defined modules or pathways.

Our mutual exclusivity score for groups of genes is ana-

lytical and fast to calculate for a single group. We still

use permutation testing for multiple hypothesis correc-

tion when testing multiple groups. Since our method uses

the same estimated null distribution for a gene regardless

of the tested group, however, our approach scales substan-

tially better compared to approaches where permutation

testing is performed for each evaluated group.

We plan to extend this work towards searching other

topological structures on the biological network. The cur-

rent method selects genes with a common downstream

target, and requires all group members to be directly

linked on the network without a non-member linker node.

Allowing linker nodes can help identify more distant

mutual exclusion relations. The challenge of extending

the search to other structures is that some structures can

appear too many times in the network, expanding the

search space and reducing the statistical power due to

multiple hypothesis testing.

Conclusions
We have developed a method that can detect mutually

exclusive genomic alteration patterns in cancer genomic

datasets. Mutex is unique in its ability to use prior path-

way information efficiently to search the graph structure

and reduce the search space. This reduction trades recall

for precision. Given the highly noisy nature of the cancer

genomic datasets, this is almost always a desirable trade-

off. We also offer a new efficient and regularized statistical

test that, even without the prior pathway information,

improves the existing approaches.

Materials andmethods

Mutual exclusivity of a pair

We define the alteration of two genes to be mutually

exclusive if their overlap in samples is significantly less

than expected by chance (Additional file 1: Figure S47).

The statistical significance of the small overlap can be

calculated using a hypergeometric test. For a pair of

genes, a hypergeometric test is an analytical alternative

to permutation testing, where permutations remove the

dependency between alterations while preserving alter-

ation rates, and assume equal probability that each sample
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Figure 4 Sample result groups that have RHOC as a common downstream target. Oncoprints are shown at the right of each group and
unaltered samples are omitted. Gene color intensities are proportional to gene alteration ratios. In the signaling network, dashed green edges
represent transcriptional relations and solid blue edges represent post-translational relations. Genes in the result groups are shown inside a
compound node, whose label shows the alteration coverage of samples in the group. This is also equal to the visible portion of samples on the
oncoprints. Figure prepared using ChiBE [43,44]. (a) Uterine corpus endometrial carcinoma (CNA dominated 56 samples, 49 altered). (b) Lung
adenocarcinoma (218 samples, 160 altered). (c) Breast invasive carcinoma (923 samples, 210 altered). (d) Glioblastoma multiforme (112 samples, 98
altered). (e) Uterine corpus endometrial carcinoma (mutation dominated 155 samples, 110 altered).

is altered. This assumes a uniform alteration frequency

from sample to sample. This might not always be the

case, especially for the so-called hyper-mutated sam-

ples, which are often caused by a preceding mutation in

DNA repair mechanisms. Properly addressing this het-

erogeneity is very complicated, as one should take into

account that each overlap has a different probability in

the null model. This is still an open problem. At the cost

of statistical power, we partially mitigate this issue by

excluding hyper-altered samples from the analysis. Specif-

ically, we removed samples that have more alterations

than Q3 + (1.5 × IQR) where Q3 is the third quartile

in the distribution and IQR is the interquartile range.

This criteria is often used in box plots to mark outlier

values.

Mutual exclusivity of a group

There is no standard way of testing whether a group of

more than two genes exhibits a mutual exclusion pattern.

We can compare pairs of genes, or we can get the union of

alterations of a subset of genes in the group and compare

it to another disjoint subset. There are combinatorially

many ways to test the significance of the mutual exclusion

in a group of genes. Among a wide number of possibilities,

here we identify a subset of these tests to measure mutual

exclusivity.

To ensure that every member of the group signifi-

cantly contributes to the pattern, we use the following null

hypothesis:

H0: The specific member gene in the group is altered

independently from the union of other alterations in the

group.

We test H0 for each member by evaluating the co-

distribution of the gene with the union of other genes

(Figure 2a) using a hypergeometric test. For a group of n

genes, this method generates n P values, which are prob-

abilities for the independent distribution of each member

gene. Since we would like each member to contribute to

the pattern, we use the P value for the least significant

member as the initial score of the group. A closed-form

expression for this metric is provided in Equation 1, where

gi is the alterations of the ith gene in the group, gn−i is the

merged alterations of group members excluding the ith

gene, and H is the hypergeometric test that generates the

P value of mutual exclusivity of two array of alterations:

initial score = MaxiH(gi, gn−i) (1)

Since we are testing more than one group, this ini-

tial (uncorrected) score is affected by multiple hypothesis

testing. To correct for multiple hypothesis testing, we first
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Figure 5 Receiver operating characteristic curve comparisons of methods that detect mutually exclusive alterations for simulated

datasets. (a) Comparison with the large dataset. (b) Comparison with the small dataset. (c) Comparison of methods that do search space reduction
(Mutex and MEMo) after ensuring all seeded groups are in the reduced search space of both methods. (d, e) Comparisons after removing the
search space reduction of Mutex, for large and small datasets.

estimate the null distribution of the initial P values of each

gene, then calculate the significance of the observed ini-

tial P value for each member. Among this second set of

P values, we select the least significant as the multiple

hypothesis testing corrected final score (Figure 2a).

To estimate the null distribution of the initial P value

for a gene, we sample it by permuting alterations of

that gene, and searching for the group with the max-

imum uncorrected score using the same greedy search

method. We only permute the alterations of the gene in

question, because we are testing that gene in its specific

network environment with a specific alteration pattern in

surrounding genes.

To be able to control the FDR of the resulting groups,

we need a measure for significance of the final score. Most

popular FDRmethods, like the Benjamini–Hochberg pro-

cedure, were developed for P values that are assumed to

have a uniform null distribution. The final scores do not

have a uniform null distribution even though they were

derived from P values. This is due both to selecting the

least significant P value in the group (which shifts the null

distribution to the right) and searching for the best scoring

set for a seed gene (which shifts the null distribution to the

left). Since it is hard to estimate the shape of the null distri-

bution analytically, we estimate it by running the analysis

with all-permuted gene alterations, multiple times. Using

the estimated null distribution of the final scores, we select

the most significant results to satisfy a certain FDR. We

also use this null distribution of final scores for estimat-

ing the value of (true positives− false positives), which we

maximize while deciding a score cutoff.

Verifying copy number alteration data with expression

To reduce the noise in the data, we filter out the copy

number changes that are not supported by gene expres-

sion. We compare gene expression of copy number intact

samples with samples that have the specific copy number

alteration (either amplification or deletion) (Additional
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file 1: Figure S48). If the difference of mean expressions

between two distributions is not in the expected direc-

tion or it is not statistically significantly different using a

t-test with a 0.05 P value threshold, we do not use the copy

number alterations in question. If the difference between

the means is significant, we determine the expression

threshold for which expression is more likely to belong to

the copy number changed distribution, and use only the

copy number changes with an expression satisfying the

threshold. After this verification, if a gene still has both

amplifications and deletions, we only use the type with the

majority.

Filtering genes

We filtered out genes that are not at the proximity of

recurrently mutated or recurrently copy number altered

genes in the signaling network. We used the MutSig anal-

ysis results with q value threshold 0.05 for recurrent

mutations, and used Gistic results with q value threshold

0.05 for recurrent copy number alterations, both obtained

through Broad Firehose. We define proximity genes as the

union of the neighbor genes and the genes that have a

common downstream target (the upstream of the down-

stream genes). We used the following procedure:

A = MutSig genes

B = Gistic genes

C = Proximity(A)

D = B ∩ C

E = A ∪ D

F = Proximity(E)

Result = E ∪ F

To improve performance, we filtered out genes with very

low alteration rates. We used a minimum threshold of

0.01. The threshold was increased for studies that have

very high overall alteration frequencies to ensure that the

number of genes remains less than 500.

Generation of simulated datasets

We derived the simulated datasets using the two TCGA

breast cancer datasets deposited in cBioPortal. For the

larger simulated dataset, we used the dataset named

‘Breast Invasive Carcinoma (TCGA, Provisional)’, which

contained 958 complete samples at the time. Here, com-

plete means that the sample has mutation profile, copy

number profile and expression profile available. We used

mutations and expression-verified copy number alter-

ations as previously described. We filtered out genes with

less than 3% alteration rate, which gave us 830 altered

genes. For the small dataset, we used the dataset named

‘Breast Invasive Carcinoma (TCGA, Nature 2012)’, which

contains 463 complete samples.We filtered out genes with

less than 5% alteration, which gave us 158 altered genes.

We randomized the alterations of each gene separately,

preserving the number of alterations, but re-assigning

sample distributions. We chose 50 non-overlapping pos-

itive groups for the large dataset, and 20 positive groups

for the small dataset, which are composed of three genes

that have a common downstream gene in the signaling

network. We applied the algorithm below twice to intro-

duce artificially mutual exclusion to the alterations of

positive groups by moving the overlapping alterations to

new random locations:

for each positive group G do

for each member gi of G do

for each member gj of G where i �= j do

for each sample k do

if both gi and gj are altered in sample k then

x←random sample where gi is not altered

alter gi at sample x

un-alter gi at sample k

end if

end for

end for

end for

end for

Software

An implementation of Mutex in Java is available online

[45], distributed under GNU Lesser General Public

License.

Data availability

The codes of the TCGA datasets used in this manuscript

are LAML, ACC, LGG, BRCA, COADREAD, GBM,

HNSC, KIRC, KIRP, LUAD, LUSC, OV, PRAD, SKCM,

STAD, THCA and UCEC. Processed versions of these

datasets in the form of an alteration matrix are included

in Additional file 2.

Additional files
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graphical results of the analysis of each TCGA cancer dataset, and
supplementary figures, tables and text.

Additional file 2: Datasets and result details. Zip archive with the
datasets used in the study, the signaling network, result gene groups,
significances, oncoprints, and other output result files. It also contains the
simulated datasets and related networks.
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